A flexible flight display research system using a ground-based interactive graphics terminal
NASA Technical Reports Server (NTRS)
Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.
1975-01-01
Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.
DOT National Transportation Integrated Search
1993-03-17
The Flight Management System (FMS) is the principal means by which navigation and in-flight : performance optimization take place in most current aircarriers and many business jets. The : FMS integrates conventional airplane avionics capabilities wit...
ASTP fluid transfer measurement experiment. [using breadboard model
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The ASTP fluid transfer measurement experiment flight system design concept was verified by the demonstration and test of a breadboard model. In addition to the breadboard effort, a conceptual design of the corresponding flight system was generated and a full scale mockup fabricated. A preliminary CEI specification for the flight system was also prepared.
New experimental approaches to the biology of flight control systems.
Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R
2008-01-01
Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.
Shuttle mission simulator software conceptual design
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.
Design of an expert-system flight status monitor
NASA Technical Reports Server (NTRS)
Regenie, V. A.; Duke, E. L.
1985-01-01
The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.
Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.
1975-01-01
The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.
Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben
2014-01-01
This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
A Practical Approach to Starting Fission Surface Power Development
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.
NASA Technical Reports Server (NTRS)
Willis, N. C., Jr.; Neel, J. M.
1972-01-01
Design concepts and test philosophies which may contribute to the development of a low-cost maintainable environmental control/life support system are examined. It is shown that the concept of producing flight prototype equipment during a developmental program can reduce the eventual cost of a flight system by incorporating realistic flight-type design requirements without imposing exacting design features and stringent controls. A flight prototype design is one that can be converted readily into an actual flight design without any conceptual change. Modularity of subsystems provides the system and the program a degree of flexibility relative to the eventual vehicle configuration and technological improvements.
A smoke generator system for aerodynamic flight research
NASA Technical Reports Server (NTRS)
Richwine, David M.; Curry, Robert E.; Tracy, Gene V.
1989-01-01
A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.
Designing for Annual Spacelift Performance
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Zapata, Edgar
2017-01-01
This paper presents a methodology for approaching space launch system design from a total architectural point of view. This different approach to conceptual design is contrasted with traditional approaches that focus on a single set of metrics for flight system performance, i.e., payload lift per flight, vehicle mass, specific impulse, etc. The approach presented works with a larger set of metrics, including annual system lift, or "spacelift" performance. Spacelift performance is more inclusive of the flight production capability of the total architecture, i.e., the flight and ground systems working together as a whole to produce flights on a repeated basis. In the proposed methodology, spacelift performance becomes an important design-for-support parameter for flight system concepts and truly advanced spaceport architectures of the future. The paper covers examples of existing system spacelift performance as benchmarks, points out specific attributes of space transportation systems that must be greatly improved over these existing designs, and outlines current activity in this area.
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.
2014-01-01
The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.
Conceptual study and key technology development for Mars Aeroflyby sample collection
NASA Astrophysics Data System (ADS)
Fujita, K.; Ozawa, T.; Okudaira, K.; Mikouchi, T.; Suzuki, T.; Takayanagi, H.; Tsuda, Y.; Ogawa, N.; Tachibana, S.; Satoh, T.
2014-01-01
Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.
1990-01-01
Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.
2014-01-01
The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. This presentation provides highlights of a technical paper that outlines this ultimate goal, including plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.
2014-01-01
The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.
ACSYNT inner loop flight control design study
NASA Technical Reports Server (NTRS)
Bortins, Richard; Sorensen, John A.
1993-01-01
The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between aircraft and flight control system design parameters.
The Max Launch Abort System - Concept, Flight Test, and Evolution
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
2014-01-01
The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.
Modular biowaste monitoring system
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1975-01-01
The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.
Cognitive network organization and cockpit automation
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, R. J.; Paap, K. R.
1985-01-01
Attention is given to a technique for the derivation of pilot cognitive networks from empirical data, which has been successfully used to guide the redesign of the Control Display Unit that serves as the primary interface of the complex flight management system being developed by NASA's Advanced Concepts Flight Simulator program. The 'pathfinder' algorithm of Schvaneveldt et al. (1985) is used to obtain the conceptual organization of four pilots by generating a family of link-weighted networks from a set of psychological distance data derived through similarity ratings. The degree of conceptual agreement between pilots is assessed, and the means of translating a cognitive network into a menu structure are noted.
Crew systems and flight station concepts for a 1995 transport aircraft
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1983-01-01
Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Hewett, M. D.
1991-01-01
The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.
Conceptual model for collision detection and avoidance for runway incursion prevention
NASA Astrophysics Data System (ADS)
Latimer, Bridgette A.
The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State Processor, Projection, Collision Detection, and Alerting and Resolution. The underlying algorithms in the Projection module are linear projection and Kalman filtering which are used to estimate the future state of the aircraft. The Resolution and Alerting module is comprised of two algorithms: a generic alerting algorithm and the potential fields algorithm [71]. The conceptual model was created using Enterprise Architect RTM and MATLAB RTM was used to code the methods and to simulate conflict scenarios.
X-43D Conceptual Design and Feasibility Study
NASA Technical Reports Server (NTRS)
Johnson, Donald B.; Robinson, Jeffrey S.
2005-01-01
NASA s Next Generation Launch Technology (NGLT) Program, in conjunction with the office of the Director of Defense Research and Engineering (DDR&E), developed an integrated hypersonic technology demonstration roadmap. This roadmap is an integral part of the National Aerospace Initiative (NAI), a multi-year, multi-agency cooperative effort to invest in and develop, among other things, hypersonic technologies. This roadmap contains key ground and flight demonstrations required along the path to developing a reusable hypersonic space access system. One of the key flight demonstrations required for systems that will operate in the high Mach number regime is the X-43D. As currently conceived, the X-43D is a Mach 15 flight test vehicle that incorporates a hydrogen-fueled scramjet engine. The purpose of the X-43D is to gather high Mach number flight environment and engine operability information which is difficult, if not impossible, to gather on the ground. During 2003, the NGLT Future Hypersonic Flight Demonstration Office initiated a feasibility study on the X-43D. The objective of the study was to develop a baseline conceptual design, assess its performance, and identify the key technical issues. The study also produced a baseline program plan, schedule, and cost, along with a list of key programmatic risks.
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Urine sampling and collection system
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Reinhardt, C. G.
1971-01-01
This specification defines the performance and design requirements for the urine sampling and collection system engineering model and establishes requirements for its design, development, and test. The model shall provide conceptual verification of a system applicable to manned space flight which will automatically provide for collection, volume sensing, and sampling of urine.
Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development
NASA Astrophysics Data System (ADS)
Mehta, U.
Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.
An Overview of an Experimental Demonstration Aerotow Program
NASA Technical Reports Server (NTRS)
Murray, James E.; Bowers, Albion H.; Lokos, William A.; Peters, Todd L.; Gera, Joseph
1998-01-01
An overview of an experimental demonstration of aerotowing a delta-wing airplane with low-aspect ratio and relatively high wing loading is presented. Aerotowing of future space launch configurations is a new concept, and the objective of the work described herein is to demonstrate the aerotow operation using an airplane configuration similar to conceptual space launch vehicles. Background information on the use of aerotow for a space launch vehicle is presented, and the aerotow system used in this demonstration is described. The ground tests, analytical studies, and flight planning used to predict system behavior and to enhance flight safety are detailed. The instrumentation suite and flight test maneuvers flown are discussed, preliminary performance is assessed, and flight test results are compared with the preflight predictions.
A conceptual design of an unmanned test vehicle using an airbreathing propulsion system
NASA Technical Reports Server (NTRS)
1992-01-01
According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.
Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.
2016-01-01
The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.
Greased Lightning (GL-10) Performance Flight Research: Flight Data Report
NASA Technical Reports Server (NTRS)
McSwain, Robert G.; Glaab, Louis J.; Theodore, Colin R.; Rhew, Ray D. (Editor); North, David D. (Editor)
2017-01-01
Modern aircraft design methods have produced acceptable designs for large conventional aircraft performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS (Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity conceptual design tools estimated the (L/D)( sub max)of the GL-10 50% sub-scale flight model to be 16. Experimentally measured (L/D)( sub max) for the GL-10 50% scale flight model was 7.2. The aerodynamic performance predicted versus measured highlights the complexity of wing and nacelle interactions which is not currently accounted for in existing low fidelity tools.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.
2010-01-01
The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2004-01-01
An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.
Cockpit control system conceptual design
NASA Technical Reports Server (NTRS)
Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo
1993-01-01
The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.
Conceptual design study Science and Application Space Platform SASP. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Runge, F. C.
1980-01-01
The system design philosphy applied in the development of this platform concept is summarized. The system is to provide for simple, low cost, initial capability of accommodating Spacelab payloads that are modified for long duration flight. The supporting research and technology are also summarized.
Approach to an Affordable and Productive Space Transportation System
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Robinson, John W.
2012-01-01
This paper describes an approach for creating space transportation architectures that are affordable, productive, and sustainable. The architectural scope includes both flight and ground system elements, and focuses on their compatibility to achieve a technical solution that is operationally productive, and also affordable throughout its life cycle. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper follows up previous work by using a structured process to derive examples of conceptual architectures that integrate a number of advanced concepts and technologies. The examples are not intended to provide a near-term alternative architecture to displace current near-term design and development activity. Rather, the examples demonstrate an approach that promotes early investments in advanced system concept studies and trades (flight and ground), as well as in advanced technologies with the goal of enabling highly affordable, productive flight and ground space transportation systems.
Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.
1994-01-01
Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.
1981-07-01
System 13 (7) Flight Critical Power 15 (8) Power Bus Configuration 16 b. System Control and Protection 20...includes the main buses, external power receptacles and distribution feeders. The function of the distribution protection system * is mainly to provide...TechnicaI rea Manager Power Systems Branch Power Systems B nch Aerospace Power Division Aerospace Power Division FOR .AKE D . REAMS Chief,
Multi-reactor power system configurations for multimegawatt nuclear electric propulsion
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
1991-01-01
A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.
Model and Procedure for an Objective Maneuver Analysis. Technical Report.
ERIC Educational Resources Information Center
Brecke, Fritz; Gerlach, Vernon
The problem of generating verbal cues to facilitate psychomotor skill training is considered in the context of flight instruction. The flying task is conceptualized in terms of a pilot-aircraft closed loop control system. The control system model effectively illustrates the three types of informational stimuli necessary for the pilot's effective…
Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report
NASA Technical Reports Server (NTRS)
Bisset, J. W.; Howe, D. C.
1983-01-01
The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.
NASA Technical Reports Server (NTRS)
Sexton, G. A.
1984-01-01
Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.
GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.
2010-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
Handling Qualities Optimization for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Theodore, Colin R.; Berger, Tom
2016-01-01
Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.
Organic Rankine Kilowatt Isotope Power System. Final phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-15
On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight systemmore » in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.« less
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey
NASA Technical Reports Server (NTRS)
Sanger, George F.
1988-01-01
A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.
NASA Technical Reports Server (NTRS)
Macdonald, G.
1983-01-01
A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
NASA Technical Reports Server (NTRS)
Myers, Thomas T.; Mcruer, Duane T.
1988-01-01
The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.
Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)
NASA Technical Reports Server (NTRS)
Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth
1994-01-01
This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.
Conceptual Design of a Tiltrotor Transport Flight Deck
NASA Technical Reports Server (NTRS)
Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of a tiltrotor transport may be effected through an inceptor other than the current center sticks in the XV-15 and V-22. Simulation and flight investigations of side-stick control inceptors for rotorcraft, augmented by a 1985 flight test of a side-stick controller in the XV-15 suggest the potential of such a device in a transport cockpit.
Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.; Moatamedi, M.
2014-12-01
The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.
1975-06-01
the Air Force Flight Dynamics Laboratory for use in conceptual and preliminary designs pauses of weapon system development. The methods are a...trade study method provides ai\\ iterative capability stemming from a direct interface with design synthesis programs. A detailed cost data base ;ind...system for data expmjsion is provided. The methods are designed for ease in changing cost estimating relationships and estimating coefficients
Prototype Conflict Alerting Logic for Free Flight
NASA Technical Reports Server (NTRS)
Yang, Lee C.; Kuchar, James K.
1997-01-01
This paper discusses the development of a prototype alerting system for a conceptual Free Flight environment. The concept assumes that datalink between aircraft is available and that conflicts are primarily resolved on the flight deck. Four alert stages are generated depending on the likelihood of a conflict. If the conflict is not resolved by the flight crews, Air Traffic Control is notified to take over separation authority. The alerting logic is based on probabilistic analysis through modeling of aircraft sensor and trajectory uncertainties. Monte Carlo simulations were used over a range of encounter situations to determine conflict probability. The four alert stages were then defined based on probability of conflict and on the number of avoidance maneuvers available to the flight crew. Preliminary results from numerical evaluations and from a piloted simulator study at NASA Ames Research Center are summarized.
Gravity Probe B data system description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.
2015-11-01
The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.
Developmental Flight Instrumentation System for the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Crawford, Kevin; Thomas, John
2006-01-01
The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.
Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft
NASA Technical Reports Server (NTRS)
Franklin, James A.
1993-01-01
As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.
Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft
NASA Technical Reports Server (NTRS)
Franklin, James A.
1993-01-01
As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.
Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System
2016-06-01
test results. It includes an analysis of the failure modes encountered during flight experimentation , methodology used for conducting coordinate...and experimentation . Additionally, the current and desired end state of the research is addressed. Finally, this chapter outlines the methodology ...preliminary design phases are utilized to investigate and develop a potentially low-cost alternative to existing systems. Using an Agile methodology
Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base
NASA Technical Reports Server (NTRS)
Mcruer, Duane T.; Myers, Thomas T.
1988-01-01
The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.
Flight crew aiding for recovery from subsystem failures
NASA Technical Reports Server (NTRS)
Hudlicka, E.; Corker, K.; Schudy, R.; Baron, Sheldon
1990-01-01
Some of the conceptual issues associated with pilot aiding systems are discussed and an implementation of one component of such an aiding system is described. It is essential that the format and content of the information the aiding system presents to the crew be compatible with the crew's mental models of the task. It is proposed that in order to cooperate effectively, both the aiding system and the flight crew should have consistent information processing models, especially at the point of interface. A general information processing strategy, developed by Rasmussen, was selected to serve as the bridge between the human and aiding system's information processes. The development and implementation of a model-based situation assessment and response generation system for commercial transport aircraft are described. The current implementation is a prototype which concentrates on engine and control surface failure situations and consequent flight emergencies. The aiding system, termed Recovery Recommendation System (RECORS), uses a causal model of the relevant subset of the flight domain to simulate the effects of these failures and to generate appropriate responses, given the current aircraft state and the constraints of the current flight phase. Since detailed information about the aircraft state may not always be available, the model represents the domain at varying levels of abstraction and uses the less detailed abstraction levels to make inferences when exact information is not available. The structure of this model is described in detail.
Autonomous rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.
1991-01-01
In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.
Prototype Flight Management Capabilities to Explore Temporal RNP Concepts
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.
2008-01-01
Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.
Project management techniques for highly integrated programs
NASA Technical Reports Server (NTRS)
Stewart, J. F.; Bauer, C. A.
1983-01-01
The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.
NASA Technical Reports Server (NTRS)
Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.
1992-01-01
Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation.
NASA Technical Reports Server (NTRS)
Thakoor, Sarita
1999-01-01
This paper presents, in viewgraph form, the first NASA/JPL workshop on Biomorphic Explorers for future missions. The topics include: 1) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 2) Biomorphic Flight Systems: Vision; 3) Biomorphic Explorer: Conceptual Design; 4) Biomorphic Gliders; 5) Summary and Roadmap; 6) Coordinated/Cooperative Exploration Scenario; and 7) Applications. This paper also presents illustrations of the various biomorphic explorers.
Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion
NASA Technical Reports Server (NTRS)
Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.
1984-01-01
Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.
