The flight planning - flight management connection
NASA Technical Reports Server (NTRS)
Sorensen, J. A.
1984-01-01
Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.
Survey to Determine Flight Plan Data and Flight Scheduling Accuracy
DOT National Transportation Integrated Search
1972-01-01
This survey determined Operational Flight Plan Data and Flight schduling accuracy vs. published schedules an/or stored flight plan data. This accuracy was determined by sampling tracer flights of varying lengths, selected terminals, and high altitude...
NASA Technical Reports Server (NTRS)
Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang
2011-01-01
This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Washington, DC Metropolitan Area Special Flight Rules Area § 93.335 Definitions. For purposes of this subpart— DC FRZ flight plan is a flight plan filed... the DC FRZ. This flight plan is separate and distinct from a standard VFR flight plan, and does not...
14 CFR 437.25 - Flight test plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight test plan. 437.25 Section 437.25... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Flight Test Plan § 437.25 Flight test plan. An applicant must— (a) Describe any flight test program, including estimated...
14 CFR 437.25 - Flight test plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight test plan. 437.25 Section 437.25... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Flight Test Plan § 437.25 Flight test plan. An applicant must— (a) Describe any flight test program, including estimated...
14 CFR 437.25 - Flight test plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight test plan. 437.25 Section 437.25... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Flight Test Plan § 437.25 Flight test plan. An applicant must— (a) Describe any flight test program, including estimated...
Design and analysis of advanced flight planning concepts
NASA Technical Reports Server (NTRS)
Sorensen, John A.
1987-01-01
The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.
14 CFR 99.11 - ADIZ flight plan requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false ADIZ flight plan requirements. 99.11... flight plan requirements. (a) No person may operate an aircraft into, within, or from a departure point within an ADIZ, unless the person files, activates, and closes a flight plan with the appropriate...
14 CFR 99.11 - ADIZ flight plan requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false ADIZ flight plan requirements. 99.11... flight plan requirements. (a) No person may operate an aircraft into, within, or from a departure point within an ADIZ, unless the person files, activates, and closes a flight plan with the appropriate...
14 CFR 415.37 - Flight readiness and communications plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight readiness and communications plan... a Federal Launch Range § 415.37 Flight readiness and communications plan. (a) Flight readiness requirements. An applicant must designate an individual responsible for flight readiness. The applicant must...
NASA Technical Reports Server (NTRS)
Gibbs, Michael J. (Inventor); Adams, Michael B. (Inventor); Chase, Karl L. (Inventor); Van Omen, Debi (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor)
2003-01-01
A method and system for displaying a flight plan such that an entire flight plan is viewable through the use of scrolling devices is disclosed. The flight plan display may also include a method and system for collapsing and expanding a flight plan display, have provisions for the conspicuous marking of changes to a flight plan, the use of tabs to switch between various displays of data, and access to a navigation database that allows a user to view information about various navigational aids. The database may also the access to the information about the navigational aids to be prioritized based on proximity to the current position of the aircraft.
Apollo experience report: Flight planning for manned space operations
NASA Technical Reports Server (NTRS)
Oneill, J. W.; Cotter, J. B.; Holloway, T. W.
1972-01-01
The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.
A testbed for the evaluation of computer aids for enroute flight path planning
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.
1990-01-01
A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.
NASA Technical Reports Server (NTRS)
Dunbar, J. C.
1972-01-01
The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial SFRA...
14 CFR Appendix B to Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2013 CFR
2013-01-01
....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...
14 CFR Appendix B to Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2014 CFR
2014-01-01
....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...
Region Three Aerial Measurement System Flight Planning Tool - 12006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messick, Chuck; Pham, Minh; Smith, Ron
The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports thatmore » the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)« less
NASA Technical Reports Server (NTRS)
Hwoschinsky, Peter V.
1992-01-01
The Rotorcraft Master Plan contains a comprehensive summary of active and planned FAA vertical flight research and development. Since the Master Plan is not sufficient for tracking project status and monitoring progress, the Vertical Flight Program Plan will provide that capability. It will be consistent with the Master Plan and, in conjunction with it, will serve to ensure a hospitable environment if the industry presents a practical vertical-flight initiative.
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
14 CFR 61.87 - Solo requirements for student pilots.
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight preparation procedures, including preflight planning and preparation, powerplant operation, and...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...) Proper flight preparation procedures, including preflight planning and preparation, powerplant operation...
Introduction to orbital flight planning (1)
NASA Technical Reports Server (NTRS)
Blackwell, H. E. (Editor); Davis, E. L.; Dell, D. D.
1981-01-01
This workbook is designed for students interested in space flight planning, who after training, may serve as flight planning aides. Routine flight planning activities requiring engineering-type calculations and analysis are covered. Practice exercises and brief instructions are given for the programming and use of the hand calculator as well as the calculation of position and velocity in the orbital plane. Calculation of relative orbital position is also covered with emphasis upon celestial coordinates and time measurement.
Developing a Bird Conservation Plan for the Diverse Coniferous Forests of California
John C. Robinson
2005-01-01
Bird conservation plans represent one of the pillars of the National Partners in Flight (PIF) bird conservation strategy known as the Flight Plan. The Flight Plan provides the framework for bird conservation plans that, in turn, set conservation priorities and specific objectives for bird populations and habitat for each state or eco-region in the nation. Many of...
2013-03-01
Unmanned Aircraft Systems Flight Plan that identified small unmanned aerial systems ( SUAS ) as “a profound technological...advances in small unmanned aerial systems ( SUAS ) cooperative control. The end state objective of the research effort was to flight test an autonomous...requirements were captured in the Unmanned Aircraft Systems Flight Plan . The flight plan
NASA Technical Reports Server (NTRS)
2008-01-01
A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.
An Expert System for Aviation Squadron Flight Scheduling
1991-09-01
SCHEDULING A. OVERVIEW A flight schedule is an organization’s plan to accomplish specific missions with its available resources. It details the mission...schedule for every 24 hour period, and will occasionally write a weekly flight schedule for long range planning purposes. The flight schedule is approved...requirements, and 11 aircraft, trainer, and aircrew availability to formulate the flight schedule. It basically is a plan to optimize the squadron’s resources
MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.
1981-01-01
The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.
NASA Technical Reports Server (NTRS)
1971-01-01
Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, C. Elaine
1991-01-01
The goals of this research were to develop design concepts to support the task of enroute flight planning. And within this context, to explore and evaluate general design concepts and principles to guide the development of cooperative problem solving systems. A detailed model is to be developed of the cognitive processes involved in flight planning. Included in this model will be the identification of individual differences of subjects. Of particular interest will be differences between pilots and dispatchers. The effect will be studied of the effect on performance of tools that support planning at different levels of abstraction. In order to conduct this research, the Flight Planning Testbed (FPT) was developed, a fully functional testbed environment for studying advanced design concepts for tools to aid in flight planning.
U.S. Army Aviator Job Analysis
2006-08-01
Differences by Airframe AH-64D CH-47 OH-58 UH-60 Task M SD M SD M SD M SD Plan IFR flight 3.56 1.25 3.41 1.15 2.00 1.43 4.07 .84 Perform aircraft...1.64 3.13 1.36 night systems Perform flight navigation by dead 3.91 .98 3.86 1.03 3.29 1.07 4.06 .87 reckoning Perform appropriate IFR approach 3.67...2. Check status of aircraft @ (D () T 3. Plan VFR flight T (Z 3 e 4. Plan IFR flight @ T 0 3 e 5. Perform tactical flight mission planning using the
Analysis of Multi-Flight Common Routes for Traffic Flow Management
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai
2016-01-01
When severe convective weather requires rerouting aircraft, FAA traffic managers employ severe weather avoidance plans (e.g., Playbook routes, Coded Departure Routes, etc.) These routes provide pilots with safe paths around weather-affected regions, and provide controllers with predictable, and often well-established flight plans. However, they often introduce large deviations to the nominal flight plans, which may not be necessary as weather conditions change. If and when the imposed traffic management initiatives (TMIs) become stale, updated shorter path flight trajectories may be found en route, providing significant time-savings to the affected flights. Multiple Flight Common Routes (MFCR) is a concept that allows multiple flights that are within a specified proximity or region, to receive updated shorter flight plans in an operationally efficient manner. MFCR is believed to provide benefits to the National Airspace System (NAS) by allowing traffic managers to update several flight plans of en route aircraft simultaneously, reducing operational workload within the TMUs of all affected ARTCCs. This paper will explore some aspects of the MFCR concept by analyzing multiple flights that have been selected for rerouting by the NAS Constraint Evaluation and Notification Tool (NASCENT). Various methods of grouping aircraft with common or similar routes will be presented, along with a comparison of the efficacy of these methods.
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick
2010-04-12
JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Data loss flight time and planned safe flight state analyses. 417.219 Section 417.219 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION... flight to a condition where the launch vehicle's hazardous debris impact dispersion extends to any...
32 CFR 245.22 - Policy for application of EATPL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) ESCAT Air Traffic... individual filing the flight plan will be responsible for including the priority number as determined by the originator of the aircraft flight operation, in the remarks section of the flight plan. (c) Situations may...
NASA Technical Reports Server (NTRS)
Torian, J. G.
1977-01-01
Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.
NASA Technical Reports Server (NTRS)
Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.
1990-01-01
This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display elements are being developed, including a 3DOF flight detector for attitude commanding, a different flight detector for translation commands, and a pictorial representation of velocity deviations.
Flight assessment of a large supersonic drone aircraft for research use
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.; Peele, E. L.
1974-01-01
An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sridhar, Banavar (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Sheth, Kapil S. (Inventor)
2012-01-01
Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.
DOT National Transportation Integrated Search
2009-01-01
The Flight Plan is the strategic plan for the agency, the plan to help us prepare for the future. The majority of FAAs responsibilities are our core functionsour everyday roles and responsibilitieswhich are not specifically highlighted in th...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 2 2014-07-01 2014-07-01 false Data entry. 245.27 Section 245.27 National... Under ESCAT § 245.27 Data entry. Aircraft will file IFR or VFR flight plans, assigned a discrete... entered in the remarks section of the flight plan. The EATPL number will be passed with flight plan data...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 2 2013-07-01 2013-07-01 false Data entry. 245.27 Section 245.27 National... Under ESCAT § 245.27 Data entry. Aircraft will file IFR or VFR flight plans, assigned a discrete... entered in the remarks section of the flight plan. The EATPL number will be passed with flight plan data...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 2 2012-07-01 2012-07-01 false Data entry. 245.27 Section 245.27 National... Under ESCAT § 245.27 Data entry. Aircraft will file IFR or VFR flight plans, assigned a discrete... entered in the remarks section of the flight plan. The EATPL number will be passed with flight plan data...
14 CFR 99.17 - Deviation from flight plans and ATC clearances and instructions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Deviation from flight plans and ATC clearances and instructions. 99.17 Section 99.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... TRAFFIC General § 99.17 Deviation from flight plans and ATC clearances and instructions. (a) No pilot may...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Data entry. 245.27 Section 245.27 National... Under ESCAT § 245.27 Data entry. Aircraft will file IFR or VFR flight plans, assigned a discrete... entered in the remarks section of the flight plan. The EATPL number will be passed with flight plan data...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 2 2011-07-01 2011-07-01 false Data entry. 245.27 Section 245.27 National... Under ESCAT § 245.27 Data entry. Aircraft will file IFR or VFR flight plans, assigned a discrete... entered in the remarks section of the flight plan. The EATPL number will be passed with flight plan data...
Besada, Juan A.; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; Bernardos, Ana M.; Casar, José R.
2018-01-01
This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control. PMID:29641506
Besada, Juan A; Bergesio, Luca; Campaña, Iván; Vaquero-Melchor, Diego; López-Araquistain, Jaime; Bernardos, Ana M; Casar, José R
2018-04-11
This paper describes a Mission Definition System and the automated flight process it enables to implement measurement plans for discrete infrastructure inspections using aerial platforms, and specifically multi-rotor drones. The mission definition aims at improving planning efficiency with respect to state-of-the-art waypoint-based techniques, using high-level mission definition primitives and linking them with realistic flight models to simulate the inspection in advance. It also provides flight scripts and measurement plans which can be executed by commercial drones. Its user interfaces facilitate mission definition, pre-flight 3D synthetic mission visualisation and flight evaluation. Results are delivered for a set of representative infrastructure inspection flights, showing the accuracy of the flight prediction tools in actual operations using automated flight control.
Airline meteorological requirements
NASA Technical Reports Server (NTRS)
Chandler, C. L.; Pappas, J.
1985-01-01
A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.
Airline flight planning - The weather connection
NASA Technical Reports Server (NTRS)
Steinberg, R.
1981-01-01
The history of airline flight planning is briefly reviewed. Over half a century ago, when scheduled airline services began, weather data were almost nonexistent. By the early 1950's a reliable synoptic network provided upper air reports. The next 15 years saw a rapid growth in commercial aviation, and airlines introduced computer techniques to flight planning. The 1970's saw the development of weather satellites. The current state of flight planning activities is analyzed. It is found that accurate flight planning will require meteorological information on a finer scale than can be provided by a synoptic forecast. Opportunities for a new approach are examined, giving attention to the available options, a mesoscale numerical weather prediction model, limited area fine mesh models, man-computer interactive display systems, the use of interactive techniques with the present upper air data base, and the implementation of interactive techniques.
STS-106 WFCR Planning Flight Team
2000-09-14
JSC2000-06247 (September 2000)--- Flight director Bill Reeves, at right foreground, and the fifty-odd flight controllers who support his STS-106 planning team pose for their group portrait in Houston's Mission Control Center.
Human Space Flight Plans Committee Report
2009-10-21
Copies of the U.S. Human Space Flight Plans Committee report are seen in the foreground of Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, left, and committee member Ed Crawley, right, during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
An empirical evaulation of computerized tools to aid in enroute flight planning
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, C. Elaine; Layton, Charles
1993-01-01
The paper describes an experiment using the Flight Planning Testbed (FPT) in which 27 airline dispatchers were studied. Five general questions was addresses in the study: Under what circumstances does the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers; what is the nature of such influences; How beneficial are the general design concepts underlying FPT; How effective are the specific implementation decisions made in realizing these general design concepts; How effectively do dispatchers evaluate situations requiring replanning and how effectively do they identify appropriate solutions to these situations. The study leaves little doubt that the introduction of computer-generated suggestions for solving a flight planning problem can have a marked impact on the cognitive processes of the user and on the ultimate plan selected.
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
Typical missions identified for AMPS flights in the arly 1980's are described. Experiment objectives and typical scientific instruments selected to accomplish these objectives are discussed along with mission requirements and shuttle and Spacelab capabilities assessed to determine any AMPS unique requirements. Preliminary design concepts for the first two AMPS flights form the basis for the Phase C/D program plan. This plan implements flights 1 and 2 and indicates how both the scientific and flight support hardware can be systematically evolved for future AMPS flights.
Methods and apparatus for graphical display and editing of flight plans
NASA Technical Reports Server (NTRS)
Gibbs, Michael J. (Inventor); Adams, Jr., Mike B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor); Omen, Debi Van (Inventor)
2002-01-01
Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.
Orbiter Auxiliary Power Unit Flight Support Plan
NASA Technical Reports Server (NTRS)
Guirl, Robert; Munroe, James; Scott, Walter
1990-01-01
This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.
NASA Technical Reports Server (NTRS)
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
1991-05-01
aspects of planning air interdiction .apability other than reviewing the available maps, photographic missions (e.g., computing fuel and mission time litnes... photographs . FUR or radar pictures of the waypoinis and targets communications. thai allows the mission to be rehearsed. In-flight circumstances are...Planning Aircraft In Flight MPS Geographieal & Meteorological Terrain a Cultural Features Image Data (e.g., Photographic ) Weather Data a Update Data an
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR 61.93 - Solo cross-country flight requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... preflight planning and preparation is correct and that the student is prepared to make the flight safely... instructor has: (1) Determined that the student's cross-country planning is correct for the flight; (2... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Solo cross-country flight requirements. 61...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR 61.93 - Solo cross-country flight requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... preflight planning and preparation is correct and that the student is prepared to make the flight safely... instructor has: (1) Determined that the student's cross-country planning is correct for the flight; (2... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Solo cross-country flight requirements. 61...
