Sample records for flight simulation studies

  1. Flight simulator for hypersonic vehicle and a study of NASP handling qualities

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Deeb, Joseph M.; Kim, Jung H.

    1992-01-01

    The research goal of the Human-Machine Systems Engineering Group was to study the existing handling quality studies in aircraft with sonic to supersonic speeds and power in order to understand information requirements needed for a hypersonic vehicle flight simulator. This goal falls within the NASA task statements: (1) develop flight simulator for hypersonic vehicle; (2) study NASP handling qualities; and (3) study effects of flexibility on handling qualities and on control system performance. Following the above statement of work, the group has developed three research strategies. These are: (1) to study existing handling quality studies and the associated aircraft and develop flight simulation data characterization; (2) to develop a profile for flight simulation data acquisition based on objective statement no. 1 above; and (3) to develop a simulator and an embedded expert system platform which can be used in handling quality experiments for hypersonic aircraft/flight simulation training.

  2. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  3. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  4. Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.

    PubMed

    Muth, Eric R; Lawson, Ben

    2003-05-01

    The U.S. Navy is considering placing flight simulators aboard ships. It is known that certain types of flight simulators can elicit motion adaptation syndrome (MAS), and also that certain types of ship motion can cause MAS. The goal of this study was to determine if using a flight simulator during ship motion would cause MAS, even when the simulator stimulus and the ship motion were both very mild. All participants in this study completed three conditions. Condition 1 (Sim) entailed "flying" a personal computer-based flight simulator situated on land. Condition 2 (Ship) involved riding aboard a U.S. Navy Yard Patrol boat. Condition 3 (ShipSim) entailed "flying" a personal computer-based flight simulator while riding aboard a Yard Patrol boat. Before and after each condition, participants' balance and dynamic visual acuity were assessed. After each condition, participants filled out the Nausea Profile and the Simulator Sickness Questionnaire. Following exposure to a flight simulator aboard a ship, participants reported negligible symptoms of nausea and simulator sickness. However, participants exhibited a decrease in dynamic visual acuity after exposure to the flight simulator aboard ship (T[25] = 3.61, p < 0.05). Balance results were confounded by significant learning and, therefore, not interpretable. This study suggests that flight simulators can be used aboard ship. As a minimal safety precaution, these simulators should be used according to current safety practices for land-based simulators. Optimally, these simulators should be designed to minimize MAS, located near the ship's center of rotation and used when ship motion is not provocative.

  5. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  6. A preliminary investigation of the use of throttles for emergency flight control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  7. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  8. Flight Simulation for the Study of Skill Transfer.

    ERIC Educational Resources Information Center

    Lintern, Gavan

    1992-01-01

    Discusses skill transfer as a human performance issue based on experiences with computerized flight simulators. Highlights include the issue of similarity; simulation and the design of training devices; an information theory of transfer; invariants for flight control; and experiments involving the transfer of flight skills. (21 references) (LRW)

  9. Development and Assessment of a Novel Training Package for Basic Maneuvering Tasks on a Flight Simulator Using Self Instruction Methods and Above Real Time Training (ARTT)

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.

  10. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1992-01-01

    Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  11. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1994-01-01

    Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  12. Response of Flight Nurses in a Simulated Helicopter Environment.

    PubMed

    Kaniecki, David M; Hickman, Ronald L; Alfes, Celeste M; Reimer, Andrew P

    The purpose of this study was to determine if a helicopter flight simulator could provide a useful educational platform by creating experiences similar to those encountered by actual flight nurses. Flight nurse (FN) and non-FN participants completed a simulated emergency scenario in a flight simulator. Physiologic and psychological stress during the simulation was measured using heart rate and perceived stress scores. A questionnaire was then administered to assess the realism of the flight simulator. Subjects reported that the overall experience in the flight simulator was comparable with a real helicopter. Sounds, communications, vibrations, and movements in the simulator most approximated those of a real-life helicopter environment. Perceived stress levels of all participants increased significantly from 27 (on a 0-100 scale) before simulation to 51 at the peak of the simulation and declined thereafter to 28 (P < .001). Perceived stress levels of FNs increased significantly from 25 before simulation to 54 at the peak of the simulation and declined thereafter to 30 (P < .001). Perceived stress levels of non-FNs increased significantly from 31 before simulation to 49 at the peak of the simulation and declined thereafter to 25 (P < .001). There were no significant differences in perceived stress levels between FNs and non-FNs before (P = .58), during (P = .63), or after (P = .55) simulation. FNs' heart rates increased significantly from 77 before simulation to 100 at the peak of the simulation and declined thereafter to 72 (P < .001). The results of this study suggest that simulation of a critical care scenario in a high-fidelity helicopter flight simulator can provide a realistic helicopter transport experience and create physiologic and psychological stress for participants. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  13. Single pilot scanning behavior in simulated instrument flight

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1979-01-01

    A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.

  14. Transfer of training from a Full-Flight Simulator vs. a high level flight training device with a dynamic seat

    DOT National Transportation Integrated Search

    2010-08-02

    This paper summarizes the most recent study conducted by the Federal Administration Administration/Volpe Center Flight Simulator Fidelity Requirements Program. For many smaller airlines, access to qualified simulators is limited due to the availabili...

  15. A testbed for the evaluation of computer aids for enroute flight path planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.

    1990-01-01

    A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.

  16. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  17. Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria; Wood, William

    2005-01-01

    Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.

  18. Aviation Simulators for the Desktop: Panel and Demonstrations

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Rosekind, Marl R. (Technical Monitor)

    1997-01-01

    Panel Members are: Christine M. Mitchell (Georgia Tech), Michael T. Palmer (NASA Langley), Greg Pisani (NASA Ames), and Amy R. Pritchett (MIT). The Panel members are affiliated with aviation human factors groups from NASA Ames, NASA Langley, MITCHELL Department of Aerospace and Aeronautical Engineering, and Georgia Technics Center for Human-Machine Systems Research. Panelists will describe the simulator(s) used in their respective institutions including a description of the FMS aircraft models, software, hardware, and displays. Panelists will summarize previous, on-going, and planned empirical studies conducted with the simulators. Greg Pisanich will describe two NASA Ames simulation systems: the Stone Soup Simulator (SSS), and the Airspace Operations Human Factors Simulation Laboratory. The the Stone Soup Simulator is a desktop-based, research flight simulator that includes mode control, flight management, and datalink functionality. It has been developed as a non-proprietary simulator that can be easily distributed to academic and industry researchers who are collaborating on NASA research projects. It will be used and extended by research groups represented by at least two panelists (Mitchell and Palmer). The Airspace Operations Simulator supports the study of air traffic control in conjunction with the flight deck. This simulator will be used provide an environment in which many AATT and free flight concepts can be demonstrated and evaluated. Mike Palmer will describe two NASA Langley efforts: The Langley Simulator and MD-11 extensions to the NASA Amesbury simulator. The first simulator is publicly available and combines a B-737 model with a high fidelity flight management system. The second simulator enhances the S3 simulator with MD-11 electronic flight displays together with modifications to the flight and FMS models to emulate MD-11 dynamics and operations. Chris Mitchell will describe GT-EFIRT (Georgia Tech-Electronic Flight Instrument Research Tool) and B-757 enhancements to the NASA Ames S3. GT-EFIRT is a medium fidelity simulator used to conduct preliminary studies of the CATS (crew activity tracking system). Like the Langley efforts with S3, the Georgia Tech enhancements will allow it to emulate the dynamics and operations of a widely used glass cockpit. Amy Pritchett will describe the MIT simulator(s) that have been used in a range of research investigating cockpit displays, warning devices, and flight deck-ATC interaction.

  19. Studies of Pilot Control During Launching and Reentry of Space Vehicles, Utilizing the Human Centrifuge

    NASA Technical Reports Server (NTRS)

    Clark, Carl C.; Woodling, C. H.

    1959-01-01

    With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.

  20. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  1. A Low Cost Simulation System to Demonstrate Pilot Induced Oscillation Phenomenon

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat

    1997-01-01

    A flight simulation system with graphics and software on Silicon Graphics computer workstations has been installed in the Flight Vehicle Design Laboratory at Tuskegee University. The system has F-15E flight simulation software from NASA Dryden which uses the graphics of SGI flight simulation demos. On the system, thus installed, a study of pilot induced oscillations is planned for future work. Preliminary research is conducted by obtaining two sets of straight level flights with pilot in the loop. In one set of flights no additional delay is used between the stick input and the appearance of airplane response on the computer monitor. In another set of flights, a 500 ms additional delay is used. The flight data is analyzed to find cross correlations between deflections of control surfaces and response of the airplane. The pilot dynamics features depicted from cross correlations of straight level flights are discussed in this report. The correlations presented here will serve as reference material for the corresponding correlations in a future study of pitch attitude tracking tasks involving pilot induced oscillations.

  2. EEG and ECG changes during simulator operation reflect mental workload and vigilance.

    PubMed

    Dussault, Caroline; Jouanin, Jean-Claude; Philippe, Matthieu; Guezennec, Charles-Yannick

    2005-04-01

    Performing mission tasks in a simulator influences many neurophysiological measures. Quantitative assessments of electroencephalography (EEG) and electrocardiography (ECG) have made it possible to develop indicators of mental workload and to estimate relative physiological responses to cognitive requirements. To evaluate the effects of mental workload without actual physical risk, we studied the cortical and cardiovascular changes that occurred during simulated flight. There were 12 pilots (8 novices and 4 experts) who simulated a flight composed of 10 sequences that induced several different mental workload levels. EEG was recorded at 12 electrode sites during rest and flight sequences; ECG activity was also recorded. Subjective tests were used to evaluate anxiety and vigilance levels. Theta band activity was lower during the two simulated flight rest sequences than during visual and instrument flight sequences at central, parietal, and occipital sites (p < 0.05). On the other hand, rest sequences resulted in higher beta (at the C4 site; p < 0.05) and gamma (at the central, parietal, and occipital sites; p < 0.05) power than active segments. The mean heart rate (HR) was not significantly different during any simulated flight sequence, but HR was lower for expert subjects than for novices. The subjective tests revealed no significant anxiety and high values for vigilance levels before and during flight. The different flight sequences performed on the simulator resulted in electrophysiological changes that expressed variations in mental workload. These results corroborate those found during study of real flights, particularly during sequences requiring the heaviest mental workload.

  3. Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.

    PubMed

    Di Stasi, Leandro L; McCamy, Michael B; Martinez-Conde, Susana; Gayles, Ellis; Hoare, Chad; Foster, Michael; Catena, Andrés; Macknik, Stephen L

    2016-01-01

    Aircrew fatigue is a major contributor to operational errors in civil and military aviation. Objective detection of pilot fatigue is thus critical to prevent aviation catastrophes. Previous work has linked fatigue to changes in oculomotor dynamics, but few studies have studied this relationship in critical safety environments. Here we measured the eye movements of US Marine Corps combat helicopter pilots before and after simulated flight missions of different durations.We found a decrease in saccadic velocities after long simulated flights compared to short simulated flights. These results suggest that saccadic velocity could serve as a biomarker of aviator fatigue.

  4. Fatigue Tests with Random Flight Simulation Loading

    NASA Technical Reports Server (NTRS)

    Schijve, J.

    1972-01-01

    Crack propagation was studied in a full-scale wing structure under different simulated flight conditions. Omission of low-amplitude gust cycles had a small effect on the crack rate. Truncation of the infrequently occurring high-amplitude gust cycles to a lower level had a noticeably accelerating effect on crack growth. The application of fail-safe load (100 percent limit load) effectively stopped subsequent crack growth under resumed flight-simulation loading. In another flight-simulation test series on sheet specimens, the variables studied are the design stress level and the cyclic frequency of the random gust loading. Inflight mean stresses vary from 5.5 to 10.0 kg/sq mm. The effect of the stress level is larger for the 2024 alloy than for the 7075 alloy. Three frequencies were employed: namely, 10 cps, 1 cps, and 0.1 cps. The frequency effect was small. The advantages and limitations of flight-simulation tests are compared with those of alternative test procedures such as constant-amplitude tests, program tests, and random-load tests. Various testing purposes are considered. The variables of flight-simulation tests are listed and their effects are discussed. A proposal is made for performing systematic flight-simulation tests in such a way that the compiled data may be used as a source of reference.

  5. Ground-based and in-flight simulator studies of flight characteristics of a twin-fuselage passenger transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.

    1985-01-01

    Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.

  6. Stability of simulated flight path control at +3 Gz in a human centrifuge.

    PubMed

    Guardiera, Simon; Dalecki, Marc; Bock, Otmar

    2010-04-01

    Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.

  7. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  8. An Evaluation of Training Interventions and Computed Scoring Techniques for Grading a Level Turn Task and a Straight In Landing Approach on a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.

  9. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and Their Implications for Bone Strain

    NASA Technical Reports Server (NTRS)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    The human zero-gravity locomotion simulator and the cadaver simulator offer a powerful combination for the study of the implications of exercise for maintaining bone quality during space flight. Such studies, when compared with controlled in-flight exercise programs, could help in the identification of a strain threshold for the prevention of bone loss during space flight.

  10. Evaluation of the Malcolm horizon in a moving-base flight simulator

    NASA Technical Reports Server (NTRS)

    Gillingham, K. K.

    1984-01-01

    The efficacy of the Malcolm Horizon (MH) in a controlled, simulated, instrument flight environment was examined. Eight flight parameters were used to compare performance under experimental and control conditions. The parameters studied were pitch attitude, roll attitude, turn rate, airspeed, vertical velocity, heading, altitude, and course deviation. Testing of a commercial realization of the MH concept in a flight simulator revealed strengths and weaknesses of the currently available MH hardware.

  11. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations.

  12. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  13. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  14. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  15. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  16. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  17. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  18. Human-Centered Design of Human-Computer-Human Dialogs in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    A series of ongoing research programs at Georgia Tech established a need for a simulation support tool for aircraft computer-based aids. This led to the design and development of the Georgia Tech Electronic Flight Instrument Research Tool (GT-EFIRT). GT-EFIRT is a part-task flight simulator specifically designed to study aircraft display design and single pilot interaction. ne simulator, using commercially available graphics and Unix workstations, replicates to a high level of fidelity the Electronic Flight Instrument Systems (EFIS), Flight Management Computer (FMC) and Auto Flight Director System (AFDS) of the Boeing 757/767 aircraft. The simulator can be configured to present information using conventional looking B757n67 displays or next generation Primary Flight Displays (PFD) such as found on the Beech Starship and MD-11.

  19. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  20. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  1. Facilitating researcher use of flight simulators

    NASA Technical Reports Server (NTRS)

    Russell, C. Ray

    1990-01-01

    Researchers conducting experiments with flight simulators encounter numerous obstacles in bringing their ideas to the simulator. Research into how these simulators could be used more efficiently is presented. The study involved: (1) analyzing the Advanced Concepts Simulator software architecture, (2) analyzing the interaction between the researchers and simulation programmers, and (3) proposing a documentation tool for the researchers.

  2. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  3. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  4. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  5. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  6. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  7. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  8. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  9. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  10. Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.

    2016-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.

  11. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  12. The impact of brain size on pilot performance varies with aviation training and years of education

    PubMed Central

    Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.

    2010-01-01

    Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103

  13. A Pilot Opinion Study of Lateral Control Requirements for Fighter-Type Aircraft

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Stewart, John D.; Merrick, Robert B.; Drinkwater, Fred J., III

    1959-01-01

    As part of a continuing NASA program of research on airplane handling qualities, a pilot opinion investigation has been made on the lateral control requirements of fighter aircraft flying in their combat speed range. The investigation was carried out using a stationary flight simulator and a moving flight simulator, and the flight simulator results were supplemented by research tests in actual flight. The flight simulator study was based on the presumption that the pilot rates the roll control of an airplane primarily on a single-degree-of-freedom basis; that is, control of angle of roll about the aircraft body axis being of first importance. From the assumption of a single degree of freedom system it follows that there are two fundamental parameters which govern the airplane roll response, namely the roll damping expressed as a time constant and roll control power in terms of roll acceleration. The simulator study resulted in a criterion in terms of these two parameters which defines satisfactory, unsatisfactory, and unacceptable roll performance from a pilot opinion standpoint. The moving simulator results were substantiated by the in-flight investigation. The derived criterion was compared with the roll performance criterion based upon wing tip helix angle and also with other roll performance concepts which currently influence the roll performance design of military fighter aircraft flying in their combat speed range.

  14. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  15. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...

  16. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...

  17. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  18. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  19. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  20. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  1. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  2. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  3. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  4. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  5. 14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...

  6. 14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...

  7. 14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...

  8. 14 CFR 135.337 - Qualifications: Check airmen (aircraft) and check airmen (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... who is qualified to conduct flight checks in an aircraft, in a flight simulator, or in a flight... to conduct flight checks, but only in a flight simulator, in a flight training device, or both, for a... the 12-month preceding the performance of any check airman duty in a flight simulator; or (2...

  9. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight simulator, or in a flight training device. This paragraph applies after March 19, 1997. (b) The... simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training... simulator or in a flight training device. (2) Training in the operation of flight simulators or flight...

  10. Studies of air traffic forecasts, airspace load and the effect of ADS-B via satellites on flight times

    NASA Astrophysics Data System (ADS)

    Zhong, Z. W.; Ridhwan Salleh, Saiful; Chow, W. X.; Ong, Z. M.