NASA Technical Reports Server (NTRS)
Harper, Richard E.; Elks, Carl
1995-01-01
An Army Fault Tolerant Architecture (AFTA) has been developed to meet real-time fault tolerant processing requirements of future Army applications. AFTA is the enabling technology that will allow the Army to configure existing processors and other hardware to provide high throughput and ultrahigh reliability necessary for TF/TA/NOE flight control and other advanced Army applications. A comprehensive conceptual study of AFTA has been completed that addresses a wide range of issues including requirements, architecture, hardware, software, testability, producibility, analytical models, validation and verification, common mode faults, VHDL, and a fault tolerant data bus. A Brassboard AFTA for demonstration and validation has been fabricated, and two operating systems and a flight-critical Army application have been ported to it. Detailed performance measurements have been made of fault tolerance and operating system overheads while AFTA was executing the flight application in the presence of faults.
Telescience operations with the solar array module plasma interaction experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Bibyk, Irene K.
1995-01-01
The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
Using computer graphics to enhance astronaut and systems safety
NASA Technical Reports Server (NTRS)
Brown, J. W.
1985-01-01
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.
Crew systems and architectural considerations for first lunar surface return missions
NASA Astrophysics Data System (ADS)
Winisdoerffer, F.; Ximenes, S.
1992-08-01
The design requirements for the habitability of the pressurized volumes of a typical first manned lander are presented. Attention is given to providing dual habitation/exploration services (EVA/IVA), supporting the separation of the surface/flight functions, allowing growth potential based on site characteristics, and in situ resources utilization. Lunar lander conceptual diagrams are provided for the basic system architecture, automatic cargo delivery, the piloted crew module, and the pressurized volumes.
Concept definition study for an extremely large aerophysics range facility
NASA Technical Reports Server (NTRS)
Swift, Hallock F.
1993-01-01
A conceptual design of a very large aeroballistic range is presented, as are its operational characteristics and procedures. The proposed model launcher is a two-stage light-gas gun, having a launch tube diameter of 254 mm, and the capability of accelerating a 14 kg launch mass to 6.1 km/sec. The gun's 91.4 cm diameter piston is driven by pressurized helium. High pressures in the central breech are contained by a multiple disk arrangement. The blast tank and sabot separation tank are described, as are methods for arresting sabot segments. The conceptual design of the range itself includes a 3.3 m diameter test or flight chamber some 330 m in length. Provisions are made for testing of free flight models and tests in which the model is confined by a track system. Methods for model deceleration and recovery are described. Provisions required for future addition of advanced model launchers such as an electromagnetic launcher or ram accelerator are addressed. Siting and safety issues are also addressed.
Intelligent Control for the BEES Flyer
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Gundy-Burlet, Karen; Aftosmis, Mike; Nemec, Marian; Limes, Greg; Berry, Misty; Logan, Michael
2004-01-01
This paper describes the effort to provide a preliminary capability analysis and a neural network based adaptive flight control system for the JPL-led BEES aircraft project. The BEES flyer was envisioned to be a small, autonomous platform with sensing and control systems mimicking those of biological systems for the purpose of scientific exploration on the surface of Mars. The platform is physically tightly constrained by the necessity of efficient packing within rockets for the trip to Mars. Given the physical constraints, the system is not an ideal configuration for aerodynamics or stability and control. The objectives of this effort are to evaluate the aerodynamics characteristics of the existing design, to make recommendaaons as to potential improvements and to provide a control system that stabilizes the existing aircraft for nominal flight and damaged conditions. Towards this several questions are raised and analyses are presented to arrive at answers to some of the questions raised. CART3D, a high-fidelity inviscid analysis package for conceptual and preliminary aerodynamic design, was used to compute a parametric set of solutions over the expected flight domain. Stability and control derivatives were extracted from the database and integrated with the neural flight control system. The Integrated Vehicle Modeling Environment (IVME) was also used for estimating aircraft geometric, inertial, and aerodynamic characteristics. A generic neural flight control system is used to provide adaptive control without the requirement for extensive gain scheduling or explicit system identification. The neural flight control system uses reference models to specify desired handling qualities in the roll, pitch, and yaw axes, and incorporates both pre-trained and on-line learning neural networks in the inverse model portion of the controller. Results are presented for the BEES aircraft in the subsonic regime for terrestrial and Martian environments.
NASA Technical Reports Server (NTRS)
1978-01-01
Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.
Hot rocket plume experiment - Survey and conceptual design. [of rhenium-iridium bipropellants
NASA Technical Reports Server (NTRS)
Millard, Jerry M.; Luan, Taylor W.; Dowdy, Mack W.
1992-01-01
Attention is given to a space-borne engine plume experiment study to fly an experiment which will both verify and quantify the reduced contamination from advanced rhenium-iridium earth-storable bipropellant rockets (hot rockets) and provide a correlation between high-fidelity, in-space measurements and theoretical plume and surface contamination models. The experiment conceptual design is based on survey results from plume and contamination technologists throughout the U.S. With respect to shuttle use, cursory investigations validate Hitchhiker availability and adaptability, adequate remote manipulator system (RMS) articulation and dynamic capability, acceptable RMS attachment capability, adequate power and telemetry capability, and adequate flight altitude and attitude/orbital capability.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
Conceptual Design of a Supersonic Business Jet Propulsion System
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2002-01-01
NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.
Model-Based Systems Engineering Approach to Managing Mass Margin
NASA Technical Reports Server (NTRS)
Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris
2012-01-01
When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).
Conceptual design of flapping-wing micro air vehicles.
Whitney, J P; Wood, R J
2012-09-01
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.
Applications of numerical optimization methods to helicopter design problems: A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1985-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Development of an inflatable radiator system. [for space shuttles
NASA Technical Reports Server (NTRS)
Leach, J. W.
1976-01-01
Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.
Conceptual design of the SMART dosimeter
NASA Astrophysics Data System (ADS)
Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James
2017-08-01
Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.
Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument
NASA Astrophysics Data System (ADS)
Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.
2012-09-01
We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.
NASA Technical Reports Server (NTRS)
Reina, B., Jr.; Patterson, H. G.
1975-01-01
The conceptual aspects of the command and service module entry monitor subsystem, together with an interpretation of the displays and their associated relationship to entry trajectory control, are presented. The entry monitor subsystem is described, and the problems encountered during the developmental phase and the first five manned Apollo flights are discussed in conjunction with the design improvements implemented.
Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth
2013-01-01
In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.
The Development and Use of a Flight Optimization System Model of a C-130E Transport Aircraft
NASA Technical Reports Server (NTRS)
Desch, Jeremy D.
1995-01-01
The Systems Analysis Branch at NASA Langley Research Center conducts a variety of aircraft design and analyses studies. These studies include the prediction of characteristics of a particular conceptual design, analyses of designs that already exist, and assessments of the impact of technology on current and future aircraft. The FLight OPtimization System (FLOPS) is a tool used for aircraft systems analysis and design. A baseline input model of a Lockheed C-130E was generated for the Flight Optimization System. This FLOPS model can be used to conduct design-trade studies and technology impact assessments. The input model was generated using standard input data such as basic geometries and mission specifications. All of the other data needed to determine the airplane performance is computed internally by FLOPS. The model was then calibrated to reproduce the actual airplane performance from flight test data. This allows a systems analyzer to change a specific item of geometry or mission definition in the FLOPS input file and evaluate the resulting change in performance from the output file. The baseline model of the C-130E was used to analyze the effects of implementing upper wing surface blowing on the airplane. This involved removing the turboprop engines that were on the C-130E and replacing them with turbofan engines. An investigation of the improvements in airplane performance with the new engines could be conducted within the Flight Optimization System. Although a thorough analysis was not completed, the impact of this change on basic mission performance was investigated.
Propulsion systems from takeoff to high-speed flight
NASA Astrophysics Data System (ADS)
Billig, F. S.
Potential applications for missiles and aircraft requiring highly efficient engines serve as the basis for discussing new propulsion concepts and novel combinations of existing cycles. Comparisons are made between rocket and airbreathing powered missiles for anti-ballistic and surface-to-air missions. The properties of cryogenic hydrogen are presented to explain the mechanics and limitations of liquid air cycles. Conceptual vehicle designs of a transatmospheric accelerator are introduced to permit examination of the factors that guide the choice of the optimal propulsion system.
Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)
NASA Technical Reports Server (NTRS)
Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth
1993-01-01
The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.
Controlled Ecological Life Support Systems: CELSS '89 Workshop
NASA Technical Reports Server (NTRS)
Macelroy, Robert D. (Editor)
1990-01-01
Topics discussed at NASA's Controlled Ecological Life Support Systems (CELSS) workshop concerned the production of edible biomass. Specific areas of interest ranged from the efficiency of plant growth, to the conversion of inedible plant material to edible food, to the use of plant culture techniques. Models of plant growth and whole CELSS systems are included. The use of algae to supplement and improve dietary requirements is addressed. Flight experimentation is covered in topics ranging from a Salad Machine for use on the Space Station Freedom to conceptual designs for a lunar base CELSS.
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.
Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Russell, Tiffany E.
2014-01-01
The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.
Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David
1995-01-01
The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
Airborne oceanographic lidar system
NASA Technical Reports Server (NTRS)
1975-01-01
Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.
Conceptual design of a data reduction system
NASA Technical Reports Server (NTRS)
1983-01-01
A telemetry data processing system was defined of the Data Reduction. Data reduction activities in support of the developmental flights of the Space Shuttle were used as references against which requirements are assessed in general terms. A conceptual system design believed to offer significant throughput for the anticipated types of data reduction activities is presented. The design identifies the use of a large, intermediate data store as a key element in a complex of high speed, single purpose processors, each of which performs predesignated, repetitive operations on either raw or partially processed data. The recommended approach to implement the design concept is to adopt an established interface standard and rely heavily on mature or promising technologies which are considered main stream of the integrated circuit industry. The design system concept, is believed to be implementable without reliance on exotic devices and/or operational procedures. Numerical methods were employed to examine the feasibility of digital discrimination of FDM composite signals, and of eliminating line frequency noises in data measurements.
Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2015-01-01
HCDstruct is a Matlab® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC Nastran® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastran’s® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.
On a Formal Tool for Reasoning About Flight Software Cost Analysis
NASA Technical Reports Server (NTRS)
Spagnuolo, John N., Jr.; Stukes, Sherry A.
2013-01-01
A report focuses on the development of flight software (FSW) cost estimates for 16 Discovery-class missions at JPL. The techniques and procedures developed enabled streamlining of the FSW analysis process, and provided instantaneous confirmation that the data and processes used for these estimates were consistent across all missions. The research provides direction as to how to build a prototype rule-based system for FSW cost estimation that would provide (1) FSW cost estimates, (2) explanation of how the estimates were arrived at, (3) mapping of costs, (4) mathematical trend charts with explanations of why the trends are what they are, (5) tables with ancillary FSW data of interest to analysts, (6) a facility for expert modification/enhancement of the rules, and (7) a basis for conceptually convenient expansion into more complex, useful, and general rule-based systems.
ISTAR: Project Status and Ground Test Engine Design
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2003-01-01
Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.
Inflated concepts for the earth science geostationary platform and an associated flight experiment
NASA Technical Reports Server (NTRS)
Friese, G.
1992-01-01
Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.
A Case Study of a Combat Aircraft’s Single Hit Vulnerability
1986-09-01
Survivability Life Cycle 21 3.2 Interfaces of the FMECA Process 27 3.3 Example FMEA Format 29 3.4 Example DMEA Matrix 33 3.5 Example Disablement Diagram 34...Typical Hi-Hi/Hi-Hi Mission 58 5.5 A-20 Conceptual Tactics 60 7.1 A-20 Fuel System 73 7.2 A-20 Hydraulics System 75 7.3 A-20 Flight Controls System 77 7.4...effect severity. The FMECA procedure is performed in two steps, (1) a Fail- ure Mode and Effects Analysis ( FMEA ) and (2) a Damage Mode and Effects
A Gimbal sizing analysis for an IPACS rotating assembly
NASA Technical Reports Server (NTRS)
Burke, P. R.; Coronato, P. A.
1985-01-01
All major components of an integrated power/attitude control system (IPACS) assembly were analyzed for testing, launch, and operational stresses. The conceptual design for the outer gimbal and mounting ring structures were developed and analyzed along with preliminary designs of the pivot and torquer assemblies. Results from the system response analysis and the thermal analysis are also presented. Gimballing of this rotating assembly should present few difficulties as the maximum gimballing rate is quite low. However, the inner gimbal assembly in its current configuration must be modified to develop the system from a laboratory concept to a realistic flight hardware status.
2012-03-22
world’s first powered and controlled flying machine. Numerous flight designs and tests were done by scientists, engineers, and flight enthusiasts...conceptual flight and preliminary designs before they could control the craft with three-axis control and the correct airfoil design . These pioneers...analysis support. Although wind tunnel testing can provide data to predict and develop control surface designs , few SUAV operators opt to utilize wind
Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.
2002-01-01
The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .
Progress in Payload Separation Risk Mitigation for a Deployable Venus Heat Shield
NASA Technical Reports Server (NTRS)
Smith, Brandon P.; Yount, Bryan C.; Venkatapathy, Ethiraj; Stern, Eric C.; Prabhu, Dinesh K.; Litton, Daniel K.
2013-01-01
A deployable decelerator known as the Adaptive Deployable Entry and Placement Technology (ADEPT) offers substantial science and mass savings for the Venus In Situ Explorer (VISE) mission. The lander and science payload must be separated from ADEPT during atmospheric entry. This paper presents a trade study of the separation system concept of operations and provides a conceptual design of the baseline: aft-separation with a subsonic parachute. Viability of the separation system depends on the vehicle's dynamic stability characteristics during deceleration from supersonic to subsonic speeds. A trajectory sensitivity study presented shows that pitch damping and Venusian winds drive stability prior to parachute deployment, while entry spin rate is not a driver of stability below Mach 5. Additionally, progress in free-flight CFD techniques capable of computing aerodynamic damping parameters is presented. Exploratory simulations of ADEPT at a constant speed of Mach number of 0.8 suggest the vehicle may have an oscillation limit cycle near 5 angle-of-attack. The proposed separation system conceptual design is thought to be viable.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
New Approaches to Motion Cuing in Flight Simulators
1991-09-01
iv Table of Contents 1.0 Introduction ............................. .......... ...... 1 1.1 The Problem of Motion Cuing in Flight Simulation...the Report ................ ................... 7 2.0 A Conceptual Model of Pilot Control .......... ............ 9 2.1 Introduction ...33 3.4 Task Analysis ................ ...................... .. 34 3.4.1 Introduction ................ ...................... 34 3.4.2 Discussion
Modeling, simulation, and flight characteristics of an aircraft designed to fly at 100,000 feet
NASA Technical Reports Server (NTRS)
Sim, Alex G.
1991-01-01
A manned real time simulation of a conceptual vehicle, the stratoplane, was developed to study the problems associated with the flight characteristics of a large, lightweight vehicle. Mathematical models of the aerodynamics, mass properties, and propulsion system were developed in support of the simulation and are presented. The simulation was at first conducted without control augmentation to determine the needs for a control system. The unaugmented flying qualities were dominated by lightly damped dutch roll oscillations. Constant pilot workloads were needed at high altitudes. Control augmentation was studied using basic feedbacks. For the longitudinal axis, flight path angle, and pitch rate feedback were sufficient to damp the phugoid mode and to provide good flying qualities. In the lateral directional axis, bank angle, roll rate, and yaw rate feedbacks were sufficient to provide a safe vehicle with acceptable handling qualities. Intentionally stalling the stratoplane to very high angles of attack (deep stall) was studied as a means of enable safe and rapid descent. It was concluded that the deep stall maneuver is viable for this class of vehicle.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.
Human capital flight challenges within an equitable health system.
Udonwa, N E
2007-01-01
The issue of human capital flight has been discussed at different forums with a consensus opinion that it has its merits and demerits to equitable health system. Most often one nation becomes a substantial net exporter of talent, leaving the provider nation at risk of depleting its natural supply of talent. This paper looks into the historical perspective of human capital flight or "brain drain", and its burden. It attempts to elucidate the various causes and suggested solutions. The paper's objective is to educate colleagues on the conceptual and contextual imperatives of the issue. Using a convenient sample of key informants who were medical colleagues in Nigeria relevant information was sourced from these colleagues, documents from the postgraduate medical college of Nigeria and the internet on maters relating to human capital flight and brain drain. Every year, thousands of qualified doctors, and other professionals leave Nigeria tempted by significantly higher wages, brighter prospects for employment and education, stability, food security. It appears that the potential exposure to different working conditions, resources and professional environments can be of advantage to the country, should Nigeria be able to recall these professionals. It also appears that necessary economic reforms that make staying at home rewarding, that is--good leadership, and policy planning that seriously looks into rural development, among other issues, are keys ingredients to reversing the trend in order to ensure a more equitable health system.