14 CFR 61.93 - Solo cross-country flight requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... preflight planning and preparation is correct and that the student is prepared to make the flight safely... instructor has: (1) Determined that the student's cross-country planning is correct for the flight; (2... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Solo cross-country flight requirements. 61...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace
Code of Federal Regulations, 2010 CFR
2010-01-01
... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...
14 CFR 61.93 - Solo cross-country flight requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... preflight planning and preparation is correct and that the student is prepared to make the flight safely... instructor has: (1) Determined that the student's cross-country planning is correct for the flight; (2... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Solo cross-country flight requirements. 61...
14 CFR 61.93 - Solo cross-country flight requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... preflight planning and preparation is correct and that the student is prepared to make the flight safely... instructor has: (1) Determined that the student's cross-country planning is correct for the flight; (2... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Solo cross-country flight requirements. 61...
Airline flight planning: The weather connection
NASA Technical Reports Server (NTRS)
Steinberg, R.
1981-01-01
Airline flight planning has shown little improvement in accuracy since the introduction of computerized techniques in 1964. This has primarily been, because both the type of weather product utilized by the carriers and the way they have employed it has remained unchanged over the past 15 years. The airlines now have an opportunity to make a significant advance in this area with attendant benefits in fuel savings. Most the technological ingredients are in place, but it will take increased cooperation between government and the private sector if cost effective improvements are to be made on a reasonable time scale. This paper reviews the meteorological basis for the present method of flight planning and analyzes its impact on current flight operations. A new approach is suggested for developing a weather data base, for flight planning, which has the potential of providing a fuel savings of between 2 and 3 percent on long distance flights.
An Airborne Conflict Resolution Approach Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mondoloni, Stephane; Conway, Sheila
2001-01-01
An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.
Optimization of nas lemoore scheduling to support a growing aircraft population
2017-03-01
requirements, and, without knowing the other squadrons’ flight plans , creates his or her squadron’s flight schedule. Figure 2 illustrates the process each...Lemoore, they do not communicate their flight schedules among themselves; hence, the daily flight plan generated by each squadron is independently...manual process for aircraft flight scheduling at Naval Air Station (NAS) Lemoore accommodates the independent needs of 16 fighter resident squadrons as
NASA Technical Reports Server (NTRS)
Knighton, Donna L.
1992-01-01
A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.
Shuttle operations era planning for flight operations
NASA Technical Reports Server (NTRS)
Holt, J. D.; Beckman, D. A.
1984-01-01
The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data....119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
14 CFR 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding...
Flight software issues in onboard automated planning: lessons learned on EO-1
NASA Technical Reports Server (NTRS)
Tran, Daniel; Chien, Steve; Rabideau, Gregg; Cichy, Benjamin
2004-01-01
This paper focuses on the onboard planner and scheduler CASPER, whose core planning engine is based on the ground system ASPEN. Given the challenges of developing flight software, we discuss several of the issues encountered in preparing the planner for flight, including reducing the code image size, determining what data to place within the engineering telemetry packet, and performing long term planning.
Space Shuttle Program Orbiter Approach and Landing Test
NASA Technical Reports Server (NTRS)
1977-01-01
The orbiter approach and landing test (ALT) reports are published to provide senior NASA management with timely information on ALT program plans and accomplishments. The ALT reports will be comprised of this pre-ALT report, ALT pre-flight memoranda, and an ALT post-flight report following each flight. The purpose of this pre-ALT report is to provide an overview of the ALT program, describing the flight vehicles involved and summarizing the planned flights.
14 CFR § 1214.119 - Spacelab payloads.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; Level I only for customer-furnished Spacelab hardware). (6) Shuttle 1 and Spacelab flight planning. (7...) Extravehicular Activity (EVA) services. (13) Payload flight planning services. (14) Transmission of Spacelab data...§ 1214.119 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General...
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1991-01-01
The design and functions of ALEPS (Automated Logistics Element Planning System) is a computer system that will automate planning and decision support for Space Station Freedom Logistical Elements (LEs) resupply and return operations. ALEPS provides data management, planning, analysis, monitoring, interfacing, and flight certification for support of LE flight load planning activities. The prototype ALEPS algorithm development is described.
NASA Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III
2011-01-01
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.
Flight Planning Branch Space Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.
2011-01-01
Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.
STS-125 Flight Control Team in BFCR - HST Orbit & Planning Teams
2009-05-18
JSC2009-E-120479 (18 May 2009) --- Members of the STS-125 Hubble Space Telescope Planning and Orbit flight control team pose for a group portrait in the blue flight control room in the Mission Control Center at NASA's Johnson Space Center.
STS-125 Flight Control Team in BFCR - HST Planning & Orbit Team
2009-05-19
JSC2009-E-120701 (19 May 2009) --- Members of the STS-125 Hubble Space Telescope Planning and Orbit flight control team pose for a group portrait in the blue flight control room in the Mission Control Center at NASA's Johnson Space Center.
STS-106 Planning Flight Control Team in WFCR, building 30S
2000-09-11
JSC2000-06242 (13 September 2000) --- Flight Director Kelly Beck (planning) is surrounded by the almost five dozen flight controllers who are supporting her shift during the current STS-106 mission. Beck is holding a large decal of the STS-106 insignia.
Long range planning for the development of space flight emergency systems.
NASA Technical Reports Server (NTRS)
Bolger, P. H.; Childs, C. W.
1972-01-01
The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.
Thomas P. Hodgman
2005-01-01
State agencies are often considered the prime avenues for implementation of Partners in Flight (PIF) bird conservation plans. Yet, such agencies already have in place a planning structure, which allows for dispersal of Federal Aid funds and guides management actions. Consequently, superimposing additional planning frameworks (e.g., PIF bird conservation plans) on state...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...
14 CFR 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...
NASA Technical Reports Server (NTRS)
Gordon, C. K.
1975-01-01
A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.
FlyAR: augmented reality supported micro aerial vehicle navigation.
Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard
2014-04-01
Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicles position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the users view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.
Method and system for entering data within a flight plan entry field
NASA Technical Reports Server (NTRS)
Gibbs, Michael J. (Inventor); Van Omen, Debi (Inventor); Adams, Michael B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor)
2005-01-01
The present invention provides systems, apparatus and methods for entering data into a flight plan entry field which facilitates the display and editing of aircraft flight-plan data. In one embodiment, the present invention provides a method for entering multiple waypoint and procedure identifiers at once within a single a flight plan entry field. In another embodiment, the present invention provides for the partial entry of any waypoint or procedure identifiers, and thereafter relating the identifiers with an aircraft's flight management system to anticipate the complete text entry for display. In yet another embodiment, the present invention discloses a method to automatically provide the aircraft operator with selectable prioritized arrival and approach routing identifiers by a single manual selection. In another embodiment, the present invention is a method for providing the aircraft operator with selectable alternate patterns to a new runway.
32 CFR 525.4 - Entry authorization (policy).
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Captains of ships and/or marine vessels planning to enter Kwajalein Missile Range shall not knowingly... when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and departure of airspace covered by...
Simulation Based Evaluation of Integrated Adaptive Control and Flight Planning Technologies
NASA Technical Reports Server (NTRS)
Campbell, Stefan Forrest; Kaneshige, John T.
2008-01-01
The objective of this work is to leverage NASA resources to enable effective evaluation of resilient aircraft technologies through simulation. This includes examining strengths and weaknesses of adaptive controllers, emergency flight planning algorithms, and flight envelope determination algorithms both individually and as an integrated package.
NASA Technical Reports Server (NTRS)
Newman, C. M.
1977-01-01
The updated consumables flight planning worksheet (CFPWS) is documented. The update includes: (1) additional consumables: ECLSS ammonia, APU propellant, HYD water; (2) additional on orbit activity for development flight instrumentation (DFI); (3) updated use factors for all consumables; and (4) sources and derivations of the use factors.
32 CFR 525.4 - Entry authorization (policy).
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Captains of ships and/or marine vessels planning to enter Kwajalein Missile Range shall not knowingly... when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and departure of airspace covered by...
32 CFR 525.4 - Entry authorization (policy).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Captains of ships and/or marine vessels planning to enter Kwajalein Missile Range shall not knowingly... when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and departure of airspace covered by...
32 CFR 525.4 - Entry authorization (policy).
Code of Federal Regulations, 2014 CFR
2014-07-01
... single or multiple entries. (4) Captains of ships and/or marine vessels planning to enter Kwajalein... of passengers (include list when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and...
32 CFR 525.4 - Entry authorization (policy).
Code of Federal Regulations, 2013 CFR
2013-07-01
... single or multiple entries. (4) Captains of ships and/or marine vessels planning to enter Kwajalein... of passengers (include list when practicable). (vi) Purpose of flight. (vii) Plan of flight route, including the point of origin of flight and its designation and estimated date and times of arrival and...
14 CFR § 1214.804 - Services, pricing basis, and other considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... hardware). (7) Shuttle 1 and Spacelab flight planning. (8) Payload electrical power. (9) Payload... flight planning services. (15) Transmission of Spacelab data contained in the STS OI telemetry link to a... ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.804 Services, pricing basis, and other...
Step 1: C3 Flight Demo Data Analysis Plan
NASA Technical Reports Server (NTRS)
2005-01-01
The Data Analysis Plan (DAP) describes the data analysis that the C3 Work Package (WP) will perform in support of the Access 5 Step 1 C3 flight demonstration objectives as well as the processes that will be used by the Flight IPT to gather and distribute the data collected to satisfy those objectives. In addition to C3 requirements, this document will encompass some Human Systems Interface (HSI) requirements in performing the C3 flight demonstrations. The C3 DAP will be used as the primary interface requirements document between the C3 Work Package and Flight Test organizations (Flight IPT and Non-Access 5 Flight Programs). In addition to providing data requirements for Access 5 flight test (piggyback technology demonstration flights, dedicated C3 technology demonstration flights, and Airspace Operations Demonstration flights), the C3 DAP will be used to request flight data from Non- Access 5 flight programs for C3 related data products
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
Optimal guidance with obstacle avoidance for nap-of-the-earth flight
NASA Technical Reports Server (NTRS)
Pekelsma, Nicholas J.
1988-01-01
The development of automatic guidance is discussed for helicopter Nap-of-the-Earth (NOE) and near-NOE flight. It deals with algorithm refinements relating to automated real-time flight path planning and to mission planning. With regard to path planning, it relates rotorcraft trajectory characteristics to the NOE computation scheme and addresses real-time computing issues and both ride quality issues and pilot-vehicle interfaces. The automated mission planning algorithm refinements include route optimization, automatic waypoint generation, interactive applications, and provisions for integrating the results into the real-time path planning software. A microcomputer based mission planning workstation was developed and is described. Further, the application of Defense Mapping Agency (DMA) digital terrain to both the mission planning workstation and to automatic guidance is both discussed and illustrated.
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.
1994-01-01
This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, C. Elaine; Layton, Charles; Orasanu, Judith; Chappel, Sherry; Palmer, EV; Corker, Kevin
1993-01-01
In a previous report, an empirical study of 30 pilots using the Flight Planning Testbed was reported. An identical experiment using the Flight Planning Testbed (FPT), except that 27 airline dispatchers were studied, is described. Five general questions were addressed in this study: (1) under what circumstances do the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers (either in a beneficial or adverse manner); (2) what is the nature of such influences (i.e., how are the person's cognitive processes changed); (3) how beneficial are the general design concepts underlying FPT (use of a graphical interface, embedding graphics in a spreadsheet, etc.); (4) how effective are the specific implementation decisions made in realizing these general design concepts; and (5) how effectively do dispatchers evaluate situations requiring replanning, and how effectively do they identify appropriate solutions to these situations.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.
Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport
NASA Astrophysics Data System (ADS)
Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh
2013-09-01
From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.
Long, David E; Tann, Mark; Huang, Ke Colin; Bartlett, Gregory; Galle, James O; Furukawa, Yukie; Maluccio, Mary; Cox, John A; Kong, Feng-Ming Spring; Ellsworth, Susannah G
2018-05-01
Hepatobiliary iminodiacetic acid (HIDA) scans provide global and regional assessments of liver function that can serve as a road map for functional avoidance in stereotactic body radiation therapy (SBRT) planning. Functional liver image guided hepatic therapy (FLIGHT), an innovative planning technique, is described and compared with standard planning using functional dose-volume histograms. Thresholds predicting for decompensation during follow up are evaluated. We studied 17 patients who underwent HIDA scans before SBRT. All SBRT cases were replanned using FLIGHT. The following dosimetric endpoints were compared for FLIGHT versus standard SBRT planning: functional residual capacity <15 Gy (FRC 15 HIDA), mean liver dose (MLD), equivalent uniform dose (EUD), and functional EUD (FEUD). Receiver operating characteristics curves were used to evaluate whether baseline HIDA values, standard cirrhosis scoring, and/or dosimetric data predicted clinical decompensation. Compared with standard planning, FLIGHT significantly improved FRC 15 HIDA (mean improvement: 5.3%) as well as MLD, EUD, and FEUD (P < .05). Considerable interindividual variations in the extent of benefit were noted. Decompensation during follow-up was associated with baseline global HIDA <2.915%/min/m 2 , FRC 15 HIDA <2.11%/min/m 2 , and MELD ≥11 (P < .05). FLIGHT with HIDA-based parameters may complement blood chemistry-based assessments of liver function and facilitate individualized, adaptive liver SBRT planning. Copyright © 2018. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.
Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification
NASA Technical Reports Server (NTRS)
Wilson, J.; Wright, C.; Couluris, G. J.
1997-01-01
The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.
The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science
NASA Astrophysics Data System (ADS)
He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.
2010-12-01
NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft’s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.
The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science
NASA Technical Reports Server (NTRS)
He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John
2010-01-01
NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.
1980-03-01
Oceanography Center (FNOC) is currently testing and evaluating a computerized flight plan system, referred to, for short, as OPARS. This sytem , developed to...replace the Lockheed Jetplan flight plan sytem , provides users at remote sites with direct access to the FNOC computer via 11 telephone lines. The...validity, but only for format. For example, an entry of ABCE , as the four- letter identification code for the destination airfield, would be accepted
Human Space Flight Plans Committee Report
2009-10-21
U.S. Human Space Flight Plans Committee member Ed Crawley, right, answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
U.S. Human Space Flight Plans Committee member Ed Crawley answers a reporter's question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Copies of the U.S. Human Space Flight Plans Committee report are seen at a press conference where the committee released it's report findings on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, center, listens to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
Human Space Flight Plans Committee Report
2009-10-21
Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine answers a reporters question during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less
14 CFR 61.195 - Flight instructor limitations and qualifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that flight instructor has determined the student's flight preparation, planning, equipment, and... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instructor limitations and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...
14 CFR 61.195 - Flight instructor limitations and qualifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that flight instructor has determined the student's flight preparation, planning, equipment, and... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instructor limitations and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...
14 CFR 61.195 - Flight instructor limitations and qualifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that flight instructor has determined the student's flight preparation, planning, equipment, and... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instructor limitations and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...
14 CFR 61.195 - Flight instructor limitations and qualifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that flight instructor has determined the student's flight preparation, planning, equipment, and... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instructor limitations and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...
14 CFR 61.195 - Flight instructor limitations and qualifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that flight instructor has determined the student's flight preparation, planning, equipment, and... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instructor limitations and... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight...
The 30/20 GHz flight experiment system, phase 2. Volume 4: Experiment system development plan
NASA Technical Reports Server (NTRS)
Bronstein, L.; Kawamoto, Y.; Riberich, J. J.; Scope, J. R.; Forman, B. J.; Bergman, S. G.; Reisenfeld, S.
1981-01-01
The development plan for the 30/20 GHz flight experiment system is presented. A master program schedule with detailed development plans for each subsystem is planned with careful attention given to how technology items to ensure a minimal risk. The work breakdown structure shows the organization of the program management with detailed task definitions. The ROM costs based on the development plan are also given.
NASA Technical Reports Server (NTRS)
Johnson, Walter; Battiste, Vernol
2016-01-01
The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.