    2016-10-01

    Air traffic forecasting is important as it helps stakeholders to plan their budgets and facilities. Thus, three most commonly used forecasting models were compared to see which model suited the air passenger traffic the best. General forecasting equations were also created to forecast the passenger traffic. The equations could forecast around 6.0% growth from 2015 onwards. Another study sought to provide an initial work for determining a theoretical airspace load with relevant calculations. The air traffic was simulated to investigate the current airspace load. Logical and reasonable results were obtained from the modelling and simulations. The current utilization percentages for airspace load per hour and the static airspace load in the interested airspace were found to be 6.64% and 11.21% respectively. Our research also studied how ADS-B would affect the time taken for aircraft to travel. 6000 flights departing from and landing at the airport were studied. New flight plans were simulated with improved flight paths due to the implementation of ADS-B, and flight times of all studied flights could be improved.

  11. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    PubMed

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  12. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  13. Computers for real time flight simulation: A market survey

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.; Karplus, W. J.

    1977-01-01

    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them.

  14. 14 CFR 121.915 - Continuing qualification curriculum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...

  15. 14 CFR 121.915 - Continuing qualification curriculum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...

  16. 14 CFR 121.915 - Continuing qualification curriculum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., flight training device, flight simulator, or other equipment, as appropriate, on normal, abnormal, and... training in the type flight training device or the type flight simulator, as appropriate, regarding... flight simulators or flight training devices: Training in operational flight procedures and maneuvers...

  17. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 1: Experimental design and initial test

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.; Christensen, D. G.

    1981-01-01

    A Flight Data Console simulation of a digital communication link to replace the current voice communication system used in air traffic control (ATC) was developed. The study determined how a digital communications system reduces cockpit workload, improve, flight proficiency, and is acceptable to general aviation pilots. It is shown that instrument flight, including approach and landing, can be accomplished by using a digital data link system for ATC communication.

  18. A Feedback Intervention to Increase Digital and Paper Checklist Performance in Technically Advanced Aircraft Simulation

    ERIC Educational Resources Information Center

    Rantz, William G.; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists…

  19. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  20. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  1. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  2. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  3. Ares I-X Malfunction Turn Range Safety Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, J. R.

    2011-01-01

    Ares I-X was the designation given to the flight test version of the Ares I rocket which was developed by NASA (also known as the Crew Launch Vehicle (CLV) component of the Constellation Program). The Ares I-X flight test vehicle achieved a successful flight test on October 28, 2009, from Pad LC-39B at Kennedy Space Center, Florida (KSC). As part of the flight plan approval for the test vehicle, a range safety malfunction turn analysis was performed to support the risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could have caused the vehicle trajectory to deviate from its normal flight path. The effects of these failures were evaluated with an Ares I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version II (POST2) simulation tool. The Ares I-X simulation analysis provided output files containing vehicle trajectory state information. These were used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at KSC, and to develop the vehicle destruct criteria used by the flight test range safety officer in the event of a flight test anomaly of the vehicle. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study.

  4. Heart rate and performance during combat missions in a flight simulator.

    PubMed

    Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K

    2007-04-01

    The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.

  5. Predicting fruit fly's sensing rate with insect flight simulations.

    PubMed

    Chang, Song; Wang, Z Jane

    2014-08-05

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.

  6. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2015-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  7. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2016-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  8. 14 CFR 135.339 - Initial and transition training and checking: Check airmen (aircraft), check airmen (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  9. 14 CFR 135.339 - Initial and transition training and checking: Check airmen (aircraft), check airmen (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  10. 14 CFR 135.339 - Initial and transition training and checking: Check airmen (aircraft), check airmen (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  11. 14 CFR 135.339 - Initial and transition training and checking: Check airmen (aircraft), check airmen (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  12. 14 CFR 135.339 - Initial and transition training and checking: Check airmen (aircraft), check airmen (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  13. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  14. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  15. 14 CFR 91.1089 - Qualifications: Check pilots (aircraft) and check pilots (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator, or in a flight training device for a particular type aircraft. (2) A check pilot (simulator) is a person who is qualified to conduct flight checks, but only in a flight simulator, in a flight training... (simulator) must accomplish the following— (1) Fly at least two flight segments as a required crewmember for...

  16. Simulator validation results and proposed reporting format from flight testing a software model of a complex, high-performance airplane.

    DOT National Transportation Integrated Search

    2008-01-01

    Computer simulations are often used in aviation studies. These simulation tools may require complex, high-fidelity aircraft models. Since many of the flight models used are third-party developed products, independent validation is desired prior to im...

  17. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  18. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  19. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  20. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  1. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  2. An investigation into pilot and system response to critical in-flight events, volume 2

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Giffin, W. C.

    1981-01-01

    Critical in-flight event is studied using mission simulation and written tests of pilot responses. Materials and procedures used in knowledge tests, written tests, and mission simulations are included

  3. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  4. 14 CFR 61.1 - Applicability and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....2. Aeronautical experience means pilot time obtained in an aircraft, flight simulator, or flight... from an authorized instructor in an aircraft, flight simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device...

  5. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    DTIC Science & Technology

    2017-07-07

    AFRL-RH-FS-TR-2017-0026 Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators Thomas K. Kuyk Peter A. Smith Solangia...34Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators" (AFRL-RH-FS-TR- 2017 - 0026 SHORTER.PATRI CK.D.1023156390 Digitally...SUBTITLE Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c

  6. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...

  7. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...

  8. 14 CFR 61.163 - Aeronautical experience: Powered-lift category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... time in a flight simulator or flight training device. (ii) A maximum of 50 hours of training in a flight simulator or flight training device may be credited toward the instrument flight time requirements... training center certificated under part 142 of this chapter. (iii) Training in a flight simulator or flight...

  9. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...

  10. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...

  11. 14 CFR 61.51 - Pilot logbooks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the aircraft departed and arrived, or for lessons in a flight simulator or flight training device, the location where the lesson occurred. (iv) Type and identification of aircraft, flight simulator, flight.... (v) Training received in a flight simulator, flight training device, or aviation training device from...

  12. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  13. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  14. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  15. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  16. 14 CFR 91.1093 - Initial and transition training and checking: Check pilots (aircraft), check pilots (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...

  17. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... Law 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  18. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  19. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  20. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  1. 48 CFR 237.102-71 - Limitation on service contracts for military flight simulators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contracts for military flight simulators. 237.102-71 Section 237.102-71 Federal Acquisition Regulations... flight simulators. (a) Definitions. As used in this subsection— (1) Military flight simulator means any... 110-181, DoD is prohibited from entering into a service contract to acquire a military flight...

  2. 49 CFR 1552.1 - Scope and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...

  3. 49 CFR 1552.1 - Scope and definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...

  4. 49 CFR 1552.1 - Scope and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...

  5. 49 CFR 1552.1 - Scope and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...

  6. 49 CFR 1552.1 - Scope and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Definitions. As used in this part: Aircraft simulator means a flight simulator or flight training device, as.... Flight training means instruction received from a flight school in an aircraft or aircraft simulator..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other...

  7. Situation Awareness and Levels of Automation: Empirical Assessment of Levels of Automation in the Commercial Cockpit

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; Schutte, Paul C. (Technical Monitor)

    2000-01-01

    This report has been prepared to closeout a NASA grant to Mississippi State University (MSU) for research into situation awareness (SA) and automation in the advanced commercial aircraft cockpit. The grant was divided into two obligations including $60,000 for the period from May 11, 2000 to December 25, 2000. The information presented in this report summarizes work completed through this obligation. It also details work to be completed with the balance of the current obligation and unobligated funds amounting to $50,043, which are to be granted to North Carolina State University for completion of the research project from July 31, 2000 to May 10, 2001. This research was to involve investigation of a broad spectrum of degrees of automation of complex systems on human-machine performance and SA. The work was to empirically assess the effect of theoretical levels of automation (LOAs) described in a taxonomy developed by Endsley & Kaber (1999) on naive and experienced subject performance and SA in simulated flight tasks. The study was to be conducted in the context of a realistic simulation of aircraft flight control. The objective of this work was to identify LOAs that effectively integrate humans and machines under normal operating conditions and failure modes. In general, the work was to provide insight into the design of automation in the commercial aircraft cockpit. Both laboratory and field investigations were to be conducted. At this point in time, a high-fidelity flight simulator of the McDonald Douglas (MD) 11 aircraft has been completed. The simulator integrates a reconfigurable flight simulator developed by the Georgia Institute of Technology and stand-alone simulations of MD-11 autoflight systems developed at MSU. Use of the simulator has been integrated into a study plan for the laboratory research and it is expected that the simulator will also be used in the field study with actual commercial pilots. In addition to the flight simulator, an electronic version of the Situation Awareness Global Assessment Technique (SAGAT) has been completed for measuring commercial pilot SA in flight tasks. The SAGAT is to be used in both the lab and field studies. Finally, the lab study has been designed and subjects have been recruited for participation in experiments. This study will investigate the effects of five levels of automation, described in Endsley & Kaber's (1999) taxonomy and applied to the MD-11 autoflight system, on private pilot performance and SA in basic flight tasks by using the MD-11 simulator. The field study remains to be planned and executed.

  8. An Experimental Design of a Foundational Framework for the Application of Affective Computing to Soaring Flight Simulation and Training

    ERIC Educational Resources Information Center

    Moon, Shannon

    2017-01-01

    In the absence of tools for intelligent tutoring systems for soaring flight simulation training, this study evaluated a framework foundation to measure pilot performance, affect, and physiological response to training in real-time. Volunteers were asked to perform a series of flight tasks selected from Federal Aviation Administration Practical…

  9. Transient immune impairment after a simulated long-haul flight.

    PubMed

    Wilder-Smith, Annelies; Mustafa, Fatima B; Peng, Chung Mien; Earnest, Arul; Koh, David; Lin, Gen; Hossain, Iqbal; MacAry, Paul A

    2012-04-01

    Almost 2 billion people travel aboard commercial airlines every year, with about 20% developing symptoms of the common cold within 1 wk after air travel. We hypothesize that hypobaric hypoxic conditions associated with air travel may contribute to immune impairment. We studied the effects of hypobaric hypoxic conditions during a simulated flight at 8000 ft (2438 m) cruising altitude on immune and stress markers in 52 healthy volunteers (mean age 31) before and on days 1, 4, and 7 after the flight. We did a cohort study using a generalized estimating equation to examine the differences in the repeated measures. Our findings show that the hypobaric hypoxic conditions of a 10-h overnight simulation flight are not associated with severe immune impairment or abnormal IgA or cortisol levels, but with transient impairment in some parameters: we observed a transient decrease in lymphocyte proliferative responses combined with an upregulation in CD69 and CD14 cells and a decrease in HLA-DR in the immediate days following the simulated flight that normalized by day 7 in most instances. These transient immune changes may contribute to an increased susceptibility to respiratory infections commonly seen after long-haul flights.

  10. The Effects of Longitudinal Control-System Dynamics on Pilot Opinion and Response Characteristics as Determined from Flight Tests and from Ground Simulator Studies

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin

    1958-01-01

    The results of a fixed-base simulator study of the effects of variable longitudinal control-system dynamics on pilot opinion are presented and compared with flight-test data. The control-system variables considered in this investigation included stick force per g, time constant, and dead-band, or stabilizer breakout force. In general, the fairly good correlation between flight and simulator results for two pilots demonstrates the validity of fixed-base simulator studies which are designed to complement and supplement flight studies and serve as a guide in control-system preliminary design. However, in the investigation of certain problem areas (e.g., sensitive control-system configurations associated with pilot- induced oscillations in flight), fixed-base simulator results did not predict the occurrence of an instability, although the pilots noted the system was extremely sensitive and unsatisfactory. If it is desired to predict pilot-induced-oscillation tendencies, tests in moving-base simulators may be required. It was found possible to represent the human pilot by a linear pilot analog for the tracking task assumed in the present study. The criterion used to adjust the pilot analog was the root-mean-square tracking error of one of the human pilots on the fixed-base simulator. Matching the tracking error of the pilot analog to that of the human pilot gave an approximation to the variation of human-pilot behavior over a range of control-system dynamics. Results of the pilot-analog study indicated that both for optimized control-system dynamics (for poor airplane dynamics) and for a region of good airplane dynamics, the pilot response characteristics are approximately the same.

  11. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  12. 14 CFR 61.65 - Instrument rating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authorized instructor in an aircraft, flight simulator, or flight training device that represents an airplane... appropriate to the rating sought; or (ii) A flight simulator or a flight training device appropriate to the... authorized instructor in an aircraft, or in a flight simulator or flight training device, in accordance with...

  13. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  14. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  15. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  16. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  17. Simbol-X Formation Flight and Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  18. The Relationship Between Fidelity and Learning in Aviation Training and Assessment

    NASA Technical Reports Server (NTRS)

    Noble, Cliff

    2002-01-01

    Flight simulators can be designed to train pilots or assess their flight performance. Low-Fidelity simulators maximize the initial learning rate of novice pilots and minimize initial costs; whereas, expensive, high-fidelity simulators predict the realworld in-flight performance of expert pilots (Fink & Shriver, 1978 Hays & Singer 1989; Kinkade & Wheaton. 1972). Although intuitively appealing and intellectually convenient to generalize concepts of learning and assessment, what holds true for the role of fidelity in assessment may not always hold true for learning, and vice versa. To bring clarity to this issue, the author distinguishes the role of fidelity in learning from its role in assessment as a function of skill level by applying the hypothesis of Alessi (1988) and reviewing the Laughery, Ditzian, and Houtman (1982) study on simulator validity. Alessi hypothesized that there is it point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of learning. The author of this current paper also suggests the existence of an optimal point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of practical assessment of nonexpert pilot performance.

  19. Manual flying of curved precision approaches to landing with electromechanical instrumentation. A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1993-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.

  20. Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2017-01-01

    Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.

  1. Determining the transferability of flight simulator data

    NASA Technical Reports Server (NTRS)

    Green, David

    1992-01-01

    This paper presented a method for collecting and graphically correlating subjective ratings and objective flight test data. The method enables flight-simulation engineers to enhance the simulator characterization of rotor craft flight in order to achieve maximum transferability of simulator experience.

  2. Fun!

    ERIC Educational Resources Information Center

    Horne, Thomas

    1988-01-01

    Describes four IBM compatible flight simulator software packages: (1) "Falcon," air to air combat in an F-16 fighter; (2) "Chuck Yeager's Advanced Flight Trainer," test flight 14 different aircraft; (3) "Jet," air to air combat; and (4) "Flight Simulator," a realistic PC flight simulator program. (MVL)

  3. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  4. Energy Navigation: Simulation Evaluation and Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2011-01-01

    This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.

  5. Cockpit simulation study of use of flight path angle for instrument approaches

    NASA Technical Reports Server (NTRS)

    Hanisch, B.; Ernst, H.; Johnston, R.

    1981-01-01

    The results of a piloted simulation experiment to evaluate the effect of integrating flight path angle information into a typical transport electronic attitude director indicator display format for flight director instrument landing system approaches are presented. Three electronic display formats are evaluated during 3 deg straight-in approaches with wind shear and turbulence conditions. Flight path tracking data and pilot subjective comments are analyzed with regard to the pilot's tracking performance and workload for all three display formats.

  6. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    NASA Technical Reports Server (NTRS)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  7. Evaluation of the Course of the Flight Simulators from the Perspective of Students and University Teachers

    ERIC Educational Resources Information Center

    Kaysi, Feyzi; Bavli, Bünyamin; Gürol, Aysun

    2016-01-01

    The study evaluates the flight simulators course which was opened to fulfill the intermediate staff need of the sector. To collect data, Qualitative techniques were applied. Within this scope, the case study method was employed in the study. The study group consisted of students and instructors. In-depth and focus group interviews were conducted…

  8. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  9. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.

  10. 14 CFR 142.63 - Privileges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...

  11. 14 CFR 142.63 - Privileges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...

  12. 14 CFR 142.63 - Privileges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...

  13. 14 CFR 142.63 - Privileges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...

  14. 14 CFR 142.63 - Privileges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... may allow flight simulator instructors and evaluators to meet recency of experience requirements through the use of a qualified and approved flight simulator or qualified and approved flight training device if that flight simulator or flight training device is— (a) Used in a course approved in accordance...

  15. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    PubMed

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  16. State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds.

    PubMed

    McArthur, Kimberly L; Dickman, J David

    2011-04-01

    Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons' eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state.

  17. State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds

    PubMed Central

    McArthur, Kimberly L.

    2011-01-01

    Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons′ eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state. PMID:21307332

  18. Changes of catecholamine excretion during long-duration confinement.

    PubMed

    Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C

    2002-06-01

    Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.

  19. Integrating LMINET with TAAM and SIMMOD: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Long, Dou; Stouffer-Coston, Virginia; Kostiuk, Peter; Kula, Richard; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    LMINET is a queuing network air traffic simulation model implemented at 64 large airports and the entire National Airspace System in the United States. TAAM and SIMMOD are two widely used air traffic event-driven simulation models mostly for airports. Based on our proposed Progressive Augmented window approach, TAAM and SIMMOD are integrated with LMINET though flight schedules. In the integration, the flight schedules are modified through the flight delays reported by the other models. The benefit to the local simulation study is to let TAAM or SIMMOD take the modified schedule from LMINET, which takes into account of the air traffic congestion and flight delays at the national network level. We demonstrate the value of the integrated models by the case studies at Chicago O'Hare International Airport and Washington Dulles International Airport. Details of the integration are reported and future work for a full-blown integration is identified.