Research and technology, fiscal year 1986, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
1986-01-01
The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.
Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.
Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max
2017-12-01
A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.
Lockheed laminar-flow control systems development and applications
NASA Technical Reports Server (NTRS)
Lange, Roy H.
1987-01-01
Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.
Display/control requirements for automated VTOL aircraft
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Kleinman, D. L.; Young, L. R.
1976-01-01
A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests.
Rocket flight performance of a preprototype Apollo 17 UV spectrometer S-169
NASA Technical Reports Server (NTRS)
Fastie, W. G.
1971-01-01
The design, construction, testing, calibration, flight performance and flight data of an Ebert ultraviolet spectrometer are described which is an accurate representation of the conceptual design of the Apollo 17 UV spectrometer. The instrument was flown in an Aerobee 350 rocket from Wallops Island, Va., at 7:10 p.m. EDT on June 10, 1971 to an altitude of 328 km with a solar elevation angle of about 11 deg.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Validation of engineering methods for predicting hypersonic vehicle controls forces and moments
NASA Technical Reports Server (NTRS)
Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.
1991-01-01
This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.
Design, testing, and performance of a hybrid micro vehicle---The Hopping Rotochute
NASA Astrophysics Data System (ADS)
Beyer, Eric W.
The Hopping Rotochute is a new hybrid micro vehicle that has been developed to robustly explore environments with rough terrain while minimizing energy consumption over long periods of time. The device consists of a small coaxial rotor system housed inside a lightweight cage. The vehicle traverses an area by intermittently powering a small electric motor which drives the rotor system, allowing the vehicle to hop over obstacles of various shapes and sizes. A movable internal mass controls the direction of travel while the egg-like exterior shape and low mass center allows the vehicle to passively reorient itself to an upright attitude when in contact with the ground. This dissertation presents the design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance of the device. The conceptual design iterations are first outlined which were driven by the mission and system requirements assigned to the vehicle. The aerodynamic, mechanical, and electrical design of a prototype is then described, based on the final conceptual design, with particular emphasis on the fundamental trades that must be negotiated for this type of hopping vehicle. The fabrication and testing of this prototype is detailed as well as experimental results obtained from a motion capture system. Basic flight performance of the prototype are reported which demonstrates that the Hopping Rotochute satisfies all appointed system requirements. A dynamic model of the Hopping Rotochute is also developed in this thesis and employed to predict the flight performance of the vehicle. The dynamic model includes aerodynamic loads from the body and rotor system as well as a soft contact model to estimate the forces and moments during ground contact. The experimental methods used to estimate the dynamic model parameters are described while comparisons between measured and simulated motion are presented. Good correlation between these motions is shown to validate the dynamic model. Using the validated dynamic model, simulations were performed to better understand the dynamics of the device. In addition, key parameters such as system weight, rotor speed, internal mass weight and location, as well as battery capacity are varied to explore and optimize flight performance characteristics such as single hop height and range, number of hops, and total achievable range. The sensitivity of the Hopping Rotochute to atmospheric winds is also investigated as is the ability of the device to perform trajectory shaping.
Analysis of advanced optical glass and systems
NASA Technical Reports Server (NTRS)
Johnson, R. Barry; Feng, Chen
1991-01-01
Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.
1994-01-01
This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.
The History and Promise of Combined Cycle Engines for Access to Space Applications
NASA Technical Reports Server (NTRS)
Clark, Casie
2010-01-01
For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.
NASA Astrophysics Data System (ADS)
Huang, Xiao
2006-04-01
Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis. This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth potential in that the same methodology can be continually updated and extended to other SAV configuration concepts, such as the Vertical Takeoff and Vertical Landing (VTVL) SAV class. Having developed, validated and calibrated the methodology for HTHL designs in the 'hands-on' mode, the report provides an outlook how the methodology will be integrated into a prototype computerized design synthesis software AVDS-PrADOSAV in a follow-on step.
NASA Technical Reports Server (NTRS)
1974-01-01
The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.
[Peculiarities of research of flying thinking].
Kovalenko, P A; Chulaevskiĭ, A O
2011-01-01
New approach to the research of flying thinking is offered. This approach is based on principals of stage-by-stage approach (research of the reflection of every parameter of flight, than its aggregate in figured and conceptual framework), on the usage of the methods of registration of inner and external characteristics of activity of the air staff with the priority of research of content area and mechanisms of flying thinking, typology of content area and mechanisms of flying thinking. This approach is also based on the effectiveness of reflection by means of correlation of the detected figured and conceptual framework with time and correctness of decisions of test flight tasks and with different psychophysiological characteristics.
System Analysis and Performance Benefits of an Optimized Rotorcraft Propulsion System
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2007-01-01
The propulsion system of rotorcraft vehicles is the most critical system to the vehicle in terms of safety and performance. The propulsion system must provide both vertical lift and forward flight propulsion during the entire mission. Whereas propulsion is a critical element for all flight vehicles, it is particularly critical for rotorcraft due to their limited safe, un-powered landing capability. This unparalleled reliability requirement has led rotorcraft power plants down a certain evolutionary path in which the system looks and performs quite similarly to those of the 1960 s. By and large the advancements in rotorcraft propulsion have come in terms of safety and reliability and not in terms of performance. The concept of the optimized propulsion system is a means by which both reliability and performance can be improved for rotorcraft vehicles. The optimized rotorcraft propulsion system which couples an oil-free turboshaft engine to a highly loaded gearbox that provides axial load support for the power turbine can be designed with current laboratory proven technology. Such a system can provide up to 60% weight reduction of the propulsion system of rotorcraft vehicles. Several technical challenges are apparent at the conceptual design level and should be addressed with current research.
NOSS flight segment concept study
NASA Technical Reports Server (NTRS)
1979-01-01
An 11 ft wide by 26.5 ft long flat structure weighing almost 14,469 pounds evolved during a low level, inhouse conceptual design study for a national oceanic satellite system spacecraft that would stow directly in the space shuttle. Following STS launch to a 300 Km mission orbit inclination, transfer will be effected to a 800 Km Sun synchronous circular orbit. The instrument completement includes 2 altimeters, 1 scatterometer, 1 large antenna multichannel microwave radiometer, and a coastal zone scanner. The spacecraft, its instruments, and interfaces with STS and TDRSS are described. The mission timeline, potential problem areas, system drivers, and recommended study areas are discussed. Drawings and system block diagrams are included.
NASA technology program for future civil air transports
NASA Technical Reports Server (NTRS)
Wright, H. T.
1983-01-01
An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.
Conceptual design of a Mars transportation system
NASA Astrophysics Data System (ADS)
1992-08-01
In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.
Conceptual design of a Mars transportation system
NASA Technical Reports Server (NTRS)
1992-01-01
In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.
Biomorphic Explorers Leading Towards a Robotic Ecology
NASA Technical Reports Server (NTRS)
Thakoor, Sarita; Miralles, Carlos; Chao, Tien-Hsin
1999-01-01
This paper presents viewgraphs of biomorphic explorers as they provide extended survival and useful life of robots in ecology. The topics include: 1) Biomorphic Explorers; 2) Advanced Mobility for Biomorphic Explorers; 3) Biomorphic Explorers: Size Based Classification; 4) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 5) Biomorphic Flight Systems: Vision; 6) Biomorphic Glider Deployment Concept: Larger Glider Deploy/Local Relay; 7) Biomorphic Glider Deployment Concept: Balloon Deploy/Dual Relay; 8) Biomorphic Exlplorer: Conceptual Design; 9) Biomorphic Gliders; and 10) Applications.
Design, fabrication and acceptance testing of a zero gravity whole body shower
NASA Technical Reports Server (NTRS)
Schumacher, E. A.; Lenda, J. A.
1974-01-01
Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.
Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise
Landman, Annemarie; Groen, Eric L.; van Paassen, M. M. (René); Bronkhorst, Adelbert W.; Mulder, Max
2017-01-01
Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots’ ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a “startle factor” that may significantly impair performance. Method: Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Results: Pilot perception and actions are conceptualized as being guided by “frames,” or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one’s frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Conclusion: Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. Application: The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods. PMID:28777917
Comprehensive analysis of transport aircraft flight performance
NASA Astrophysics Data System (ADS)
Filippone, Antonio
2008-04-01
This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance, atmospheric effects, economic Mach number and noise trajectories at F.A.R. landing points.
Evaluating Flight Crew Operator Manual Documentation
NASA Technical Reports Server (NTRS)
Sherry, Lance; Feary, Michael
1998-01-01
Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.
Multilevel semantic analysis and problem-solving in the flight-domain
NASA Technical Reports Server (NTRS)
Chien, R. T.
1982-01-01
The use of knowledge-base architecture and planning control; mechanisms to perform an intelligent monitoring task in the flight domain is addressed. The route level, the trajectory level, and parts of the aerodynamics level are demonstrated. Hierarchical planning and monitoring conceptual levels, functional-directed mechanism rationalization, and using deep-level mechanism models for diagnoses of dependent failures are discussed.
Lunar base launch and landing facility conceptual design, 2nd edition
NASA Technical Reports Server (NTRS)
1988-01-01
This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.
Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)
2000-01-01
Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.
NASA Technical Reports Server (NTRS)
Wilhite, A. W.; Rehder, J. J.
1979-01-01
The basic AVID (Aerospace Vehicle Interactive Design) is a general system for conceptual and preliminary design currently being applied to a broad range of future space transportation and spacecraft vehicle concepts. AVID hardware includes a minicomputer allowing rapid designer interaction. AVID software includes (1) an executive program and communication data base which provide the automated capability to couple individual programs, either individually in an interactive mode or chained together in an automatic sequence mode; and (2) the individual technology and utility programs which provide analysis capability in areas such as graphics, aerodynamics, propulsion, flight performance, weights, sizing, and costs.
NASA Technical Reports Server (NTRS)
Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton
2003-01-01
This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.
X-34 Experimental Aeroheating at Mach 6 and 10
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; DiFulvio, Michael; Glass, Christopher; Merski, N. Ronald
1998-01-01
Critical technologies are being developed to support the goals of the NASA Office of Aeronautics and Space Transportation Technology Access to Space initiative for next-generation reusable space transportation systems. From the perspective of aerothermodynamic performance throughout the flight trajectory, the Reusable Launch Vehicle program incorporates conceptual analysis, ground-based testing, and computational fluid dynamics to provide flyable suborbital flight demonstrator vehicles. This report provides an overview of the hypersonic aeroheating wind tunnel test program conducted at the NASA Langley Research Center in support of one of these vehicles, the X-34 small reusable technology demonstrator program. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.0153- and 0.0183-scale models of proposed X-34 flight vehicles at Mach 6 and 10 in air. The primary parametrics that were investigated include angles-of-attack from 0 to 35 deg. and freestream unit Reynolds numbers from 0.5 to 8 million per foot (which was sufficient to produce laminar, transitional, and turbulent heating data), both with and without control surface deflections. Comparisons of the experimental data to computational predictions are included, along with a discussion of the implications of some of the experimental flow features for the flight vehicle.
A situation-response model for intelligent pilot aiding
NASA Technical Reports Server (NTRS)
Schudy, Robert; Corker, Kevin
1987-01-01
An intelligent pilot aiding system needs models of the pilot information processing to provide the computational basis for successful cooperation between the pilot and the aiding system. By combining artificial intelligence concepts with the human information processing model of Rasmussen, an abstraction hierarchy of states of knowledge, processing functions, and shortcuts are developed, which is useful for characterizing the information processing both of the pilot and of the aiding system. This approach is used in the conceptual design of a real time intelligent aiding system for flight crews of transport aircraft. One promising result was the tentative identification of a particular class of information processing shortcuts, from situation characterizations to appropriate responses, as the most important reliable pathway for dealing with complex time critical situations.
Space Shuttle Orbiter waste collection system conceptual study
NASA Technical Reports Server (NTRS)
Abbate, M.
1985-01-01
The analyses and studies conducted to develop a recommended design concept for a new fecal collection system that can be retrofited into the space shuttle vehicle to replace the existing troublesome system which has had limited success in use are summarized. The concept selected is a cartridge compactor fecal collection subsystem which utilizes an airflow collection mode combined with a mechanical compaction and vacuum drying mode that satisfies the shuttle requirements with respect to size, weight, interfaces, and crew comments. A follow-on development program is recommended which is to result in flight test hardware retrofitable on a shuttle vehicle. This permits NASA to evaluate the system which has space station applicablity before committing production funds for the shuttle fleet and space station development.
Space shuttle electrical power generation and reactant supply system
NASA Technical Reports Server (NTRS)
Simon, W. E.
1985-01-01
The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.
2015-04-20
Every day of every year, NASA satellites provide useful data about our home planet, and along the way, some beautiful images as well. This video includes satellite images of Earth in 2014 from NASA and its partners as well as photos and a time lapse video from the International Space Station. We’ve also included a range of data visualizations, model runs, and a conceptual animation that were produced in 2014 (but in some cases might have been utilizing data from earlier years.) Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)
NASA Technical Reports Server (NTRS)
Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.
1997-01-01
In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,
Shuttle freezer conceptual design
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Russell, D. J.
1975-01-01
A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.
Winged cargo return vehicle. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
1990-01-01
The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).
Stability analysis using SDSA tool
NASA Astrophysics Data System (ADS)
Goetzendorf-Grabowski, Tomasz; Mieszalski, Dawid; Marcinkiewicz, Ewa
2011-11-01
The SDSA (Simulation and Dynamic Stability Analysis) application is presented as a tool for analysing the dynamic characteristics of the aircraft just in the conceptual design stage. SDSA is part of the CEASIOM (Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods) software environment which was developed within the SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by the European Commission 6th Framework Program. SDSA can also be used as stand alone software, and integrated with other design and optimisation systems using software wrappers. This paper focuses on the main functionalities of SDSA and presents both computational and free flight experimental results to compare and validate the presented software. Two aircraft are considered, the EADS Ranger 2000 and the Warsaw University designed PW-6 glider. For the two cases considered here the SDSA software is shown to be an excellent tool for predicting dynamic characteristics of an aircraft.
NASA Technical Reports Server (NTRS)
Quick, Jason
2009-01-01
The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the user-centered process provided valuable lessons for improving future collaborative conceptual design efforts.
A hypersonic research vehicle to develop scramjet engines
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Reuss, R. L.
1990-01-01
Four student design teams produced conceptual designs for a research vehicle to develop the supersonic combustion ramjet (scramjet) engines necessary for efficient hypersonic flight. This research aircraft would provide flight test data for prototype scramjets that is not available in groundbased test facilities. The design specifications call for a research aircraft to be launched from a carrier aircraft at 40,000 feet and a Mach number of 0.8. The aircraft must accelerate to Mach 6 while climbing to a 100,000 foot altitude and then ignite the experimental scramjet engines for acceleration to Mach 10. The research vehicle must then be recovered for another flight. The students responded with four different designs, two piloted waverider configurations, and two unmanned vehicles, one with a blended body-wing configuration, the other with a delta wing shape. All aircraft made use of an engine database provided by the General Electric Aircraft Engine Group; both turbofan ramjet and scramjet engine performance using liquid hydrogen fuel was available. Explained here are the students' conceptual designs and the aerodynamic and propulsion concepts that made their designs feasible.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
NASA Technical Reports Server (NTRS)
Jackson, E. B.; Powell, Richard W.; Ragsdale, W. A.
1991-01-01
The role of simulations in the design of the HL-20, the crew-carrying unpowered lifting-body component of the NASA Personnel Launch System, is reviewed and illustrated with drawings and diagrams. Detailed consideration is given to the overall implementation of a real-time simulation of the HL-20 approach and landing phase, the baseline and experimental control laws used in the flight-control system, autoland guidance and control laws (vertical and lateral steering), the control-surface mixer and actuator model, and simulation results. The simulations allowed identification and correction of design problems with respect to the position of the landing gear and the original maximum L/D ratio of 3.2.
Vineyard management in virtual reality: autonomous control of a transformable drone
NASA Astrophysics Data System (ADS)
Griffiths, H.; Shen, H.; Li, N.; Rojas, S.; Perkins, N.; Liu, M.