Rick Bonney; David N. Pashley; Robert J. Cooper; Larry Niles
2000-01-01
This volume represents a compilation of papers presented at the 3rd International Partners in Flight Workshop held October 1-5, 1995, at the Grand Hotel in Cape May, NJ. The title of the workshop was "Partners in Flight Conservation Plan: Building Consensus for Action." Manuscripts have been available on-line at the Cornell Laboratory of Ornithology web site...
A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.
2009-01-01
NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.
Spacelab operations planning. [ground handling, launch, flight and experiments
NASA Technical Reports Server (NTRS)
Lee, T. J.
1976-01-01
The paper reviews NASA planning in the fields of ground, launch and flight operations and experiment integration to effectively operate Spacelab. Payload mission planning is discussed taking consideration of orbital analysis and the mission of a multiuser payload which may be either single or multidiscipline. Payload analytical integration - as active process of analyses to ensure that the experiment payload is compatible to the mission objectives and profile ground and flight operations and that the resource demands upon Spacelab can be satisfied - is considered. Software integration is touched upon and the major integration levels in ground operational processing of Spacelab and its experimental payloads are examined. Flight operations, encompassing the operation of the Space Transportation System and the payload, are discussed as are the initial Spacelab missions. Charts and diagrams are presented illustrating the various planning areas.
The NASA MERIT program - Developing new concepts for accurate flight planning
NASA Technical Reports Server (NTRS)
Steinberg, R.
1982-01-01
It is noted that the rising cost of aviation fuel has necessitated the development of a new approach to upper air forecasting for flight planning. It is shown that the spatial resolution of the present weather forecast models used in fully automated computer flight planning is an important accuracy-limiting factor, and it is proposed that man be put back into the system, although not in the way he has been used in the past. A new approach is proposed which uses the application of man-computer interactive display techniques to upper air forecasting to retain the fine scale features of the atmosphere inherent in the present data base in order to provide a more accurate and cost effective flight plan. It is pointed out that, as a result of NASA research, the hardware required for this approach already exists.
Space shuttle operations integration plan
NASA Technical Reports Server (NTRS)
1975-01-01
The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.
14 CFR 121.633 - Considering time-limited systems in planning ETOPS alternates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Flight Release Rules § 121.633 Considering time-limited systems in planning ETOPS alternates. (a) For... planning ETOPS alternates. 121.633 Section 121.633 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... dispatch or flight release if the time needed to fly to that airport (at the approved one-engine...
14 CFR 121.633 - Considering time-limited systems in planning ETOPS alternates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Flight Release Rules § 121.633 Considering time-limited systems in planning ETOPS alternates. (a) For... planning ETOPS alternates. 121.633 Section 121.633 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... dispatch or flight release if the time needed to fly to that airport (at the approved one-engine...
14 CFR 121.633 - Considering time-limited systems in planning ETOPS alternates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Flight Release Rules § 121.633 Considering time-limited systems in planning ETOPS alternates. (a) For... planning ETOPS alternates. 121.633 Section 121.633 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... dispatch or flight release if the time needed to fly to that airport (at the approved one-engine...
14 CFR 121.633 - Considering time-limited systems in planning ETOPS alternates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Flight Release Rules § 121.633 Considering time-limited systems in planning ETOPS alternates. (a) For... planning ETOPS alternates. 121.633 Section 121.633 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... dispatch or flight release if the time needed to fly to that airport (at the approved one-engine...
14 CFR 121.633 - Considering time-limited systems in planning ETOPS alternates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Flight Release Rules § 121.633 Considering time-limited systems in planning ETOPS alternates. (a) For... planning ETOPS alternates. 121.633 Section 121.633 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... dispatch or flight release if the time needed to fly to that airport (at the approved one-engine...
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.
NASA Technical Reports Server (NTRS)
1976-01-01
Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
.... (6) The climb ceiling obtained from the Flight Planning and Cruise Control Manual (FPCCM) must be... from the Flight Planning and Cruise Control Manual (FPCCM) must be reduced by 1,000 ft/door.'' Note 4... the landing phase of flight. The door damaged the trailing edge flap and punctured the rear fuselage...
Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software
NASA Technical Reports Server (NTRS)
Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole;
2014-01-01
STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.
Flight Planning Branch NASA Co-op Tour
NASA Technical Reports Server (NTRS)
Marr, Aja M.
2013-01-01
This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.
Human Space Flight Plans Committee Report
2009-10-21
NASA Public Affairs Officer Doc Mirelson, left, and Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, right, listen to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)
14 CFR 437.25 - Flight test plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation ...
14 CFR 437.25 - Flight test plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight test plan. 437.25 Section 437.25 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... reusable suborbital rocket. Operational Safety Documentation ...
NASA Technical Reports Server (NTRS)
Wells, C.; Kolkhorst, H. E.
1971-01-01
The consumables analysis was performed for the Skylab 2, 3, and 4 Preliminary Reference Interim Revision Flight Plan. The analysis and the results are based on the mission requirements as specified in the flight plan and on other available data. The results indicate that the consumables requirements for the Skylab missions allow for remaining margins (percent) of oxygen, nitrogen, and water nominal as follows: 83.5, 90.8, and 88.7 for mission SL-2; 57.1, 64.1, and 67.3 for SL-3; and 30.8, 44.3, and 46.5 for SL-4. Performance of experiment M509 as scheduled in the flight plan results in venting overboard the cluster atmosphere. This is due to the addition of nitrogen for propulsion and to the additional oxygen introduced into the cabin when the experiment is performed with the crewman suited.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less
2007-08-14
Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.
Enhancements and Evolution of the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn
2008-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and then compare it to the actual real time flight progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2013 CFR
2013-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2012 CFR
2012-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2011 CFR
2011-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2014 CFR
2014-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
14 CFR 121.547 - Admission to flight deck.
Code of Federal Regulations, 2010 CFR
2010-01-01
... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...
1989-01-01
Mid * Advanced Propulsion System Far * Rotor Burst Protection Reports Mid 11.4 Flight Safety / * Aircraft Icing Handbook Near Atmospheric Hazards...with operating the national aviation system include air traffic controllers, flight service specialists, maintenance technicians, safety inspectors...address the design and certification of flight deck systems and revised crew training requirements. In FY 1988, studies of safety data were initiated to
Code of Federal Regulations, 2011 CFR
2011-01-01
..., if applicable, of the carrier operating the flight for an individual planning to use such a device to... operating the flight for an individual planning to use such a device to check-in up to one hour before that... cabin during flight? 382.133 Section 382.133 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., if applicable, of the carrier operating the flight for an individual planning to use such a device to... operating the flight for an individual planning to use such a device to check-in up to one hour before that... cabin during flight? 382.133 Section 382.133 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., if applicable, of the carrier operating the flight for an individual planning to use such a device to... operating the flight for an individual planning to use such a device to check-in up to one hour before that... cabin during flight? 382.133 Section 382.133 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., if applicable, of the carrier operating the flight for an individual planning to use such a device to... operating the flight for an individual planning to use such a device to check-in up to one hour before that... cabin during flight? 382.133 Section 382.133 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., if applicable, of the carrier operating the flight for an individual planning to use such a device to... operating the flight for an individual planning to use such a device to check-in up to one hour before that... cabin during flight? 382.133 Section 382.133 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT...
Using Google Earth for Submarine Operations at Pavilion Lake
NASA Astrophysics Data System (ADS)
Deans, M. C.; Lees, D. S.; Fong, T.; Lim, D. S.
2009-12-01
During the July 2009 Pavilion Lake field test, we supported submarine "flight" operations using Google Earth. The Intelligent Robotics Group at NASA Ames has experience with ground data systems for NASA missions, earth analog field tests, disaster response, and the Gigapan camera system. Leveraging this expertise and existing software, we put together a set of tools to support sub tracking and mapping, called the "Surface Data System." This system supports flight planning, real time flight operations, and post-flight analysis. For planning, we make overlays of the regional bedrock geology, sonar bathymetry, and sonar backscatter maps that show geology, depth, and structure of the bottom. Placemarks show the mooring locations for start and end points. Flight plans are shown as polylines with icons for waypoints. Flight tracks and imagery from previous field seasons are embedded in the map for planning follow-on activities. These data provide context for flight planning. During flights, sub position is updated every 5 seconds from the nav computer on the chase boat. We periodically update tracking KML files and refresh them with network links. A sub icon shows current location of the sub. A compass rose shows bearings to indicate heading to the next waypoint. A "Science Stenographer" listens on the voice loop and transcribes significant observations in real time. Observations called up to the surface immediately appear on the map as icons with date, time, position, and what was said. After each flight, the science back room immediately has the flight track and georeferenced notes from the pilots. We add additional information in post-processing. The submarines record video continuously, with "event" timestamps marked by the pilot. We cross-correlate the event timestamps with position logs to geolocate events and put a preview image and compressed video clip into the map. Animated flight tracks are also generated, showing timestamped position and providing timelapse playback of the flight. Neogeography tools are increasing in popularity and offer an excellent platform for geoinformatics. The scientists on the team are already familiar with Google Earth, eliminating up-front training on new tools. The flight maps and archived data are available immediately and in a usable format. Google Earth provides lots of measurement tools, annotation tools, and other built-in functions that we can use to create and analyze the map. All of this information is saved to a shared filesystem so that everyone on the team has access to all of the same map data. After the field season, the map data will be used by the team to analyse and correlate information from across the lake and across different flights to support their research, and to plan next year's activities.
NASA Technical Reports Server (NTRS)
Torian, J. G.
1976-01-01
Formulation of models required for the mission planning and scheduling function and establishment of the relation of those models to prelaunch, onboard, ground support, and postmission functions for the development phase of space transportation systems (STS) was conducted. The preoperational space shuttle is used as the design baseline for the subject model formulations. Analytical models were developed which consist of a mission planning processor with appropriate consumables data base and a method of recognizing potential constraint violations in both the planning and flight operations functions. A flight data file for storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights was examined.
NASA Technical Reports Server (NTRS)
Maris, John
2015-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).
The role of flight planning in aircrew decision performance
NASA Technical Reports Server (NTRS)
Pepitone, Dave; King, Teresa; Murphy, Miles
1989-01-01
The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.
AIRSAR South American deployment: Operation plan, version 3.0
NASA Technical Reports Server (NTRS)
Kobrick, M.
1993-01-01
The United States National Aeronautics and Space Administration (NASA) and the Brazilian Commission for Space Activities (COBAE) are undertaking a joint experiment involving NASA's DC-8 research aircraft and the Airborne Synthetic Aperture Radar (AIRSAR) system during late May and June 1993. The research areas motivating these activities are: (1) fundamental research in the role of soils, vegetation, and hydrology in the global carbon cycle; and (2) in cooperation with South American scientists, airborne remote sensing research for the upcoming NASA Spaceborne Imaging Radar (SIR)-C/X-SAR flights on the Space Shuttle. A flight schedule and plans for the deployment that were developed are included. Maps of the site locations and schematic indications of flight routes and dates, plots showing swath locations derived from the flight requests and generated by flight planning software, and, most importantly, a calendar showing which sites will be imaged each day are included.
NASA Technical Reports Server (NTRS)
Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.
1989-01-01
The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.
Development of a shuttle recovery Commercial Materials Processing in Space (CMPS) program
NASA Technical Reports Server (NTRS)
1989-01-01
The work performed has covered the following tasks: update commercial users requirements; assess availability of carriers and facilities; shuttle availability assessment; development of optimum accommodations plan; and payload documentation requirements assessment. The results from the first four tasks are presented. To update commercial user requirements, contacts were made with the JEA and CCDS partners to obtain copies of their most recent official flight requests. From these requests the commercial partners' short and long range plans for flight dates, flight frequency, experiment hardware and carriers was determined. A 34 by 44 inch chart was completed to give a snapshot view of the progress of commercialization in space. Further, an assessment was made of the availability of carriers and facilities. Both existing carriers and those under development were identified for use by the commercial partners. A data base was compiled to show the capabilities of the carriers. A shuttle availability assessment was performed using the primary and secondary shuttle manifests released by NASA. Analysis of the manifest produced a flight-by-flight list of flight opportunities available to commercial users. Using inputs from the first three tasks, an Optimum Accommodations Plan was developed. The Accommodation Plan shows the commercial users manifested by flight, the experiment flown, the carrier used and complete list of commercial users that could not be manifested in each calendar year.
Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn
2009-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.
The Automated Logistics Element Planning System (ALEPS)
NASA Technical Reports Server (NTRS)
Schwaab, Douglas G.
1992-01-01
ALEPS, which is being developed to provide the SSF program with a computer system to automate logistics resupply/return cargo load planning and verification, is presented. ALEPS will make it possible to simultaneously optimize both the resupply flight load plan and the return flight reload plan for any of the logistics carriers. In the verification mode ALEPS will support the carrier's flight readiness reviews and control proper execution of the approved plans. It will also support the SSF inventory management system by providing electronic block updates to the inventory database on the cargo arriving at or departing the station aboard a logistics carrier. A prototype drawer packing algorithm is described which is capable of generating solutions for 3D packing of cargo items into a logistics carrier storage accommodation. It is concluded that ALEPS will provide the capability to generate and modify optimized loading plans for the logistics elements fleet.
Development Overview of the Revised NASA Ultra Long Duration Balloon
NASA Technical Reports Server (NTRS)
Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.
2006-01-01
The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.
1982-01-01
A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.
Spaceflight Decompression Sickness Contingency Plan
NASA Technical Reports Server (NTRS)
Dervay, Joseph P.
2007-01-01
A viewgraph presentation on the Decompression Sickness (DCS) Contingency Plan for manned spaceflight is shown. The topics include: 1) Approach; 2) DCS Contingency Plan Overview; 3) Extravehicular Activity (EVA) Cuff Classifications; 4) On-orbit Treatment Philosophy; 5) Long Form Malfunction Procedure (MAL); 6) Medical Checklist; 7) Flight Rules; 8) Crew Training; 9) Flight Surgeon / Biomedical Engineer (BME) Training; and 10) DCS Emergency Landing Site.
Recommendations of the panels: Panel on flight planning to avoid high ozone
NASA Technical Reports Server (NTRS)
Mohnen, V. A.
1979-01-01
Flights planned or accomplished during certain months of the year at the higher latitudes and altitudes at or above the tropopause are discussed. Cabin ozone level limitations are established, and additional information is required for more accurate and qualtitative forecasting and design data base for operational utilization. Better tropopause heights, ozone concentration and corresponding meteorological data along selected flight routes, and meteorological data were investigated.
1966-12-22
The HL-10 Lifting Body completes its first research flight with a landing on Rogers Dry Lake. Due to control problems, pilot Bruce Peterson had to land at a higher speed than originally planned in order to keep the vehicle under control. The actual touchdown speed was about 280 knots. This was 30 knots above the speed called for in the flight plan. The HL-10's first flight had lasted 3 minutes and 9 seconds.
Step 1: Human System Integration Simulation and Flight Test Progress Report
NASA Technical Reports Server (NTRS)
2005-01-01
The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration
Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.
1975-01-01
Detailed documentation for each flight of the Omega Flight Evaluation study is presented, including flight test description sheets and actual flight data plots. Computer programs used for data processing and flight planning are explained and the data formats utilized by the Custom Interface Unit are summarized.
Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.; Hillmann, K.
1981-01-01
A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.
Automated Data Assimilation and Flight Planning for Multi-Platform Observation Missions
NASA Technical Reports Server (NTRS)
Oza, Nikunj; Morris, Robert A.; Strawa, Anthony; Kurklu, Elif; Keely, Leslie
2008-01-01
This is a progress report on an effort in which our goal is to demonstrate the effectiveness of automated data mining and planning for the daily management of Earth Science missions. Currently, data mining and machine learning technologies are being used by scientists at research labs for validating Earth science models. However, few if any of these advanced techniques are currently being integrated into daily mission operations. Consequently, there are significant gaps in the knowledge that can be derived from the models and data that are used each day for guiding mission activities. The result can be sub-optimal observation plans, lack of useful data, and wasteful use of resources. Recent advances in data mining, machine learning, and planning make it feasible to migrate these technologies into the daily mission planning cycle. We describe the design of a closed loop system for data acquisition, processing, and flight planning that integrates the results of machine learning into the flight planning process.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.