  20. The roles of COMT val158met status and aviation expertise in flight simulator performance and cognitive ability.

    PubMed

    Kennedy, Q; Taylor, J L; Noda, A; Adamson, M; Murphy, G M; Zeitzer, J M; Yesavage, J A

    2011-09-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41-69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task.

  1. The Roles of COMT val158met Status and Aviation Expertise in Flight Simulator Performance and Cognitive Ability

    PubMed Central

    Taylor, J. L.; Noda, A.; Adamson, M.; Murphy, G. M.; Zeitzer, J. M.; Yesavage, J. A.

    2011-01-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41–69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task. PMID:21193954

  2. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    PubMed

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  3. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  4. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  5. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  6. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices Begin...

  7. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  8. Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.

    1974-01-01

    The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.

  9. Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Bussink, Frank J. L.; Chamberlain, James P.; Chartrand, Ryan C.; Palmer, Michael T.; Palmer, Susan O.

    2008-01-01

    The Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure (ITP) Validation Simulation Study investigated the viability of an ITP designed to enable oceanic flight level changes that would not otherwise be possible. Twelve commercial airline pilots with current oceanic experience flew a series of simulated scenarios involving either standard or ITP flight level change maneuvers and provided subjective workload ratings, assessments of ITP validity and acceptability, and objective performance measures associated with the appropriate selection, request, and execution of ITP flight level change maneuvers. In the majority of scenarios, subject pilots correctly assessed the traffic situation, selected an appropriate response (i.e., either a standard flight level change request, an ITP request, or no request), and executed their selected flight level change procedure, if any, without error. Workload ratings for ITP maneuvers were acceptable and not substantially higher than for standard flight level change maneuvers, and, for the majority of scenarios and subject pilots, subjective acceptability ratings and comments for ITP were generally high and positive. Qualitatively, the ITP was found to be valid and acceptable. However, the error rates for ITP maneuvers were higher than for standard flight level changes, and these errors may have design implications for both the ITP and the study's prototype traffic display. These errors and their implications are discussed.

  10. A conceptual framework for using Doppler radar acquired atmospheric data for flight simulation

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1983-01-01

    A concept is presented which can permit turbulence simulation in the vicinity of microbursts. The method involves a large data base, but should be fast enough for use with flight simulators. The model permits any pilot to simulate any flight maneuver in any aircraft. The model simulates a wind field with three-component mean winds and three-component turbulent gusts, and gust variation over the body of an aircraft so that all aerodynamic loads and moments can be calculated. The time and space variation of mean winds and turbulent intensities associated with a particular atmospheric phenomenon such as a microburst is used in the model. In fact, Doppler radar data such as provided by JAWS is uniquely suited for use with the proposed model. The concept is completely general and is not restricted to microburst studies. Reentry and flight in terrestrial or planetary atmospheres could be realistically simulated if supporting data of sufficient resolution were available.

  11. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  12. A review of flight simulation techniques

    NASA Astrophysics Data System (ADS)

    Baarspul, Max

    After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.

  13. The role of simulation in the development and flight test of the HiMAT vehicle

    NASA Technical Reports Server (NTRS)

    Evans, M. B.; Schilling, L. J.

    1984-01-01

    Real time simulations have been essential in the flight test program of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle at NASA Ames Research Center's Dryden Flight Research Facility. The HiMAT project makes extensive use of simulations in design, development, and qualification for flight, pilot training, and flight planning. Four distinct simulations, each with varying amounts of hardware in the loop, were developed for the HiMAT project. The use of simulations in detecting anomalous behavior of the flight software and hardware at the various stages of development, verification, and validation has been the key to flight qualification of the HiMAT vehicle.

  14. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  15. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  16. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  17. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...

  18. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  19. The effect of cinnarizine and cocculus indicus on simulator sickness.

    PubMed

    Lucertini, Marco; Mirante, Nadia; Casagrande, Maria; Trivelloni, Pierandrea; Lugli, Vittoria

    2007-05-16

    Pensacola Simulator Sickness Questionnaire (SSQ) is a valuable method to analyse symptoms evoked by exposure to a flight simulator environment that can also be adopted to evaluate the effectiveness of preventive tools, aiming at reducing simulator sickness (SS). In this study we analysed SSQ data in subjects undergoing a standard ground based spatial disorientation training inside a flight simulator, in order to evaluate the SS prevention obtained with two different pharmacological tools. Twelve males volunteers participated to an experimental design based on a double-blind, balanced administration of either 30 mg cinnarizine (CIN), or Cocculus Indicus 6CH (COC), or placebo (PLC) before one trial of about one hour spent inside a spatial disorientation trainer. All subjects underwent the three different conditions (CIN, COC, PLC) during 3 non-consecutive days separated by at least 2 weeks. During each experimental day, all subjects filled in SSQ. In addition, both postural instability (with the use of a static stabilometric platform), and sleepiness symptoms were evaluated. All the tests were performed before and after the simulated flight, at different times, in one-and-half-hour intervals. Results indicated a strong increase of sickness after flight simulation that linearly decreased, showing pre-simulator scores after 1.30 hours. In contrast to both PLC and COC, CIN showed significant side effects immediately following flight simulation, with no benefit at the simultaneous SSQ scores. Globally, no highly significant differences between COC and PLC were observed, although a minor degree of postural instability could be detected after COC administration. As far as the present exposure to a simulator environment is concerned, none of the pharmacological tools administered in this study resulted effective in reducing SS symptoms as detected by the SSQ. Moreover, CIN significantly increased sleepiness and postural instability in most subjects.

  20. Application of the rapid update cycle (RUC) to aircraft flight simulation.

    DOT National Transportation Integrated Search

    2008-01-01

    An aircraft flight simulation model under development aims : to provide a computer simulation tool to investigate aircraft flight : performance during en route flight and landing under various : atmospherical conditions [1]. Within this model, the ai...

  1. Apollo experience report: Simulation of manned space flight for crew training

    NASA Technical Reports Server (NTRS)

    Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.

    1973-01-01

    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.

  2. Motion Cues in Flight Simulation and Simulator Induced Sickness

    DTIC Science & Technology

    1988-06-01

    asseusod in a driving simulator by means of a response surface methodology central-composite design . The most salient finding of the study was that visual...across treatment conditions. For an orthogonal response surface methodology (IBM) design with only tro independent variables. it can be readily shown that...J.E.Fowikes 8 SESSION III - ETIOLOGICAL FACTORS IN SIMULATOR-INDUCED AFTER EFFETS THE USE OF VE& IIBULAR MODELS FOR DESIGN AND EVALUATION OF FLIGHT

  3. Spatial awareness comparisons between large-screen, integrated pictorial displays and conventional EFIS displays during simulated landing approaches

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.

    1994-01-01

    An extensive simulation study was performed to determine and compare the spatial awareness of commercial airline pilots on simulated landing approaches using conventional flight displays with their awareness using advanced pictorial 'pathway in the sky' displays. Sixteen commercial airline pilots repeatedly made simulated complex microwave landing system approaches to closely spaced parallel runways with an extremely short final segment. Scenarios involving conflicting traffic situation assessments and recoveries from flight path offset conditions were used to assess spatial awareness (own ship position relative the the desired flight route, the runway, and other traffic) with the various display formats. The situation assessment tools are presented, as well as the experimental designs and the results. The results demonstrate that the integrated pictorial displays substantially increase spatial awareness over conventional electronic flight information systems display formats.

  4. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  5. A Flight Deck Perspective of Self-Separation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Rosekind, Mark (Technical Monitor)

    1997-01-01

    I will be participating on a Free Flight Human Factors Panel at the Ninth International Symposium on Aviation Psychology in Columbus, Ohio. My representation is related to the work that our group has conducted on flight deck issues associate with free flight. Our group completed a full-mission simulation study investigating procedural issues associated with airborne self-separation. Ten crews flew eight scenarios each in the B747-400 simulator at Ames. Each scenario had a representation of different conflict geometries with intruder aircraft. New alerting logic was created and integrated into the simulator to enable self-separation. In addition, new display features were created to help provide for enhanced information to the flight crew about relevant aircraft, The participants were asked to coordinate maneuvers for self-separation with the intruder aircraft. Data analyses for the many of the crew procedures have been completed.

  6. Simulated spaceflight effects on mating and pregnancy of rats

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.; Chetirkin, P. V.; Howard, R. M.

    1981-01-01

    The mating of rats was studied to determine the effects of: simulated reentry stresses at known stages of pregnancy, and full flight simulation, consisting of sequential launch stresses, group housing, mating opportunity, diet, simulated reentry, and postreentry isolation of male and female rats. Uterine contents, adrenal mass and abdominal fat as a proportion of body mass, duration of pregnancy, and number and sex of offspring were studied. It is found that: (1) parturition following full flight simulation was delayed relative to that of controls; (2) litter size was reduced and resorptions increased compared with previous matings in the same group of animals; and (3) abdominal fat was highly elevated in animals that were fed the Soviet paste diet. It is suggested that the combined effects of diet, stress, spacecraft environment, and weightlessness decreased the probability of mating or of viable pregnancies in the Cosmos 1129 flight and control animals.

  7. Conflict Probe Concepts Analysis in Support of Free Flight

    NASA Technical Reports Server (NTRS)

    Warren, Anthony W.; Schwab, Robert W.; Geels, Timothy J.; Shakarian, Arek

    1997-01-01

    This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system.

  8. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    PubMed

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  9. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  10. Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation

    NASA Technical Reports Server (NTRS)

    Cook, Anthony M.

    1986-01-01

    In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.

  11. CLVTOPS Liftoff and Separation Analysis Validation Using Ares I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Burger, Ben; Schwarz, Kristina; Kim, Young

    2011-01-01

    CLVTOPS is a multi-body time domain flight dynamics simulation tool developed by NASA s Marshall Space Flight Center (MSFC) for a space launch vehicle and is based on the TREETOPS simulation tool. CLVTOPS is currently used to simulate the flight dynamics and separation/jettison events of the Ares I launch vehicle including liftoff and staging separation. In order for CLVTOPS to become an accredited tool, validation against other independent simulations and real world data is needed. The launch of the Ares I-X vehicle (first Ares I test flight) on October 28, 2009 presented a great opportunity to provide validation evidence for CLVTOPS. In order to simulate the Ares I-X flight, specific models were implemented into CLVTOPS. These models include the flight day environment, reconstructed thrust, reconstructed mass properties, aerodynamics, and the Ares I-X guidance, navigation and control models. The resulting simulation output was compared to Ares I-X flight data. During the liftoff region of flight, trajectory states from the simulation and flight data were compared. The CLVTOPS results were used to make a semi-transparent animation of the vehicle that was overlaid directly on top of the flight video to provide a qualitative measure of the agreement between the simulation and the actual flight. During ascent, the trajectory states of the vehicle were compared with flight data. For the stage separation event, the trajectory states of the two stages were compared to available flight data. Since no quantitative rotational state data for the upper stage was available, the CLVTOPS results were used to make an animation of the two stages to show a side-by-side comparison with flight video. All of the comparisons between CLVTOPS and the flight data show good agreement. This paper documents comparisons between CLVTOPS and Ares I-X flight data which serve as validation evidence for the eventual accreditation of CLVTOPS.

  12. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  13. A comparison of effects of peripheral vision cues on pilot performance during instrument flight in dissimilar aircraft simulators.

    DOT National Transportation Integrated Search

    1968-09-01

    Pilot response to peripheral vision cues relating to aircraft bank angle was studied during instrument flight in two simulators representing (1) a conventional, medium weight, piston engine airliner, and (2) a heavy, jet engine, sweptwing transport. ...

  14. The effects of workload on respiratory variables in simulated flight: a preliminary study.

    PubMed

    Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew

    2010-04-01

    In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Simulator-induced spatial disorientation: effects of age, sleep deprivation, and type of conflict.

    PubMed

    Previc, Fred H; Ercoline, William R; Evans, Richard H; Dillon, Nathan; Lopez, Nadia; Daluz, Christina M; Workman, Andrew

    2007-05-01

    Spatial disorientation mishaps are greater at night and with greater time on task, and sleep deprivation is known to decrease cognitive and overall flight performance. However, the ability to perceive and to be influenced by physiologically appropriate simulated SD conflicts has not previously been studied in an automated simulator flight profile. A set of 10 flight profiles were flown by 10 U.S. Air Force (USAF) pilots over a period of 28 h in a specially designed flight simulator for spatial disorientation research and training. Of the 10 flights, 4 had a total of 7 spatial disorientation (SD) conflicts inserted into each of them, 5 simulating motion illusions and 2 involving visual illusions. The percentage of conflict reports was measured along with the effects of four conflicts on flight performance. The results showed that, with one exception, all motion conflicts were reported over 60% of the time, whereas the two visual illusions were reported on average only 25% of the time, although they both significantly affected flight performance. Pilots older than 35 yr of age were more likely to report conflicts than were those under 30 yr of age (63% vs. 38%), whereas fatigue had little effect overall on either recognized or unrecognized SD. The overall effects of these conflicts on perception and performance were generally not altered by sleep deprivation, despite clear indications of fatigue in our pilots.

  16. Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments

    NASA Technical Reports Server (NTRS)

    Sawyer, R. H.; Mclaughlin, M. D.

    1974-01-01

    The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations.

  17. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations i The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzyinference identification can be used to reflect changes in simulator fidelity for the task examined.

  18. A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators

    NASA Technical Reports Server (NTRS)

    Zeyada, Y.; Hess, R. A.

    1999-01-01

    An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.

  19. Flight Performance During Exposure to Acute Hypobaric Hypoxia.

    PubMed

    Steinman, Yuval; van den Oord, Marieke H A H; Frings-Dresen, Monique H W; Sluiter, Judith K

    2017-08-01

    The purpose of the present study was to examine the influence of hypobaric hypoxia (HH) on a pilot's flight performance during exposure to simulated altitudes of 91, 3048, and 4572 m (300, 10,000, and 15,000 ft) and to monitor the pilot's physiological reactions. In a single-blinded counter-balanced design, 12 male pilots were exposed to HH while flying in a flight simulator that had been placed in a hypobaric chamber. Flight performance of the pilots, pilot's alertness level, Spo2, heart rate (HR), minute ventilation (VE), and breathing frequency (BF) were measured. A significant difference was found in Flight Profile Accuracy (FPA) between the three altitudes. Post hoc analysis showed no significant difference in performance between 91 m and 3048 m. A trend was observed at 4572 m, suggesting a decrease in flight performance at that altitude. Significantly lower alertness levels were observed at the start of the flight at 4572 m compared to 91 m, and at the end of the flight at 4572 m compared to the start at that altitude. Spo2 and BF decreased, and HR increased significantly with altitude. The present study did not provide decisive evidence for a decrease in flight performance during exposure to simulated altitudes of 3048 and 4572 m. However, large interindividual variation in pilots' flight performance combined with a gradual decrease in alertness levels observed in the present study puts into question the ability of pilots to safely fly an aircraft while exposed to these altitudes without supplemental oxygen.Steinman Y, van den Oord MHAH, Frings-Dresen MHW, Sluiter JK. Flight performance during exposure to acute hypobaric hypoxia. Aerosp Med Hum Perform. 2017; 88(8):760-767.

  20. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  1. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  2. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  3. 14 CFR 91.1073 - Training program: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Provide enough flight instructors, check pilots, and simulator instructors to conduct required flight training and flight checks, and simulator training courses allowed under this subpart. (b) Whenever a... ensure that each pilot annually completes at least one flight training session in an approved simulator...

  4. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...

  5. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...

  6. Airflow and thrust calibration of an F100 engine, S/N P680059, at selected flight conditions

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Lee, D.; Rodriguez, J. R.

    1978-01-01

    An airflow and thrust calibration of an F100 engine, S/N P680059, was conducted to study airframe propulsion system integration losses in turbofan-powered high-performance aircraft. The tests were conducted with and without thrust augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. The resulting corrected airflow data generalized into one curve with corrected fan speed while corrected gross thrust increased as simulated flight conditions increased. Overall agreement between measured data and computed results was 1 percent for corrected airflow and -1 1/2 percent for gross thrust. The results of an uncertainty analysis are presented for both parameters at each simulated flight condition.

  7. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  8. Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Malsbury, T.; Atencio, A., Jr.

    1992-01-01

    A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.

  9. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  10. Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed

    2016-06-01

    This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.

  11. Flight in low-level wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.

  12. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  13. Correlating Computed and Flight Instructor Assessments of Straight-In Landing Approaches by Novice Pilots on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat

    2005-01-01

    The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.

  14. Effect of Above Real Time Training and Post Flight Feedback in Training of Novice Pilots in a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce E.; Ali, Syed firasat; Crane, Peter; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    The use of Post-Flight Feedback (PFFB) and Above Real-Time Training (ARTT) while training novice pilots to perform a coordinated level turn on a PC-based flight simulator was investigated. One group trained at 1.5 ARTT followed by an equal number of flights at 2.0 ARTT; the second group experienced Real Time Training (RTT). The total number of flights for both groups was equal. Each group was further subdivided into two groups one of which was provided PFFB while the other was not. Then, all participants experienced two challenging evaluation missions in real time. Performance was assessed by comparing root-mean-square error in bank-angle and altitude. Participants in the 1.512.0 ARTT No-PFFB sequence did not show improvement in performance across training sessions. An ANOVA on performance in evaluation flights found that the PFFB groups performed significantly better than those with No-PFFB. Also, the RTT groups performed significantly better than the ARTT groups. Data from two additional groups trained under a 2.011.5 ARTT PFFB and No-PFFB regimes were collected and combined with data from the previously Trainers, Real-time simulation, Personal studied groups and reanalyzed to study the computers, Man-in-the-loop simulation influence of sequence. An ANOVA on test trials found no significant effects between groups. Under training situations involving ARTT we recommend that appropriate PFFB be provided.