2017-05-01
Grape vines are susceptible to many diseases. Routine scouting is critically important to keep vineyards in healthy condition. Currently, scouting relies on experienced farm workers to inspect acres of land while arduously filling out reports to document crop health conditions. This process is both labor and time consuming. Using drones to assist farm workers in scouting has great potential to improve the efficiency of vineyard management. Due to the complexity in grape farm disease detection, the drones are normally used to detect suspicious areas to help farm workers to prioritize scouting activities. Operations still rely heavily on humans for further inspection to be certain about the health conditions of the vines. This paper introduces an autonomous transition flight control method for a transformable drone, which is suitable for the future virtual presence of humans in further inspecting suspicious areas. The transformable drone adopts a tilt-rotor mechanism to automatically switch between hover and horizontal flight modes, following commands from virtual reality devices held in the ground control station. The conceptual design and transformation dynamics of the drone will be first discussed, followed by a model predictive control system developed to automatically control the transition flight. Simulation is also provided to show the effectiveness of the proposed control system.
N+3 Aircraft Concept Designs and Trade Studies. Volume 1
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.;
2010-01-01
MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.
Optimizing conceptual aircraft designs for minimum life cycle cost
NASA Technical Reports Server (NTRS)
Johnson, Vicki S.
1989-01-01
A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.
Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft
NASA Technical Reports Server (NTRS)
Silva, Christopher; Johnson, Wayne; Solis, Eduardo
2018-01-01
Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.
Development of a 32 Inch Diameter Levitated Ducted Fan Conceptual Design
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher a.; Solano, Paul A.; Thompson, William K.; Vrnak, Daniel R.
2006-01-01
The NASA John H. Glenn Research Center has developed a revolutionary 32 in. diameter Levitated Ducted Fan (LDF) conceptual design. The objective of this work is to develop a viable non-contact propulsion system utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels, and mitigate many of the concerns and limitations encountered in conventional aircraft propulsors. The physical layout consists of a ducted fan drum rotor with blades attached at the outer diameter and supported by a stress tuner ring at the inner diameter. The rotor is contained within a stator. This concept exploits the unique physical dimensions and large available surface area to optimize a custom, integrated, electromagnetic system that provides both the levitation and propulsion functions. The rotor is driven by modulated electromagnetic fields between the rotor and the stator. When set in motion, the time varying magnetic fields interact with passive coils in the stator assembly to produce repulsive forces between the stator and the rotor providing magnetic suspension. LDF can provide significant improvements in aviation efficiency, reliability, and safety, and has potential application in ultra-efficient motors, computers, and space power systems.
Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems
NASA Technical Reports Server (NTRS)
Feighery, John; Cavenall, Ivan; Knight, Amanda
2004-01-01
This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
Flight elements: Fault detection and fault management
NASA Technical Reports Server (NTRS)
Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.
1990-01-01
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.
Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials.
Levchenko, I; Xu, S; Teel, G; Mariotti, D; Walker, M L R; Keidar, M
2018-02-28
Drastic miniaturization of electronics and ingression of next-generation nanomaterials into space technology have provoked a renaissance in interplanetary flights and near-Earth space exploration using small unmanned satellites and systems. As the next stage, the NASA's 2015 Nanotechnology Roadmap initiative called for new design paradigms that integrate nanotechnology and conceptually new materials to build advanced, deep-space-capable, adaptive spacecraft. This review examines the cutting edge and discusses the opportunities for integration of nanomaterials into the most advanced types of electric propulsion devices that take advantage of their unique features and boost their efficiency and service life. Finally, we propose a concept of an adaptive thruster.
Conceptual definition of a 50-100 kWe NEP system for planetary science missions
NASA Technical Reports Server (NTRS)
Friedlander, Alan
1993-01-01
The Phase 1 objective of this project is to assess the applicability of a common Nuclear Electric Propulsion (NEP) flight system of the 50-100 kWe power class to meet the advanced transportation requirements of a suite of planetary science (robotic) missions, accounting for differences in mission-specific payloads and delivery requirements. The candidate missions are as follows: (1) Comet Nucleus Sample Return; (2) Multiple Mainbelt Asteroid Rendezvous; (3) Jupiter Grand Tour (Galilean satellites and magnetosphere); (4) Uranus Orbiter/Probe (atmospheric entry and landers); (5) Neptune Orbiter/Probe (atmospheric entry and landers); and (6) Pluto-Charon Orbiter/Lander. The discussion is presented in vugraph form.
The NASA Air Traffic Management Ontology: Technical Documentation
NASA Technical Reports Server (NTRS)
Keller, Richard M.
2017-01-01
This document is intended to serve as comprehensive documentation for the NASA Air Traffic Management (ATM) Ontology. The ATM Ontology is a conceptual model that defines key classes of entities and relationships pertaining to the US National Airspace System (NAS) and the management of air traffic through that system. A wide variety of classes are represented in the ATM Ontology, including classes corresponding to flights, aircraft, manufacturers, airports, airlines, air routes, NAS facilities, air traffic control advisories, weather phenomena, and many others. The Ontology can be useful in the context of a variety of information management tasks relevant to NAS, including information exchange, data query and search, information organization, information integration, and terminology standardization.
NASA Technical Reports Server (NTRS)
Nance, Donald K.; Reed, Darren K.
2011-01-01
During the recent successful launch of the Ares I-X Flight Test Vehicle, aeroacoustic data was gathered at fifty-seven locations along the vehicle as part of the Developmental Flight Instrumentation. Several of the Ares I-X aeroacoustic measurements were placed to duplicate measurement locations prescribed in pre-flight, sub-scale wind tunnel tests. For these duplicated measurement locations, comparisons have been made between aeroacoustic data gathered during the ascent phase of the Ares I-X flight test and wind tunnel test data. These comparisons have been made at closely matching flight conditions (Mach number and vehicle attitude) in order to preserve a one-to-one relationship between the flight and wind tunnel data. These comparisons and the current wind tunnel to flight scaling methodology are presented and discussed. The implications of using wind tunnel test data scaled under the current methodology to predict conceptual launch vehicle aeroacoustic environments are also discussed.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Driggers, H. H.; Powers, S. A.; Roush, R. T.
1982-01-01
A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.
The lift-fan aircraft: Lessons learned
NASA Technical Reports Server (NTRS)
Deckert, Wallace H.
1995-01-01
This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.
Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases
NASA Technical Reports Server (NTRS)
Moton, Tryshanda
2016-01-01
Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.
Phase Change Material Heat Sink for an ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas
2015-01-01
A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.
Investigations into a potential laser-NASP transport technology
NASA Technical Reports Server (NTRS)
1990-01-01
Laser propelled flight/transport technology is surveyed. A detailed conceptual design is presented for an on-place Mercury-Lightcraft: other designs are briefly explored for larger, 15-place Executive Lightcraft, and 150 to 350 passenger Jumbo Lightcraft.
Bats in the Classroom: A Conceptual Guide for Biology Teachers.
ERIC Educational Resources Information Center
Rankin, W. T.; Lewis, Norma G.
2002-01-01
Explains how to use bats to introduce different biological concepts such as classification and phylogeny, altruistic behavior, flight, coevolution, or physiological adaptations. Discusses common myths regarding bats and provides information on additional classroom materials. (YDS)
Embodied effects of conceptual knowledge continuously perturb the hand in flight.
Till, Bernie C; Masson, Michael E J; Bub, Daniel N; Driessen, Peter F
2014-08-01
Attending to a manipulable object evokes a mental representation of hand actions associated with the object's form and function. In one view, these representations are sufficiently abstract that their competing influence on an unrelated action is confined to the planning stages of movement and does not affect its on-line control. Alternatively, an object may evoke action representations that affect the entire trajectory of an unrelated grasping action. We developed a new methodology to statistically analyze the forward motion and rotation of the hand and fingers under different task conditions. Using this novel approach, we established that a grasping action executed after seeing a photograph of an object is systematically perturbed even into the late stages of its trajectory by the competing influence of the grasping posture associated with the object. Our results show that embodied effects of conceptual knowledge continuously modulate the hand in flight. © The Author(s) 2014.
Assessment of flywheel energy storage for spacecraft power systems
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.; Studer, P. A.; Baer, D. A.
1983-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.
NASA Technical Reports Server (NTRS)
Olds, John R.; Izon, Stephen James
2002-01-01
The Thermal Calculation Analysis Tool (TCAT), originally developed for the Space Systems Design Lab at the Georgia Institute of Technology, is a conceptual design tool capable of integrating aeroheating analysis into conceptual reusable launch vehicle design. It provides Thermal Protection System (TPS) unit thicknesses and acreage percentages based on the geometry of the vehicle and a reference trajectory to be used in calculation of the total cost and weight of the vehicle design. TCAT has proven to be reasonably accurate at calculating the TPS unit weights for in-flight trajectories; however, it does not have the capability of sizing TPS materials above cryogenic fuel tanks for ground hold operations. During ground hold operations, the vehicle is held for a brief period (generally about two hours) during which heat transfer from the TPS materials to the cryogenic fuel occurs. If too much heat is extracted from the TPS material, the surface temperature may fall below the freezing point of water, thereby freezing any condensation that may be present at the surface of the TPS. Condensation or ice on the surface of the vehicle is potentially hazardous to the mission and can also damage the TPS. It is questionable whether or not the TPS thicknesses provided by the aeroheating analysis would be sufficiently thick to insulate the surface of the TPS from the heat transfer to the fuel. Therefore, a design tool has been developed that is capable of sizing TPS materials at these cryogenic fuel tank locations to augment TCAT's TPS sizing capabilities.
Conceptual Study on Hypersonic Turbojet Experimental Vehicle (HYTEX)
NASA Astrophysics Data System (ADS)
Taguchi, Hideyuki; Murakami, Akira; Sato, Tetsuya; Tsuchiya, Takeshi
Pre-cooled turbojet engines have been investigated aiming at realization of reusable space transportation systems and hypersonic airplanes. Evaluation methods of these engine performances have been established based on ground tests. There are some plans on the demonstration of hypersonic propulsion systems. JAXA focused on hypersonic propulsion systems as a key technology of hypersonic transport airplane. Demonstrations of Mach 5 class hypersonic technologies are stated as a development target at 2025 in the long term vision. In this study, systems analyses of hypersonic turbojet experiment (HYTEX) with Mach 5 flight capability is performed. Aerodynamic coefficients are obtained by CFD analyses and wind tunnel tests. Small Pre-cooled turbojet is fabricated and tested using liquid hydrogen as fuel. As a result, characteristics of the baseline vehicle shape is clarified, . and effects of pre-cooling are confirmed at the firing test.
Participation in the Analysis of the Far-Infrared/Submillmeter Interferometer
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.
2005-01-01
We have contributed to the development of the Submillimiter Probe of the Evolution of Cosmic Structure (SPECS) by analyzing various aspects related to the tethers that connect the spacecraft of this space interferometer. We have focused our analysis on key topics as follows: (a) helping in the configuration selection; (b) computing the system eigenfrequencies as a function of baseline length; (c) developing techniques and conceptual design of devices for damping the tether oscillations; (d) carrying out numerical simulations of tethered formation to assess the effects of environmental perturbations upon the baseline length variation; (e) developing control laws for reconfiguring the baseline length; (f) devising control laws for fast retargeting of the interferometer at moderate baseline lengths; (g) estimating the survivability to micrometeoroid impacts of a tether at L2; and (h) developing a conceptual design of a high- strength and survivable tether. The work was conducted for NASA Goddard Space Flight Center under Grant NNG04GQ21G with William Danchi as technical monitor.
Conceptual design study of a Harrier V/STOL research aircraft
NASA Technical Reports Server (NTRS)
Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.
1978-01-01
MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.
Study of turbine bypass remote augmentor lift system for V/STOL aircraft
NASA Technical Reports Server (NTRS)
Sheridan, A. E.
1985-01-01
The airframe design and engine/aircraft integration were emphasized in a NASA comparative study of turbofan and turbine bypass engine (TBE) with remote augmentor lift systems (RALS) for supersonic V/STOL aircraft. Functional features of the TBE are reviewed, noting the enhanced cycle efficiency and reduced afterbody drag compared to the turbojets. The present studies examied performance levels for aircraft with fleet defense and secondary anti-surface warfare roles, carrying AMRAAM and AIM missiles. TBE engine cycles were configured for hover and up-and-away flight from deck launch, and all tests were done from a conceptual design viewpoint. The results indicate that the TBE-RALS is superior to turbofan-RALS aircraft in both gross take-off weight and life cycle cost.
Noise Considerations for V/STOL Transports
NASA Technical Reports Server (NTRS)
Kenyon, George C.
1968-01-01
Noise consideration may well be as important a factor in future aircraft concept selection as such economic factors as operating cost and profitability. The impact of noise on some of the design and operational aspects of future V/STOL transports is examined in detail, including consideration of configuration, attitude-control system, lift system, and terminal flight pattern. Extended vertical rise of VTOL aircraft as a method of limiting the intense noise exposure to the terminal area is shown to be only partially effective as well as costly. Comparisons are made of noise contours for conceptual V/STOL transports for several PNdB criteria. The variation in extent of affected area with configuration and criterion emphasizes the importance of establishing an "acceptable" noise level for "city-center" operation.
Summary of the industry/NASA/FAA workshop on philosophy of automation: Promises and realities
NASA Technical Reports Server (NTRS)
Norman, Susan D.
1990-01-01
Issues of flight deck automation are multi-faceted and complex. The rapid introduction of advanced computer based technology on to the flight deck of transport category aircraft has had considerable impact on both aircraft operations and the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information between members of the aviation community, an Industry/NASA/FAA workshop was conducted in August 1988. One of the most important conclusions to emerge from the workshop was that the introduction of automation has clearly benefited aviation and has substantially improved the operational safety and efficiency of our air transport system. For example, one carrier stated that they have been flying the Boeing 767 (one of the first aircraft to employ substantial automation) since 1982, and they have never had an accident or incident resulting in damage to the aircraft. Notwithstanding its benefits, many issues associated with the design, certification, and operation of automated aircraft were identified. For example two key conceptual issues were the need for the crew to have a thorough understanding of the system and the importance of defining the pilot's role. With respect to certification, a fundamental issue is the lack of comprehensive human factors requirements in the current regulations. Operational considerations, which have been a factor in incidents involving automation, were also cited. Viewgraphs used in the presentation are given.
Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1
NASA Technical Reports Server (NTRS)
Foley, W. H.; Sheridan, A. E.; Smith, C. W.
1982-01-01
A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.
A distributed computing model for telemetry data processing
NASA Astrophysics Data System (ADS)
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-05-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
A distributed computing model for telemetry data processing
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-01-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
Solid motor diagnostic instrumentation. [design of self-contained instrumentation
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Arens, W. E.; Wuest, W. S.
1973-01-01
A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.
Block 2 Solid Rocket Motor (SRM) conceptual design study. Volume 1: Appendices
NASA Technical Reports Server (NTRS)
1986-01-01
The design studies task implements the primary objective of developing a Block II Solid Rocket Motor (SRM) design offering improved flight safety and reliability. The SRM literature was reviewed. The Preliminary Development and Validation Plan is presented.
Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME
NASA Technical Reports Server (NTRS)
Shirley, John A.; Boedeker, Laurence R.
1993-01-01
Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.
Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package
NASA Technical Reports Server (NTRS)
Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred
1986-01-01
The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.
2017-01-01
The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.
Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)
NASA Technical Reports Server (NTRS)
Olds, John R.; Bellini, Peter X.
1998-01-01
This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.
A function-based approach to cockpit procedure aids
NASA Technical Reports Server (NTRS)
Phatak, Anil V.; Jain, Parveen; Palmer, Everett
1990-01-01
The objective of this research is to develop and test a cockpit procedural aid that can compose and present procedures that are appropriate for the given flight situation. The procedure would indicate the status of the aircraft engineering systems, and the environmental conditions. Prescribed procedures already exist for normal as well as for a number of non-normal and emergency situations, and can be presented to the crew using an interactive cockpit display. However, no procedures are prescribed or recommended for a host of plausible flight situations involving multiple malfunctions compounded by adverse environmental conditions. Under these circumstances, the cockpit procedural aid must review the prescribed procedures for the individual malfunction (when available), evaluate the alternatives or options, and present one or more composite procedures (prioritized or unprioritized) in response to the given situation. A top-down function-based conceptual approach towards composing and presenting cockpit procedures is being investigated. This approach is based upon the thought process that an operating crew must go through while attempting to meet the flight objectives given the current flight situation. In order to accomplish the flight objectives, certain critical functions must be maintained during each phase of the flight, using the appropriate procedures or success paths. The viability of these procedures depends upon the availability of required resources. If resources available are not sufficient to meet the requirements, alternative procedures (success paths) using the available resources must be constructed to maintain the critical functions and the corresponding objectives. If no success path exists that can satisfy the critical functions/objectives, then the next level of critical functions/objectives must be selected and the process repeated. Information is given in viewgraph form.