AN AVIATION COURSE FOR JUNIOR COLLEGES.
ERIC Educational Resources Information Center
Cessna Aircraft Co., Wichita, KS.
THE COURSE IS IN TWO PARTS. IN PART 1, A PROGRAM OF 60 HOURS COVERS SUCH TOPICS AS FLIGHT PRINCIPLES, AIRCRAFT OPERATION AND PERFORMANCE, NAVIGATION, THE FLIGHT COMPUTER, RADIO GUIDANCE AND COMMUNICATION, WEATHER, FLIGHT INFORMATION PUBLICATIONS, FEDERAL AVIATION REGULATIONS, THE AIRWAY SYSTEM, FLIGHT INSTRUMENTS, AND FLIGHT PLANNING. THE TOPICS…
Enhancements and Evolution of the Real Time Mission Monitor
NASA Astrophysics Data System (ADS)
Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.
2008-12-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for planning discussions, as well as comparisons to real time flight tracks in progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.
Shuttle payload vibroacoustic test plan evaluation
NASA Technical Reports Server (NTRS)
Stahle, C. V.; Gongloff, H. R.; Young, J. P.; Keegan, W. B.
1977-01-01
Statistical decision theory is used to evaluate seven alternate vibro-acoustic test plans for Space Shuttle payloads; test plans include component, subassembly and payload testing and combinations of component and assembly testing. The optimum test levels and the expected cost are determined for each test plan. By including all of the direct cost associated with each test plan and the probabilistic costs due to ground test and flight failures, the test plans which minimize project cost are determined. The lowest cost approach eliminates component testing and maintains flight vibration reliability by performing subassembly tests at a relatively high acoustic level.
Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations
NASA Technical Reports Server (NTRS)
Cutri-Kohart, Rebecca M.
2011-01-01
The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.
14 CFR 125.53 - Flight locating requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight locating requirements. 125.53... and Miscellaneous Requirements § 125.53 Flight locating requirements. (a) Each certificate holder must have procedures established for locating each flight for which an FAA flight plan is not filed that— (1...
14 CFR 125.53 - Flight locating requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight locating requirements. 125.53... and Miscellaneous Requirements § 125.53 Flight locating requirements. (a) Each certificate holder must have procedures established for locating each flight for which an FAA flight plan is not filed that— (1...
14 CFR 125.53 - Flight locating requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight locating requirements. 125.53... and Miscellaneous Requirements § 125.53 Flight locating requirements. (a) Each certificate holder must have procedures established for locating each flight for which an FAA flight plan is not filed that— (1...
14 CFR 125.53 - Flight locating requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight locating requirements. 125.53... and Miscellaneous Requirements § 125.53 Flight locating requirements. (a) Each certificate holder must have procedures established for locating each flight for which an FAA flight plan is not filed that— (1...
14 CFR 1214.806 - Premature termination of Spacelab flights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... dedicated-Shuttle Spacelab flight, a dedicated-pallet flight, or dedicated-FMDM/MPESS flight is prematurely terminated, NASA shall refund the optional services charges for planned, but unused, extra days on orbit. If a complete-pallet or shared-element flight is prematurely terminated, NASA shall refund a pro rata...
14 CFR 1214.806 - Premature termination of Spacelab flights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... dedicated-Shuttle Spacelab flight, a dedicated-pallet flight, or dedicated-FMDM/MPESS flight is prematurely terminated, NASA shall refund the optional services charges for planned, but unused, extra days on orbit. If a complete-pallet or shared-element flight is prematurely terminated, NASA shall refund a pro rata...
14 CFR 1214.806 - Premature termination of Spacelab flights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... dedicated-Shuttle Spacelab flight, a dedicated-pallet flight, or dedicated-FMDM/MPESS flight is prematurely terminated, NASA shall refund the optional services charges for planned, but unused, extra days on orbit. If a complete-pallet or shared-element flight is prematurely terminated, NASA shall refund a pro rata...
14 CFR 1214.806 - Premature termination of Spacelab flights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... dedicated-Shuttle Spacelab flight, a dedicated-pallet flight, or dedicated-FMDM/MPESS flight is prematurely terminated, NASA shall refund the optional services charges for planned, but unused, extra days on orbit. If a complete-pallet or shared-element flight is prematurely terminated, NASA shall refund a pro rata...
14 CFR § 1214.806 - Premature termination of Spacelab flights.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... If a dedicated-Shuttle Spacelab flight, a dedicated-pallet flight, or dedicated-FMDM/MPESS flight is prematurely terminated, NASA shall refund the optional services charges for planned, but unused, extra days on orbit. If a complete-pallet or shared-element flight is prematurely terminated, NASA shall refund a pro...
I-FORCAST: Rapid Flight Planning Tool
NASA Technical Reports Server (NTRS)
Oaida, Bogdan; Khan, Mohammed; Mercury, Michael B.
2012-01-01
I-FORCAST (Instrument - Field of Regard Coverage Analysis and Simulation Tool) is a flight planning tool specifically designed for quickly verifying the feasibility and estimating the cost of airborne remote sensing campaigns (see figure). Flights are simulated by being broken into three predefined routing algorithms as necessary: mapping in a snaking pattern, mapping the area around a point target (like a volcano) with a star pattern, and mapping the area between a list of points. The tool has been used to plan missions for radar, lidar, and in-situ atmospheric measuring instruments for a variety of aircraft. It has also been used for global and regional scale campaigns and automatically includes landings when refueling is required. The software has been compared to the flight times of known commercial aircraft route travel times, as well as a UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) campaign, and was within 15% of the actual flight time. Most of the discrepancy is due to non-optimal flight paths taken by actual aircraft to avoid restricted airspace and used to follow landing and take-off corridors.
The Federal Aviation Administration Plan for Research, Engineering and Development, 1994
1994-05-01
Aeronautical Data Link Communications and (COTS) runway incursion system software will Applications, and 051-130 Airport Safety be demonstrated as a... airport departure and ar- efforts rival scheduling plans that optimize daily traffic flows for long-range flights between major city- * OTFP System to...Expanded HARS planning capabilities to in- aviation dispatchers to develop optimized high clude enhanced communications software for altitude flight
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is poised for flight at liftoff from Launch Pad 39A on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
SOFIA'S Challenge: Scheduling Airborne Astronomy Observations
NASA Technical Reports Server (NTRS)
Frank, Jeremy
2005-01-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is NASA's next generation airborne astronomical observatory, and will commence operations in 2005. The facility consists of a 747-SP modified to accommodate a 2.5 meter telescope. SOFIA is expected to fly an average of 140 science flights per year over its 20 year lifetime. Depending on the nature of the instrument used during flight, 5-15 observations per flight are expected. The SOFIA telescope is mounted aft of the wings on the port side of the aircraft and is articulated through a range of 20deg to 60deg of elevation. The telescope has minimal lateral flexibility; thus, the aircraft must turn constantly to maintain the telescope's focus on an object during observations. A significant problem in future SOFIA operations is that of scheduling flights in support of observations. Investigators are expected to propose small numbers of observations, and many observations must be grouped together to make up single flights. Flight planning for the previous generation airborne observatory, the Kuiper Airborne Observatory (KAO), was done by hand; planners had to choose takeoff time, observations to perform, and decide on setup-actions (called "dead-legs") to position the aircraft prior to observing. This task frequently required between 6-8 hours to plan one flight The scope of the flight planning problem for supporting GI observations with the anticipated flight rate for SOFIA makes the manual approach for flight planning daunting. In response, we have designed an Automated Flight Planner (AFP) that accepts as input a set of requested observations, designated flight days, weather predictions and fuel limitations, and searches automatically for high-quality flight plans that satisfy all relevant aircraft and astronomer specified constraints. The AFP can generate one candidate flight plan in 5-10 minutes, of computation time, a feat beyond the capabilities of human flight planners. The rate at which the AFP can generate flights enables humans to assess and analyze complex tradeoffs between fuel consumption, estimated science quality and the percentage of scheduled observations. Due to the changing nature of SOFIA scheduling problems, this functionality will play a crucial role in optimizing science and minimizing costs during operations. In the full paper, we will summarize the technical challenges that have been met in order to build this system. These include: design of the search algorithm, design of appropriate heuristics and approximations, and reduction in the size of the search space. We will also describe technical challenges that are currently being addressed, including the extension of the existing approach to handle new solution criteria. Finally, we will describe a variety of cultural challenges that the astronomical community must address in order to successfully use SOFIA, and describe how the AFT can be used to address some of these challenges. Specifically, many of the intended science users are accustomed to using ground-based or space-based observatories; we will identify some differences that arise due to the nature of airborne observatories, and how the AFT can be extended to provide useful services to ease these cultural differences.
DOT National Transportation Integrated Search
2001-12-01
The General Accounting Office (GAO) was asked to examine the aviation community's efforts to reduce flight delays. Specifically the GAO focused their work on the following questions: 1) What initiatives are planned or under way by the federal governm...
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS.
Background Oriented Schlieren (BOS) of a Supersonic Aircraft in Flight
NASA Technical Reports Server (NTRS)
Heineck, James T.; Banks, Daniel W.; Schairer, Edward T.; Haering, Edward A.; Bean, Paul S.
2016-01-01
This article describes the development and use of Background Oriented Schlieren on a full-scale supersonic jet in flight. A series of flight tests was performed in October, 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date.
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.
Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb
1989-01-01
Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.
Diverter AI based decision aid, phases 1 and 2
NASA Technical Reports Server (NTRS)
Sexton, George A.; Bayles, Scott J.; Patterson, Robert W.; Schulke, Duane A.; Williams, Deborah C.
1989-01-01
It was determined that a system to incorporate artificial intelligence (AI) into airborne flight management computers is feasible. The AI functions that would be most useful to the pilot are to perform situational assessment, evaluate outside influences on the contemplated rerouting, perform flight planning/replanning, and perform maneuver planning. A study of the software architecture and software tools capable of demonstrating Diverter was also made. A skeletal planner known as the Knowledge Acquisition Development Tool (KADET), which is a combination script-based and rule-based system, was used to implement the system. A prototype system was developed which demonstrates advanced in-flight planning/replanning capabilities.
NASA Technical Reports Server (NTRS)
1973-01-01
Two orbital test plans were prepared to verify one of the passive cryogenic storage tank/feedline candidate designs. One plan considered the orbital test article to be launched as a dedicated payload using an Atlas F burner launching configuration. The second plan proposed to launch the orbital test article as a secondary payload on the Titan E/Centaur proof flight. The secondary payload concept was pursued until January 1973, when work to build the hardware for this phase of the contract was terminated for lack of a sponsor for the flight. The dedicated payload launched on an Atlas F is described.
Private Pilot Ground School Course. Instructor's Guide.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual consists of 10 lesson plans for use by instructors teaching a private pilot ground school course. Addressed in the individual lesson plans are the following topics: aerodynamics and principles of flight, flight instruments and systems, operational publications, regulations, airplane operations, engine operations, radio communications,…
A Trajectory Generation Approach for Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey A.; Yeh, Yoo-Hsiu
2009-01-01
Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.
14 CFR 61.31 - Type rating requirements, additional training, and authorization requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... goggle operation flight planning, including night terrain interpretation and factors affecting terrain... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND... Administrator has authorized the flight or series of flights; (2) The Administrator has determined that an...
14 CFR 61.31 - Type rating requirements, additional training, and authorization requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... goggle operation flight planning, including night terrain interpretation and factors affecting terrain... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND... Administrator has authorized the flight or series of flights; (2) The Administrator has determined that an...
14 CFR 61.31 - Type rating requirements, additional training, and authorization requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... goggle operation flight planning, including night terrain interpretation and factors affecting terrain... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND... Administrator has authorized the flight or series of flights; (2) The Administrator has determined that an...
Autonomous Soaring Flight Results
NASA Technical Reports Server (NTRS)
Allen, Michael J.
2006-01-01
A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.
1992-01-01
Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.
1991-01-01
The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
14 CFR 61.415 - What are the limits of a flight instructor certificate with a sport pilot rating?
Code of Federal Regulations, 2013 CFR
2013-01-01
... flight, unless you have determined the student's flight preparation, planning, equipment, and proposed... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false What are the limits of a flight instructor... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 61.415 - What are the limits of a flight instructor certificate with a sport pilot rating?
Code of Federal Regulations, 2012 CFR
2012-01-01
... flight, unless you have determined the student's flight preparation, planning, equipment, and proposed... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false What are the limits of a flight instructor... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 61.415 - What are the limits of a flight instructor certificate with a sport pilot rating?
Code of Federal Regulations, 2011 CFR
2011-01-01
... flight, unless you have determined the student's flight preparation, planning, equipment, and proposed... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false What are the limits of a flight instructor... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. Link to...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 61.415 - What are the limits of a flight instructor certificate with a sport pilot rating?
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight, unless you have determined the student's flight preparation, planning, equipment, and proposed... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false What are the limits of a flight instructor... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominick, F.; Lockwood, R.A.
1986-07-01
The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less
Overview of medical operations for a manned stratospheric balloon flight.
Blue, Rebecca S; Law, Jennifer; Norton, Sean C; Garbino, Alejandro; Pattarini, James M; Turney, Matthew W; Clark, Jonathan B
2013-03-01
Red Bull Stratos was a commercial program designed to bring a test parachutist protected by a full-pressure suit via a stratospheric balloon with a pressurized capsule to 120,000 ft (36,576 m), from which he would freefall and subsequently parachute to the ground. On March 15, 2012, the Red Bull Stratos program successfully conducted a preliminary manned balloon test flight and parachute jump, reaching a final altitude of 71,581 ft (21,818 m). In light of the uniqueness of the operation and medical threats faced, a comprehensive medical plan was needed to ensure prompt and efficient response to any medical contingencies. This report will serve to discuss the medical plans put into place before the first manned balloon flight and the actions of the medical team during that flight. The medical operations developed for this program will be systematically evaluated, particularly, specific recommendations for improvement in future high-altitude and commercial space activities. A multipronged approach to medical support was developed, consisting of event planning, medical personnel, equipment, contingency-specific considerations, and communications. Medical operations were found to be highly successful when field-tested during this stratospheric flight, and the experience allowed for refinement of medical operations for future flights. The lessons learned and practices established for this program can easily be used to tailor a plan specific to other aviation or spaceflight events.
Flight demonstrator concept for key technologies enabling future reusable launch vehicles
NASA Astrophysics Data System (ADS)
Ishimoto, Shinji; Fujii, Kenji; Mori, Takeshi
2005-07-01
A research center in JAXA has recently started research on reusable launch vehicles according to its plan placing emphasis on advanced launch technology. It is planned to demonstrate key technologies using a rocket-powered winged vehicle, and concept studies on the flight demonstrator have been conducted. This paper describes the present research plan and introduces the most compact vehicle concept among some versions under consideration.
The Estimation of Precisions in the Planning of Uas Photogrammetric Surveys
NASA Astrophysics Data System (ADS)
Passoni, D.; Federici, B.; Ferrando, I.; Gagliolo, S.; Sguerso, D.
2018-05-01
The Unmanned Aerial System (UAS) is widely used in the photogrammetric surveys both of structures and of small areas. Geomatics focuses the attention on the metric quality of the final products of the survey, creating several 3D modelling applications from UAS images. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an a priori estimation of the expected precisions. The planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. But UAS flight has features completely different from the traditional one. Hence, the use of UAS for photogrammetric applications today requires a growth in knowledge in planning. The basic idea of this research is to provide a drone photogrammetric flight planning tools considering the required metric precisions, given a priori the classical parameters of a photogrammetric planning: flight altitude, overlaps and geometric parameters of the camera. The created "office suite" allows a realistic planning of a photogrammetric survey, starting from an approximate knowledge of the Digital Surface Model (DSM), and the effective attitude parameters, changing along the route. The planning products are the overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the obtained results and the solution proposed for the a priori estimates of the precisions in the particular case of UAS surveys are here reported.