  15. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  16. Field of View Evaluation for Flight Simulators Used in Spatial Disorientation Training

    DTIC Science & Technology

    2014-01-01

    Naval Medical Research Unit Dayton FIELD OF VIEW EVALUATION FOR FLIGHT SIMULATORS USED IN SPATIAL DISORIENTATION TRAINING WILLIAMS, H.P...COVERED (from – to) 2013JUL30 to 2014JUN30 4. TITLE Field of View Evaluation for Flight Simulators Used in Spatial Disorientation Training 5a...simulator systems as well, and implications and recommendations for SD training are discussed. 3 Field of View Evaluation for Flight Simulators

  17. The Effect of Lateral-Directional Control Coupling on Pilot Control of an Airplane as Determined in Flight and in a Fixed-Base Flight Simulator

    NASA Technical Reports Server (NTRS)

    Vomaske, Richard F.; Sadoff, Melvin; Drinkwater, Fred J., III

    1961-01-01

    A flight and fixed-base simulator study was made of the effects of aileron-induced yaw on pilot opinion of aircraft lateral-directional controllability characteristics. A wide range of adverse and favorable aileron-induced yaw was investigated in flight at several levels of Dutch-roll damping. The flight results indicated that the optimum values of aileron- induced yaw differed only slightly from zero for Dutch-roll damping from satisfactory to marginally controllable levels. It was also shown that each range of values of aileron-induced yawing moment considered satisfactory, acceptable, or controllable increased with an increase in the Dutch- roll damping. The increase was most marked for marginally controllable configurations exhibiting favorable aileron-induced yaw. Comparison of fixed-base flight simulator results with flight results showed agreement, indicating that absence of kinesthetic motion cues did not markedly affect the pilots' evaluation of the type of control problem considered in this study. The results of the flight study were recast in terms of several parameters which were considered to have an important effect on pilot opinion of lateral-directional handling qualities, including the effects of control coupling. Results of brief tests with a three-axis side-arm controller indicated that for control coupling problems associated with highly favorable yaw and cross-control techniques, use of the three-axis controller resulted in a deterioration of control relative to results obtained with the conventional center stick and rudder pedals.

  18. Effects of helicopter noise and vibration on pilot performance (as measured in a fixed-base flight simulator)

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1973-01-01

    The effects of noise and vibration on pilot performance are described. Pilot subjects were required to fly VTOL commercial IFR schedules using the computer simulation facilities. The routes flown simulated closely metropolitan routes flown currently by a helicopter airline. The duration of simulator flights ranged from 3 to 8 hours. Subjects were exposed to noise sound pressure levels ranging from 74dB (ambient) to 100dB and 17 Hz vibration stimuli ranging from .1 g to .3 g measured at the floor directly beneath the pilot's seat. Despite subject reports of extreme fatigue in these long flights, performance did not degrade. A curve of performance shows a slow improvement for the first three hours of exposure and a slight loss in performance during the remainder of the flight. As environmental stress conditions (noise, vibration, and time in the simulator) increased, subject performance improved. Within the limits of this study, the higher the stress the better the performance.

  19. Pilot In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.

    2008-01-01

    A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.

  20. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  1. Effect of motion frequency spectrum on subjective comfort response. [modeling passenger reactions to commercial aircraft flights

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Schoultz, M. B.; Blake, J. C.

    1973-01-01

    In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights.

  2. 14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...

  3. 14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...

  4. 14 CFR Appendix M to Part 141 - Combined Private Pilot Certification and Instrument Rating Course

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... practical test, within 60 days preceding the date of the test. (c) For use of flight simulators or flight training devices: (1) The course may include training in a combination of flight simulators, flight... instructor. (2) Training in a flight simulator that meets the requirements of § 141.41(a) of this part may be...

  5. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  6. 14 CFR 61.1 - Applicability and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...

  7. 14 CFR 61.1 - Applicability and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of this part: (1) Aeronautical experience means pilot time obtained in an aircraft, flight simulator... simulator, or flight training device; or (iii) Gives training as an authorized instructor in an aircraft, flight simulator, or flight training device. (16) Practical test means a test on the areas of operations...

  8. A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.

    PubMed

    McMahon, Terry W; Newman, David G

    2015-07-01

    Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.

  9. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  10. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  11. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  12. Stress training improves performance during a stressful flight.

    PubMed

    McClernon, Christopher K; McCauley, Michael E; O'Connor, Paul E; Warm, Joel S

    2011-06-01

    This study investigated whether stress training introduced during the acquisition of simulator-based flight skills enhances pilot performance during subsequent stressful flight operations in an actual aircraft. Despite knowledge that preconditions to aircraft accidents can be strongly influenced by pilot stress, little is known about the effectiveness of stress training and how it transfers to operational flight settings. For this study, 30 participants with no flying experience were assigned at random to a stress-trained treatment group or a control group. Stress training consisted of systematic pairing of skill acquisition in a flight simulator with stress coping mechanisms in the presence of a cold pressor. Control participants received identical flight skill acquisition training but without stress training. Participants then performed a stressful flying task in a Piper Archer aircraft. Stress-trained research participants flew the aircraft more smoothly, as recorded by aircraft telemetry data, and generally better, as recorded by flight instructor evaluations, than did control participants. Introducing stress coping mechanisms during flight training improved performance in a stressful flying task. The results of this study indicate that stress training during the acquisition of flight skills may serve to enhance pilot performance in stressful operational flight and, therefore, might mitigate the contribution of pilot stress to aircraft mishaps.

  13. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    NASA Astrophysics Data System (ADS)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  14. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    PubMed

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-07-17

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  15. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    PubMed Central

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-01-01

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  16. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  17. [Development of fixed-base full task space flight training simulator].

    PubMed

    Xue, Liang; Chen, Shan-quang; Chang, Tian-chun; Yang, Hong; Chao, Jian-gang; Li, Zhi-peng

    2003-01-01

    Fixed-base full task flight training simulator is a very critical and important integrated training facility. It is mostly used in training of integrated skills and tasks, such as running the flight program of manned space flight, dealing with faults, operating and controlling spacecraft flight, communicating information between spacecraft and ground. This simulator was made up of several subentries including spacecraft simulation, simulating cabin, sight image, acoustics, main controlling computer, instructor and assistant support. It has implemented many simulation functions, such as spacecraft environment, spacecraft movement, communicating information between spacecraft and ground, typical faults, manual control and operating training, training control, training monitor, training database management, training data recording, system detecting and so on.

  18. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  19. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...

  20. Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems (PACS) for relaxed static stability application

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.

    1985-01-01

    Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.

  1. Influence of the menstrual cycle on flight simulator performance after alcohol ingestion.

    PubMed

    Mumenthaler, M S; O'Hara, R; Taylor, J L; Friedman, L; Yesavage, J A

    2001-07-01

    Previous studies investigating the influence of the menstrual cycle on cognitive functioning of women after alcohol ingestion have obtained inconsistent results. The present study tested the hypothesis that flight simulator performance during acute alcohol intoxication and 8 hours after drinking differs between the menstrual and the luteal phase of the menstrual cycle. White female pilots (N = 24) were tested during the menstrual and the luteal phases of their menstrual cycles. On each test day they performed a baseline simulator flight, consumed 0.67 g/kg ethanol, and performed an acute-intoxication and an 8-hour-carryover simulator flight. Subjects reached highly significant increases in estradiol (E2) as well as progesterone (P) levels during the luteal test day. Yet, there were no significant differences in overall flight performance after alcohol ingestion between the menstrual and luteal phases during acute intoxication or at 8-hour carryover. We found no correlations between E, or P levels and overall flight performance. However, there was a statistically significant Phase x Order interaction: Pilots who started the experiment with their menstrual day were less susceptible to the effects of alcohol during the second test day than were pilots who started with their luteal day. The tested menstrual cycle phases and varying E2 and P levels did not significantly influence postdrink flight performance. Because the present study included a comparatively large sample size and because it involved complex "real world" tasks (piloting an aircraft), we believe that the present findings are important. We hope that our failure to detect menstrual cycle effects will encourage researchers to include women in their investigations of alcohol effects and human performance.

  2. The Utilization of Flight Simulation for Research and Development

    NASA Technical Reports Server (NTRS)

    Totah, Joseph J.; Snyder, C. Thomas (Technical Monitor)

    1994-01-01

    The objective of this paper is to review the conventional uses of flight simulation at NASA Ames Research Center for research and development, and to also consider the many new areas that have embraced flight simulation as an effective and economic research tool. Flight simulators have always been a very useful and economic research tool. Component technologies have evolved considerably to meet demands imposed by the aerospace community. In fact, the utilization of flight simulators for research and development has become so widely accepted that non-traditional uses have evolved. Whereas flight dynamics and control, guidance and navigation, vehicle design, mission assessment, and training have been, and perhaps always will be, the most popular research areas associated with simulation, many new areas under the broad categories of human factors and information science have realized significant benefits from the use of flight simulators for research and development. This paper will survey the simulation facilities at NASA Ames Research Center, and discuss selected topics associated with research programs, simulation experiments, and related technology development activities for the purpose of highlighting the expanding role of simulation in aerospace research and development. The information in this paper will in no way provide foreign companies with a competitive advantage over U. S. industry.

  3. A systems analysis of the erythropoietic responses to weightlessness. Volume 1: Mathematical model simulations of the erythropoietic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    Theoretical responses to weightlessness are summarized. The studies include development and validation of a model of erythropoiesis regulation, analysis of the behavior of erythropoiesis under a variety of conditions, simulations of bed rest and space flight, and an evaluation of ground-based animal studies which were conducted as analogs of zero-g. A review of all relevant space flight findings and a set of testable hypotheses which attempt to explain how red cell mass decreases in space flight are presented. An additional document describes details of the mathematical model used in these studies.

  4. PAB3D Simulations for the CAWAPI F-16XL

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Abdol-Hamid, K. S.; Massey, Steven J.

    2007-01-01

    Numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-! model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0deg to 20deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The ASM results are closer to the flight data than the k-! model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-! predictions.

  5. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  6. The Aircraft Simulation Role in Improving Flight Safety Through Control Room Training

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Hageman, Jacob J.; Le, Jeanette H.; Sitz, Joel (Technical Monitor)

    2002-01-01

    NASA Dryden Flight Research Center uses its six-degrees-of-freedom (6-DOF) fixed-base simulations for mission control room training to improve flight safety and operations. This concept is applied to numerous flight projects such as the F-18 High Alpha Research Vehicle (HARV), the F-15 Intelligent Flight Control System (IFCS), the X-38 Actuator Control Test (XACT), and X-43A (Hyper-X). The Dryden 6-DOF simulations are typically used through various stages of a project, from design to ground tests. The roles of these simulations have expanded to support control room training, reinforcing flight safety by building control room staff proficiency. Real-time telemetry, radar, and video data are generated from flight vehicle simulation models. These data are used to drive the control room displays. Nominal static values are used to complete information where appropriate. Audio communication is also an integral part of training sessions. This simulation capability is used to train control room personnel and flight crew for nominal missions and emergency situations. Such training sessions are also opportunities to refine flight cards and control room display pages, exercise emergency procedures, and practice control room setup for the day of flight. This paper describes this technology as it is used in the X-43A and F-15 IFCS and XACT projects.

  7. A feedback intervention to increase digital and paper checklist performance in technically advanced aircraft simulation.

    PubMed

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes.

  8. Evaluation of the usefulness of various simulation technology options for TERPS enhancement

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Sorensen, J. A.

    1986-01-01

    Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as microwave landing systems (MLS) and the Global Positioning System (GPS) open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2 to 5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5 to 10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined.

  9. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    NASA Astrophysics Data System (ADS)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  10. 14 CFR 61.167 - Airline transport pilot privileges and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) In flight simulators, and flight training devices representing the aircraft referenced in paragraph... instruct in aircraft, flight simulators, and flight training devices under this section— (i) For more than... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline...

  11. 14 CFR 61.167 - Privileges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...

  12. 14 CFR 61.167 - Privileges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...

  13. 14 CFR 61.167 - Privileges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... training record of the person to whom training has been given; (2) In flight simulators, and flight... debriefings, an airline transport pilot may not instruct in aircraft, flight simulators, and flight training... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.167 Privileges...

  14. Piloted simulator evaluation of a relaxed static stability fighter at high angle-of-attack

    NASA Technical Reports Server (NTRS)

    Lapins, M.; Klein, R. W.; Martorella, R. P.; Cangelosi, J.; Neely, W. R., Jr.

    1982-01-01

    A piloted simulator evaluation of the stability and control characteristics of a relaxed static stability fighter aircraft was conducted using a differential maneuvering simulator. The primary purpose of the simulation was to evaluate the effectiveness of the limiters in preventing departure from controlled flight. The simulation was conducted in two phases, the first consisting of open-loop point stability evaluations over a range of subsonic flight conditions, the second concentrating on closed-loop tracking of a preprogrammed target in low speed, high angle-of-attack air combat maneuvering. The command limiters were effective in preventing departure from controlled flight while permitting competent levels of sustained maneuvering. Parametric variations during the study included the effects of pitch control power and wing-body static margin. Stability and control issues were clearly shown to impact the configuration design.

  15. LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses

    NASA Technical Reports Server (NTRS)

    Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph

    2015-01-01

    The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.

  16. Manned remote work station development article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The two prime objectives of the Manned Remote Work Station (MRWS) Development Article Study are to first, evaluate the MRWS flight article roles and associated design concepts for fundamental requirements and embody key technology developments into a simulation program; and to provide detail manufacturing drawings and schedules for a simulator development test article. An approach is outlined which establishes flight article requirements based on past studies of Solar Power Satellite, orbital construction support equipments, construction bases and near term shuttle operations. Simulation objectives are established for those technology issues that can best be addressed on a simulator. Concepts for full-scale and sub-scale simulators are then studied to establish an overall approach to studying MRWS requirements. Emphasis then shifts to design and specification of a full-scale development test article.

  17. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  18. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  19. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  20. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  1. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  2. Flight Simulator Fidelity Considerations for Total Airline Pilot Training and Evaluation.

    DOT National Transportation Integrated Search

    2001-04-01

    This paper presents the FAA/Volpe Centers Flight Simulator Fidelity Research Program, which is part of the Federal Aviation Administration's effort to promote the effectiveness, availability and affordability of flight simulators. This initiative ...

  3. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  4. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  5. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  6. A Comprehensive Study of Three Delay Compensation Algorithms for Flight Simulators

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Houck, Jacob A.; Kelly, Lon C.; Wolters, Thomas E.

    2005-01-01

    This paper summarizes a comprehensive study of three predictors used for compensating the transport delay in a flight simulator; The McFarland, Adaptive and State Space Predictors. The paper presents proof that the stochastic approximation algorithm can achieve the best compensation among all four adaptive predictors, and intensively investigates the relationship between the state space predictor s compensation quality and its reference model. Piloted simulation tests show that the adaptive predictor and state space predictor can achieve better compensation of transport delay than the McFarland predictor.

  7. The determination of some requirements for a helicopter flight research simulation facility

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1977-01-01

    Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.

  8. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...

  9. Flocking and self-defense: experiments and simulations of avian mobbing

    NASA Astrophysics Data System (ADS)

    Kane, Suzanne Amador

    2011-03-01

    We have performed motion capture studies in the field of avian mobbing, in which flocks of prey birds harass predatory birds. Our empirical studies cover both field observations of mobbing occurring in mid-air, where both predator and prey are in flight, and an experimental system using actual prey birds and simulated predator ``perch and wait'' strategies. To model our results and establish the effectiveness of mobbing flight paths at minimizing risk of capture while optimizing predator harassment, we have performed computer simulations using the actual measured trajectories of mobbing prey birds combined with model predator trajectories. To accurately simulate predator motion, we also measured raptor acceleration and flight dynamics, well as prey-pursuit strategies. These experiments and theoretical studies were all performed with undergraduate research assistants in a liberal arts college setting. This work illustrates how biological physics provides undergraduate research projects well-suited to the abilities of physics majors with interdisciplinary science interests and diverse backgrounds.

  10. Usability of EFBs for Viewing NOTAMs and AIS/MET Data Link Messages

    NASA Technical Reports Server (NTRS)

    Evans, Emory T.; Young, Steven D.; Daniels, Tammi S.; Myer, Robert R.

    2014-01-01

    Electronic Flight Bags (EFB) are increasingly integral to flight deck information management. A piloted simulation study was conducted at NASA Langley Research Center, one aspect of which was to evaluate the usability and acceptability of EFBs for viewing and managing Notices to Airmen (NOTAMs) and data linked aeronautical information services (AIS) and meteorological information (MET). The study simulated approaches and landings at Memphis International Airport (KMEM) using various flight scenarios and weather conditions. Ten two-pilot commercial airline crews participated, utilizing the Cockpit Motion Facility's Research Flight Deck (CMF/RFD) simulator. Each crew completed approximately two dozen flights over a two day period. Two EFBs were installed, one for each pilot. Study data were collected in the form of questionnaire/interview responses, audio/video recordings, oculometer recordings, and aircraft/system state data. Preliminary usability results are reported primarily based on pilot interviews and responses to questions focused on ease of learning, ease of use, usefulness, satisfaction, and acceptability. Analysis of the data from the other objective measures (e.g., oculometer) is ongoing and will be reported in a future publication. This paper covers how the EFB functionality was set up for the study; the NOTAM, AIS/MET data link, and weather messages that were presented; questionnaire results; selected pilot observations; and conclusions.