Non-contact temperature measurements in support of microgravity combustion experiments
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
1989-01-01
Recent conceptual advances in the understanding of combustion science fundamentals in the context of microgravity processes and phenomenology have resulted in an increased demand for diagnostic systems of greater sophistication. Owing primarily to the severe operational constraints that accompany the space flight environment, measurement systems to date remain fairly primative in nature. Qualitative pictures provided by photographic recording media comprise the majority of the existing data, the remainder consisting of the output of conventional transducers, such as thermocouples, hot wires, and pressure transducers. The absence of the rather strong influence of buoyant convection renders microgravity combustion phenomena more fragile than their 1-G counterparts. The emphasis was placed on nonperturbing optical diagnostics. Other factors such as limited supplies of expendable reactants, and periods of microgravity time of sufficient duration, coupled with more fundamental questions regarding inherent length and time scales and reproducibility have favored multipoint or multidimensional techniques. While the development of optical diagnostics for application to combustion science is an extremely active area at present, the peculiarities of space flight hardware severely restrict the feasibility of implementing the majority of techniques which are being utilized in terrestrial applications. The additional requirements for system reliability and operational simplicity have tended to promote somewhat less commonly emphasized techniques such as refractive index mapping and molecular Rayleigh scattering, which are briefly discussed.
The Ion Propulsion System for the Asteroid Redirect Robotic Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael
2016-01-01
The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.
Direct speed of sound measurement within the atmosphere during a national holiday in New Zealand
NASA Astrophysics Data System (ADS)
Vollmer, M.
2018-05-01
Measuring the speed of sound belongs to almost any physics curriculum. Two methods dominate, measuring resonance phenomena of standing waves or time-of-flight measurements. The second type is conceptually simpler, however, performing such experiments with dimensions of meters usually requires precise electronic time measurement equipment if accurate results are to be obtained. Here a time-of-flight measurement from a video recording is reported with a dimension of several km and an accuracy for the speed of sound of the order of 1%.
The QBito CubeSat: Applications in Space Engineering Education at Technical University of Madrid
NASA Astrophysics Data System (ADS)
Fernandez Fraile, Jose Javier; Laverón-Simavilla, Ana; Calvo, Daniel; Moreno Benavides, Efren
The QBito CubeSat is one of the 50 CubeSats that is being developed for the QB50 project. The project is funded by the 7 (th) Frame Program to launch 50 CubeSats in a ‘string-of-pearls’ configuration for multi-point, in-situ measurements in the lower thermosphere and re-entry research. The 50 CubeSats, developed by an international network of universities and research institutions, will comprise 40 double CubeSats with atmospheric sensors and 10 double or triple CubeSats for science and technology demonstration. It will be the first large-scale CubeSat constellation in orbit; a concept that has been under discussion for several years but not implemented up to now. This project has a high educational interest for universities; beyond the scientific and technological results, being part of an international group of over 90 universities all over the world working and sharing knowledge to achieve a successful mission represents an exciting opportunity. The QBito project main educational motivation is to educate students in space technologies and in space systems engineering. The Universidad Politécnica de Madrid (UPM) is designing, developing, building and testing one of the double CubeSats carrying as payload a kit of atmospheric sensors from the consortium, and other payloads developed by the team such as an IR non-refrigerated sensor, a Phase Change Material (PCM) for thermal control applications, a Fuzzy Logic Attitude Control System and other technological developments such as an optimized antenna deployment mechanism, a lightweight multi-mission configurable structure, and an efficient Electric Power System (EPS) with a Maximum Peak Power Tracker (MPPT). This project has been integrated in the training of the Aerospatiale Engineering, Master and PhD degree students by involving them in the complete engineering process, from its conceptual design to the post-flight conclusions. Three subsystems have been selected for being developed from the conceptual design stage to the flight device: structure, electrical power system and antenna deployment mechanism. In this work, the main characteristics adopted for structure are presented. The project has already provided very interesting lessons to all the people involved, not only students.
NASA Technical Reports Server (NTRS)
Wells, Douglas P.
2011-01-01
The Green Flight Challenge is one of the National Aeronautics and Space Administration s Centennial Challenges designed to push technology and make passenger aircraft more efficient. Airliners currently average around 50 passenger-miles per gallon and this competition will push teams to greater than 200 passenger-miles per gallon. The aircraft must also fly at least 100 miles per hour for 200 miles. The total prize money for this competition is $1.65 Million. The Green Flight Challenge will be run by the Comparative Aircraft Flight Efficiency (CAFE) Foundation September 25 October 1, 2011 at Charles M. Schulz Sonoma County Airport in California. Thirteen custom aircraft were developed with electric, bio-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsion, and structural efficiency. This paper will explore the feasibility of the rule set, competitor vehicles, design approaches, and technologies used.
Social Anxiety as a Predictor of Dating Aggression
ERIC Educational Resources Information Center
Hanby, Michelle S. R.; Fales, Jessica; Nangle, Douglas W.; Serwik, Agnieszka K.; Hedrich, Uriah J.
2012-01-01
By far, most research on the behavior of socially anxious individuals has focused on the "flight" rather than the "fight" response described in the traditional conceptualization of anxiety. More recently, however, there has been some speculation and emerging evidence suggesting that social anxiety and aggression may be related. The present study…
Cleared for Takeoff: Paper Airplanes in Flight
ERIC Educational Resources Information Center
Reeder, Stacy L.
2012-01-01
As middle school mathematics becomes more abstract, it is imperative for teachers to introduce concepts in ways that are interesting and meaningful to students. Since her students struggled at times to stay engaged in mathematics and seemed to have difficulty developing conceptual understanding, the author looked for ways to create learning…
Aircraft energy efficiency laminar flow control glove flight conceptual design study
NASA Technical Reports Server (NTRS)
Wright, A. S.
1979-01-01
A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.
Space shuttle data handling and communications considerations.
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Minor, R. G.
1971-01-01
Operational and development flight instrumentation, data handling subsystems and communication requirements of the space shuttle orbiter are discussed. Emphasis is made on data gathering methods, crew display data, computer processing, recording, and telemetry by means of a digital data bus. Also considered are overall communication conceptual system aspects and design features allowing a proper specification of telemetry encoders and instrumentation recorders. An adaptive bit rate concept is proposed to handle the telemetry bit rates which vary with the amount of operational and experimental data to be transmitted. A split-phase encoding technique is proposed for telemetry to cope with the excessive bit jitter and low bit transition density which may affect television performance.
Innovative hazard detection and avoidance strategy for autonomous safe planetary landing
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang; Tao, Ting
2016-09-01
Autonomous hazard detection and avoidance (AHDA) is one of the key technologies for future safe planetary landing missions. In this paper, we address the latest progress on planetary autonomous hazard detection and avoidance technologies. First, the innovative autonomous relay hazard detection and avoidance strategy adopted in Chang'e-3 lunar soft landing mission and its flight results are reported in detail. Second, two new conceptual candidate schemes of hazard detection and avoidance are presented based on the Chang'e-3 AHDA system and the latest developing technologies for the future planetary missions, and some preliminary testing results are also given. Finally, the related supporting technologies for the two candidate schemes above are analyzed.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2011-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.
Investigation of a pulsed electrothermal thruster system
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hilko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode.
Reliability Modeling of Microelectromechanical Systems Using Neural Networks
NASA Technical Reports Server (NTRS)
Perera. J. Sebastian
2000-01-01
Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.
Technology for an intelligent, free-flying robot for crew and equipment retrieval in space
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.
1990-01-01
Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.
Design and development of a structural mode control system
NASA Technical Reports Server (NTRS)
1977-01-01
A program was conducted to compile and document some of the existing information about the conceptual design, development, and tests of the B-1 structural mode control system (SMCS) and its impact on ride quality. This report covers the following topics: (1) Rationale of selection of SMCS to meet ride quality criteria versus basic aircraft stiffening. (2) Key considerations in designing an SMCS, including vane geometry, rate and deflection requirements, power required, compensation network design, and fail-safe requirements. (3) Summary of key results of SMCS vane wind tunnel tests. (4) SMCS performance. (5) SMCS design details, including materials, bearings, and actuators. (6) Results of qualification testing of SMCS on the "Iron Bird" flight control simulator, and lab qualification testing of the actuators. (7) Impact of SMCS vanes on engine inlet characteristics from wind tunnel tests.
Cost-Driven Design of a Large Scale X-Plane
NASA Technical Reports Server (NTRS)
Welstead, Jason R.; Frederic, Peter C.; Frederick, Michael A.; Jacobson, Steven R.; Berton, Jeffrey J.
2017-01-01
A conceptual design process focused on the development of a low-cost, large scale X-plane was developed as part of an internal research and development effort. One of the concepts considered for this process was the double-bubble configuration recently developed as an advanced single-aisle class commercial transport similar in size to a Boeing 737-800 or Airbus A320. The study objective was to reduce the contractor cost from contract award to first test flight to less than $100 million, and having the first flight within three years of contract award. Methods and strategies for reduced cost are discussed.
X-33 Experimental Aeroheating at Mach 6 Using Phosphor Thermography
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Berry, Scott A.; Hollis, Brian R.; Liechty, Derek S.; Hamilton, H. Harris, II; Merski, N. Ronald
1999-01-01
The goal of the NASA Reusable Launch Vehicle (RLV) technology program is to mature and demonstrate essential, cost effective technologies for next generation launch systems. The X-33 flight vehicle presently being developed by Lockheed Martin is an experimental Single Stage to Orbit (SSTO) demonstrator that seeks to validate critical technologies and insure applicability to a full scale RLV. As with the design of any hypersonic vehicle, the aeroheating environment is an important issue and one of the key technologies being demonstrated on X-33 is an advanced metallic Thermal Protection System (TPS). As part of the development of this TPS system, the X-33 aeroheating environment is being defined through conceptual analysis, ground based testing, and computational fluid dynamics. This report provides an overview of the hypersonic aeroheating wind tunnel program conducted at the NASA Langley Research Center in support of the ground based testing activities. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.013 scale (10-in.) ceramic models of the proposed X-33 configuration in Mach 6 air. The test parametrics include angles of attack from -5 to 40 degs, unit Reynolds numbers from 1x106 to 8x106/ft, and body flap deflections of 0, 10, and 20 deg. Experimental and computational results indicate the presence of shock/shock interactions that produced localized heating on the deflected flaps and boundary layer transition on the canted fins. Comparisons of the experimental data to laminar and turbulent predictions were performed. Laminar windward heating data from the wind tunnel was extrapolated to flight surface temperatures and generally compared to within 50 deg F of flight prediction along the centerline. When coupled with the phosphor technique, this rapid extrapolation method would serve as an invaluable TPS design tool.
Test of the Equivalence Principle in an Einstein Elevator
NASA Technical Reports Server (NTRS)
Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.
2005-01-01
This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.
NASA Technical Reports Server (NTRS)
Estes, Robert H.; Moore, N. R.
2007-01-01
NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys.
Procedures in complex systems: the airline cockpit.
Degani, A; Wiener, E L
1997-05-01
In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations.
Space Launch System Co-Manifested Payload Options for Habitation
NASA Technical Reports Server (NTRS)
Smitherman, David
2015-01-01
The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the rocket matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and the service module. The co-manifested payload is located below the Orion and its service module in a 10-meter high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. A variety of approaches have been explored that utilizes this co-manifested payload capability to build up infrastructure in deep space in support of future asteroid, lunar, and Mars mission scenarios. This paper is a report on the findings from the Advanced Concepts Office study team at the NASA Marshall Space Flight Center, working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume on SLS. Findings include module designs that can be developed in 10mt increments to support these missions, including overall conceptual layouts, mass properties, and approaches for integration into various scenarios for near-term support of deep space habitat research and technology development, support to asteroid exploration, and long range support for Mars transfer flights.
NASA Technical Reports Server (NTRS)
Elliott, John; Alkalai, Leon
2010-01-01
The International Space Station (ISS) has developed as a very capable center for scientific research in Lower Earth Orbit. An additional potential of the ISS that has not thus far been exploited, is the use of this orbiting plat-form for the assembly and launching of vehicles that could be sent to more distant destinations. This paper reports the results of a recent study that looked at an architecture and conceptual flight system design for a lunar transfer vehicle (LTV) that could be delivered to the ISS in segments, assembled, loaded with payload and launched from the ISS with the objective of delivering multiple small and micro satellites to lunar orbit. The design of the LTV was optimized for low cost and high payload capability, as well as ease of assembly. The resulting design would use solar electric propulsion (SEP) to carry a total payload mass of 250 kg from the ISS to a 100 km lunar orbit. A preliminary concept of operations was developed considering currently available delivery options and ISS capabili-ties that should prove flexible enough to accommodate a variety of payloads and missions. This paper will present an overview of the study, including key trades, mission and flight system design, and notional operational concept.
Orbital Maneuvering Vehicle (OMV) remote servicing kit
NASA Technical Reports Server (NTRS)
Brown, Norman S.
1988-01-01
With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.
A statistical framework for genetic association studies of power curves in bird flight
Lin, Min; Zhao, Wei
2006-01-01
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution. PMID:17066123
Alertness management in two-person long-haul flight operations
NASA Technical Reports Server (NTRS)
Rosekind, M. R.; Gander, P. H.
1992-01-01
Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.
Neuroscience discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.
Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2011-01-01
A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.
Tropical rain mapping radar on the Space Station
NASA Technical Reports Server (NTRS)
Im, Eastwood; Li, Fuk
1989-01-01
The conceptual design for a tropical rain mapping radar for flight on the manned Space Station is discussed. In this design the radar utilizes a narrow, dual-frequency (9.7 GHz and 24.1 GHz) beam, electronically scanned antenna to achieve high spatial (4 km) and vertical (250 m) resolutions and a relatively large (800 km) cross-track swath. An adaptive scan strategy will be used for better utilization of radar energy and dwell time. Such a system can detect precipitation at rates of up to 100 mm/hr with accuracies of roughly 15 percent. With the proposed space-time sampling strategy, the monthly averaged rainfall rate can be estimated to within 8 percent, which is essential for many climatological studies.
The vibro-acoustic mapping of low gravity trajectories on a Learjet aircraft
NASA Technical Reports Server (NTRS)
Grodsinsky, C. M.; Sutliff, T. J.
1990-01-01
Terrestrial low gravity research techniques have been employed to gain a more thorough understanding of basic science and technology concepts. One technique frequently used involves flying parabolic trajectories aboard the NASA Lewis Research Center Learjet aircraft. A measurement program was developed to support an isolation system conceptual design. This program primarily was intended to measure time correlated high frequency accelerations (up to 100 Hz) present at various locations throughout the Learjet during a series of trajectories and flights. As suspected, the measurements obtained revealed that the environment aboard such an aircraft can not simply be described in terms of the static level low gravity g vector obtained, but that it also must account for both rigid body and high frequency vibro-acoustic dynamics.
Vestibular Function Research (VFR) experiment. Phase B: Design definition study
NASA Technical Reports Server (NTRS)
1978-01-01
The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.
PSAW/MicroSWIS [Microminiature Surface Acoustic Wave (SAW) based Wirelesss Instrumentation System
NASA Technical Reports Server (NTRS)
Heermann, Doug; Krug, Eric
2004-01-01
This Final Report for the PSAW/MicroSWIS Program is provided in compliance with contract number NAS3-01118. This report documents the overall progress of the program and presents project objectives, work carried out, and results obtained. Program Conceptual Design Package stated the following objectives: To develop a sensor/transceiver network that can support networking operations within spacecraft with sufficient bandwidth so that (1) flight control data, (2) avionics data, (3) payload/experiment data, and (4) prognostic health monitoring sensory information can flow to appropriate locations at frequencies that contain the maximum amount of information content but require minimum interconnect and power: a very high speed, low power, programmable modulation, spread-spectrum radio sensor/transceiver.