Adding an Expert to the Team: The Expert Flight Plan Critic
ERIC Educational Resources Information Center
Gibbons, Andrew; Waki, Randy; Fairweather, Peter
2008-01-01
This paper reports the development of a practical tool that provides expert feedback to students following an extended simulation exercise in cross-country flight planning. In contrast to development for laboratory settings, the development of an expert instructional product for everyday use posed some interesting challenges, including dealing…
Formulation of consumables management models. Consumables flight planning worksheet utilization
NASA Technical Reports Server (NTRS)
Newman, C. M.
1977-01-01
The updated and reformatted consumables flight planning worksheet is documented. An instruction set for applying the worksheet, and a sample application of the worksheet is disclosed. The particular application is for the STS interfacing with sortie payloads and typifies the interfacing of the delivery system and payloads.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
14 CFR 63.53 - Knowledge requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., including flight planning and cruise control; (3) Practical meteorology, including analysis of weather maps... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.53 Knowledge requirements. (a) An applicant for a flight navigator certificate must pass a written test on— (1) The regulations of this...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 63.53 - Knowledge requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., including flight planning and cruise control; (3) Practical meteorology, including analysis of weather maps... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.53 Knowledge requirements. (a) An applicant for a flight navigator certificate must pass a written test on— (1) The regulations of this...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 63.53 - Knowledge requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., including flight planning and cruise control; (3) Practical meteorology, including analysis of weather maps... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Navigators § 63.53 Knowledge requirements. (a) An applicant for a flight navigator certificate must pass a written test on— (1) The regulations of this...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
The Route Analysis Based On Flight Plan
NASA Astrophysics Data System (ADS)
Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi
2016-02-01
Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.
Summary results of the first United States manned orbital space flight
NASA Technical Reports Server (NTRS)
Glenn, J. H. Jr
1963-01-01
This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.
NASA Technical Reports Server (NTRS)
Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)
2012-01-01
Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.
The Way Point Planning Tool: Real Time Flight Planning for Airborne Science
NASA Technical Reports Server (NTRS)
He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John
2012-01-01
Airborne real time observation are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientist, planning a research aircraft mission within the context of meeting the science objective is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircraft are often involved in the NASA field campaigns the coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving dynamic weather conditions often determine the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientist and help them plan and modify the flight tracks successfully. Scientists at the University of Alabama Huntsville and the NASA Marshal Space Flight Center developed the Waypoint Planning Tool (WPT), an interactive software tool that enables scientist to develop their own flight plans (also known as waypoints), with point and click mouse capabilities on a digital map filled with time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analyses during and after each campaign helped identify both issues and new requirements, initiating the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities to the Google Earth Plugin and Java Web Start/Applet on web platform, as well as to the rising open source GIS tools with new JavaScript frameworks, the Waypoint planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed JavaScript-controled Waypoint tool is planned to be integrated with the NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives. This presentation will discuss the development process of the Waypoint Planning Tool in responding to field campaign challenges, identifying new information technologies, and describing the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.
Thermal energy storage flight experiments
NASA Technical Reports Server (NTRS)
Namkoong, D.
1989-01-01
Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.
R and T report: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1993-01-01
The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.
Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts
NASA Astrophysics Data System (ADS)
Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno
2010-07-01
While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.
Scientific experiments in the flight of the 1977 biological satellite (draft plan)
NASA Technical Reports Server (NTRS)
1977-01-01
The physiological, biological, radiobiological and radiophysical experiments planned for the 1977 biological satellite are described. The biological experiments will involve rats, higher and lower plants, insects and other biological specimens carried on the biosatellite. The responses of these organisms to weightlessness, artificial gravity, cosmic radiation particles and general flight factors will be studied. The radiophysical experiments will investigate certain properties of cosmic radiation as well as the possibility of creating electrostatic and dielectric radiation shields under actual space-flight conditions.
Human Space Flight Plans Committee
2009-06-16
Norman Augustine, chair of the Human Space Flight Review Committee, listens to a comment from the audience during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)
Human Space Flight Plans Committee
2009-06-16
Norman Augustine, chair of the Human Space Flight Review Committee, makes a point during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)
23. Photographic copy of an asconstructed site plan for North ...
23. Photographic copy of an as-constructed site plan for North Base: Air Force Flight Test Center, Edwards Air Force Base, Edwards, California: North Base Site Plan, February 1970. This drawing shows the North Base building distribution substantially as it appears in 1995. Records on file at AFFTC/CE-CECC-B (Design/Construction Flight/RPMC), Edwards AFB, California. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA
Spacecraft Optical Contamination Environment
1989-04-01
is imaging mode with filer slider; mniddle is Fabry-Perot configuration; bottom Is imaging spectrometer 14 4.0 FLIGHT OPERATIONS PLANNING A flight... planning meeting was held at Johnson Space Center on the 22nd of March,1989. This meeting was attended by Drs. C. Pike and Edmond Murad from AFGL and Dr...3 exposures for each thruster firing planned during this period of Orbiter darkness. View Angle: Spectrograph slit to be aligned with centerline of
The effects of space radiation on flight film
NASA Technical Reports Server (NTRS)
Holly, Mark H.
1995-01-01
The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist Patrick Forrester completes his suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
Flight Test Hazard Planning Near the Speed of Light
NASA Technical Reports Server (NTRS)
Henwood, Bart; Huete, Rod
2007-01-01
A viewgraph presentation describing flight test safety near the speed of light is shown. The topics include: 1) Concept; 2) Portal Content; 3) Activity to Date; 4) FTS Database Updatd FAA Program; 5) FAA Flight Test Risk Management; 6) CFR 14 Part 21.35 Current and proposed changes; 7) An Online Resource for Flight Test Safety Planning; 8) Data Gathering; 9) NTPS Role; 10) Example Maturation; 11) Many Varied Inputs; 12) Matured Stall Hazards; 13) Loss of Control Mitigations; 14) FAA Access; 15) NASA PBMA Website Link; 16) FAR Reference Search; 17) Record Field Search; 18) Keyword Search; and 19) Results of FAR Reference Search.
Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans
NASA Astrophysics Data System (ADS)
Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn
2015-09-01
To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.
C++ Planning and Resource Reasoning (PARR) shell
NASA Technical Reports Server (NTRS)
Mcintyre, James; Tuchman, Alan; Mclean, David; Littlefield, Ronald
1994-01-01
This paper describes a generic, C++ version of the Planning and Resource Reasoning (PARR) shell which has been developed to supersede the C-based versions of PARR that are currently used to support AI planning and scheduling applications in flight operations centers at Goddard Space Flight Center. This new object-oriented version of PARR can be more easily customized to build a variety of planning and scheduling applications, and C++ PARR applications can be more easily ported to different environments. Genetic classes, constraints, strategies, and paradigms are described along with two types of PARR interfaces.
Regenerative Life Support Evaluation
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Thompson, C. D.
1977-01-01
This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.
Development of Waypoint Planning Tool in Response to NASA Field Campaign Challenges
NASA Technical Reports Server (NTRS)
He, Matt; Hardin, Danny; Mayer, Paul; Blakeslee, Richard; Goodman, Michael
2012-01-01
Airborne real time observations are a major component of NASA 's Earth Science research and satellite ground validation studies. Multiple aircraft are involved in most NASA field campaigns. The coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. Planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. A flight planning tools is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama ]Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point -and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin on web platform, and to the rising open source GIS tools with New Java Script frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives.
STS users study (study 2.2). Volume 2: STS users plan (user data requirements) study
NASA Technical Reports Server (NTRS)
Pritchard, E. I.
1975-01-01
Pre-flight scheduling and pre-flight requirements of the space transportation system are discussed. Payload safety requirements, shuttle flight manifests, and interface specifications are studied in detail.
Autonomous mission management for UAVs using soar intelligent agents
NASA Astrophysics Data System (ADS)
Gunetti, Paolo; Thompson, Haydn; Dodd, Tony
2013-05-01
State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.
Floor Plans Foundation Plan at Bedrock and Subgrade Level ...
Floor Plans - Foundation Plan at Bedrock and Subgrade Level Plan - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL
X-43A Final Flight Observations
NASA Technical Reports Server (NTRS)
Grindle, Laurie
2011-01-01
The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.
NASA Earth Science Update with Information Science Technology
NASA Technical Reports Server (NTRS)
Halem, Milton
2000-01-01
This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.
NASA Technical Reports Server (NTRS)
Izygon, Michel
1993-01-01
The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.
Aircraft Route Optimization using the A-Star Algorithm
2014-03-27
Map Cost array allows a search for a route that not only seeks to minimize the distance travelled, but also considers other factors that may impact ...Rules (VFR) flight profile requires aviators to plan a 20-minute fuel reserve into the flight while an Instrument Flight Rules ( IFR ) flight profile
DOT National Transportation Integrated Search
1994-07-01
This report is the ninth in a series on physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Long-haul flight operations often involve rapid multiple time-zone changes, sl...
Space shuttle orbiter test flight series
NASA Technical Reports Server (NTRS)
Garrett, D.; Gordon, R.; Jackson, R. B.
1977-01-01
The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2014 CFR
2014-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2013 CFR
2013-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
14 CFR 91.711 - Special rules for foreign civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-01-01
... aircraft of U.S. manufacture for the purpose of— (i) Flight testing the aircraft; (ii) Training foreign... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Foreign... States shall give flight notification or file a flight plan in accordance with the Supplementary...
Economic Justification for FAA's Flight 2000 Program
DOT National Transportation Integrated Search
1997-09-23
This paper summarizes the economic benefits that are anticipated to flow from : the FAA's Flight 2000 operational demonstration program. This quick assessment : is based on the Flight 2000 Initial Program Plan, dated July 16, 1997. The : analysis sho...
NASA Technical Reports Server (NTRS)
1979-01-01
The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.
NASA Technical Reports Server (NTRS)
Power, J. C.
1978-01-01
A planned flight test of an 8 cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN (1 mlb.) thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the shuttle-launched Air Force space test program P80-1 satellite in 1981. The spacecraft will be 3- axis stabilized in its final 740 km circular orbit, which will have an inclination of approximately greater than 73 degrees. The spacecraft design lifetime is three years.
Crew performance and communication: Performing a terrain navigation task
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Delzell, Susanne
1993-01-01
A study was conducted to examine the map and route cues pilots use while navigating under controlled, but realistic, nap-of-the-earth (NOE) flight conditions. US Army helicopter flight crews were presented a map and route overlay and asked to perform normal mission planning. They then viewed a video-recording of the out-the-window scene during low-level flights, without the route overlay, and were asked periodically to locate their current position on the map. The pilots and navigators were asked to communicate normally during the planning and flight phases. During each flight the navigator's response time, accuracy, and subjective workload were assessed. Post-flight NASA-TLX workload ratings were collected. No main effect of map orientation (north-up vs. track-up) was found for errors or response times on any of the tasks evaluated. Navigators in the north-up group rated their workload lower than those in the track-up group.
Life sciences space biology project planning
NASA Technical Reports Server (NTRS)
Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.
1988-01-01
The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.
1974-08-01
contributed substantially to the planning of the flight course used in this study and in the preparation of this report. Assistance in business matters has...CONTENTS Page INTRODUCTION 1 METHOD 5 Subjects 5 Equipment Experimental Plan 8 Procedure 14 Performance Assessment 17 Statistical Treatment 19 RESULTS...implementation of RNAV service. These documents provide the basis for future RNAV planning both procedurally and quantitatively. At the heart of the
Enroute flight planning: The design of cooperative planning systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Mccoy, Elaine
1990-01-01
Design concepts and principles to guide in the building of cooperative problem solving systems are being developed and evaluated. In particular, the design of cooperative systems for enroute flight planning is being studied. The investigation involves a three stage process, modeling human performance in existing environments, building cognitive artifacts, and studying the performance of people working in collaboration with these artifacts. The most significant design concepts and principles identified thus far are the principle focus.
NASA Astrophysics Data System (ADS)
Chiabrando, F.; Lingua, A.; Maschio, P.; Teppati Losè, L.
2017-02-01
The purpose of this paper is to discuss how much the phases of flight planning and the setting of the camera orientation can affect a UAVs photogrammetric survey. The test site chosen for these evaluations was the Rocca of San Silvestro, a medieval monumental castle near Livorno, Tuscany (Italy). During the fieldwork, different sets of data have been acquired using different parameters for the camera orientation and for the set up of flight plans. Acquisition with both nadiral and oblique orientation of the camera have been performed, as well as flights with different direction of the flight lines (related with the shape of the object of the survey). The different datasets were then processed in several blocks using Pix4D software and the results of the processing were analysed and compared. Our aim was to evaluate how much the parameters described above can affect the generation of the final products of the survey, in particular the product chosen for this evaluation was the point cloud.
NASA Technical Reports Server (NTRS)
Sheth, Kapil S.; Gutierrez-Nolasco, Sebastian
2010-01-01
This paper presents an analysis of factors that impact user flight schedules during air traffic congestion. In pre-departure flight planning, users file one route per flight, which often leads to increased delays, inefficient airspace utilization, and exclusion of user flight preferences. In this paper, first the idea of filing alternate routes and providing priorities on each of those routes is introduced. Then, the impact of varying planning interval and system imposed departure delay increment is discussed. The metrics of total delay and equity are used for analyzing the impact of these factors on increased traffic and on different users. The results are shown for four cases, with and without the optional routes and priority assignments. Results demonstrate that adding priorities to optional routes further improves system performance compared to filing one route per flight and using first-come first-served scheme. It was also observed that a two-hour planning interval with a five-minute system imposed departure delay increment results in highest delay reduction. The trend holds for a scenario with increased traffic.
Knowledge-based decision support for Space Station assembly sequence planning
NASA Astrophysics Data System (ADS)
1991-04-01
A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.
Knowledge-based decision support for Space Station assembly sequence planning
NASA Technical Reports Server (NTRS)
1991-01-01
A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.
Space Flight. Teacher Resources.
ERIC Educational Resources Information Center
2001
This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…
Code of Federal Regulations, 2012 CFR
2012-07-01
... records, flight planning information, and the like. ... sharing is a marketing arrangement in which an air carrier places its designator code on a flight operated by another air carrier and sells tickets for that flight. (e) DOD approval. DOD approval in the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... records, flight planning information, and the like. ... sharing is a marketing arrangement in which an air carrier places its designator code on a flight operated by another air carrier and sells tickets for that flight. (e) DOD approval. DOD approval in the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... records, flight planning information, and the like. ... sharing is a marketing arrangement in which an air carrier places its designator code on a flight operated by another air carrier and sells tickets for that flight. (e) DOD approval. DOD approval in the...
Procedural error monitoring and smart checklists
NASA Technical Reports Server (NTRS)
Palmer, Everett
1990-01-01
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.
NASA Technical Reports Server (NTRS)
Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.
1977-01-01
The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.
National remote computational flight research facility
NASA Technical Reports Server (NTRS)
Rediess, Herman A.
1989-01-01
The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.
14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate
Code of Federal Regulations, 2011 CFR
2011-01-01
... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...
14 CFR 61.415 - What are the limits of a flight instructor certificate with a sport pilot rating?
Code of Federal Regulations, 2010 CFR
2010-01-01
... determined the student's flight preparation, planning, equipment, and proposed procedures are adequate for... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false What are the limits of a flight instructor... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND...
14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate
Code of Federal Regulations, 2013 CFR
2013-01-01
... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...
14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate
Code of Federal Regulations, 2014 CFR
2014-01-01
... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...
14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate
Code of Federal Regulations, 2012 CFR
2012-01-01
... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...
Flight data file: STS-4 crew activity plan
NASA Technical Reports Server (NTRS)
Pippert, E. B., Jr.
1982-01-01
The STS-4 Crew Activity Plan contains the on-orbit timeline, which is a flight data file article. Various time scales such as Mission Elapsed Time (MET), Greenwich Mean Time (GMT), and time until deorbit ignition as well as crew activities, day/night, orbit position, ground tracking, communication coverage, attitude, and maneuvers are presented in chart form.
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team in MCC Bldg 30 FCR
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team with Flight Director (FD) James M. Heflin, Jr (front right next to ship model) poses in JSC's Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). The group stands in front of visual displays projecting STS-49 data and ground track map.