  11. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    PubMed

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  12. Mission Suitability Testing of an Aircraft Simulator. Technical Report No. 75-12.

    ERIC Educational Resources Information Center

    Caro, Paul W.; And Others

    The report describes a study conducted to evaluate Device 2B24, which simulates the UH-1 helicopter and an instrument flight environment, and to determine its suitability for cost-effectively accomplishing the instrument phase of Army rotary wing flight training and facilitating UH-1 helicopter transition training, aviator proficiency evaluation,…

  13. Computer simulation studies in fluid and calcium regulation and orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.

  14. Helicopter pilot scan techniques during low-altitude high-speed flight.

    PubMed

    Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun

    2014-07-01

    This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.

  15. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  16. A piloted simulation study of data link ATC message exchange

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Lohr, Gary W.

    1989-01-01

    Data link Air Traffic Control (ATC) and Air Traffic Service (ATS) message and data exchange offers the potential benefits of increased flight safety and efficiency by reducing communication errors and allowing more information to be transferred between aircraft and ground facilities. Digital communication also presents an opportunity to relieve the overloading of ATC radio frequencies which hampers message exchange during peak traffic hours in many busy terminal areas. A piloted simulation study to develop pilot factor guidelines and assess potential flight crew benefits and liabilities from using data link ATC message exchange was completed. The data link ATC message exchange concept, implemented on an existing navigation computer Control Display Unit (CDU) required maintaining a voice radio telephone link with an appropriate ATC facility. Flight crew comments, scanning behavior, and measurements of time spent in ATC communication activities for data link ATC message exchange were compared to similar measures for simulated conventional voice radio operations. The results show crew preference for the quieter flight deck environment and a perception of lower communication workload.

  17. Simulation of the Physics of Flight

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2013-01-01

    Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…

  18. Flight simulator evaluation of a novel flight instrument display to minimize the risks of spatial disorientation.

    PubMed

    Braithwaite, M G; Durnford, S J; Groh, S L; Jones, H D; Higdon, A A; Estrada, A; Alvarez, E A

    1998-08-01

    Spatial disorientation (SD) in flight remains a major source of attrition. Many SD accidents would occur regardless of the instrument display in use, since the aircrew are simply not looking at the instruments. However, there are a number of accidents which might be amenable to improved instrument displays. In an attempt to improve maintenance and reattainment of correct orientation with a reduced cognitive workload, a novel instrument display has been developed. This paper describes an assessment of the display in a UH-60 helicopter flight simulator. This study tested the hypothesis that during instrument flight and recovery from unusual attitudes, the novel display permits a more accurate maintenance and reestablishment of flight parameters than the standard flight instruments. There were 16 male aviators who flew a simulated instrument flight profile and recovery from unusual attitudes using both the standard flight instruments and the novel display. The two display formats were tested both with and without a secondary task. When compared with the standard instruments, both control of flight parameters and recovery from unusual attitudes were significantly improved when using the novel display. Analysis of the secondary task scores showed that cognitive workload was reduced when using the novel display compared with the standard instruments. Results from all aspects of the assessment indicated benefits of the new display. Future testing should be carried out during real flight, and the display should be further developed to be used in a head-up or helmet-mounted device.

  19. Development of a technique for inflight jet noise simulation. I, II

    NASA Technical Reports Server (NTRS)

    Clapper, W. S.; Stringas, E. J.; Mani, R.; Banerian, G.

    1976-01-01

    Several possible noise simulation techniques were evaluated, including closed circuit wind tunnels, free jets, rocket sleds and high speed trains. The free jet technique was selected for demonstration and verification. The first paper describes the selection and development of the technique and presents results for simulation and in-flight tests of the Learjet, F106, and Bertin Aerotrain. The second presents a theoretical study relating the two sets of noise signatures. It is concluded that the free jet simulation technique provides a satisfactory assessment of in-flight noise.

  20. Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo

    2009-01-01

    Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.

  1. A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Turner, Simon; Andrisani, Dominick, II

    1992-01-01

    The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.

  2. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode

    PubMed Central

    Sapir, Nir; Horvitz, Nir; Wikelski, Martin; Avissar, Roni; Mahrer, Yitzhak; Nathan, Ran

    2011-01-01

    Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring–gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m2. We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring–gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration. PMID:21471116

  3. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    NASA Technical Reports Server (NTRS)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  4. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  5. The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training.

  6. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  7. Development and Implementation of Software for Visualizing and Editing Multidimensional Flight Simulation Input Data

    NASA Technical Reports Server (NTRS)

    Whelan, Todd Michael

    1996-01-01

    In a real-time or batch mode simulation that is designed to model aircraft dynamics over a wide range of flight conditions, a table look- up scheme is implemented to determine the forces and moments on the vehicle based upon the values of parameters such as angle of attack, altitude, Mach number, and control surface deflections. Simulation Aerodynamic Variable Interface (SAVI) is a graphical user interface to the flight simulation input data, designed to operate on workstations that support X Windows. The purpose of the application is to provide two and three dimensional visualization of the data, to allow an intuitive sense of the data set. SAVI also allows the user to manipulate the data, either to conduct an interactive study of the influence of changes on the vehicle dynamics, or to make revisions to data set based on new information such as flight test. This paper discusses the reasons for developing the application, provides an overview of its capabilities, and outlines the software architecture and operating environment.

  8. Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, R.

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  9. Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Davis, Edward; Alonso, Roberto

    1999-01-01

    The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.

  10. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  11. LISA: a java API for performing simulations of trajectories for all types of balloons

    NASA Astrophysics Data System (ADS)

    Conessa, Huguette

    2016-07-01

    LISA (LIbrarie de Simulation pour les Aerostats) is a java API for performing simulations of trajectories for all types of balloons (Zero Pressure Balloons, Pressurized Balloons, Infrared Montgolfier), and for all phases of flight (ascent, ceiling, descent). This library has for goals to establish a reliable repository of Balloons flight physics models, to capitalize developments and control models used in different tools. It is already used for flight physics study software in CNES, to understand and reproduce the behavior of balloons, observed during real flights. It will be used operationally for the ground segment of the STRATEOLE2 mission. It was developed with quality rules of "critical software." It is based on fundamental generic concepts, linking the simulation state variables to interchangeable calculation models. Each LISA model defines how to calculate a consistent set of state variables combining validity checks. To perform a simulation for a type of balloon and a phase of flight, it is necessary to select or create a macro-model that is to say, a consistent set of models to choose from among those offered by LISA, defining the behavior of the environment and the balloon. The purpose of this presentation is to introduce the main concepts of LISA, and the new perspectives offered by this library.

  12. Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator.

    PubMed

    Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea

    2013-02-01

    Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.

  13. Flight Simulation.

    DTIC Science & Technology

    1986-09-01

    TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCIL𔃻N This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California

  14. Piloted simulation study of an ILS approach of a twin-pusher business/commuter turboprop aircraft configuration

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.

    1994-01-01

    A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.

  15. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  16. Behavioral State Modulates the Activity of Brainstem Sensorimotor Neurons

    PubMed Central

    McArthur, Kimberly L.

    2011-01-01

    Sensorimotor processing must be modulated according to the animal's behavioral state. A previous study demonstrated that motion responses were strongly state dependent in birds. Vestibular eye and head responses were significantly larger and more compensatory during simulated flight, and a flight-specific vestibular tail response was also characterized. In the current study, we investigated the neural substrates for these state-dependent vestibular behaviors by recording extracellularly from neurons in the vestibular nuclear complex and comparing their spontaneous activity and sensory responses during default and simulated flight states. We show that motion-sensitive neurons in the lateral vestibular nucleus are state dependent. Some neurons increased their spontaneous firing rates during flight, though their increased excitability was not reflected in higher sensory gains. However, other neurons exhibited state-dependent gating of sensory inputs, responding to rotational stimuli only during flight. These results demonstrate that vestibular processing in the brainstem is state dependent and lay the foundation for future studies to investigate the synaptic mechanisms responsible for these modifications. PMID:22090497

  17. Software for Engineering Simulations of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  18. Moving-base visual simulation study of decoupled controls during approach and landing of a STOL transport aircraft

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Deal, P. L.

    1975-01-01

    The simulation employed all six rigid-body degrees of freedom and incorporated aerodynamic characteristics based on wind-tunnel data. The flight instrumentation included a localizer and a flight director which was used to capture and to maintain a two-segment glide slope. A closed-circuit television display of a STOLport provided visual cues during simulations of the approach and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls and believed that the simulator motion was an aid in evaluating the decoupled controls, although a minimum turbulence level with root-mean-square gust intensity of 0.3 m/sec (1 ft/sec) was required to mask undesirable characteristics of the moving-base simulator.

  19. Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.

    PubMed

    Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta

    2013-07-01

    Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.

  20. Use of off-the-shelf PC-based flight simulators for aviation human factors research.

    DOT National Transportation Integrated Search

    1996-04-01

    Flight simulation has historically been an expensive proposition, particularly if out-the-window views were desired. Advances in computer technology have allowed a modular, off-the-shelf flight simulation (based on 80486 processors or Pentiums) to be...

  1. The Effects of Asynchronous Visual Delays on Simulator Flight Performance and the Development of Simulator Sickness Symptomatology

    DTIC Science & Technology

    1986-12-26

    NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight

  2. Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    NASA Technical Reports Server (NTRS)

    Kiteley, G. W.; Harris, R. L., Sr.

    1978-01-01

    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.

  3. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  4. Annotated Bibliography of USAARL Technical and Letter Reports. Volume 2. October 1988 - April 1991

    DTIC Science & Technology

    1991-05-01

    G. Lilienthal, Robert S. Kennedy, Jennifer E. Fowlkes, and Dennis R. Baltzley. As technelogy has been developed to provide improved visual and motion...Gower, Jr., and Jennifer Fowlkes. The U.S. Army Aeromedical Research Laboratory conducted field studies of operational flight simulators to assess the...Daniel W. Gower, Jr., and Jennifer Fowlkes. The U.S. Army Aeromedical Research Laboratory conducted field studies of operational flight simulators to

  5. Simulator study of flight characteristics of several large, dissimilar, cargo transport airplanes during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.

    1984-01-01

    A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.

  6. Dissociation of visual associative and motor learning in Drosophila at the flight simulator.

    PubMed

    Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike

    2003-08-29

    Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.

  7. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  8. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  9. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  10. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  11. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  12. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  13. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  14. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.

  15. A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.

  16. A FEEDBACK INTERVENTION TO INCREASE DIGITAL AND PAPER CHECKLIST PERFORMANCE IN TECHNICALLY ADVANCED AIRCRAFT SIMULATION

    PubMed Central

    Rantz, William G; Van Houten, Ron

    2011-01-01

    This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes. PMID:21541133

  17. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  18. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  19. The Education of Attention as Explanation of Variability of Practice Effects : Learning the Final Approach Phase in a Flight Simulator

    ERIC Educational Resources Information Center

    Huet, Michael; Jacobs, David M.; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles

    2011-01-01

    The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice…

  20. Simulation of physiological systems in order to evaluate and predict the human condition in a space flight

    NASA Technical Reports Server (NTRS)

    Verigo, V. V.

    1979-01-01

    Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems.

  1. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.

  2. ARC-1967-AC-38286-3

    NASA Image and Video Library

    1967-02-06

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  3. If You've Got It, Use It (Simulation, That Is...)

    NASA Technical Reports Server (NTRS)

    Frost, Chad; Tucker, George

    2006-01-01

    This viewgraph presentation reviews the Rotorcraft Aircrew Systems Concept Airborne Laboratory (RASCAL) UH-60 in-flight simulator, the use of simulation in support of safety monitor design specification development, the development of a failure/recovery (F/R) rating scale, the use of F/R Rating Scale as a common element between simulation and flight evaluation, and the expansion of the flight envelope without benefit of simulation.

  4. Aircrew perceived stress: examining crew performance, crew position and captains personality.

    PubMed

    Bowles, S; Ursin, H; Picano, J

    2000-11-01

    This study was conducted at NASA Ames Research Center as a part of a larger research project assessing the impact of captain's personality on crew performance and perceived stress in 24 air transport crews (5). Three different personality types for captains were classified based on a previous cluster analysis (3). Crews were comprised of three crewmembers: captain, first officer, and second officer/flight engineer. A total of 72 pilots completed a 1.5-d full-mission simulation of airline operations including emergency situations in the Ames Manned Vehicle System Research Facility B-727 simulator. Crewmembers were tested for perceived stress on four dimensions of the NASA Task Load Index after each of five flight legs. Crews were divided into three groups based on rankings from combined error and rating scores. High performance crews (who committed the least errors in flight) reported experiencing less stress in simulated flight than either low or medium crews. When comparing crew positions for perceived stress over all the simulated flights no significant differences were found. However, the crews led by the "Right Stuff" (e.g., active, warm, confident, competitive, and preferring excellence and challenges) personality type captains typically reported less stress than crewmembers led by other personality types.

  5. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    NASA Technical Reports Server (NTRS)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  6. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  7. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  8. KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  9. Simulator sickness in a helicopter flight training school.

    PubMed

    Webb, Catherine M; Bass, Julie M; Johnson, David M; Kelley, Amanda M; Martin, Christopher R; Wildzunas, Robert M

    2009-06-01

    Simulator sickness (SS) is a common problem during flight training and can affect both instructor pilots (IP) and student pilots (SP). This study was conducted in response to complaints about a high incidence of SS associated with use of new simulators for rotary-wing aircraft. The problem was evaluated using the Simulator Sickness Questionnaire (SSQ) to collect data on 73 IP and 129 SP who used the new simulators. Based on analysis of these data, operator comments, and a search of the literature, we recommended limiting simulator flights to 2 h, removing unusual or unnatural maneuvers, turning off the sidescreens to reduce the field-of-view, avoiding use of improperly calibrated simulators until repaired, and stressing proper rest and health discipline among the pilots. The success of these measures was evaluated 1 yr later by collecting SSQ data on 25 IP and 50 SP. There was a main effect of time, in that after the recommendations were implemented, there was a significant reduction in nausea, oculomotor, and total SSQ scores from the pre-study to the post-study. There was also a main effect of experience, as IP reported significantly greater SS than SP for the same scores. Implementation of the recommendations reduced SS in the new simulators at the cost of limiting session duration and shutting down some simulator features. Although the optimal solution to the SS problem lies in addressing SS during a simulator's design stage, these recommendations can be used as interim solutions to reduce SS.

  10. Development of a computer program data base of a navigation aid environment for simulated IFR flight and landing studies

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.

    1980-01-01

    A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.

  11. Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John

    1997-01-01

    Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.

  12. Effects of mass on aircraft sidearm controller characteristics

    NASA Technical Reports Server (NTRS)

    Wagner, Charles A.

    1994-01-01

    When designing a flight simulator, providing a set of low mass variable-characteristic pilot controls can be very difficult. Thus, a strong incentive exists to identify the highest possible mass that will not degrade the validity of a simulation. The NASA Dryden Flight Research Center has conducted a brief flight program to determine the maximum acceptable mass (system inertia) of an aircraft sidearm controller as a function of force gradient. This information is useful for control system design in aircraft as well as development of suitable flight simulator controls. A modified Learjet with a variable-characteristic sidearm controller was used to obtain data. A boundary was defined between mass considered acceptable and mass considered unacceptable to the pilot. This boundary is defined as a function of force gradient over a range of natural frequencies. This investigation is limited to a study of mass-frequency characteristics only. Results of this investigation are presented in this paper.

  13. An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Aiken, E. W.

    1982-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.

  14. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    NASA Technical Reports Server (NTRS)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  15. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  16. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  17. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  18. 14 CFR 121.917 - Other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... technical (piloting or other) skills in an actual or simulated operations scenario. For flight crewmembers this training and evaluation must be conducted in an approved flight training device, flight simulator... Dispatcher Resource Management (DRM) ground and if appropriate flight training applicable to each position...

  19. F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2015-01-01

    This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.

  20. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  1. British Airways' pre-command training program

    NASA Technical Reports Server (NTRS)

    Holdstock, L. F. J.

    1980-01-01

    Classroom, flight simulator, and in-flight sessions of an airline pilot training program are briefly described. Factors discussed include initial command potential assessment, precommand airline management studies course, precommand course, and command course.

  2. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  3. 14 CFR 142.54 - Airline transport pilot certification training program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... training in a flight simulation training device— (1) Holds an aircraft type rating for the aircraft represented by the flight simulation training device utilized in the training program and have received... will be demonstrated in the flight simulation training device; and (2) Satisfies the requirements of...

  4. 14 CFR 121.408 - Training equipment other than flight simulation training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training equipment other than flight simulation training devices. 121.408 Section 121.408 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.408 Training equipment other than flight simulation training devices. (a) The Administrator must...

  5. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  6. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  7. Digital flight control research

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  8. Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.

    2009-01-01

    Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.

  9. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  10. Simulator study of the stall departure characteristics of a light general aviation airplane with and without a wing-leading-edge modification

    NASA Technical Reports Server (NTRS)

    Riley, D. R.

    1985-01-01

    A six-degree-of-freedom nonlinear simulation was developed for a two-place, single-engine, low-wing general aviation airplane for the stall and initial departure regions of flight. Two configurations, one with and one without an outboard wing-leading-edge modification, were modeled. The math models developed are presented simulation predictions and flight-test data for validation purposes and simulation results for the two configurations for various maneuvers and power settings are compared to show the beneficial influence of adding the wing-leading-edge modification.