Long Term Perspective On Interstellar Flight
NASA Astrophysics Data System (ADS)
Millis, M. G.
2017-12-01
The process and interim findings of a broad interstellar flight assessment is presented. In contrast to precursor mission studies, this assessment takes a longer view and also considers factors that have been underrepresented in prior studies. The goal is to chart a conceptual roadmap for interstellar flight development that takes all the factors into account and ultimately identifies which research options, today, might have the greatest overall impact on future progress. Three envisioned flight eras are examined, the "era of precursors," the "era of infrastructure," and the "unforeseeable future." Several influential factors have typically been missing from prior studies that will now be assessed; a) the impact of different, often implicit, motivations, b) the interdependency of infrastructure with vehicle design, c) the pace of different developments, and d) the enormous energy required for any interstellar mission. Regarding motivations for example, if the driving motivation is to launch soon, then the emphasis is on existing technologies. In contrast, if the motivation is the survival of humanity, then the emphasis would be on 'world ships.' Infrastructure considerations are included in a broader system-level context. Future infrastructure will support multiple in-space activities, not just one mission-vehicle development. Though it may be too difficult to successfully assess, the study will attempt to compare the rates of different developments, such as the pace of Earth-based astronomy, miniaturization, artificial intelligence, infrastructure development, transhumanism, and others. For example, what new information could be acquired after 30 years of further advances in astronomy compared to a space probe with current technology and a 30 year flight time? The final factor of the study is to assess the pace and risks of the enormous energy levels required for interstellar flight. To compare disparate methods, a set of 'meta measures' will be defined and calculated for all the different approaches. For example, rather than comparing performance in terms of rocket specific impulse or sail reflectivity, more general measures like mass, energy, power, time, and efficiency will be used.
Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2013-01-01
Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.
A conceptual framework for using Doppler radar acquired atmospheric data for flight simulation
NASA Technical Reports Server (NTRS)
Campbell, W.
1983-01-01
A concept is presented which can permit turbulence simulation in the vicinity of microbursts. The method involves a large data base, but should be fast enough for use with flight simulators. The model permits any pilot to simulate any flight maneuver in any aircraft. The model simulates a wind field with three-component mean winds and three-component turbulent gusts, and gust variation over the body of an aircraft so that all aerodynamic loads and moments can be calculated. The time and space variation of mean winds and turbulent intensities associated with a particular atmospheric phenomenon such as a microburst is used in the model. In fact, Doppler radar data such as provided by JAWS is uniquely suited for use with the proposed model. The concept is completely general and is not restricted to microburst studies. Reentry and flight in terrestrial or planetary atmospheres could be realistically simulated if supporting data of sufficient resolution were available.
NASA Technical Reports Server (NTRS)
Williams, Walter C.
1991-01-01
The historical events that led to the development of the X-15 research aircraft are presented. Some of the topics presented include: (1) manned airplane performance regions; (2) X-15 flight problems; (3) design characteristics for conceptual aircraft; (4) analysis of X-15 accident potential; (5) X-15 performance requirements; and (6) milestones in the development of the X-15.
NASA Astrophysics Data System (ADS)
Andrina, G.; Basso, V.; Saitta, L.
2004-08-01
The effort in optimising the AIV process has been mainly focused in the recent years on the standardisation of approaches and on the application of new methodologies. But the earlier the intervention, the greater the benefits in terms of cost and schedule. Early phases of AIV process relied up to now on standards that need to be tailored through company and personal expertise. A study has then been conducted in order to exploit the possibility to develop an expert system helping in making choices in the early, conceptual phase of Assembly, Integration and Verification, namely the Model Philosophy and the test definition. The work focused on a hybrid approach, allowing interaction between historical data and human expertise. The expert system that has been prototyped exploits both information elicited from domain experts and results of a Data Mining activity on the existent data bases of completed projects verification data. The Data Mining algorithms allow the extraction of past experience resident on ESA/ MATD data base, which contains information in the form of statistical summaries, costs, frequencies of on-ground and in flight failures. Finding non-trivial associations could then be utilised by the experts to manage new decisions in a controlled way (Standards driven) at the beginning or during the AIV Process Moreover, the Expert AIV could allow compilation of a set of feasible AIV schedules to support further programmatic-driven choices.
Denov, Myriam; Bryan, Catherine
2012-01-01
Similar to refugees in general, independent child migrants are frequently constructed in academic and popular discourse as passive and powerless or as untrustworthy and potentially threatening. Such portrayals fail to capture how these youth actively navigate the complex experiences of forced migration. Drawing on interviews with independent child migrants who arrived in Canada and on the conceptual framework of social navigation, we argue that contrary to being powerless, and despite significant structural barriers, these youth deliberately and thoughtfully navigate flight by making strategic decisions and taking calculated risks thereby ensuring their survival and well-being. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.
An Integrated Hybrid Transportation Architecture for Human Mars Expeditions
NASA Technical Reports Server (NTRS)
Merrill, Raymond G.; Chai, Patrick R.; Qu, Min
2015-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.
The Ion Propulsion System for the Asteroid Redirect Robotic Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Sekerak, Michael J.
2016-01-01
The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA'a future beyond-low-Earth-orbit, human-crewed exploration plans. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. This paper presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.
The Flight Optimization System Weights Estimation Method
NASA Technical Reports Server (NTRS)
Wells, Douglas P.; Horvath, Bryce L.; McCullers, Linwood A.
2017-01-01
FLOPS has been the primary aircraft synthesis software used by the Aeronautics Systems Analysis Branch at NASA Langley Research Center. It was created for rapid conceptual aircraft design and advanced technology impact assessments. FLOPS is a single computer program that includes weights estimation, aerodynamics estimation, engine cycle analysis, propulsion data scaling and interpolation, detailed mission performance analysis, takeoff and landing performance analysis, noise footprint estimation, and cost analysis. It is well known as a baseline and common denominator for aircraft design studies. FLOPS is capable of calibrating a model to known aircraft data, making it useful for new aircraft and modifications to existing aircraft. The weight estimation method in FLOPS is known to be of high fidelity for conventional tube with wing aircraft and a substantial amount of effort went into its development. This report serves as a comprehensive documentation of the FLOPS weight estimation method. The development process is presented with the weight estimation process.
Results of the JIMO Follow-on Destinations Parametric Studies
NASA Technical Reports Server (NTRS)
Noca, Muriel A.; Hack, Kurt J.
2005-01-01
NASA's proposed Jupiter Icy Moon Orbiter (JIMO) mission currently in conceptual development is to be the first one of a series of highly capable Nuclear Electric Propulsion (NEP) science driven missions. To understand the implications of a multi-mission capability requirement on the JIMO vehicle and mission, the NASA Prometheus Program initiated a set of parametric high-level studies to be followed by a series of more in-depth studies. The JIMO potential follow-on destinations identified include a Saturn system tour, a Neptune system tour, a Kuiper Belt Objects rendezvous, an Interstellar Precursor mission, a Multiple Asteroid Sample Return and a Comet Sample Return. This paper shows that the baseline JIMO reactor and design envelop can satisfy five out of six of the follow-on destinations. Flight time to these destinations can significantly be reduced by increasing the launch energy or/and by inserting gravity assists to the heliocentric phase.
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2016-01-01
Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.
NASA Astrophysics Data System (ADS)
Larsen, Tulinda Deegan
In this study the researcher provides a behavioral framework for managing massive airline flight disruptions (MAFD) in the United States. Under conditions of MAFD, multiple flights are disrupted throughout the airline's route network, customer service is negatively affected, additional costs are created for airlines, and governments intervene. This study is different from other studies relating to MAFD that have focused on the operational, technical, economic, financial, and customer service impacts. The researcher argues that airlines could improve the management of events that led to MAFD by applying the principles of crisis management where the entire organization is mobilized, rather than one department, adapting organization development (OD) interventions to implement change and organization learning (OL) processes to create culture of innovation, resulting in sustainable improvement in customer service, cost reductions, and mitigation of government intervention. At the intersection of crisis management, OD, and OL, the researcher has developed a new conceptual framework that enhances the resiliency of individuals and organizations in responding to unexpected-yet-recurring crises (e.g., MAFD) that impact operations. The researcher has adapted and augmented Lalonde's framework for managing crises through OD interventions by including OL processes. The OD interventions, coupled with OL, provide a framework for airline leaders to manage more effectively events that result in MAFD with the goal of improving passenger satisfaction, reducing costs, and preventing further government intervention. Further research is warranted to apply this conceptual framework to unexpected-yet-recurring crises that affect operations in other industries.
Integrated Medical Model Project - Overview and Summary of Historical Application
NASA Technical Reports Server (NTRS)
Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.;
2015-01-01
Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions: Historically, IMM simulations support Science and Technology planning, Exploration mission planning, and ISS program operations by supplying simulation support, iMED data information, and subject matter expertise to Crew Health and Safety and the HRP. Upcoming release of IMM version 4.0 seeks to provide enhanced functionality to increase the quality of risk decisions made using the IMM through a more accurate representation of the real world system.
Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.
2007-01-01
Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.
I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access
NASA Technical Reports Server (NTRS)
Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)
2001-01-01
The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air Breathing Launch Vehicle 4 (ABLV4) lifting body configuration which has design heritage from NASA's NASP Program. The vehicle will be designed to accelerate from Mach 0.8 to Mach 7 and will be equipped with landing gear for horizontal landing. The complete vehicle, including the engine, will be designed for 25 flights and will be approximately 33 feet long with a total vehicle weight of approximately 25000 lbs.
A flight expert system for on-board fault monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Ali, Moonis
1990-01-01
An architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing, and recovering from inflight faults is described. A prototype was implemented and an attempt was made to automate the knowledge acquisition process by employing a learning by being told methodology. The scope of acquired knowledge ranges from domain knowledge, including the information about objects and their relationships, to the procedural knowledge associated with the functionality of the mechanisms. AKAS (automatic knowledge acquisition system) is the constructed prototype for demonstration proof of concept, in which the expert directly interfaces with the knowledge acquisition system to ultimately construct the knowledge base for the particular application. The expert talks directly to the system using a natural language restricted only by the extent of the definitions in an analyzer dictionary, i.e., the interface understands a subset of concepts related to a given domain. In this case, the domain is the electrical system of the Boeing 737. Efforts were made to define and employ heuristics as well as algorithmic rules to conceptualize data produced by normal and faulty jet engine behavior examples. These rules were employed in developing the machine learning system (MLS). The input to MLS is examples which contain data of normal and faulty engine behavior and which are obtained from an engine simulation program. MLS first transforms the data into discrete selectors. Partial descriptions formed by those selectors are then generalized or specialized to generate concept descriptions about faults. The concepts are represented in the form of characteristic and discriminant descriptions, which are stored in the knowledge base and are employed to diagnose faults. MLS was successfully tested on jet engine examples.
NASA Technical Reports Server (NTRS)
Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.
2016-01-01
Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.
Conceptual Inquiry of the Space Shuttle and International Space Station GNC Flight Controllers
NASA Technical Reports Server (NTRS)
Kranzusch, Kara
2007-01-01
The concept of Mission Control was envisioned by Christopher Columbus Kraft in the 1960's. Instructed to figure out how to operate human space flight safely, Kraft envisioned a room of sub-system experts troubleshooting problems and supporting nominal flight activities under the guidance of one Flight Director who is responsible for the success of the mission. To facilitate clear communication, MCC communicates with the crew through a Capsule Communicator (CAPCOM) who is an astronaut themselves. Gemini 4 was the first mission to be supported by such a MCC and successfully completed the first American EVA. The MCC seen on television is called the Flight Control Room (FCR, pronounced ficker) or otherwise known as the front room. While this room is the most visible aspect, it is a very small component of the entire control center. The Shuttle FCR is known as the White FCR (WFCR) and Station's as FCR-1. (FCR-1 was actually the first FCR built at JSC which was used through the Gemini, Apollo and Shuttle programs until the WFCR was completed in 1992. Afterwards FCR-1 was refurbished first for the Life Sciences Center and then for the ISS in 2006.) Along with supporting the Flight Director, each FCR operator is also the supervisor for usually two or three support personnel in a back room called the Multi-Purpose Support Room (MPSR, pronounced mipser). MPSR operators are more deeply focused on their specific subsystems and have the responsible to analyze patterns, and diagnose and assess consequences of faults. The White MPSR (WMPSR) operators are always present for Shuttle operations; however, ISS FCR controllers only have support from their Blue MPSR (BMPSR) while the Shuttle is docked and during critical operations. Since ISS operates 24-7, the FCR team reduces to a much smaller Gemini team of 4-5 operators for night and weekend shifts when the crew is off-duty. The FCR is also supported by the Mission Evaluation Room (MER) which is a collection of contractor engineers who provide analysis and long-term troubleshooting support. Each MER operator is an expert in a very small portion of a sub-system and each FCR console usually interfaces with several MER positions.
Definition of technology development missions for early space station satellite servicing, volume 1
NASA Technical Reports Server (NTRS)
1983-01-01
The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.
Multivariate Dynamical Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah
2014-01-01
The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in intergrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.
Multivariate Dynamic Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah
2014-01-01
The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in integrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.
Integrated Medical Model Overview
NASA Technical Reports Server (NTRS)
Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.;
2015-01-01
The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.
NASA Technical Reports Server (NTRS)
Elliott, D. W.
1976-01-01
The conversion of two T-39 aircraft into lift cruise fan research and technology vehicles is discussed. The concept is based upon modifying the T-39A (NA265-40) Sabreliner airframe into a V/STOL configuration by incorporating two LCF-459 lift cruise fans and three YJ-97 gas generators. The propulsion concept provides the thrust for horizontal flight or lift for vertical flight by deflection of bifurcated nozzles while maintaining engine out safety throughout the flight envelope. The configuration meets all the study requirements specified for the design with control powers in VTOL and conversion in excess of the requirement making it an excellent vehicle for research and development. The study report consists of two volumes; Volume 1 (Reference a) contains background data detailed description and technical substantiation of the aircraft. Volume 2 includes cost data, scheduling and program planning not addressed in Volume 1.
NASA Astrophysics Data System (ADS)
Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco
2017-03-01
This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.
Study on Spacelab software development and integration concepts
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.
1974-01-01
An inviscid technique for designing forebodies which produce uniformly precompressed flows at the inlet entrance for bottom-mounted scramjets has been developed so that geometric constraints resulting from design trade-offs can be effectively evaluated. The flow fields resulting from several forebody designs generated in support of a hypersonic research airplane conceptual design study have been analyzed in detail with three-dimensional characteristics calculations to verify the uniform flow conditions. For the designs analyzed, uniform flow is maintained over a wide range of flight conditions (Mach number equals 4 to 10; angle of attack equals 6 deg to 10 deg) corresponding to scramjet operation flight envelope of the research airplane.
Design of a recumbent seating system
NASA Technical Reports Server (NTRS)
Croyle, Scott; Delarosa, Jose; George, Daren; Hinkle, Cathy; Karas, Stephen
1993-01-01
Future space shuttle missions presented by NASA might require the shuttle to rendezvous with the Russian space station Mir for the purpose of transporting astronauts back to earth. Due to the atrophied state of these astronauts, a special seating system must be designed for their transportation. The main functions of this seating system are to support and restrain the astronauts during normal reentry flight and to dampen some of the loading that might occur in a crash situation. Through research, the design team developed many concept variants for these functional requirements. By evaluating each variant, the concepts were eliminated until the four most attractive designs remained. The team used a decision matrix to determine the best concept to carry through embodiment. This concept involved using struts for support during reentry flight and a spring damper/shock absorber system to dampen crash landing loads. The embodiment design process consisted of defining the layout of each of the main functional components, specifically, the seat structure and the strut structure. Through the use of MCS/pal two, the design was refined until it could handle all required loads and dampen to the forces specified. The auxiliary function carriers were then considered. Following the design of these components, the complete final layout could be determined. It is concluded that the final design meets all specifications outlined in the conceptual design. The main advantages of this design are its low weight, simplicity, and large amount of function sharing between different components. The disassembly of this design could potentially present a problem because of time and size constraints involved. Overall, this design meets or exceeds all functional requirements.
PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY
Voigt, Christian C.; Frick, Winifred F.; Holderied, Marc W.; Holland, Richard; Kerth, Gerald; Mello, Marco A. R.; Plowright, Raina K.; Swartz, Sharon; Yovel, Yossi
2018-01-01
Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings. Power production during flight follows a U-shaped curve in relation to speed in bats yet, in contrast to birds, bats use mostly exogenous nutrients for sustained flight. The navigation capacity of most bats is dominated by the echolocation system, yet other sensory modalities, including an iron-based magnetic sense, may contribute to navigation depending on a bat’s familiarity with the terrain. Patterns derived from these capacities relate to antagonistic and mutualistic interactions with food items. The navigation capacity of bats may influence their sociality, in particular, the extent of group foraging based on eavesdropping on conspecifics’ echolocation calls. We infer that understanding the movement ecology of bats within the framework of the movement ecology paradigm provides new insights into ecological processes mediated by bats, from ecosystem services to diseases. PMID:29861509
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Frederic, Peter
2013-01-01
A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
A CubeSat Asteroid Mission: Design Study and Trade-Offs
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa; Hepp, Aloysius; Stegeman, James; Bur, Mike; Burke, Laura; Martini, Michael; Fittje, James E.; Kohout, Lisa;
2014-01-01
There is considerable interest in expanding the applicability of cubesat spacecraft into lightweight, low cost missions beyond Low Earth Orbit. A conceptual design was done for a 6-U cubesat for a technology demonstration to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective was a mission to be launched on the SLS test launch EM-1 to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0. Targeting asteroids that fly close to earth minimizes the propulsion required for fly-by/rendezvous. Due to mass constraints, high specific impulse is required, and volume constraints mean the propellant density was also of great importance to the ability to achieve the required deltaV. This improves the relative usefulness of the electrospray salt, with higher propellant density. In order to minimize high pressure tanks and volatiles, the salt electrospray and iodine ion propulsion systems were the optimum designs for the fly-by and rendezvous missions respectively combined with a thruster gimbal and wheel system For the candidate fly-by mission, with a mission deltaV of about 400 m/s, the mission objectives could be accomplished with a 800s electrospray propulsion system, incorporating a propellant-less cathode and a bellows salt tank. This propulsion system is planned for demonstration on 2015 LEO and 2016 GEO DARPA flights. For the rendezvous mission, at a ?V of 2000 m/s, the mission could be accomplished with a 50W miniature ion propulsion system running iodine propellant. This propulsion system is not yet demonstrated in space. The conceptual design shows that an asteroid mission is possible using a cubesat platform with high-efficiency electric propulsion.
Priming Effects Associated with the Hierarchical Levels of Classification Systems
ERIC Educational Resources Information Center
Loehrlein, Aaron J.
2012-01-01
The act of categorization produces conceptual representations in memory while knowledge organization (KO) systems provide conceptual representations that are used in information storage and retrieval systems. Previous research has explored how KO systems can be designed to resemble the user's internal conceptual structures. However, the more…
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.
2006-01-01
This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.
FIRE - Flyby of Io with Repeat Encounters: A conceptual design for a New Frontiers mission to Io
NASA Astrophysics Data System (ADS)
Suer, Terry-Ann; Padovan, Sebastiano; Whitten, Jennifer L.; Potter, Ross W. K.; Shkolyar, Svetlana; Cable, Morgan; Walker, Catherine; Szalay, Jamey; Parker, Charles; Cumbers, John; Gentry, Diana; Harrison, Tanya; Naidu, Shantanu; Trammell, Harold J.; Reimuller, Jason; Budney, Charles J.; Lowes, Leslie L.
2017-09-01
A conceptual design is presented for a low complexity, heritage-based flyby mission to Io, Jupiter's innermost Galilean satellite and the most volcanically active body in the Solar System. The design addresses the 2011 Decadal Survey's recommendation for a New Frontiers class mission to Io and is based upon the result of the June 2012 NASA-JPL Planetary Science Summer School. A science payload is proposed to investigate the link between the structure of Io's interior, its volcanic activity, its surface composition, and its tectonics. A study of Io's atmospheric processes and Io's role in the Jovian magnetosphere is also planned. The instrument suite includes a visible/near-IR imager, a magnetic field and plasma suite, a dust analyzer, and a gimbaled high gain antenna to perform radio science. Payload activity and spacecraft operations would be powered by three Advanced Stirling Radioisotope Generators (ASRG). The primary mission includes 10 flybys with close-encounter altitudes as low as 100 km. The mission risks are mitigated by ensuring that relevant components are radiation tolerant and by using redundancy and flight-proven parts in the design. The spacecraft would be launched on an Atlas V rocket with a delta-v of 1.3 km/s. Three gravity assists (Venus, Earth, Earth) would be used to reach the Jupiter system in a 6-year cruise. The resulting concept demonstrates the rich scientific return of a flyby mission to Io.
Vision based flight procedure stereo display system
NASA Astrophysics Data System (ADS)
Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng
2008-03-01
A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.
14 CFR 415.127 - Flight safety system design and operation data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Expendable Launch Vehicle From a Non-Federal Launch Site § 415.127 Flight safety system design and operation...: flight termination system; command control system; tracking; telemetry; communications; flight safety... control system. (7) Flight termination system component storage, operating, and service life. A listing of...
Assessment and Treatment of Combat-Related PTSD in Returning War Veterans
2011-01-01
treatment interventions. Adrenergic agents such as Beta - blockers showed initial promise in the mitigation of the length and severity of PTSD illness...responses (e.g. anxiety , palpitations, escape or avoidance). The conditioned response can be conceptual- ized as an automatic fight or flight response that...sound and is positively correlated with measures of trauma, depression and anxiety (Foa et al., 1993). As compared with the Structured Clinical
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Swanson, Stephen Mark
1990-01-01
The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.
Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.
Armanini, S F; Caetano, J V; Croon, G C H E de; Visser, C C de; Mulder, M
2016-06-30
Flapping-wing aerodynamic models that are accurate, computationally efficient and physically meaningful, are challenging to obtain. Such models are essential to design flapping-wing micro air vehicles and to develop advanced controllers enhancing the autonomy of such vehicles. In this work, a phenomenological model is developed for the time-resolved aerodynamic forces on clap-and-fling ornithopters. The model is based on quasi-steady theory and accounts for inertial, circulatory, added mass and viscous forces. It extends existing quasi-steady approaches by: including a fling circulation factor to account for unsteady wing-wing interaction, considering real platform-specific wing kinematics and different flight regimes. The model parameters are estimated from wind tunnel measurements conducted on a real test platform. Comparison to wind tunnel data shows that the model predicts the lift forces on the test platform accurately, and accounts for wing-wing interaction effectively. Additionally, validation tests with real free-flight data show that lift forces can be predicted with considerable accuracy in different flight regimes. The complete parameter-varying model represents a wide range of flight conditions, is computationally simple, physically meaningful and requires few measurements. It is therefore potentially useful for both control design and preliminary conceptual studies for developing new platforms.
On the Spatial Foundations of the Conceptual System and Its Enrichment
ERIC Educational Resources Information Center
Mandler, Jean M.
2012-01-01
A theory of how concept formation begins is presented that accounts for conceptual activity in the first year of life, shows how increasing conceptual complexity comes about, and predicts the order in which new types of information accrue to the conceptual system. In a compromise between nativist and empiricist views, it offers a single…
Automated flight test management system
NASA Technical Reports Server (NTRS)
Hewett, M. D.; Tartt, D. M.; Agarwal, A.
1991-01-01
The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.
An overview of NASA research on positive displacement general-aviation engines
NASA Technical Reports Server (NTRS)
Kempke, E. E., Jr.
1980-01-01
The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.
Aerodynamics model for a generic ASTOVL lift-fan aircraft
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.
1995-01-01
This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.
1971-01-01
This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
ExoMars Raman laser spectrometer breadboard overview
NASA Astrophysics Data System (ADS)
Díaz, E.; Moral, A. G.; Canora, C. P.; Ramos, G.; Barcos, O.; Prieto, J. A. R.; Hutchinson, I. B.; Ingley, R.; Colombo, M.; Canchal, R.; Dávila, B.; Manfredi, J. A. R.; Jiménez, A.; Gallego, P.; Pla, J.; Margoillés, R.; Rull, F.; Sansano, A.; López, G.; Catalá, A.; Tato, C.
2011-10-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powdered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. In response to ESA requirements for delta-PDR to be held in mid 2012, an instrument BB programme has been developed, by RLS Assembly Integration and Verification (AIV) Team to achieve the Technology Readiness level 5 (TRL5), during last 2010 and whole 2011. Currently RLS instrument is being developed pending its CoDR (Conceptual Design Revision) with ESA, in October 2011. It is planned to have a fully operative breadboard, conformed from different unit and sub-units breadboards that would demonstrate the end-to-end performance of the flight representative units by 2011 Q4.
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.
The interaction of high voltage systems with the environments of the Moon and Mars
NASA Technical Reports Server (NTRS)
Hillard, G. Barry; Kolecki, Joseph C.
1993-01-01
High voltage systems designed for use on the lunar and Martian surfaces or in orbit will interact with environmental components such as electrically charged dust, low pressure atmospheres, ionospheric plasmas and neutrals, and chemically reactive species. As the Space Exploration Initiative (SEI) advances from the realm of feasibility study to that of conceptual design, guidelines will be required to ensure that these effects are properly accounted for. A first step in providing such guidelines is the prioritization of interactions for each of the space or surface environments that will be encountered. For those issues that are identified as high priority, the state of environmental knowledge, emphasizing essential data, must be determined. This report describes possible means of obtaining such information, including ground tests, modeling and analysis, and flight experiments. The development of computational tools which will enable engineers to simulate and thereby quantify the interactions will be especially considered. Our analysis is drawn from various study and workshop activities undertaken within the last two years.
NASA Technical Reports Server (NTRS)
Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.
1976-01-01
An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.
Design, fabrication & performance analysis of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Khan, M. I.; Salam, M. A.; Afsar, M. R.; Huda, M. N.; Mahmud, T.
2016-07-01
An Unmanned Aerial Vehicle was designed, analyzed and fabricated to meet design requirements and perform the entire mission for an international aircraft design competition. The goal was to have a balanced design possessing, good demonstrated flight handling qualities, practical and affordable manufacturing requirements while providing a high vehicle performance. The UAV had to complete total three missions named ferry flight (1st mission), maximum load mission (2nd mission) and emergency medical mission (3rd mission). The requirement of ferry flight mission was to fly as many as laps as possible within 4 minutes. The maximum load mission consists of flying 3 laps while carrying two wooden blocks which simulate cargo. The requirement of emergency medical mission was complete 3 laps as soon as possible while carrying two attendances and two patients. A careful analysis revealed lowest rated aircraft cost (RAC) as the primary design objective. So, the challenge was to build an aircraft with minimum RAC that can fly fast, fly with maximum payload, and fly fast with all the possible configurations. The aircraft design was reached by first generating numerous design concepts capable of completing the mission requirements. In conceptual design phase, Figure of Merit (FOM) analysis was carried out to select initial aircraft configuration, propulsion, empennage and landing gear. After completion of the conceptual design, preliminary design was carried out. The preliminary design iterations had a low wing loading, high lift coefficient, and a high thrust to weight ratio. To make the aircraft capable of Rough Field Taxi; springs were added in the landing gears for absorbing shock. An airfoil shaped fuselage was designed to allowed sufficient space for payload and generate less drag to make the aircraft fly fast. The final design was a high wing monoplane with conventional tail, single tractor propulsion system and a tail dragger landing gear. Payload was stored in undercarriage box for maximum load mission and emergency medical mission. The aircraft structure, weights 5.6 lb., constructed by balsa wood, depron and covering film was the only feasible match for the given requirements set by the competition organizers. The defined final aircraft was capable of: Completing 3 laps within 4 minutes at the first mission; flying 3 laps with 4 internal payloads at the second mission; flying 3 laps with all possible payload configurations at the third mission.
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
Buddhism-as-a-meaning-system for coping with late-life stress: a conceptual framework.
Xu, Jianbin
2018-01-01
Religion is increasingly conceptualized as a meaning system for adjustment and coping. Most of the conceptualizations are grounded in the Judeo-Christian tradition. They may thus not be applicable to Buddhism, which provides a distinct tenor of meaning for coping. This article seeks to construct a conceptual framework of Buddhism-as-a-meaning-system for coping with late-life stress. Literature review and conceptualization were employed. Under this framework, Buddhism functions as a meaning system involving existential meaning, cognitive meaning, and behavioral meaning. There is reason to believe that this framework promises to offer a holistic conceptual map of Buddhist coping in late life. Thus, it could serve as a guide for further empirical and theoretical exploration in the uncharted terrains of Buddhist coping in old age. In addition, gerontological practitioners could use this framework as a frame of reference when working with elderly Buddhist clients who are in stressful circumstances.
150 Passenger Commercial Aircraft
NASA Technical Reports Server (NTRS)
Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica
2002-01-01
It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated to determine the physical compatibility of integrating multiple technologies and then the impact on the design, both improvements and degradations, must be determined. These technologies are assessed deterministically. Again, Response Surface Equations (RSEs) are developed to allow for a full factorial evaluation of the combinations of the technologies. The best combination of technologies is selected and then the design space is again reevaluated for feasibility and viability.
Adaptive Data-based Predictive Control for Short Take-off and Landing (STOL) Aircraft
NASA Technical Reports Server (NTRS)
Barlow, Jonathan Spencer; Acosta, Diana Michelle; Phan, Minh Q.
2010-01-01
Data-based Predictive Control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. The characteristics of adaptive data-based predictive control are particularly appropriate for the control of nonlinear and time-varying systems, such as Short Take-off and Landing (STOL) aircraft. STOL is a capability of interest to NASA because conceptual Cruise Efficient Short Take-off and Landing (CESTOL) transport aircraft offer the ability to reduce congestion in the terminal area by utilizing existing shorter runways at airports, as well as to lower community noise by flying steep approach and climb-out patterns that reduce the noise footprint of the aircraft. In this study, adaptive data-based predictive control is implemented as an integrated flight-propulsion controller for the outer-loop control of a CESTOL-type aircraft. Results show that the controller successfully tracks velocity while attempting to maintain a constant flight path angle, using longitudinal command, thrust and flap setting as the control inputs.
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.
1990-01-01
The assembly, emplacement, checkout, operation, and maintenance of equipment on planetary surfaces are all part of expanding human presence out into the solar system. A single point design, a reference scenario, is presented for lunar base operations. An initial base, barely more than an output, which starts from nothing but then quickly grows to sustain people and produce rocket propellant. The study blended three efforts: conceptual design of all required surface systems; assessments of contemporary developments in robotics; and quantitative analyses of machine and human tasks, delivery and work schedules, and equipment reliability. What emerged was a new, integrated understanding of hot to make a lunar base happen. The overall goal of the concept developed was to maximize return, while minimizing cost and risk. The base concept uses solar power. Its primary industry is the production of liquid oxygen for propellant, which it extracts from native lunar regolith. Production supports four lander flights per year, and shuts down during the lunar nighttime while maintenance is performed.
The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Parker, J. Morgan
2015-01-01
The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a subsequent human-crewed mission. The ion propulsion subsystem must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as an enabling element of an affordable beyond low-earth orbit human-crewed exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, a status on the NASA in-house thruster and power processing is provided, and an update on acquisition for flight provided.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew
1996-01-01
An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.