14 CFR 93.339 - Requirements for operating in the DC SFRA, including the DC FRZ.
Code of Federal Regulations, 2010 CFR
2010-01-01
... aircraft in the DC SFRA, including the DC FRZ, the pilot obtains and transmits a discrete transponder code... flight plan by obtaining a discrete transponder code. The flight plan is closed upon landing at an... transmitting an Air Traffic Control-assigned discrete transponder code. (c) When operating an aircraft in the...
Apollo Soyuz mission planning and operations
NASA Technical Reports Server (NTRS)
Frank, M. P., III
1976-01-01
The paper describes the Apollo Soyuz project from the points of view of working group organization, mission plan definition, joint operations concept, and mission preparation. The concept for joint operations considered contingency situations as well as nominal operations. Preparations for the joint flight included cooperative tracking tests and combined training of the flight crews and mission control personnel.
Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.
1974-01-01
The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist John "Danny" Olivas signals go for launch as he completes suitup by donning his helmet. The launch of Space Shuttle Atlantis is scheduled for 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Billows of smoke surround the mobile launcher platform on Launch Pad 39A as Space Shuttle Atlantis lifts off on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Reuters.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist James Reilly is helped with his helmet as he completes suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
First Crewed Flight: Rationale, Considerations and Challenges from the Constellation Experience
NASA Technical Reports Server (NTRS)
Noriega, Carlos; Arceneaux, William; Williams, Jeffrey A.; Rhatigan, Jennifer L.
2011-01-01
NASA's Constellation Program has made the most progress in a generation towards building an integrated human-rated spacecraft and launch vehicle. During that development, it became clear that NASA's human-rating requirements lacked the specificity necessary to defend a program plan, particularly human-rating test flight plans, from severe budget challenges. This paper addresses the progress Constellation achieved, problems encountered in clarifying and defending a human-rating certification plan, and discusses key considerations for those who find themselves in similar straits with future human-rated spacecraft and vehicles. We assert, and support with space flight data, that NASA's current human-rating requirements do not adequately address "unknown-unknowns", or the unexpected things the hardware can reveal to the designer during test.
1992-05-01
These periods of SUSOPS often require many hours of mission planning and briefing by the same aircrew who later fly into combat. This ’front-loading’ of...CsCOLLATERIAL OUTr. GDUTIDIES a au LE.P Sa PlKF PoSTRIKE PLANNING EXEsERCISE DATE MUEAS 0aEMMF PsMEOCEATIONIMEST XETESTING!11 11 I1illilll ii I-. II...duration and infrequent occurrence, functional check flights (FCF) and post maintenance check flights ( PMCF ) were also included among the TRG flights
IUS/TUG orbital operations and mission support study. Volume 4: Project planning data
NASA Technical Reports Server (NTRS)
1975-01-01
Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
14 CFR 91.501 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... (8) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine...) Ferry or training flights; (2) Aerial work operations such as aerial photography or survey, or pipeline...
NASA Technical Reports Server (NTRS)
Balaban, Edward; Orosz, Michael; Kichkaylo, Tatiana; Goforth, Andre; Sweet, Adam; Neches, Robert
2006-01-01
Few human endeavors present as much of a planning and scheduling challenge as space flight, particularly manned space flight. Just on the operational side of it, efforts of thousands of people across hundreds of organizations need to be coordinated. Numerous tasks of varying complexity and nature, from scientific to construction, need to be accomplished within limited mission time frames. Resources need to be carefully managed and contingencies worked out, often on a very short notice. From the beginning of the NASA space program, planning has been done by large teams of domain experts working months, sometimes years, to put together a single mission. This approach, while proven very reliable up to now, is becoming increasingly harder to sustain. Elevated levels of NASA space activities, from deployment of the new Crew Exploration Vehicle (CEV) and completion of the International Space Station (ISS), to the planned lunar missions and permanent lunar bases, will put an even greater strain on this largely manual process. While several attempts to automate it have been made in the past, none have fully succeeded. In this paper we describe the current NASA planning methods, outline their advantages and disadvantages, discuss the planning challenges of upcoming missions and propose a distributed planning/scheduling framework (CMMD) aimed at unifying and optimizing the planning effort. CMMD will not attempt to make the process completely automated, but rather serve in a decision support capacity for human managers and planners. It will help manage information gathering, creation of partial and consolidated schedules, inter-team negotiations, contingencies investigation, and rapid re-planning when the situation demands it. The fist area of CMMD application will be planning for Extravehicular Activities (EVA) and associated logistics. Other potential applications, not only in the space flight domain, and future research efforts will be discussed as well.
Mission Operations Planning and Scheduling System (MOPSS)
NASA Technical Reports Server (NTRS)
Wood, Terri; Hempel, Paul
2011-01-01
MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.
Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)
NASA Technical Reports Server (NTRS)
Qureshi, Rizwan Hamid; Hughes, Steven P.
2014-01-01
The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.
Automated flight test management system
NASA Technical Reports Server (NTRS)
Hewett, M. D.; Tartt, D. M.; Agarwal, A.
1991-01-01
The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
...-2004-17005; Amdt. No. 1-63 and 93-90] RIN 2120-AI17 Washington, DC Metropolitan Area Special Flight... collection. The rule titled ``Washington, DC Metropolitan Area Special Flight Rules Area'' was published on... document for the flight plans and other information collected under that rule. That information collection...
NASA Technical Reports Server (NTRS)
Bothwell, Mary
2004-01-01
A viewgraph presentation describing the the six phases of a space mission is shown. The contents include: 1) What Does Planning Involve?; 2) Designing the Flight System; 3) Building the Flight System; 4) Testing the Flight System; 5) Flying the Mission; and 6) Analyzing the Data.
How controllers compensate for the lack of flight progress strips.
DOT National Transportation Integrated Search
1996-02-01
The role of the Flight Progress Strip, currently used to display important flight data, has been debated because of long range plans to automate the air traffic control (ATC) human-computer interface. Currently, the Fight Progress Strip is viewed by ...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 1214.115 - Standard services.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: commander, pilot and three mission specialists. (e) Orbiter flight planning services. (f) One day of... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT General Provisions Regarding Space Shuttle Flights of Payloads for Non-U.S. Government, Reimbursable Customers § 1214.115 Standard...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
NASA Technical Reports Server (NTRS)
1968-01-01
Contents include the following: General release. Mission objectives. Mission description. Flight plan. Alternate missions. Experiments. Abort model. Spacecraft structure system. The Saturn 1B launch vehicle. Flight sequence. Launch preparations. Mission control center-Houston. Manned space flight network. Photographic equipment. Apollo 7 crew. Apollo 7 test program.
Multilevel semantic analysis and problem-solving in the flight-domain
NASA Technical Reports Server (NTRS)
Chien, R. T.
1982-01-01
The use of knowledge-base architecture and planning control; mechanisms to perform an intelligent monitoring task in the flight domain is addressed. The route level, the trajectory level, and parts of the aerodynamics level are demonstrated. Hierarchical planning and monitoring conceptual levels, functional-directed mechanism rationalization, and using deep-level mechanism models for diagnoses of dependent failures are discussed.
Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)
NASA Technical Reports Server (NTRS)
Niewoehner, Kevin R.; Carter, John (Technical Monitor)
2001-01-01
The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.
Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests
1977-04-01
Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight
F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)
NASA Technical Reports Server (NTRS)
1997-01-01
After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.
Recent Results and Near Term Outlook for the NASA Balloon Science Program
NASA Astrophysics Data System (ADS)
Jones, William Vernon
Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.
NASA Astrophysics Data System (ADS)
Sidibe, Souleymane
The implementation and monitoring of operational flight plans is a major occupation for a crew of commercial flights. The purpose of this operation is to set the vertical and lateral trajectories followed by airplane during phases of flight: climb, cruise, descent, etc. These trajectories are subjected to conflicting economical constraints: minimization of flight time and minimization of fuel consumed and environmental constraints. In its task of mission planning, the crew is assisted by the Flight Management System (FMS) which is used to construct the path to follow and to predict the behaviour of the aircraft along the flight plan. The FMS considered in our research, particularly includes an optimization model of flight only by calculating the optimal speed profile that minimizes the overall cost of flight synthesized by a criterion of cost index following a steady cruising altitude. However, the model based solely on optimization of the speed profile is not sufficient. It is necessary to expand the current optimization for simultaneous optimization of the speed and altitude in order to determine an optimum cruise altitude that minimizes the overall cost when the path is flown with the optimal speed profile. Then, a new program was developed. The latter is based on the method of dynamic programming invented by Bellman to solve problems of optimal paths. In addition, the improvement passes through research new patterns of trajectories integrating ascendant cruises and using the lateral plane with the effect of the weather: wind and temperature. Finally, for better optimization, the program takes into account constraint of flight domain of aircrafts which utilize the FMS.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
Advanced composite elevator for Boeing 727 aircraft
NASA Technical Reports Server (NTRS)
1979-01-01
Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Photographers crowd around the countdown clock and flag post near the NASA News Center to capture the successful on-time launch of Space Shuttle Atlantis from Launch Pad 39A at 7:38:04 p.m. EDT on mission STS-117. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Jim Grossmann
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Twin columns of fire rocket the Space Shuttle Atlantis into the sky above Kennedy Space Center. Liftoff of Atlantis on mission STS-117 to the International Space Station from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Chris Lynch
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Branches and leaves frame Space Shuttle Atlantis as it lifts off Launch Pad 39A on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Sandra Joseph, Robert Murray and Tom Farrar
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Trailing smoke and fire, Space Shuttle Atlantis roars into the sky past the U.S. flag on its journey to the International Space Station on mission STS-117. Liftoff was on-time at 7:38:04 p.m. EDT . The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Ken Thornsley
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Trailing fire, Space Shuttle Atlantis roars toward the sky on mission STS-117. Below it can be seen the lighting mast atop the fixed service structure. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Reuters.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Trailing fire and smoke, Space Shuttle Atlantis races into the sky toward a rendezvous with the International Space Station on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Ken Thornsley
Pegasus hypersonic flight research
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.
1992-01-01
Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 1214.301 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...
14 CFR § 1214.301 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... specialist will fly. The mission specialist, when designated for a flight, will participate in the planning....301 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload... in space to achieve program goals. A single mission might require more than one flight or more than...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 1214.301 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...
14 CFR 1214.301 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... mission specialist, when designated for a flight, will participate in the planning of the mission and will... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Payload Specialists for Space... goals. A single mission might require more than one flight or more than one mission might be...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
14 CFR 121.535 - Responsibility for operational control: Flag operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... dispatcher are jointly responsible for the preflight planning, delay, and dispatch release of a flight in... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations...— (1) Monitoring the progress of each flight; (2) Issuing necessary instructions and information for...
X-Gliders: Exploring Flight Research with Experimental Gliders. Educational Brief.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This brief discusses X-gliders and flight research with experimental gliders. In this activity, designed for grades K-4, students will learn how to change the flight characteristics of a glider using scientific inquiry methods. Glider plans and a template are included. (MVL)
Code of Federal Regulations, 2010 CFR
2010-01-01
... means, for the purposes of this subpart, a communications facility where flight plans or position... which the control of aircraft is required for reasons of national security. Defense visual flight rules... (except for Department of Defense and law enforcement aircraft) in accordance with visual flight rules in...
Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum
NASA Technical Reports Server (NTRS)
1982-01-01
Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.
NASA Technical Reports Server (NTRS)
2001-01-01
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.
NASA Technical Reports Server (NTRS)
Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.
1988-01-01
The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen
2013-01-01
Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.
Planning and management of science programs on Skylab
NASA Technical Reports Server (NTRS)
Parker, R. A. R.; Sevier, J. R.
1974-01-01
Discussion of the experience gained in experiment operation planning during the Skylab mission. The Skylab flight planning activity allowed the experimenters to interact with the system and provided the flexibility to respond to contingencies both major and minor. Both these aspects contributed to make efficient use of crew time thus helping to increase the science return from the mission. Examples of the need for real time scheduling response and of the tradeoffs considered between conflicting experiment requirements are presented. General management principles derived from this experience are developed. The Skylab mission experiences, together with previous Apollo mission experiences, are shown to provide a good background for Shuttle flight planning.
Human Space Flight Plans Committee
2009-06-16
U.S. Sen. Bill Nelson, D-Fla., at podium, addresses members of the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. Seated from left are Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)
Hayabusa—Its technology and science accomplishment summary and Hayabusa-2
NASA Astrophysics Data System (ADS)
Kawaguchi, Jun'ichiro; Fujiwara, Akira; Uesugi, Tono
2008-05-01
Hayabusa performed five descents last November, among which two touching-down flights were included. Actually Hayabusa made three touching-downs and one long landing on the surface of Itokawa during those two flights. This paper summarizes how series of descents were planned and operated. The contents focus their attention on the correction maneuvers planning as well as what kind of terminals with what kind of software tools were actually built and used. The project team had distilled and accumulated their experiences through the rehearsal flights and accomplished this difficult mission. This paper presents the entire story about it.
Space Technology 5: Changing the Mission Design without Changing the Hardware
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. The validation objectives are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop, test and flight-validate three capable micro-satellites with new technologies. A three-month flight demonstration phase is planned, beginning in March 2006. This year, the mission was re-planned for a Pegasus XL dedicated launch into an elliptical polar orbit (instead of the Originally-planned Geosynchronous Transfer Orbit.) The re-plan allows the mission to achieve the same high-level technology validation objectives with a different launch vehicle. The new mission design involves a revised science validation strategy, a new orbit and different communication strategy, while minimizing changes to the ST-5 spacecraft itself. The constellation operations concepts have also been refined. While the system engineers, orbit analysts, and operations teams were re-planning the mission, the implementation team continued to make progress on the flight hardware. Most components have been delivered, and the first spacecraft is well into integration and test.
Measurements of Free-Space Oscillating Pressures Near Propellers at Flight Mach Numbers to 0.72
NASA Technical Reports Server (NTRS)
Kurbjun, Max C; Vogeley, Arthur W
1958-01-01
In the course of a short flight program initiated to check the theory of Garrick and Watkins (NACA rep. 1198), a series of measurements at three stations were made of the oscillating pressures near a tapered-blade plan-form propeller and rectangular-blade plan form propeller at flight Mach numbers up to 0.72. In contradiction to the results for the propeller studied in NACA rep. 1198, the oscillating pressures in the plane ahead of the propeller were found to be higher than those immediately behind the propeller. Factors such as variation in torque and thrust distribution, since the blades of the present investigation were operating above their design forward speed, may account for this contradiction. The effect of blade plan form shows that a tapered-blade plan-form propeller will produce lower sound-pressure levels than a rectangular-blade plan-form propeller for the low blade-passage harmonics (the frequencies where structural considerations are important) and produce higher sound-pressure levels for the higher blade-passage harmonics (frequencies where passenger comfort is important).
Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection
Kokaly, Raymond F.; King, Trude V.V.; Livo, K. Eric
2008-01-01
Hyperspectral remote sensing data were acquired over Afghanistan with the HyMap imaging spectrometer (Cocks and others, 1998) operating on the WB-57 high altitude NASA research aircraft (http://jsc-aircraft-ops.jsc.nasa.gov/wb57/index.html). These data were acquired during the interval of August 22, 2007 to October 2, 2007, as part of the United States Geological Survey (USGS) project 'Oil and Gas Resources Assessment of the Katawaz and Helmand Basins'. A total of 218 flight lines of hyperspectral remote sensing data were collected over the country. This report describes the planning of the airborne survey and the flight lines that were flown. Included with this report are digital files of the nadir tracks of the flight lines, including a map of the labeled flight lines and corresponding vector shape files for geographic information systems (GIS).
EPS analysis of nominal STS-1 flight
NASA Technical Reports Server (NTRS)
Wolfgram, D. F.; Pipher, M. D.