  11. The flights before the flight - An overview of shuttle astronaut training

    NASA Technical Reports Server (NTRS)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  12. KSC-2013-3561

    NASA Image and Video Library

    2013-08-15

    DRYDEN FLIGHT RESEARCH CENTER, Calif. - Simulation technicians Brent Bieber, left, and Dennis Pitts install a boilerplate Dream Chaser canopy structure over the cockpit of a flight simulator in the simulation laboratory at NASA's Dryden Flight Research Center in California. The modification will give Dream Chaser pilot-astronauts a more representative view of the actual flight profiles the spacecraft would fly during piloted approach and landing tests. Sierra Nevada Corporation's Space Systems division is conducting uncrewed captive- and free-flight approach and landing tests of its Dream Chaser at Dryden during the summer and fall. Photo credit: NASA/Ken Ulbrich

  13. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  14. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.

  15. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  16. Visual cues to geographical orientation during low-level flight

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Delzell, Suzanne

    1991-01-01

    A field study of an operational Emergency Medical Service (EMS) unit was conducted to investigate the relationships among geographical orientation, pilot decision making, and workload in EMS flights. The map data collected during this study were compared to protocols gathered in the laboratory, where pilots viewed a simulated flight over different types of unfamiliar terrain and verbally identified the features utilized to maintain geographical orientation. The EMS pilot's questionnaire data were compared with data from non-EMS helicopter pilots with comparable flight experience.

  17. Modeling, simulation, and flight characteristics of an aircraft designed to fly at 100,000 feet

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1991-01-01

    A manned real time simulation of a conceptual vehicle, the stratoplane, was developed to study the problems associated with the flight characteristics of a large, lightweight vehicle. Mathematical models of the aerodynamics, mass properties, and propulsion system were developed in support of the simulation and are presented. The simulation was at first conducted without control augmentation to determine the needs for a control system. The unaugmented flying qualities were dominated by lightly damped dutch roll oscillations. Constant pilot workloads were needed at high altitudes. Control augmentation was studied using basic feedbacks. For the longitudinal axis, flight path angle, and pitch rate feedback were sufficient to damp the phugoid mode and to provide good flying qualities. In the lateral directional axis, bank angle, roll rate, and yaw rate feedbacks were sufficient to provide a safe vehicle with acceptable handling qualities. Intentionally stalling the stratoplane to very high angles of attack (deep stall) was studied as a means of enable safe and rapid descent. It was concluded that the deep stall maneuver is viable for this class of vehicle.

  18. 14 CFR 142.11 - Application for issuance or amendment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight simulator or flight training device, the make, model, and series of airplane or the set of... simulator and flight training device subject to qualification evaluation by the Administrator, the... Flight Standards District Office that has jurisdiction over the area in which the applicant's principal...

  19. 14 CFR 142.11 - Application for issuance or amendment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight simulator or flight training device, the make, model, and series of airplane or the set of... simulator and flight training device subject to qualification evaluation by the Administrator, the... Flight Standards District Office that has jurisdiction over the area in which the applicant's principal...

  20. 14 CFR 142.11 - Application for issuance or amendment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight simulator or flight training device, the make, model, and series of airplane or the set of... simulator and flight training device subject to qualification evaluation by the Administrator, the... Flight Standards District Office that has jurisdiction over the area in which the applicant's principal...

  1. Dietary Effects on Cognition and Pilots' Flight Performance.

    PubMed

    Lindseth, Glenda N; Lindseth, Paul D; Jensen, Warren C; Petros, Thomas V; Helland, Brian D; Fossum, Debra L

    2011-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg's mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer ( p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets.

  2. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  3. Intelligent Control Approaches for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; KrishnaKumar, K.; Soloway, Don; Kaneshige, John; Clancy, Daniel (Technical Monitor)

    2001-01-01

    This paper presents an overview of various intelligent control technologies currently being developed and studied under the Intelligent Flight Control (IFC) program at the NASA Ames Research Center. The main objective of the intelligent flight control program is to develop the next generation of flight controllers for the purpose of automatically compensating for a broad spectrum of damaged or malfunctioning aircraft components and to reduce control law development cost and time. The approaches being examined include: (a) direct adaptive dynamic inverse controller and (b) an adaptive critic-based dynamic inverse controller. These approaches can utilize, but do not require, fault detection and isolation information. Piloted simulation studies are performed to examine if the intelligent flight control techniques adequately: 1) Match flying qualities of modern fly-by-wire flight controllers under nominal conditions; 2) Improve performance under failure conditions when sufficient control authority is available; and 3) Achieve consistent handling qualities across the flight envelope and for different aircraft configurations. Results obtained so far demonstrate the potential for improving handling qualities and significantly increasing survivability rates under various simulated failure conditions.

  4. Investigation on aerodynamic characteristics of baseline-II E-2 blended wing-body aircraft with canard via computational simulation

    NASA Astrophysics Data System (ADS)

    Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman

    2012-06-01

    Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.

  5. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  6. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  7. Extending a Flight Management Computer for Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Sugden, Paul C.

    2005-01-01

    In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.

  8. Pilot Interactions in an Over-Constrained Conflict Scenario as Studied in a Piloted Simulation of Autonomous Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Barhydt, Richard; Barmore, Bryan; Krishnamurthy, Karthik

    2003-01-01

    Feasibility and safety of autonomous aircraft operations were studied in a multi-piloted simulation of overconstrained traffic conflicts to determine the need for, and utility of, priority flight rules to maintain safety in this extraordinary and potentially hazardous situation. An overconstrained traffic conflict is one in which the separation assurance objective is incompatible with other objectives. In addition, a proposed scheme for implementing priority flight rules by staggering the alerting time between the two aircraft in conflict was tested for effectiveness. The feasibility study was conducted through a simulation in the Air Traffic Operations Laboratory at the NASA Langley Research Center. This research activity is a continuation of the Distributed Air-Ground Traffic Management feasibility analysis reported in the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001 (paper #48). The over-constrained conflict scenario studied here consisted of two piloted aircraft that were assigned an identical en-route waypoint arrival time and altitude crossing restriction. The simulation results indicated that the pilots safely resolved the conflict without the need for a priority flight rule system. Occurrences of unnecessary maneuvering near the common waypoint were traced to false conflict alerts, generated as the result of including waypoint constraint information in the broadcast data link message issued from each aircraft. This result suggests that, in the conservative interests of safety, broadcast intent information should be based on the commanded trajectory and not on the Flight Management System flight plan, to which the aircraft may not actually adhere. The use of priority flight rules had no effect on the percentage of the aircraft population meeting completely predictable which aircraft in a given pair would meet the constraints and which aircraft would make the first maneuver to yield right-of-way. Therefore, the proposed scheme for implementing priority flight rules through staggering the alerting time between the two aircraft was completely effective. The data and observations from this experiment, together with results from the previously reported study, support the feasibility of autonomous aircraft operations.

  9. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight versus potential flight times. Combinations of the listed batteries, fuel cells, and storage tanks are plotted on the graph to evaluate various hybrid power system configurations.

  10. Helicopter roll control effectiveness criteria program summary

    NASA Technical Reports Server (NTRS)

    Heffley, Robert K.; Bourne, Simon M.; Mnich, Marc A.

    1988-01-01

    A study of helicopter roll control effectiveness is summarized for the purpose of defining military helicopter handling qualities requirements. The study is based on an analysis of pilot-in-the-loop task performance of several basic maneuvers. This is extended by a series of piloted simulations using the NASA Ames Vertical Motion Simulator and selected flight data. The main results cover roll control power and short-term response characteristics. In general the handling qualities requirements recommended are set in conjunction with desired levels of flight task and maneuver response which can be directly observed in actual flight. An important aspect of this, however, is that vehicle handling qualities need to be set with regard to some quantitative aspect of mission performance. Specific examples of how this can be accomplished include a lateral unmask/remask maneuver in the presence of a threat and an air tracking maneuver which recognizes the kill probability enhancement connected with decreasing the range to the target. Conclusions and recommendations address not only the handling qualities recommendations, but also the general use of flight simulators and the dependence of mission performance on handling qualities.

  11. Identification of Low Order Equivalent System Models From Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    Identification of low order equivalent system dynamic models from flight test data was studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models characterized the total aircraft response including bare airframe and flight control system. Theoretical investigations were conducted and related to results found in the literature. Low order equivalent system modeling techniques using output error and equation error parameter estimation in the frequency domain were developed and validated on simulation data. It was found that some common difficulties encountered in identifying closed loop low order equivalent system models from flight test data could be overcome using the developed techniques. Implications for data requirements and experiment design were discussed. The developed methods were demonstrated using realistic simulation cases, then applied to closed loop flight test data from the NASA F-18 High Alpha Research Vehicle.

  12. Prototype Conflict Alerting Logic for Free Flight

    NASA Technical Reports Server (NTRS)

    Yang, Lee C.; Kuchar, James K.

    1997-01-01

    This paper discusses the development of a prototype alerting system for a conceptual Free Flight environment. The concept assumes that datalink between aircraft is available and that conflicts are primarily resolved on the flight deck. Four alert stages are generated depending on the likelihood of a conflict. If the conflict is not resolved by the flight crews, Air Traffic Control is notified to take over separation authority. The alerting logic is based on probabilistic analysis through modeling of aircraft sensor and trajectory uncertainties. Monte Carlo simulations were used over a range of encounter situations to determine conflict probability. The four alert stages were then defined based on probability of conflict and on the number of avoidance maneuvers available to the flight crew. Preliminary results from numerical evaluations and from a piloted simulator study at NASA Ames Research Center are summarized.

  13. A flight investigation of simulated data link communications during single-pilot IFR flight

    NASA Technical Reports Server (NTRS)

    Parker, J. F.; Duffy, J. W.; Christensen, D. G.

    1983-01-01

    A Flight Data Console (FDC) was developed to allow simulation of a digital communications link to replace the current voice communication system used in air traffic control (ATC). The voice system requires manipulation of radio equipment, read-back of clearances, and mental storage of critical information items, all contributing to high workload, particularly during single-pilot operations. This was an inflight study to determine how a digital communications system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. Results show that instrument flight, including approach and landing, can be accomplished quite effectively using a digital data link system for ATC communications. All pilots expressed a need for a back-up voice channel. When included, this channel was used sparingly and principally to confirm any item of information about which there might be uncertainty.

  14. Effect of video-game experience and position of flight stick controller on simulated-flight performance.

    PubMed

    Cho, Bo-Keun; Aghazadeh, Fereydoun; Al-Qaisi, Saif

    2012-01-01

    The purpose of this study was to determine the effects of video-game experience and flight-stick position on flying performance. The study divided participants into 2 groups; center- and side-stick groups, which were further divided into high and low level of video-game experience subgroups. The experiment consisted of 7 sessions of simulated flying, and in the last session, the flight stick controller was switched to the other position. Flight performance was measured in terms of the deviation of heading, altitude, and airspeed from their respective requirements. Participants with high experience in video games performed significantly better (p < .001) than the low-experienced group. Also, participants performed significantly better (p < .001) with the center-stick than the side-stick. When the side-stick controller was switched to the center-stick position, performance scores continued to increase (0.78 %). However, after switching from a center- to a side-stick controller, performance scores decreased (4.8%).

  15. Full Motion Flight Simulator in the Classroom

    ERIC Educational Resources Information Center

    Christensen, Brad

    2005-01-01

    Virtual flight can be very entertaining, and computer-based simulators can also be educational, if organized and used correctly. When Berea College decided to find a flight simulator suited to the school's educational goals, the faculty settled on an ANT-18 Link trainer. This article begins with a discussion of Link trainers' history, and then…

  16. USAARL NUH-60FS Acoustic Characterization

    DTIC Science & Technology

    2016-11-01

    Performance Division (APPD) previously acoustically characterized the Black Hawk flight simulator (NUH-60FS). Since that characterization, the NUH-60FS...greater than one for higher-level speakers. Black Hawk flight simulator, noise level, third octave band level UNCLAS UNCLAS UNCLAS SAR 52 Loraine St. Onge...Research Laboratory NUH-60FS Black Hawk Flight Simulator

  17. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  18. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  19. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  20. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  1. Development of Airport Surface Required Navigation Performance (RNP)

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Smith, Alex; Hicok, Dan

    1999-01-01

    The U.S. and international aviation communities have adopted the Required Navigation Performance (RNP) process for defining aircraft performance when operating the en-route, approach and landing phases of flight. RNP consists primarily of the following key parameters - accuracy, integrity, continuity, and availability. The processes and analytical techniques employed to define en-route, approach and landing RNP have been applied in the development of RNP for the airport surface. To validate the proposed RNP requirements several methods were used. Operational and flight demonstration data were analyzed for conformance with proposed requirements, as were several aircraft flight simulation studies. The pilot failure risk component was analyzed through several hypothetical scenarios. Additional simulator studies are recommended to better quantify crew reactions to failures as well as additional simulator and field testing to validate achieved accuracy performance, This research was performed in support of the NASA Low Visibility Landing and Surface Operations Programs.

  2. A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Daughaday, H.; Andrisani, D., II; Till, R. D.; Weingarten, N. C.

    1975-01-01

    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts.

  3. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  4. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  5. STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Director of Mission Operations Directorate (MOD) Eugene F. Kranz (left) and Chief of the Flight Directors Office Tommy W. Holloway monitor activity during the simulation. The two are at their normal stations on the rear row of consoles. The integrated simulation involves MCC flight controllers communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  6. A Generic Multibody Parachute Simulation Model

    NASA Technical Reports Server (NTRS)

    Neuhaus, Jason Richard; Kenney, Patrick Sean

    2006-01-01

    Flight simulation of dynamic atmospheric vehicles with parachute systems is a complex task that is not easily modeled in many simulation frameworks. In the past, the performance of vehicles with parachutes was analyzed by simulations dedicated to parachute operations and were generally not used for any other portion of the vehicle flight trajectory. This approach required multiple simulation resources to completely analyze the performance of the vehicle. Recently, improved software engineering practices and increased computational power have allowed a single simulation to model the entire flight profile of a vehicle employing a parachute.

  7. Application of technology developed for flight simulation at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1991-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.

  8. Simulator fidelity : the effect of platform motion.

    DOT National Transportation Integrated Search

    2000-07-31

    As part of the Federal Aviation Administration's (FAA) initiative towards affordable flight simulators for U.S. commuter airlines, this study empirically examined the effect of six-degree-of-freedom simulator platform motion on recurrent pilot traini...

  9. Aviation Safety Simulation Model

    NASA Technical Reports Server (NTRS)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  10. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  11. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    PubMed

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  12. A study of workstation computational performance for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Cleveland, Jeff I., II

    1995-01-01

    With recent advances in microprocessor technology, some have suggested that modern workstations provide enough computational power to properly operate a real-time simulation. This paper presents the results of a computational benchmark, based on actual real-time flight simulation code used at Langley Research Center, which was executed on various workstation-class machines. The benchmark was executed on different machines from several companies including: CONVEX Computer Corporation, Cray Research, Digital Equipment Corporation, Hewlett-Packard, Intel, International Business Machines, Silicon Graphics, and Sun Microsystems. The machines are compared by their execution speed, computational accuracy, and porting effort. The results of this study show that the raw computational power needed for real-time simulation is now offered by workstations.

  13. Moving base simulation of an integrated flight and propulsion control system for an ejector-augmentor STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Mcneill, Walter, E.; Chung, William W.; Stortz, Michael W.

    1995-01-01

    A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted.

  14. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.

  15. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  16. Anticipation of the landing shock phenomenon in flight simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1987-01-01

    An aircraft landing may be described as a controlled crash because a runway surface is intercepted. In a simulation model the transition from aerodynamic flight to weight on wheels involves a single computational cycle during which stiff differential equations are activated; with a significant probability these initial conditions are unrealistic. This occurs because of the finite cycle time, during which large restorative forces will accompany unrealistic initial oleo compressions. This problem was recognized a few years ago at Ames Research Center during simulation studies of a supersonic transport. The mathematical model of this vehicle severely taxed computational resources, and required a large cycle time. The ground strike problem was solved by a described technique called anticipation equations. This extensively used technique has not been previously reported. The technique of anticipating a significant event is a useful tool in the general field of discrete flight simulation. For the differential equations representing a landing gear model stiffness, rate of interception and cycle time may combine to produce an unrealistic simulation of the continuum.

  17. MLS Multipath Studies. Phase 3. Volume II. Development and Valiadation of Model for MLS Techniques.

    DTIC Science & Technology

    1980-02-07

    2-40 2-32 Coherent interference phenomena encountered during TRSB field tests at JFK airport . 2-41 2-33 JFK airport environment near MLS elevation...24 4-8 Comparison of DMLS simulation and flight test on -380 radial at 2000 feet at JFK airport . 4-26 4-9 Comparison of DMLS simulation and flight...test on +380 radial at 2000 feet at JFK airport . 4-28 xv ( 4-10 Comparison of simulation with DMLS JFK centerline approach data. 4-29 4-11 DMLS "clean

  18. Practical aspects of modeling aircraft dynamics from flight data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1984-01-01

    The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.

  19. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....

  20. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....

  1. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....

  2. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....

  3. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE Pt. 60, App....

  4. Numerical and flight simulator test of the flight deterioration concept

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Norviel, V.