1980-01-01
The results of electrical power system (EPS) analysis of the planned Shuttle Transportation System Flight 1 mission are presented. The capability of the orbiter EPS to support the planned flight and to provide program tape information and supplementary data specifically requested by the flight operations directorate was assessed. The analysis was accomplished using the orbiter version of the spacecraft electrical power simulator program, operating from a modified version of orbiter electrical equipment utilization baseline revision four. The results indicate that the nominal flight, as analyzed, is within the capabilities of the orbiter power generation system, but that a brief, and minimal, current overload may exist between main distributor 1 and mid power controlled 1, and that inverter 9 may the overloaded for extended periods of time. A comparison of results with launch commit criteria also indicated that some of the presently existing launch redlines may be violated during the terminal countdown.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2012 CFR
2012-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2013 CFR
2013-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2014 CFR
2014-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Code of Federal Regulations, 2010 CFR
2010-01-01
... a flight to continue beyond the ETOPS Entry Point unless— (1) Except as provided in paragraph (d) of... with weather conditions at or above operating minima. (e) Before the ETOPS Entry Point, the pilot in... update the flight plan if needed because of a re-evaluation of aircraft system capabilities. (f) No...
Experiments using electronic display information in the NASA terminal configured vehicle
NASA Technical Reports Server (NTRS)
Morello, S. A.
1980-01-01
The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.
Skylab consolidated instrumentation plan for SL-1/SL-2
NASA Technical Reports Server (NTRS)
Clark, D. E.
1972-01-01
The consolidated instrumentation plan is presented for employing optical and electronic data acquisition systems to monitor the performance and trajectory of Skylab 1 and Skylab 2 vehicles during the launch phase. Telemetry, optical, and electronic tracking equipment on board the vehicles, and data acquisition systems monitoring the flights are discussed. Flight safety instrumentation, vehicle data transmission systems, and instrumentation geography are also described.
En route air traffic controllers' use of flight progress strips : a graph-theoretic analysis.
DOT National Transportation Integrated Search
1992-11-01
In the United States, flight data are represented on a paper Flight Progress Strip (FPS). The role of the FPS has recently attracted attention because of plans to automate this aspect of air traffic control. The communication activities and FPS activ...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 91.1039 - IFR takeoff, approach and landing minimums.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) For flight planning purposes, if the destination airport does not have a weather reporting facility... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional... on a program aircraft operating a program flight may begin an instrument approach procedure to an...
14 CFR 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or software... Section 1214.205 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT... priced on the basis of estimated costs. If a special dedicated Shuttle flight is required, the full...
14 CFR 91.1101 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... consumption and cruise control; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT... manager's flight locating procedures; (2) Principles and methods for determining weight and balance, and...
NASA Astrophysics Data System (ADS)
Herd, A.; Wolff, M.
2012-01-01
Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David
2009-01-01
The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.
A Technology Plan for Enabling Commercial Space Business
NASA Technical Reports Server (NTRS)
Lyles, Garry M.
1997-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.
NASA Technical Reports Server (NTRS)
Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.
2010-01-01
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.
Flight Flutter Testing of Supersonic Interceptors
NASA Technical Reports Server (NTRS)
Dublin, M.; Peller, R.
1975-01-01
A summary is presented of experiences in connection with flight flutter testing of supersonic interceptors. The planning and operational aspects involved are described along with the difficulties encountered, and the correlation between measurement and theory. Recommendations for future research and development to advance the science of flight flutter testing are included.
77 FR 12158 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... limited to not more than 0.78 Mach. (6) The climb ceiling obtained from the Flight Planning and Cruise... damage to airplane structure, which could adversely affect the airplane's continued safe flight and... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in...
78 FR 52838 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... Maintenance Planning Data (MPD) Document. Repeat the test thereafter at intervals not to exceed 7,500 flight... by loss of fuel system suction feed capability on one engine, and in-flight shutdown of the engine...-101, before further flight, perform all related testing and corrective actions, and repeat the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2013 CFR
2013-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2012 CFR
2012-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2014 CFR
2014-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
Code of Federal Regulations, 2010 CFR
2010-01-01
... change in the U.S. outlook and policies with respect to the flight of other than NASA astronauts. NASA.... (2) NASA policies and their implementation recognize that: (i) Every flight of the Shuttle involves... orbit by the Space Shuttle. (3) All Shuttle flights will be planned with a minimum NASA crew of five...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
Human Space Flight Plans Committee
2009-08-11
Norman Augustine, chair, listens to a speaker's presentation during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
49 CFR 15.3 - Terms used in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer Program under... interference, whether during the conception, planning, design, construction, operation, or decommissioning...
Use of telescience for biomedical research during space flight
NASA Technical Reports Server (NTRS)
Huntoon, Carolyn L.; Schneider, Howard J.; Karamanos, Gayle M.
1991-01-01
When the U.S. first embarked on a manned space flight program, NASA's use of medical telescience was focused on crew health monitoring. In recent years, medical telescience use has been expanded to include support of basic research in space medicine. It enables ground support personnel to assist on-board crews in the performance of experiments and improves the quality and quantity of data return. NASA is continuing to develop its telescience capabilities. Future plans include telemedicine that will enable physicians on Earth to support crewmembers during flight and telescience that will enable investigators at their home institutions to support and conduct in-flight medical research. NASA's use of telescience for crew safety and biomedical research from Project Mercury to the present is described and NASA's plans for the future are presented.
Meteorological Support of the Helios World Record High Altitude Flight to 96,863 Feet
NASA Technical Reports Server (NTRS)
Teets, Edward H., Jr.; Donohue, Casey J.; Wright, Patrick T.; DelFrate, John (Technical Monitor)
2002-01-01
In characterizing and understanding atmospheric behavior when conducting high altitude solar powered flight research flight planning engineers and meteorologists are able to maximize the use of available airspace and coordinate aircraft maneuvers with pilots to make the best use of changing sun elevation angles. The result of this cooperative research produced a new world record for absolute altitude of a non-rocket powered aircraft of 96,863 ft (29,531.4 m). The Helios prototype solar powered aircraft, with a wingspan of 247 ft (75.0m), reached this altitude on August 13, 2001, off the coast of Kauai, Hawaii. The analyses of the weather characterization, the planning efforts, and the weather-of-the-day summary that led to at record flight are described in this paper.
NASA Astrophysics Data System (ADS)
Gülci, S.; Akgül, M.; Akay, A. E.; Taş, İ.
2017-11-01
This short paper aims to present pros and cons of current usage of ready-to-use drone images in the field of forestry also considering flight planning and photogrammetric processes. The capabilities of DJI Phantom 4, which is the low cost drone producing by Dji company, was evaluated through sample flights in Cinarpinar Forest Enterprise Chief in Kahramanmaras in Turkey. In addition, the photogrammetric workflow of obtained images and automated flight were presented with respect to capabilities of available software. The flight plans were created by using Pix4DCapture software with android based cell phone. The results indicated that high-resolution imagery obtained by drone can provide significant data for assessment of forest resources, forest roads, and stream channels.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Viewed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis is a small tip on the trailing column of fire and smoke after launching on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
Code of Federal Regulations, 2013 CFR
2013-01-01
... use of land near a public airport, that— (1) Obstructs the airspace required for the flight of... and proposed airport facilities. Airport master planning means the development for planning purposes... specific airport. Airport system planning means the development for planning purposes of information and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... use of land near a public airport, that— (1) Obstructs the airspace required for the flight of... and proposed airport facilities. Airport master planning means the development for planning purposes... specific airport. Airport system planning means the development for planning purposes of information and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... use of land near a public airport, that— (1) Obstructs the airspace required for the flight of... and proposed airport facilities. Airport master planning means the development for planning purposes... specific airport. Airport system planning means the development for planning purposes of information and...
Code of Federal Regulations, 2011 CFR
2011-01-01
... use of land near a public airport, that— (1) Obstructs the airspace required for the flight of... and proposed airport facilities. Airport master planning means the development for planning purposes... specific airport. Airport system planning means the development for planning purposes of information and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... use of land near a public airport, that— (1) Obstructs the airspace required for the flight of... and proposed airport facilities. Airport master planning means the development for planning purposes... specific airport. Airport system planning means the development for planning purposes of information and...
Speech Recognition Interfaces Improve Flight Safety
NASA Technical Reports Server (NTRS)
2013-01-01
"Alpha, Golf, November, Echo, Zulu." "Sierra, Alpha, Golf, Echo, Sierra." "Lima, Hotel, Yankee." It looks like some strange word game, but the combinations of words above actually communicate the first three points of a flight plan from Albany, New York to Florence, South Carolina. Spoken by air traffic controllers and pilots, the aviation industry s standard International Civil Aviation Organization phonetic alphabet uses words to represent letters. The first letter of each word in the series is combined to spell waypoints, or reference points, used in flight navigation. The first waypoint above is AGNEZ (alpha for A, golf for G, etc.). The second is SAGES, and the third is LHY. For pilots of general aviation aircraft, the traditional method of entering the letters of each waypoint into a GPS device is a time-consuming process. For each of the 16 waypoints required for the complete flight plan from Albany to Florence, the pilot uses a knob to scroll through each letter of the alphabet. It takes approximately 5 minutes of the pilot s focused attention to complete this particular plan. Entering such a long flight plan into a GPS can pose a safety hazard because it can take the pilot s attention from other critical tasks like scanning gauges or avoiding other aircraft. For more than five decades, NASA has supported research and development in aviation safety, including through its Vehicle Systems Safety Technology (VSST) program, which works to advance safer and more capable flight decks (cockpits) in aircraft. Randy Bailey, a lead aerospace engineer in the VSST program at Langley Research Center, says the technology in cockpits is directly related to flight safety. For example, "GPS navigation systems are wonderful as far as improving a pilot s ability to navigate, but if you can find ways to reduce the draw of the pilot s attention into the cockpit while using the GPS, it could potentially improve safety," he says.
Floor Plans Fuel Tank Support, Fuel Platform, and LOX ...
Floor Plans - Fuel Tank Support, Fuel Platform, and LOX Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL
Floor Plans Rolling Platform, Tech Systems Platform, and Load ...
Floor Plans - Rolling Platform, Tech Systems Platform, and Load Platform Plans - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team in MCC Bldg 30 FCR
1992-05-15
S92-36606 (20 May 1992) --- STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team with Flight Director (FD) James M. Heflin, Jr. (front right next to ship model) poses in Johnson Space Center?s (JSC) Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). The group stands in front of visual displays projecting STS-49 data and ground track map.
Mission planning and simulation via intelligent agents
NASA Technical Reports Server (NTRS)
Gargan, Robert A., Jr.; Tilley, Randall W.
1987-01-01
A system that can operate from a flight manifest to plan and simulate payload preparation and transport via Shuttle flights is described. The design alternatives and the prototype implementation of the payload hardware and inventory tracking system are discussed. It is shown how intelligent agents can be used to generate mission schedules, and how, through the use of these intelligent agents, knowledge becomes separated into small manageable knowledge bases.
Development of flying qualities criteria for single pilot instrument flight operations
NASA Technical Reports Server (NTRS)
Bar-Gill, A.; Nixon, W. B.; Miller, G. E.
1982-01-01
Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.
Ares I-X Range Safety Trajectory Analyses Overview and Independent Validation and Verification
NASA Technical Reports Server (NTRS)
Tarpley, Ashley F.; Starr, Brett R.; Tartabini, Paul V.; Craig, A. Scott; Merry, Carl M.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle
2011-01-01
All Flight Analysis data products were successfully generated and delivered to the 45SW in time to support the launch. The IV&V effort allowed data generators to work through issues early. Data consistency proved through the IV&V process provided confidence that the delivered data was of high quality. Flight plan approval was granted for the launch. The test flight was successful and had no safety related issues. The flight occurred within the predicted flight envelopes. Post flight reconstruction results verified the simulations accurately predicted the FTV trajectory.
Ghose, Kaushik; Moss, Cynthia F
2006-02-08
Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.
Human Space Flight Plans Committee
2009-06-16
Douglas R. Cooke, Associate Administrator for Exploration Systems Mission Directorate, at podium, addresses the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Seated from left on the panel is Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. Photo Credit: (NASA/Paul E. Alers)
Space Construction Experiment Definition Study (SCEDS), part 2. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Construction Experiment (SCE) was defined for integration into the Space Shuttle. This included development of flight assignment data, revision and update of preliminary mission timelines and test plans, analysis of flight safety issues, and definition of ground operations scenarios. New requirements for the flight experiment and changes for a large space antenna feed mask test article were incorporated. The program plan and cost estimates were updated. Revised SCE structural dynamics characteristics were provided for simulation and analysis of experimental tests to define and verify control limits and interactions effects between the SCE and the Orbiter digital automatic pilot.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2010-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane
NASA Technical Reports Server (NTRS)
Frederick, Michael A.; Ratnayake, Nalin A.
2011-01-01
The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.
2001-08-16
JSC2001-E-25466 (16 August 2001) --- Flight director Bryan Austin studies data at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC) during the STS-105 mission.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
2012-09-30
to better predict the seasonal evolution of the ice cover . APPROACH The Coast Guard Arctic Domain Awareness (ADA) flights based out of Kodiak...does not display a currently valid OMB control number. 1. REPORT DATE 2012 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE...satellite remote sensing data ( MODIS and SSMI) for flight planning before flights and during and after flights for inclusion in the SIZRS-DC database
Orion Pad Abort 1 Flight Test - Ground and Flight Operations
NASA Technical Reports Server (NTRS)
Hackenbergy, Davis L.; Hicks, Wayne
2011-01-01
This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.
Supercritical Wing Technology: A Progress Report on Flight Evaluations
NASA Technical Reports Server (NTRS)
1972-01-01
The papers in this compilation were presented at the NASA Symposium on "Supercritical Wing Technology: A Progress Report on Flight Evaluation" held at the NASA Flight Research Center, Edwards, Calif., on February 29, 1972. The purpose of the symposium was to present timely information on flight results obtained with the F-8 and T-2C supercritical wing configurations, discuss comparisons with wind-tunnel predictions, and project [ ] flight programs planned for the F-8 and F-III (TACT) airplanes.
Software Engineering Improvement Activities/Plan
NASA Technical Reports Server (NTRS)
2003-01-01
bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.
5. Photographic copy of engineering drawing showing plans, elevation and ...
5. Photographic copy of engineering drawing showing plans, elevation and section of Deluge Water System, including reservior (4316), Pump House (4317), and water tower. Job No. Muroc A(5-ll), Military Construction, San Bernardino-Mojave Area, San Bernardino, California: Muroc Bombing Range, Muroc Lake, California.; Additional Facilities for Materiel Center Flight Test Base, Water Supply System, Plans and Sections, Sheet 5 of 10, May 1943. Records on file at AFFTC/CE-CECC-B (Design/Construction Flight/RPMC), Edwards AFB, California. - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
Engineering evaluation of 24 channel multispectral scanner. [from flight tests
NASA Technical Reports Server (NTRS)
Lambeck, P. F.
1973-01-01
The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.
77 FR 50759 - Noise Exposure Map Notice, Orlando Sanford International Airport, Sanford, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
...; Table 13: 2009 and 2016 Local Runway Use Percentages; Figure 1: East Flow Flight Tracks; Figure 2: West Flow Flight Tracks; Figure 3: Local Flight Tracks; Figure 4: Existing Land Use; Figure 5: 2011 NEM... inseparable from the ultimate land use control and planning responsibilities of local government. These local...
14 CFR § 1214.205 - Revisit and/or retrieval services.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accomplished on a scheduled Shuttle flight, he will only pay for added mission planning, unique hardware or... FLIGHT Reimbursement for Shuttle Services Provided to Civil U.S. Government Users and Foreign Users Who... services will be priced on the basis of estimated costs. If a special dedicated Shuttle flight is required...
14 CFR 375.37 - Certain business aviation activities using U.S.-registered foreign civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An additional... flight crew for that aircraft may collect from the other joint owners of that aircraft a share of the... for the specific flight. (5) Landing fees, airport taxes, and similar assessments. (6) Customs...
14 CFR 375.37 - Certain business aviation activities using U.S.-registered foreign civil aircraft.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An additional... flight crew for that aircraft may collect from the other joint owners of that aircraft a share of the... for the specific flight. (5) Landing fees, airport taxes, and similar assessments. (6) Customs...
14 CFR 375.37 - Certain business aviation activities using U.S.-registered foreign civil aircraft.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An additional... flight crew for that aircraft may collect from the other joint owners of that aircraft a share of the... for the specific flight. (5) Landing fees, airport taxes, and similar assessments. (6) Customs...
14 CFR 375.37 - Certain business aviation activities using U.S.-registered foreign civil aircraft.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An additional... flight crew for that aircraft may collect from the other joint owners of that aircraft a share of the... for the specific flight. (5) Landing fees, airport taxes, and similar assessments. (6) Customs...
76 FR 27168 - Airmen Transition to Experimental or Unfamiliar Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... airplanes. The current edition of AC 90-89, Amateur-Built and Ultralight Flight Testing Handbook, provides information on such testing. However, if a pilot is planning on participating in a flight-test program in an... airplanes and to flight instructors who teach in these airplanes. This information and guidance contains...
14 CFR 375.37 - Certain business aviation activities using U.S.-registered foreign civil aircraft.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Passenger ground transportation. (9) Flight planning and weather contract services. (10) An additional... flight crew for that aircraft may collect from the other joint owners of that aircraft a share of the... for the specific flight. (5) Landing fees, airport taxes, and similar assessments. (6) Customs...
Code of Federal Regulations, 2014 CFR
2014-01-01
... hours of flight. A person, identified as required by § 417.103(b)(1), must review all preflight testing... personnel and the results of flight safety system testing. (iii) Readiness of safety-related launch property... conduct a launch safety review no later than 15 days before the planned day of flight, or as agreed to by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... hours of flight. A person, identified as required by § 417.103(b)(1), must review all preflight testing... personnel and the results of flight safety system testing. (iii) Readiness of safety-related launch property... conduct a launch safety review no later than 15 days before the planned day of flight, or as agreed to by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... hours of flight. A person, identified as required by § 417.103(b)(1), must review all preflight testing... personnel and the results of flight safety system testing. (iii) Readiness of safety-related launch property... conduct a launch safety review no later than 15 days before the planned day of flight, or as agreed to by...
NASA Astrophysics Data System (ADS)
Zhong, Z. W.; Ridhwan Salleh, Saiful; Chow, W. X.; Ong, Z. M.
2016-10-01
Air traffic forecasting is important as it helps stakeholders to plan their budgets and facilities. Thus, three most commonly used forecasting models were compared to see which model suited the air passenger traffic the best. General forecasting equations were also created to forecast the passenger traffic. The equations could forecast around 6.0% growth from 2015 onwards. Another study sought to provide an initial work for determining a theoretical airspace load with relevant calculations. The air traffic was simulated to investigate the current airspace load. Logical and reasonable results were obtained from the modelling and simulations. The current utilization percentages for airspace load per hour and the static airspace load in the interested airspace were found to be 6.64% and 11.21% respectively. Our research also studied how ADS-B would affect the time taken for aircraft to travel. 6000 flights departing from and landing at the airport were studied. New flight plans were simulated with improved flight paths due to the implementation of ADS-B, and flight times of all studied flights could be improved.
ERIC Educational Resources Information Center
Reber, Sarah J.
2005-01-01
The effect of the court ordered desegregation plans, on trends in segregation and white flight, are estimated. The effect of availability of school districts and other factors on the white flight across districts is also mentioned.
Launch mission summary: INTELSAT 5 (F4) ATLAS/CENTAUR-58
NASA Technical Reports Server (NTRS)
1982-01-01
The launch vehicle, spacecraft, and mission are described. Information relative to launch windows, flight plan, trajectory, and radar and telemetry coverage are included with brief sequence of flight events.
A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland
2003-01-01
Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Apollo/Saturn 5 consolidated instrumentation plan for AS-511 (Apollo 16)
NASA Technical Reports Server (NTRS)
Clark, D. E.
1972-01-01
The consolidated instrumentation plan, for employing optical and electronic data acquisition systems to monitor the performance and trajectory of Apollo Saturn 5 vehicle 511 during the launch phase of the mission (prelaunch, liftoff to insertion), is presented. Telemetry, optical, and electronic tracking equipment on board the vehicle and data acquisition systems monitoring the flight are discussed. Flight safety instrumentation, vehicle data transmission systems, and geophysical instrumentation are also described.
Commerce Lab - An enabling facility and test bed for commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, Jack; Atkins, Harry L.; Williams, John R.
1986-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
Cardiovascular Countermeasures for Exploration-Class Space Flight Missions
NASA Technical Reports Server (NTRS)
Charles, John B.
2004-01-01
Astronaut missions to Mars may be many years or even decades in thc future but current and planned efforts can be extrapolated to required treatments and prophylaxis for delerious efforts of prolonged space flight on the cardiovascular system. The literature of candidate countermeasures was considered in combination with unpublished plans for countermeasure implementation. The scope of cardiovascular countermeasures will be guided by assessments of the efficacy of mechanical, physiological and pharmacological approaches in protecting the cardiovascular capacities of interplanetary crewmembers. Plans for countermeasure development, evaluation and validation will exploit synergies among treatment modalities with the goal of maximizing protective effects while minimizing crew time and in-flight resource use. Protection of the cardiovascular capacity of interplanetary crewmembers will become more effective and efficient over the next few decades, but trade-offs between cost and effectiveness of efficiency are always possible if the increased level of risk can be accepted.
AMTEC flight experiment progress and plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, M.L.; Dobbs, M.; Giglio, J.
1997-12-31
An experiment is being developed to validate the performance of AMTEC technology in the space microgravity environment. A group of AMTEC cells have been fabricated and assembled into an experiment module and instrumented for operation. The experiment is manifested as a Hitchhiker payload on STS-88 now planned for flight in July 1998. The AMTEC cells will be operated in space for up to ten days. The microgravity developed distribution of the sodium working fluid will be frozen in place before the cells are returned to Earth. Upon return the cells will be destructively evaluated to determine the location of themore » sodium and to assure that the sodium has been properly controlled by the sodium control elements. This paper describes the experiment purpose, status, and plans for the flight operations and data analysis. An overview of how this experiment fits into the overall AMTEC development is also provided.« less
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.
2014-01-01
The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.
NASA Astrophysics Data System (ADS)
Yeomans, Donald
2004-01-01
Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.
Development of Waypoint Planning Tool in Response to NASA Field Campaign Challenges
NASA Technical Reports Server (NTRS)
He, Matt; Hardin, Danny; Conover, Helen; Graves, Sara; Meyer, Paul; Blakeslee, Richard; Goodman, Michael
2012-01-01
Airborne real time observations are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientists, planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircrafts are often involved in NASA field campaigns. The coordination of the aircrafts with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point -and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin and Java Web Start/Applet on web platform, and to the rising open source GIS tools with new JavaScript frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. The newly innovated, cross ]platform, modular designed JavaScript ]controlled Way Point Tool is planned to be integrated with NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientists reach their mission objectives. This presentation will discuss the development processes of the Waypoint Planning Tool in responding to field campaign challenges, identify new information technologies, and describe the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.
Development of Way Point Planning Tool in Response to NASA Field Campaign Challenges
NASA Astrophysics Data System (ADS)
He, M.; Hardin, D. M.; Conover, H.; Graves, S. J.; Meyer, P.; Blakeslee, R. J.; Goodman, M. L.
2012-12-01
Airborne real time observations are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientists, planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircrafts are often involved in NASA field campaigns. The coordination of the aircrafts with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin and Java Web Start/Applet on web platform, and to the rising open source GIS tools with new JavaScript frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed JavaScript-controlled Way Point Tool is planned to be integrated with NASA Airborne Science Mission Tool Suite. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientists reach their mission objectives. This presentation will discuss the development processes of the Waypoint Planning Tool in responding to field campaign challenges, identify new information technologies, and describe the capabilities and features of the Waypoint Planning Tool with the real time aspect, interactive nature, and the resultant benefits to the airborne science community.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Columns of fire flow from the solid rocket boosters launching Space Shuttle Atlantis on mission STS-117 while masses of smoke and steam billow across Launch Pad 39A. Atlantis passes the fixed service structure at left, topped by the 80-foot-tall lightning mast. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
2007-06-08
KENNEDY SPACE CENTER, FLA. -- With solid rocket boosters firing, Space Shuttle Atlantis leaps toward the heavens in a near-perfect launch on mission STS-117 to the International Space Station. The clouds of smoke and steam roll across Launch Pad 39A and surround the rotating service structure at left. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Jerry Cannon & Mike Kerley
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
Using AI/expert system technology to automate planning and replanning for the HST servicing missions
NASA Technical Reports Server (NTRS)
Bogovich, L.; Johnson, J; Tuchman, A.; Mclean, D.; Page, B.; Kispert, A.; Burkhardt, C.; Littlefield, R.; Potter, W.
1993-01-01
This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission.
SOFIA's Choice: Automating the Scheduling of Airborne Observations
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Norvig, Peter (Technical Monitor)
1999-01-01
This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.
A Chief Engineer's View of the NASA X-43A Scramjet Flight Test
NASA Technical Reports Server (NTRS)
Marshall, Laurie A.; Corpening, Griffin P.; Sherrill, Robert
2005-01-01
This paper presents an overview of the preparation and execution of the first two flights of the NASA X-43A scramjet flight test project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The challenges faced by the project team as they prepared the first ever scramjet-powered airplane for flight are presented. Modifications made to the second flight vehicle as a result of the first flight failure and the return to flight activities are discussed. Flight results and lessons learned are also presented.
Automatic mission planning algorithms for aerial collection of imaging-specific tasks
NASA Astrophysics Data System (ADS)
Sponagle, Paul; Salvaggio, Carl
2017-05-01
The rapid advancement and availability of small unmanned aircraft systems (sUAS) has led to many novel exploitation tasks utilizing that utilize this unique aerial imagery data. Collection of this unique data requires novel flight planning to accomplish the task at hand. This work describes novel flight planning to better support structure-from-motion missions to minimize occlusions, autonomous and periodic overflight of reflectance calibration panels to permit more efficient and accurate data collection under varying illumination conditions, and the collection of imagery data to study optical properties such as the bidirectional reflectance distribution function without disturbing the target in sensitive or remote areas of interest. These novel mission planning algorithms will provide scientists with additional tools to meet their future data collection needs.
Analysis of the Quality of Parabolic Flight
NASA Technical Reports Server (NTRS)
Lambot, Thomas; Ord, Stephan F.
2016-01-01
Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.
Human Space Flight Plans Committee
2009-08-12
Former astronaut Dr. Sally Ride, left, confers with Norman Augustine, chair, prior to the start of the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
Human Space Flight Plans Committee
2009-12-07
Former astronaut Dr. Sally Ride, left, confers with Norman Augustine, chair, prior to the start of the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... missions such as those related to aviation flying safety, flight planning, airport engineering and federal grants analysis, aeronautical chart and flight information publications, and the promotion of air...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... those related to aviation flying safety, flight planning, airport engineering and federal grants analysis, aeronautical chart and flight information publications, and the promotion of air commerce as...
STS-5 Fifth Space shuttle mission, first operational flight: Press Kit
NASA Technical Reports Server (NTRS)
1982-01-01
Schedules for the fifth Space Shuttle flight are provided. Launching procedure, extravehicular activity, contingency plans, satellite deployment, and onboard experiments are discussed. Landing procedures, tracking facilities, and crew data are provided.
NASA Technical Reports Server (NTRS)
Buden, D.
1991-01-01
Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.
Management training for cockpit crews at Piedmont flight
NASA Technical Reports Server (NTRS)
Sifford, J. C.
1984-01-01
A brief history of Piedmont Airlines' flight operations is presented. A captain-management seminar conducted regularly by Piedmont is discussed. Piedmont's approach to cockpit resource management (CRM) is reviewed, and the relationship of CRM training to other aspects of flight training is addressed. Future leadership research plans and CRM training is considered along with critical training issues.
Data systems and computer science programs: Overview
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Hunter, Paul
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.
JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment
NASA Technical Reports Server (NTRS)
Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.
1989-01-01
JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.
Formulation of consumables management models. Volume 2: Mission planning processor user guide
NASA Technical Reports Server (NTRS)
Daly, J. K.; Torian, J. G.
1978-01-01
A user guide for the MPP (Mission Planning Processor) is presented. The MPP is used in the evaluation of particular missions, with appropriate display and storage of related consumables data. Design goals are accomplished by the use of an on-line/demand mode computer terminal Cathode Ray Tube Display. The process is such that the user merely adds specific mission/flight functions to a skeleton flight and/or alters the skeleton. The skeleton flight includes operational aspects from prelaunch through ground support equipment connect after rollout as required to place the STS (Space Transportation System) in a parking orbit, maintain the spacecraft and crew for the stated on-orbit period and return.
Role of premission testing in the National Missile Defense system
NASA Astrophysics Data System (ADS)
Tillman, Janice V.; Atkinson, Beverly
2001-09-01
The purpose of the National Missile Defense (NMD) system is to provide detection, discrimination, engagement, interception, and negation of ballistic missile attacks targeted at the United States (U.S.), including Alaska and Hawaii. This capability is achieved through the integration of weapons, sensors, and a battle management, command, control and communications (BMC3) system. The NMD mission includes surveillance, warning, cueing, and engagement of threat objects prior to potential impact on U.S. targets. The NMD Acquisition Strategy encompasses an integrated test program using Integrated Ground Tests (IGTs), Integrated Flight Tests (IFTs), Risk Reduction Flights (RRFs), Pre Mission Tests (PMTs), Command and Control (C2) Simulations, and other Specialty Tests. The IGTs utilize software-in-the-loop/hardware-in-the-loop (SWIL / HWIL) and digital simulations. The IFTs are conducted with targets launched from Vandenberg Air Force Base (VAFB) and interceptors launched from Kwajalein Missile Range (KMR). The RRFs evaluate NMD BMC3 and NMD sensor functional performance and integration by leveraging planned Peacekeeper and Minuteman III operational test flights and other opportunities without employing the NMD interceptor. The PMTs are nondestructive System-level tests representing the use of NMD Element Test Assets in their IFT configuration and are conducted to reduce risks in achieving the IFT objectives. Specifically, PMTs are used to reduce integration, interface, and performance risks associated with Flight Tests to ensure that as much as possible, the System is tested without expending a target or an interceptor. This paper examines several critical test planning and analysis functions as they relate to the NMD Integrated Flight Test program and, in particular, to Pre-Mission Testing. Topics to be discussed include: - Flight-test program planning; - Pre-Test Integration activities; and - Test Execution, Analysis, and Post-Flight Reconstruction.
A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport
NASA Technical Reports Server (NTRS)
Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.
2000-01-01
Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.
1988-01-01
An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.
Flight testing and simulation of an F-15 airplane using throttles for flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas
1992-01-01
Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
Research and Applications Modules (RAM), phase B study
NASA Technical Reports Server (NTRS)
1972-01-01
The research and applications modules (RAM) system is discussed. The RAM is a family of payload carrier modules that can be delivered to and retrieved from earth orbit by the space shuttle. The RAM's capability for implementing a wide range of manned and man-tended missions is described. The rams have evolved into three types; (1) pressurized RAMs, (2) unpressurized RAMs, and (3) pressurizable free-flying RAMs. A reference experiment plan for use as a baseline in the derivation and planning of the RAM project is reported. The plan describes the number and frequency of shuttle flights dedicated to RAM missions and the RAM payloads for the identified flights.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.
NASA Flight Operations of Ikhana and Global Hawk
NASA Technical Reports Server (NTRS)
Posada, Herman
2010-01-01
This slide presentation reviews the flight operations for NASA's Ikhana and Globalhawk unmanned aerial vehicles. It includes information on the ground support systems, vehicle specifications, payloads, mission planning and the 2007 Western States Fire Mission Objectives.
Pilot GPS LORAN Receiver Programming Performance A Laboratory Evaluation
DOT National Transportation Integrated Search
1994-02-01
This study was designed to explore GPS/LORAN receiver programming performance under : simulated flight conditions. The programming task consisted of entering, editing, and : verifying a four-waypoint flight plan. The task demands were manipulated by ...
Launch mission summary: Intelsat 5 (F3) Atlas/Centaur-55
NASA Technical Reports Server (NTRS)
1981-01-01
Intelsat 5 (F3) spacecraft, launch vehicle, and mission are described. Information relative to launch windows, flight plan, radar and telemetry coverage, selected trajectory information, and a brief sequence of flight events is provided.