    1982-01-01

    Manned flight simulator response to theoretical wind shear profiles was studied in an effort to calibrate fixed-stick and pilot-in-the-loop numerical models of jet transport aircraft on approach to landing. Results of the study indicate that both fixed-stick and pilot-in-the-loop models overpredict the deleterious effects of aircraft approaches when compared to pilot performance in the manned simulator. Although the pilot-in-the-loop model does a better job than does the fixed-stick model, the study suggests that the pilot-in-the-loop model is suitable for use in meteorological predictions of adverse low-level wind shear along approach and departure courses to identify situations in which pilots may find difficulty. The model should not be used to predict the success or failure of a specific aircraft. It is suggested that the pilot model be used as part of a ground-based Doppler radar low-level wind shear detection and warning system.

  5. "Party Line" Information Use Studies and Implications for ATC Datalink Communications

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Pritchett, Amy; Midkiff, Alan

    1995-01-01

    The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The importance, availability, and accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.

  6. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  7. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  8. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  9. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  10. 14 CFR 91.1103 - Pilots: Initial, transition, upgrade, requalification, and differences flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...

  11. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or 135 of this chapter; (2) Has satisfactorily completed the training phases for the aircraft... appropriate training phases for the aircraft, including recurrent training, that are required to serve as a... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  12. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  13. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2007-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  14. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  15. Pilot GPS LORAN Receiver Programming Performance A Laboratory Evaluation

    DOT National Transportation Integrated Search

    1994-02-01

    This study was designed to explore GPS/LORAN receiver programming performance under : simulated flight conditions. The programming task consisted of entering, editing, and : verifying a four-waypoint flight plan. The task demands were manipulated by ...

  16. Flight Controllability Limits and Related Human Transfer Functions as Determined from Simulator and Flight Tests

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Day, Richard E.

    1961-01-01

    A simulator study and flight tests were performed to determine the levels of static stability and damping necessary to enable a pilot to control the longitudinal and lateral-directional dynamics of a vehicle for short periods of time. Although a basic set of aerodynamic characteristics was used, the study was conducted so that the results would be applicable to a wide range of flight conditions and configurations. Novel piloting techniques were found which enabled the pilot to control the vehicle at conditions that were otherwise uncontrollable. The influence of several critical factors in altering the controllability limits was also investigated. Several human transfer functions were used which gave fairly good representations of the controllability limits determined experimentally for the short-period longitudinal, directional, and lateral modes. A transfer function with approximately the same gain and phase angle as the pilot at the controlling frequencies along the controllability limits was also derived.

  17. Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software

    NASA Technical Reports Server (NTRS)

    Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole; hide

    2014-01-01

    STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.

  18. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  19. The design and implementation of CRT displays in the TCV real-time simulation

    NASA Technical Reports Server (NTRS)

    Leavitt, J. B.; Tariq, S. I.; Steinmetz, G. G.

    1975-01-01

    The design and application of computer graphics to the Terminal Configured Vehicle (TCV) program were described. A Boeing 737-100 series aircraft was modified with a second flight deck and several computers installed in the passenger cabin. One of the elements in support of the TCV program is a sophisticated simulation system developed to duplicate the operation of the aft flight deck. This facility consists of an aft flight deck simulator, equipped with realistic flight instrumentation, a CDC 6600 computer, and an Adage graphics terminal; this terminal presents to the simulator pilot displays similar to those used on the aircraft with equivalent man-machine interactions. These two displays form the primary flight instrumentation for the pilot and are dynamic images depicting critical flight information. The graphics terminal is a high speed interactive refresh-type graphics system. To support the cockpit display, two remote CRT's were wired in parallel with two of the Adage scopes.

  20. Investigation of the effect of EEG-BCI on the simultaneous execution of flight simulation and attentional tasks.

    PubMed

    Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio

    2016-10-01

    Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.

  1. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  2. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1975-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.

  3. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  4. Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan

    2014-11-01

    Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.

  5. Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunological indices in pigeons.

    PubMed

    Matson, Kevin D; Horrocks, Nicholas P C; Tieleman, B Irene; Haase, Eberhard

    2012-11-01

    Most birds rely on flight for survival. Yet as an energetically taxing and physiologically integrative process, flight has many repercussions. Studying pigeons (Columba livia) and employing physiological and immunological indices that are relevant to ecologists working with wild birds, we determined what, if any, acute immune-like responses result from bouts of intense, non-migratory flight. We compared the effects of flight with the effects of a simulated bacterial infection. We also investigated indices in terms of their post-flight changes within individuals and their relationship with flight speed among individuals. Compared to un-flown controls, flown birds exhibited significant elevations in numbers of heterophils relative to numbers of lymphocytes and significant reductions in numbers of eosinophils and monocytes. Furthermore, within-individual changes in concentrations of an acute phase protein were greater in flown birds than in controls. However, none of the flight-affected indices showed any evidence of being related to flight speed. While some of the effects of flight were comparable to the effects of the simulated bacterial infection, other effects were observed only after one of these two physiological challenges. Our study suggests that flight by pigeons yields immune-like responses, and these responses have the potential to complicate the conclusions drawn by ecologists regarding immune function in free-living birds. Still, a better understanding of the repercussions of flight can help clarify the ties between the physiology of exercise and the disease ecology of migration and will ultimately assist in the broader goal of accounting for immunological variation within and among species.

  6. Dietary Effects on Cognition and Pilots’ Flight Performance

    PubMed Central

    Lindseth, Glenda N.; Lindseth, Paul D.; Jensen, Warren C.; Petros, Thomas V.; Helland, Brian D.; Fossum, Debra L.

    2017-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg’s mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer (p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets. PMID:29353985

  7. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  8. Development and evaluation of a prototype in-flight instrument flight rules (IFR) procedures trainer

    NASA Technical Reports Server (NTRS)

    Aaron, J. B., Jr.; Morris, G. G.

    1981-01-01

    An in-flight instrument flight rules (IFR) procedures trainer capable of providing simulated indications of instrument flight in a typical general aviation aircraft independent of ground based navigation aids was developed. The IFR navaid related instruments and circuits from an ATC 610J table top simulator were installed in a Cessna 172 aircraft and connected to its electrical power and pitot static systems. The benefits expected from this hybridization concept include increased safety by reducing the number of general aviation aircraft conducting IFR training flights in congested terminal areas, and reduced fuel use and instruction costs by lessening the need to fly to and from navaid equipped airports and by increased efficiency of the required in-flight training. Technical feasibility was demonstrated and the operational feasibility of the concept was evaluated. Results indicated that the in-flight simulator is an effective training device for teaching IFR procedural skills.

  9. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  10. Premission and postmission simulation studies of the foot-controlled maneuvering unit for Skylab experiment T-020. [astronaut maneuvering equipment - space environment simulation

    NASA Technical Reports Server (NTRS)

    Hewes, D. E.; Glover, K. E.

    1975-01-01

    A Skylab experiment was conducted to study the maneuvering capabilities of astronauts using a relatively simple self-locomotive device, referred to as the foot-controlled maneuvering unit, and to evaluate the effectiveness of ground-based facilities simulating the operation of this device in weightless conditions of space. Some of the special considerations given in the definition and development of the experiment as related to the two ground-based simulators are reviewed. These simulators were used to train the test subjects and to obtain baseline data which could be used for comparison with the in-flight tests that were performed inside the Skylab orbital workshop. The results of both premission and postmission tests are discussed, and subjective comparisons of the in-flight and ground-based test conditions are presented.

  11. Status of the AIAA Modeling and Simulation Format Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2008-01-01

    The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.

  12. Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1977-01-01

    An implicit model-following flight controller is proposed. This controller is relatively simple in concept: it provides an input/output relationship that is approximately that of any selected second order system; it provides good gust alleviation; and it is self-trimming. The flight controller was applied to all axes of a comprehensive mathematical model of a lift-fan V/STOL transport. Power management controls and displays were designed to match the various modes of control provided by the flight controller. A piloted simulation was performed using a six degree of freedom simulator. The fixed-operating-point handling qualities throughout the powered lift flight envelope received pilot ratings of 3-1/2 or better. Approaches and vertical landings in IFR zero-zero conditions received pilot ratings varying from 2-1/2 to 4 depending on the type of approach and weather conditions.

  13. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  14. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...

  15. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...

  16. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...

  17. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...

  18. 14 CFR 60.35 - Specific full flight simulator compliance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE... the extent necessary for the training, testing, and/or checking that comprise the simulation portion...

  19. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  20. A Handbook of Flight Simulation Fidelity Required for Human Factors Research

    DOT National Transportation Integrated Search

    1995-12-01

    This report examines relevant literature for guidelines relative to the use of : flight simulators, ranging from full mission to part-task trainers, in addition : to requirements for flight crew experience and qualifications. Both sets of : guideline...

  1. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Waszak, Martin; Davidson, John B.; Ifju, Peter G.

    2002-01-01

    Micro aerial vehicles have been the subject of continued interest and development over the last several years. The majority of current vehicle concepts rely on rigid fixed wings or rotors. An alternate design based on an aeroelastic membrane wing has also been developed that exhibits desired characteristics in flight test demonstrations, competition, and in prior aerodynamics studies. This paper presents a simulation model and an assessment of flight control characteristics of the vehicle. Linear state space models of the vehicle associated with typical trimmed level flight conditions and which are suitable for control system design are presented as well. The simulation is used as the basis for the design of a measurement based nonlinear dynamic inversion control system and outer loop guidance system. The vehicle/controller system is the subject of ongoing investigations of autonomous and collaborative control schemes. The results indicate that the design represents a good basis for further development of the micro aerial vehicle for autonomous and collaborative controls research.

  2. Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?

    PubMed

    Wright, Stephen; O'Hare, David

    2015-03-01

    The analog dials in traditional GA aircraft cockpits are being replaced by integrated electronic displays, commonly referred to as glass cockpits. Pilots may be trained on glass cockpit aircraft or encounter them after training on traditional displays. The effects of glass cockpit displays on initial performance and potential transfer effects between cockpit display configurations have yet to be adequately investigated. Flight-naïve participants were trained on either a simulated traditional display cockpit or a simulated glass display cockpit. Flight performance was measured in a test flight using either the same or different cockpit display. Loss of control events and accuracy in controlling altitude, airspeed and heading, workload, and situational awareness were assessed. Preferences for cockpit display configurations and opinions on ease of use were also measured. The results revealed consistently poorer performance on the test flight for participants using the glass cockpit compared to the traditional cockpit. In contrast the post-flight questionnaire data revealed a strong subjective preference for the glass cockpit over the traditional cockpit displays. There was only a weak effect of prior training. The specific glass cockpit display used in this study was subjectively appealing but yielded poorer flight performance in participants with no previous flight experience than a traditional display. Performance data can contradict opinion data. The design of glass cockpit displays may present some difficulties for pilots in the very early stages of training. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Apollo oxygen tank stratification analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1972-01-01

    An analysis of flight performance of the Apollo 15 cryogenic oxygen tanks was conducted with the variable grid stratification math model developed earlier in the program. Flight conditions investigated were the CMP-EVA and one passive thermal control period which exhibited heater temperature characteristics not previously observed. Heater temperatures for these periods were simulated with the math model using flight acceleration data. Simulation results (heater temperature and tank pressure) compared favorably with the Apollo 15 flight data, and it was concluded that tank performance was nominal. Math model modifications were also made to improve the simulation accuracy. The modifications included the addition of the effects of the tank wall thermal mass and an improved system flow distribution model. The modifications improved the accuracy of simulated pressure response based on comparisons with flight data.

  4. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.

  5. LDSD POST2 Modeling Enhancements in Support of SFDT-2 Flight Operations

    NASA Technical Reports Server (NTRS)

    White, Joseph; Bowes, Angela L.; Dutta, Soumyo; Ivanov, Mark C.; Queen, Eric M.

    2016-01-01

    Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all flight phases from drop to splashdown for the Low-Density Supersonic Decelerator (LDSD) project's first and second Supersonic Flight Dynamics Tests (SFDT-1 and SFDT-2) which took place June 28, 2014 and June 8, 2015, respectively. This paper describes the modeling improvements incorporated into the LDSD POST2 simulations since SFDT-1 and presents how these modeling updates affected the predicted SFDT-2 performance and sensitivity to the mission design. The POST2 simulation flight dynamics support during the SFDT-2 launch, operations, and recovery is also provided.

  6. Statistical Trajectory Estimation Program (STEP) implementation for BLDT post flight trajectory simulation

    NASA Technical Reports Server (NTRS)

    Shields, W. E.

    1973-01-01

    Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.

  7. In-flight simulation investigation of rotorcraft pitch-roll cross coupling

    NASA Technical Reports Server (NTRS)

    Watson, Douglas C.; Hindson, William S.

    1988-01-01

    An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.

  8. 14 CFR 121.921 - Training devices and simulators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training devices and simulators. 121.921...

  9. 14 CFR 121.921 - Training devices and simulators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training devices and simulators. 121.921...

  10. 14 CFR 121.921 - Training devices and simulators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training devices and simulators. 121.921...

  11. 14 CFR 121.921 - Training devices and simulators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... devices and simulators. (a) Each flight training device or airplane simulator that will be used in an AQP... device or flight simulator qualification level: (1) Required evaluation of individual or crew proficiency... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training devices and simulators. 121.921...

  12. Multi-man flight simulator

    NASA Technical Reports Server (NTRS)

    Macdonald, G.

    1983-01-01

    A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.

  13. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging

    NASA Astrophysics Data System (ADS)

    Li, Yi; Reimann, Bodo; Eggers, Thino

    2016-11-01

    The hot rocket staging is to separate the lowest stage by directly ignite the continuing-stage-motor. During the hot staging, the rocket stages move in a harsh dynamic environment. In this work, the hot staging dynamics of a multistage rocket is studied using the coupled simulation of Computational Fluid Dynamics and Flight Mechanics. Plume modeling is crucial for a coupled simulation with high fidelity. A 2-species-gas model is proposed to simulate the flow system of the rocket during the staging: the free-stream is modeled as "cold air" and the exhausted plume from the continuing-stage-motor is modeled with an equivalent calorically-perfect-gas that approximates the properties of the plume at the nozzle exit. This gas model can well comprise between the computation accuracy and efficiency. In the coupled simulations, the Navier-Stokes equations are time-accurately solved in moving system, with which the Flight Mechanics equations can be fully coupled. The Chimera mesh technique is utilized to deal with the relative motions of the separated stages. A few representative staging cases with different initial flight conditions of the rocket are studied with the coupled simulation. The torque led by the plume-induced-flow-separation at the aft-wall of the continuing-stage is captured during the staging, which can assist the design of the controller of the rocket. With the increasing of the initial angle-of-attack of the rocket, the staging quality becomes evidently poorer, but the separated stages are generally stable when the initial angle-of-attack of the rocket is small.

  14. STS-27 Atlantis - OV-104, Commander Gibson on SMS forward flight deck

    NASA Image and Video Library

    1988-02-03

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.

  15. V/STOL flight simulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for a new research aircraft to provide in-flight V/STOL simulation were reviewed. The required capabilities were based on known limitations of ground based simulation and past/current experience with V/STOL inflight simulation. Results indicate that V/STOL inflight simulation capability is needed to aid in the design and development of high performance V/STOL aircraft. Although a new research V/STOL aircraft is preferred, an interim solution can be provided by use of the X-22A, the CH-47B, or the 4AV-8B aircraft modified for control/display flight research.

  16. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.

  17. Above-real-time training (ARTT) improves transfer to a simulated flight control task.

    PubMed

    Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin

    2012-06-01

    The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.

  18. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  19. Effects of workload preview on task scheduling during simulated instrument flight.

    PubMed

    Andre, A D; Heers, S T; Cashion, P A

    1995-01-01

    Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.

  20. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    NASA Technical Reports Server (NTRS)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  1. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.

  2. Studying permethrin exposure in flight attendants using a physiologically based pharmacokinetic model

    PubMed Central

    Wei, Binnian; Isukapalli, Sastry S.; Weisel, Clifford P.

    2014-01-01

    Assessment of potential health risks to flight attendants from exposure to pyrethroid insecticides, used for aircraft disinsection, is limited because of (a) lack of information on exposures to these insecticides, and (b) lack of tools for linking these exposures to biomarker data. We developed and evaluated a physiologically based pharmacokinetic (PBPK) model to assess the exposure of flight attendants to the pyrethroid insecticide permethrin attributable to aircraft disinsection. The permethrin PBPK model was developed by adapting previous models for pyrethroids, and was parameterized using currently available metabolic parameters for permethrin. The human permethrin model was first evaluated with data from published human studies. Then, it was used to estimate urinary metabolite concentrations of permethrin in flight attendants who worked in aircrafts, which underwent residual and pre-flight spray treatments. The human model was also applied to analyze the toxicokinetics following permethrin exposures attributable to other aircraft disinsection scenarios. Predicted levels of urinary 3-phenoxybenzoic acid (3-PBA), a metabolite of permethrin, following residual disinsection treatment were comparable to the measurements made for flight attendants. Simulations showed that the median contributions of the dermal, oral and inhalation routes to permethrin exposure in flight attendants were 83.5%, 16.1% and 0.4% under residual treatment scenario, respectively, and were 5.3%, 5.0% and 89.7% under pre-flight spray scenario, respectively. The PBPK model provides the capability to simulate the toxicokinetic profiles of permethrin, and can be used in the studies on human exposure to permethrin. PMID:23462847

  3. Risk for intracranial pressure increase related to enclosed air in post-craniotomy patients during air ambulance transport: a retrospective cohort study with simulation.

    PubMed

    Brändström, Helge; Sundelin, Anna; Hoseason, Daniela; Sundström, Nina; Birgander, Richard; Johansson, Göran; Winsö, Ola; Koskinen, Lars-Owe; Haney, Michael

    2017-05-12

    Post-craniotomy intracranial air can be present in patients scheduled for air ambulance transport to their home hospital. We aimed to assess risk for in-flight intracranial pressure (ICP) increases related to observed intracranial air volumes, hypothetical sea level pre-transport ICP, and different potential flight levels and cabin pressures. A cohort of consecutive subdural hematoma evacuation patients from one University Medical Centre was assessed with post-operative intracranial air volume measurements by computed tomography. Intracranial pressure changes related to estimated intracranial air volume effects of changing atmospheric pressure (simulating flight and cabin pressure changes up to 8000 ft) were simulated using an established model for intracranial pressure and volume relations. Approximately one third of the cohort had post-operative intracranial air. Of these, approximately one third had intracranial air volumes less than 11 ml. The simulation estimated that the expected changes in intracranial pressure during 'flight' would not result in intracranial hypertension. For intracranial air volumes above 11 ml, the simulation suggested that it was possible that intracranial hypertension could develop 'inflight' related to cabin pressure drop. Depending on the pre-flight intracranial pressure and air volume, this could occur quite early during the assent phase in the flight profile. DISCUSSION: These findings support the idea that there should be radiographic verification of the presence or absence of intracranial air after craniotomy for patients planned for long distance air transport. Very small amounts of air are clinically inconsequential. Otherwise, air transport with maintained ground-level cabin pressure should be a priority for these patients.

  4. Chemical research projects office fuel tank sealants review. [flight testing of fluorosilicone sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1974-01-01

    The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.

  5. Interactive Graphics Simulator: Design, Development, and Effectiveness/Cost Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Pieper, William J.; And Others

    This study was initiated to design, develop, implement, and evaluate a videodisc-based simulator system, the Interactive Graphics Simulator (IGS) for 6883 Converter Flight Control Test Station training at Lowry Air Force Base, Colorado. The simulator provided a means for performing task analysis online, developing simulations from the task…

  6. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Ryder, D. R.

    1973-01-01

    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  7. Integration of visual and motion cues for simulator requirements and ride quality investigation. [computerized simulation of aircraft landing, visual perception of aircraft pilots

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1975-01-01

    Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.

  8. Urea, sugar, nonesterified fatty acid and cholesterol content of the blood in prolonged weightlessness

    NASA Technical Reports Server (NTRS)

    Balakhovskiy, I. S.; Orlova, T. A.

    1975-01-01

    Biochemical blood composition studies on astronauts during weightlessness flight simulation tests and during actual space flights showed some disturbances of metabolic processes. Increases in blood sugar, fatty acid and cholesterol, and urea content are noted.

  9. Use of the flight simulator in the design of a STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.

    1972-01-01

    Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.

  10. First Integrated Flight Simulation For STS 114

    NASA Image and Video Library

    2004-10-13

    JSC2004-E-45138 (13 October 2004) --- Astronaut Stephen N. Frick monitors communications at the spacecraft communicator (CAPCOM) console in the Shuttle Flight Control Room (WFCR) in Johnson Space Center’s (JSC) Mission Control Center (MCC) with the STS-114 crewmembers during a fully-integrated simulation on October 13. The seven member crew was in a JSC-based simulator during the sims. The dress rehearsal of Discovery's rendezvous and docking with the International Space Station (ISS) was the first flight-specific training for the Space Shuttle's return to flight.

  11. Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    NASA Technical Reports Server (NTRS)

    Stephens, Chad L.; Kennedy, Kellie D.; Crook, Brenda L.; Williams, Ralph A.; Schutte, Paul

    2017-01-01

    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety.

  12. Results of a Flight Simulation Software Methods Survey

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

  13. Simulation at Dryden Flight Research Facility from 1957 to 1982

    NASA Technical Reports Server (NTRS)

    Smith, John P.; Schilling, Lawrence J.; Wagner, Charles A.

    1989-01-01

    The Dryden Flight Research Facility has been a leader in developing simulation as an integral part of flight test research. The history of that effort is reviewed, starting in 1957 and continuing to the present time. The contributions of the major program activities conducted at Dryden during this 25-year period to the development of a simulation philosophy and capability is explained.

  14. STS-26 simulation activities in JSC Mission Control Center (MCC)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).

  15. STS-26 simulation activities in JSC Mission Control Center (MCC)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.

  16. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  17. Operation and evaluation of the terminal configured vehicle mission simulator in an automated terminal area metering and spacing ATC environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1979-01-01

    The development of a mission simulator for use in the Terminal Configured Vehicle (TCV) program is outlined. The broad objectives of the TCV program are to evaluate new concepts in airborne systems and in operational flight procedures. These evaluations are directed toward improving terminal area capacity and efficiency, improving approach and landing capability in adverse weather, and reducing noise impact in the terminal area. A description is given of the design features and operating principles of the two major components of the TCV Mission Simulator: the TCV Aft Flight Deck Simulation and the Terminal Area Air Traffic Model Simulation, and their merger to form the TCV Mission Simulator. The first research study conducted in the Mission Simulator is presented along with some preliminary results.

  18. Effects of visual, seat, and platform motion during flight simulator air transport pilot training and evaluation

    DOT National Transportation Integrated Search

    2009-04-27

    Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...

  19. Training monitoring skills in helicopter pilots.

    PubMed

    Potter, Brian A; Blickensderfer, Elizabeth L; Boquet, Albert J

    2014-05-01

    Prior research has indicated that ineffective pilot monitoring has been associated with aircraft accidents. Despite this finding, empirical research concerning pilot monitoring skill training programs is nearly nonexistent. E-learning may prove to be an effective method to foster nontechnical flight skills, including monitoring. This study examined the effect of using e-learning to enhance helicopter aircrew monitoring skill performance. The design was a posttest only field study. Forty-four helicopter pilots completed either an e-learning training module or a control activity and then flew two scenarios in a high-fidelity flight simulator. Learner reactions and knowledge gained were assessed immediately following the e-learning module. Two observer raters assessed behaviors and performance outcomes using recordings of the simulation flights. Subjects who completed the e-learning training module scored almost twice as high as did the control group on the administered knowledge test (experimental group, mean = 92.8%; control group, mean = 47.7%) and demonstrated up to 150% more monitoring behaviors during the simulated flights than the control subjects. In addition, the participating pilots rated the course highly. The results supported the hypothesis that a relatively inexpensive and brief training course implemented through e-learning can foster monitoring skill development among helicopter pilots.

  20. The effect of simulator motion cues on initial training of airline pilots

    DOT National Transportation Integrated Search

    2005-08-15

    Two earlier studies conducted in the framework of the Federal Aviation Administration/Volpe Flight Simulator Human Factors Program examining the effect of simulator motion on recurrent training and evaluation of airline pilots have found that in the ...

  1. Upset Simulation and Training Initiatives for U.S. Navy Commercial Derived Aircraft

    NASA Technical Reports Server (NTRS)

    Donaldson, Steven; Priest, James; Cunningham, Kevin; Foster, John V.

    2012-01-01

    Militarized versions of commercial platforms are growing in popularity due to many logistical benefits in the form of commercial off-the-shelf (COTS) parts, established production methods, and commonality for different certifications. Commercial data and best practices are often leveraged to reduce procurement and engineering development costs. While the developmental and cost reduction benefits are clear, these militarized aircraft are routinely operated in flight at significantly different conditions and in significantly different manners than for routine commercial flight. Therefore they are at a higher risk of flight envelope exceedance. This risk may lead to departure from controlled flight and/or aircraft loss1. Historically, the risk of departure from controlled flight for military aircraft has been mitigated by piloted simulation training and engineering analysis of typical aircraft response. High-agility military aircraft simulation databases are typically developed to include high angles of attack (AoA) and sideslip due to the dynamic nature of their missions and have been developed for many tactical configurations over the previous decades. These aircraft simulations allow for a more thorough understanding of the vehicle flight dynamics characteristics at high AoA and sideslip. In recent years, government sponsored research on transport airplane aerodynamic characteristics at high angles of attack has produced a growing understanding of stall/post-stall behavior. This research along with recent commercial airline training initiatives has resulted in improved understanding of simulator-based training requirements and simulator model fidelity.2-5 In addition, inflight training research over the past decade has produced a database of pilot performance and recurrency metrics6. Innovative solutions to aerodynamically model large commercial aircraft for upset conditions such as high AoA, high sideslip, and ballistic damage, as well as capability to accurately account for scaling factors, is necessary to develop realistic engineering and training simulations. Such simulations should significantly reduce the risk of departure from controlled flight, loss of aircraft, and ease the airworthiness certification process. The characteristics of commercial derivative aircraft are exemplified by the P-8A Multi-mission Maritime Aircraft (MMA) aircraft, and the largest benefits of initial investigation are likely to be yielded from this platform. The database produced would also be utilized by flight dynamics engineers as a means to further develop and investigate vehicle flight characteristics as mission tactics evolve through the years ahead. This paper will describe ongoing efforts by the U.S. Navy to develop a methodology for simulation and training for large commercial-derived transport aircraft at unusual attitudes, typically experienced during an aircraft upset. This methodology will be applied to a representative Navy aircraft (P-8A) and utilized to develop a robust simulation that should accurately represent aircraft response in these extremes. Simulation capabilities would then extend to flight dynamics analysis and simulation, as well as potential training applications. Recent evaluations of integrated academic, ground-based simulation, and in-flight upset training will be described along with important lessons learned, specific to military requirements.

  2. Electrogastrographic and autonomic responses during oculovestibular recoupling in flight simulation.

    PubMed

    Cevette, Michael J; Pradhan, Gaurav N; Cocco, Daniela; Crowell, Michael D; Galea, Anna M; Bartlett, Jennifer; Stepanek, Jan

    2014-01-01

    Simulator sickness causes vestibulo-autonomic responses that increase sympathetic activity and decrease parasympathetic activity. The purpose of the study was to quantify these responses through electrogastrography and cardiac interbeat intervals during flight simulation. There were 29 subjects that were randomly assigned to 2 parallel arms: (1) oculovestibular recoupling, where galvanic vestibular stimulation was synchronous with the visual field; and (2) control. Electrogastrography and interbeat interval data were collected during baseline, simulation, and post-simulation periods. A simulator sickness questionnaire was administered. Statistically significant differences were observed in percentage of recording time with the dominant frequency of electrogastrography in normogastric and bradygastric domains between the oculovestibular recoupling and control groups. Normogastria was dominant during simulation in the oculovestibular recoupling group. In the control group, the percentage of recording time with the dominant frequency decreased by 22% in normogastria and increased by 20% in bradygastria. The percentage change of the dominant power instability coefficient from baseline to simulation was 26% in the oculovestibular recoupling group vs. 108% in the control group. The power of high-frequency components for interbeat intervals did not change significantly in the oculovestibular recoupling group and was decreased during simulation in the control group. Electrogastrography and interbeat intervals are sensitive indices of autonomic changes in subjects undergoing flight simulation. These data demonstrate the potential of oculovestibular recoupling to stabilize gastric activity and cardiac autonomic changes altered during simulator and motion sickness.

  3. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  4. Numerical Solutions for the CAWAPI Configuration on Structured Grids at NASA LaRC, United States. Chapter 7

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Abdol-Hamid, Khaled S.; Massey, Steven J.

    2009-01-01

    In this chapter numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-epsilon model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0 deg to 20 deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The Algebraic Stress Model (ASM) results are closer to the flight data than the k-epsilon model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-epsilon predictions.

  5. Simulator study of a pictorial display for general aviation instrument flight

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1982-01-01

    A simulation study of a computer drawn pictorial display involved a flight task that included an en route segment, terminal area maneuvering, a final approach, a missed approach, and a hold. The pictorial display consists of the drawing of boxes which either move along the desired path or are fixed at designated way points. Two boxes may be shown at all times, one related to the active way point and the other related to the standby way point. Ground tracks and vertical profiles of the flights, time histories of the final approach, and comments were obtained from time pilots. The results demonstrate the accuracy and consistency with which the segments of the flight are executed. The pilots found that the display is easy to learn and to use; that it provides good situation awareness, and that it could improve the safety of flight. The small size of the display, the lack of numerical information on pitch, roll, and heading angles, and the lack of definition of the boundaries of the conventional glide slope and localizer areas were criticized.

  6. F-18 simulation with Simulation Group Lead Martha Evans at the controls

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Simulation Group Leader Martha Evans is seen here at the controls of the F-18 aircraft simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  7. Methods of sound simulation and applications in flight simulators

    NASA Technical Reports Server (NTRS)

    Gaertner, K. P.

    1980-01-01

    An overview of methods for electronically synthesizing sounds is presented. A given amount of hardware and computer capacity places an upper limit on the degree and fidelity of realism of sound simulation which is attainable. Good sound realism for aircraft simulators can be especially expensive because of the complexity of flight sounds and their changing patterns through time. Nevertheless, the flight simulator developed at the Research Institute for Human Engineering, West Germany, shows that it is possible to design an inexpensive sound simulator with the required acoustic properties using analog computer elements. The characteristics of the sub-sound elements produced by this sound simulator for take-off, cruise and approach are discussed.

  8. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  9. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  10. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  11. KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  12. KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

    NASA Image and Video Library

    2004-01-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.

  13. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    NASA Astrophysics Data System (ADS)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  14. Development and Utility of a Piloted Flight Simulator for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Ranaudo, Richard J.; Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.

    2003-01-01

    A piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD), which uses low cost desktop components and a generic cockpit replication is being developed. The purpose of this device is to demonstrate the effectiveness of its use for training pilots to recognize and recover from aircraft handling anomalies that result from airframe ice formations. High-fidelity flight simulation models for various baseline (non-iced) and iced configurations were developed from wind tunnel tests of a subscale DeHavilland DHC-6 Twin Otter aircraft model. These simulation models were validated with flight test data from the NASA Twin Otter Icing Research Aircraft, which included the effects of ice on wing and tail stall characteristics. These simulation models are being implemented into an ICEFTD that will provide representative aircraft characteristics due to airframe icing. Scenario-based exercises are being constructed to give an operational-flavor to the simulation. Training pilots will learn to recognize iced aircraft characteristics from the baseline, and will practice and apply appropriate recovery procedures to a handling event.

  15. An Intercomparison and Evaluation of Aircraft-Derived and Simulated CO from Seven Chemical Transport Models During the TRACE-P Experiment

    NASA Technical Reports Server (NTRS)

    Kiley, C. M.; Fuelberg, Henry E.; Palmer, P. I.; Allen, D. J.; Carmichael, G. R.; Jacob, D. J.; Mari, C.; Pierce, R. B.; Pickering, K. E.; Tang, Y.

    2002-01-01

    Four global scale and three regional scale chemical transport models are intercompared and evaluated during NASA's TRACE-P experiment. Model simulated and measured CO are statistically analyzed along aircraft flight tracks. Results for the combination of eleven flights show an overall negative bias in simulated CO. Biases are most pronounced during large CO events. Statistical agreements vary greatly among the individual flights. Those flights with the greatest range of CO values tend to be the worst simulated. However, for each given flight, the models generally provide similar relative results. The models exhibit difficulties simulating intense CO plumes. CO error is found to be greatest in the lower troposphere. Convective mass flux is shown to be very important, particularly near emissions source regions. Occasionally meteorological lift associated with excessive model-calculated mass fluxes leads to an overestimation of mid- and upper- tropospheric mixing ratios. Planetary Boundary Layer (PBL) depth is found to play an important role in simulating intense CO plumes. PBL depth is shown to cap plumes, confining heavy pollution to the very lowest levels.

  16. An Analytical Comparison of the Fidelity of "Large Motion" Versus "Small Motion" Flight Simulators in a Rotorcraft Side-Step Task

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1999-01-01

    This paper presents an analytical and experimental methodology for studying flight simulator fidelity. The task was a rotorcraft bob-up/down maneuver in which vertical acceleration constituted the motion cue. The task considered here is aside-step maneuver that differs from the bob-up one important way: both roll and lateral acceleration cues are available to the pilot. It has been communicated to the author that in some Verticle Motion Simulator (VMS) studies, the lateral acceleration cue has been found to be the most important. It is of some interest to hypothesize how this motion cue associated with "outer-loop" lateral translation fits into the modeling procedure where only "inner-loop " motion cues were considered. This Note is an attempt at formulating such an hypothesis and analytically comparing a large-motion simulator, e.g., the VMS, with a small-motion simulator, e.g., a hexapod.

  17. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  18. The Interaction of the Space Shuttle Launch and Entry Suits and Sustained Weightless on Astronaut Egress Locomotion

    NASA Technical Reports Server (NTRS)

    Greenisen, M. C.; Bishop, P. A.; Sothmann, M.

    2008-01-01

    The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.

  19. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  20. Users guide for guidance and control Launch and Abort Simulation for Spacecraft (LASS), volume 1

    NASA Technical Reports Server (NTRS)

    Havig, T. F.; Backman, H. D.

    1972-01-01

    The mathematical models and computer program which are used to implement LASS are described. The computer program provides for a simulation of boost to orbit and abort capability from boost trajectories to a prescribed target. The abort target provides a decision point for engine shutdown from which the vehicle coasts to the vicinity of the selected abort recovery site. The simulation is a six degree of freedom simulation describing a rigid body. The vehicle is influenced by forces and moments from nondistributed aerodynamics. An adaptive autopilot is provided to control vehicle attitudes during powered and unpowered flight. A conventional autopilot is provided for study of vehicle during powered flight.

Top