On the Validity of Educational Evaluation and Its Construction
ERIC Educational Resources Information Center
Huang, Xiaoping; Hu, Zhongfeng
2015-01-01
The main problem of the educational evaluation validity is that it just copies the conceptual framework system of validity from educational measurement to its own conceptual system. The validity conceptual system that fits the need of theory and practice of educational evaluation has not been established yet. According to the inherent attributive…
Shimatani, Ichiro Ken; Yoda, Ken; Katsumata, Nobuhiro; Sato, Katsufumi
2012-01-01
To analyze an animal's movement trajectory, a basic model is required that satisfies the following conditions: the model must have an ecological basis and the parameters used in the model must have ecological interpretations, a broad range of movement patterns can be explained by that model, and equations and probability distributions in the model should be mathematically tractable. Random walk models used in previous studies do not necessarily satisfy these requirements, partly because movement trajectories are often more oriented or tortuous than expected from the models. By improving the modeling for turning angles, this study aims to propose a basic movement model. On the basis of the recently developed circular auto-regressive model, we introduced a new movement model and extended its applicability to capture the asymmetric effects of external factors such as wind. The model was applied to GPS trajectories of a seabird (Calonectris leucomelas) to demonstrate its applicability to various movement patterns and to explain how the model parameters are ecologically interpreted under a general conceptual framework for movement ecology. Although it is based on a simple extension of a generalized linear model to circular variables, the proposed model enables us to evaluate the effects of external factors on movement separately from the animal's internal state. For example, maximum likelihood estimates and model selection suggested that in one homing flight section, the seabird intended to fly toward the island, but misjudged its navigation and was driven off-course by strong winds, while in the subsequent flight section, the seabird reset the focal direction, navigated the flight under strong wind conditions, and succeeded in approaching the island.
Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan
NASA Astrophysics Data System (ADS)
Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.
2007-12-01
The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean
1996-01-01
A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.
Conceptual Design of Low-Boom Aircraft with Flight Trim Requirement
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Geiselhart, Karl A.; Fenbert, James W.
2014-01-01
A new low-boom target generation approach is presented which allows the introduction of a trim requirement during the early conceptual design of supersonic aircraft. The formulation provides an approximation of the center of pressure for a presumed aircraft configuration with a reversed equivalent area matching a low-boom equivalent area target. The center of pressure is approximated from a surrogate lift distribution that is based on the lift component of the classical equivalent area. The assumptions of the formulation are verified to be sufficiently accurate for a supersonic aircraft of high fineness ratio through three case studies. The first two quantify and verify the accuracy and the sensitivity of the surrogate center of pressure corresponding to shape deformation of lifting components. The third verification case shows the capability of the approach to achieve a trim state while maintaining the low-boom characteristics of a previously untrimmed configuration. Finally, the new low-boom target generation approach is demonstrated through the early conceptual design of a demonstrator concept that is low-boom feasible, trimmed, and stable in cruise.
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.
1988-01-01
An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.
Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.
2015-01-01
This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.
Development of robotics facility docking test hardware
NASA Technical Reports Server (NTRS)
Loughead, T. E.; Winkler, R. V.
1984-01-01
Design and fabricate test hardware for NASA's George C. Marshall Space Flight Center (MSFC) are reported. A docking device conceptually developed was fabricated, and two docking targets which provide high and low mass docking loads were required and were represented by an aft 61.0 cm section of a Hubble space telescope (ST) mockup and an upgrading of an existing multimission modular spacecraft (MSS) mockup respectively. A test plan is developed for testing the hardware.
Adapting New Space System Designs into Existing Ground Infrastructure
NASA Technical Reports Server (NTRS)
Delgado, Hector N.; McCleskey, Carey M.
2008-01-01
As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.
KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge
NASA Astrophysics Data System (ADS)
Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.
2016-04-01
Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.
SACD's Support of the Hyper-X Program
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin, John G.
2006-01-01
NASA s highly successful Hyper-X program demonstrated numerous hypersonic air-breathing vehicle related technologies including scramjet performance, advanced materials and hot structures, GN&C, and integrated vehicle performance resulting in, for the first time ever, acceleration of a vehicle powered by a scramjet engine. The Systems Analysis and Concepts Directorate (SACD) at NASA s Langley Research Center played a major role in the integrated team providing critical support, analysis, and leadership to the Hyper-X Program throughout the program s entire life and were key to its ultimate success. Engineers in SACD s Vehicle Analysis Branch (VAB) were involved in all stages and aspects of the program, from conceptual design prior to contract award, through preliminary design and hardware development, and in to, during, and after each of the three flights. Working closely with other engineers at Langley and Dryden, as well as industry partners, roughly 20 members of SACD were involved throughout the evolution of the Hyper-X program in nearly all disciplines, including lead roles in several areas. Engineers from VAB led the aerodynamic database development, the propulsion database development, and the stage separation analysis and database development effort. Others played major roles in structures, aerothermal, GN&C, trajectory analysis and flight simulation, as well as providing CFD support for aerodynamic, propulsion, and aerothermal analysis.
ERIC Educational Resources Information Center
Jacobson, Michael J.; Kapur, Manu; Reimann, Peter
2016-01-01
This article proposes a conceptual framework of learning based on perspectives and methodologies being employed in the study of complex physical and social systems to inform educational research. We argue that the contexts in which learning occurs are complex systems with elements or agents at different levels--including neuronal, cognitive,…
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon
1997-01-01
An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.
Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling
NASA Astrophysics Data System (ADS)
March, Salvatore T.; Allen, Gove N.
Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.
NASA Technical Reports Server (NTRS)
1981-01-01
The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.
Experience with synchronous and asynchronous digital control systems. [for flight
NASA Technical Reports Server (NTRS)
Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.
1986-01-01
Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.
Initial flight qualification and operational maintenance of X-29A flight software
NASA Technical Reports Server (NTRS)
Earls, Michael R.; Sitz, Joel R.
1989-01-01
A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.
Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept
NASA Technical Reports Server (NTRS)
Gerhardt, H. A.; Chen, W. S.
1978-01-01
The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.
Hypersonic airframe structures: Technology needs and flight test requirements
NASA Technical Reports Server (NTRS)
Stone, J. E.; Koch, L. C.
1979-01-01
Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.
NASA Technical Reports Server (NTRS)
1978-01-01
The Mission Control Center Shuttle (MCC) Shuttle Orbital Flight Test (OFT) Data System (OFTDS) provides facilities for flight control and data systems personnel to monitor and control the Shuttle flights from launch (tower clear) to rollout (wheels stopped on runway). It also supports the preparation for flight (flight planning, flight controller and crew training, and integrated vehicle and network testing activities). The MCC Shuttle OFTDS is described in detail. Three major support systems of the OFTDS and the data types and sources of data entering or exiting the MCC were illustrated. These systems are the communication interface system, the data computation complex, and the display and control system.
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.
1992-01-01
Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
14 CFR 23.1335 - Flight director systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 23.1335 Section 23...: Installation § 23.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the flight crew its current mode of operation. Selector switch position is not...
14 CFR 23.1335 - Flight director systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight director systems. 23.1335 Section 23...: Installation § 23.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the flight crew its current mode of operation. Selector switch position is not...
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.
1991-01-01
The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
Recent Advances in LOX / LH2 Propulsion System for Reusable Vehicle Testing
NASA Astrophysics Data System (ADS)
Tokudome, Shinichiro; Naruo, Yoshihiro; Yagishita, Tsuyoshi; Nonaka, Satoshi; Shida, Maki; Mori, Hatsuo; Nakamura, Takeshi
The third-generation vehicle RVT#3 equipped with a pressure-fed engine, which had upgraded in terms of durability enhancement and a LH2 tank of composite material, successfully performed in repeated flight operation tests; and the vehicle reached its maximum flying altitude of 42m in October 2003. The next step for demonstrating entire sequence of full-scale operation is to put a turbopump-fed system into propulsion system. From a result of primary system analysis, we decided to build an expander-cycle engine by diverting a pair of turbopumps, which had built for another research program, to the present study. A combustion chamber with long cylindrical portion adapted to the engine cycle was also newly made. Two captive firing tests have been conducted with two different thrust control methods, following the component tests of combustor and turbopumps separately conducted. A considerable technical issues recognized in the tests were the robustness enhancement of shaft seal design, the adjustment of shaft stiffness, and start-up operation adapted to the specific engine system. Experimental study of GOX/GH2 RCS thrusters have also been started as a part of a conceptual study of the integration of the propulsion system associated with simplification and reliability improvement of the vehicle system.
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Guo, Yueping
2016-01-01
Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept.
Telemetry: Summary of concept and rationale
NASA Astrophysics Data System (ADS)
1987-12-01
This report presents the concept and supporting rationale for the telemetry system developed by the Consultative Committee for Space Data Systems (CCSDS). The concepts, protocols and data formats developed for the telemetry system are designed for flight and ground data systems supporting conventional, contemporary free-flyer spacecraft. Data formats are designed with efficiency as a primary consideration, i.e., format overhead is minimized. The results reflect the consensus of experts from many space agencies. An overview of the CCSDS telemetry system introduces the notion of architectural layering to achieve transparent and reliable delivery of scientific and engineering sensor data (generated aboard space vehicles) to users located in space or on earth. The system is broken down into two major conceptual categories: a packet telemetry concept and a telemetry channel coding concept. Packet telemetry facilitates data transmission from source to user in a standardized and highly automated manner. It provides a mechanism for implementing common data structures and protocols which can enhance the development and operation of space mission systems. Telemetry channel coding is a method by which data can be sent from a source to a destination by processing it in such a way that distinct messages are created which are easily distinguishable from one another. This allows construction of the data with low error probability, thus improving performance of the channel.
Experience with synchronous and asynchronous digital control systems
NASA Technical Reports Server (NTRS)
Regenie, V. A.; Chacon, C. V.; Lock, W. P.
1986-01-01
Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.
A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer
NASA Technical Reports Server (NTRS)
Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.
1993-01-01
A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2010-01-01
Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft s characteristics.
cFE/CFS (Core Flight Executive/Core Flight System)
NASA Technical Reports Server (NTRS)
Wildermann, Charles P.
2008-01-01
This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.
The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan
2015-01-01
The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.
NASA Technical Reports Server (NTRS)
Deyoung, R. J.; Walker, G. H.; Williams, M. D.; Schuster, G. L.; Conway, E. J.
1987-01-01
A preliminary conceptual design of a space-based solar pumped iodide laser emitting 1 megawatt of laser power for space-to-space power transmission is described. A near parabolic solar collector focuses sunlight onto the t-C4F9I (perfluoro-t butyl iodide) lasant within a transverse flow optical cavity. Using waste heat, a thermal system was designed to supply compressor and auxiliary power. System components were designed with weight and cost estimates assigned. Although cost is very approximate, the cost comparison of individual system components leads to valuable insights for future research. In particular, it was found that laser efficiency was not a dominant cost or weight factor, the dominant factor being the laser cavity and laser transmission optics. The manufacturing cost was approx. two thirds of the total cost with transportation to orbit the remainder. The flowing nonrenewable lasant comprised 20% of the total life cycle cost of the system and thus was not a major cost factor. The station mass was 92,000 kg without lasant, requiring approx. four shuttle flights to low Earth orbit where an orbital transfer vehicle will transport it to the final altitude of 6378 km.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY...-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing...: Enhanced Flight [[Page 38864
Conceptual design of hybrid-electric transport aircraft
NASA Astrophysics Data System (ADS)
Pornet, C.; Isikveren, A. T.
2015-11-01
The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant fuel burn reduction can be achieved; however, this also proves to be detrimental in terms of vehicular efficiency. The potential in block fuel reduction diminishes with increasing design range - especially for low battery gravimetric specific energies. In addition, the narrow shape of the fuselage represents a volumetric constraint for the storage of the battery and typical cargo. It was concluded that the short-range/regional market segment would be the most suited for the application of such concepts. Concerning the influence of HP,USE on flight technique optimization, an increasing HP,USE was found to have a tendency of decreasing the optimum flight speed and altitude. Further investigation of more synergistic design and integration of the hybrid-electric motive power system needs to be conducted in order to explore the full benefit of such technologies.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing..., Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Committee 213, Enhanced Flight Visions Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Visions Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing... Flight Visions Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April 17-19...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing..., Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing..., Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held October...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY...-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing...: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing... Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held October 2-4...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY...: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will...
NASA Technical Reports Server (NTRS)
Javaux, Denis; Masson, Michel; Dekeyser, Veronique
1994-01-01
There is currently a growing interest in the aeronautical community to assess the effects of the increasing levels of automation on pilots' performance and overall safety. The first effect of automation is the change in the nature of the pilot's role on the flight deck. Pilots have become supervisors who monitor aircraft systems in usual situations and intervene only when unanticipated events occur. Instead of 'hand flying' the airplane, pilots contribute to the control of aircraft by acting as mediators, instructions given to the automation. By eliminating the need for manually controlling normal situations, such a role division has reduced the opportunities for the pilot to acquire experience and skills necessary to safely cope with abnormal events. Difficulties in assessing the state and behavior of automation arise mainly from four factors: (1) the complexity of current systems and consequence mode-related problems; (2) the intrinsic autonomy of automation which is able to fire mode transitions without explicit commands from the pilots; (3) the bad quality of feed-back from the control systems displays and interfaces to the pilots; and (4) the fact that the automation currently has no explicit representation of the current pilots' intentions and strategy. Assuming certification has among its major goals to guarantee the passengers' and pilots' safety and the airplane integrity under normal and abnormal operational conditions, the authors suggest it would be particularly fruitful to come up with a conceptual reference system providing the certification authorities both with a theoretical framework and a list of principles usable for assessing the quality of the equipment and designs under examination. This is precisely the scope of this paper. However, the authors recognize that the conceptual presented is still under development and would thus be best considered as a source of reflection for the design, evaluation and certification processes of advanced aviation technologies.
Lunar Industry & Research Base Concept
NASA Astrophysics Data System (ADS)
Lysenko, J.; Kaliapin, M.; Osinovyy, G.
2017-09-01
Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.
Achieving Space Shuttle ATO Using the Five-Segment Booster (FSB)
NASA Technical Reports Server (NTRS)
Sauvageau, Donald R.; McCool, Alex (Technical Monitor)
2001-01-01
As part of the continuing effort to identify approaches to improve the safety and reliability of the Space Shuttle system, a Five-Segment Booster (FSB) design was conceptualized as a replacement for the current Space Shuttle boosters. The FSB offers a simple, unique approach to improve astronaut safety and increase performance margin. To determine the feasibility of the FSB, a Phase A study effort was sponsored by NASA and directed by the Marshall Space Flight Center. This study was initiated in March of 1999 and completed in December of 2000. The basic objective of this study was to assess the feasibility of the FSB design concept and also estimate the cost and scope of a full-scale development program for the FSB. In order to ensure an effective and thorough evaluation of the FSB concept, four team members were put on contract to support various areas of importance in assessing the overall feasibility of the design approach.
NASA Technical Reports Server (NTRS)
Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.
1990-01-01
This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.
Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Bernstein, Dennis S.
2012-01-01
Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.
SOFIA primary mirror fabrication and testing
NASA Astrophysics Data System (ADS)
Geyl, Roland; Tarreau, Michel; Plainchamp, Patrick
2001-12-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint American-German project dedicated to performing IR astronomy on board a Boeing Aircraft, in near space condition. First flight of the Observatory is planned for 2003. The REOSC Products Unit of SAGEM SA (France) has been contracted by Kayser Threde (Germany) for the design and fabrication of the 2.7-meter diameter, F/1.19 parabolic lightweight SOFIA primary mirror as well as the M3 dichroic and folding mirror assembly. This paper will report the design, fabrication and test of the lightweight primary mirror. The mirror structure has been obtained by machining it out from a solid Zerodur blank. It is the world's largest of this type today. Axial and lateral mirror support system has been conceptually designed and engineered by SAGEM-REOSC engineers in relation with Kayser Threde team. The optical surface is an F/1.19 parabola polished to a high level of quality.
Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Stewart, James; Eslinger, Robert
1990-01-01
Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.
Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems
2015-12-01
distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and
Optimum Strategies for Selecting Descent Flight-Path Angles
NASA Technical Reports Server (NTRS)
Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)
2016-01-01
An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.
Flight Test Implementation of a Second Generation Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2005-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.
Software control and system configuration management: A systems-wide approach
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1984-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
Expertise, Task Complexity, and Artificial Intelligence: A Conceptual Framework.
ERIC Educational Resources Information Center
Buckland, Michael K.; Florian, Doris
1991-01-01
Examines the relationship between users' expertise, task complexity of information system use, and artificial intelligence to provide the basis for a conceptual framework for considering the role that artificial intelligence might play in information systems. Cognitive and conceptual models are discussed, and cost effectiveness is considered. (27…
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
14 CFR 121.127 - Flight following system; requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...
Achieving Operability via the Mission System Paradigm
NASA Technical Reports Server (NTRS)
Hammer, Fred J.; Kahr, Joseph R.
2006-01-01
In the past, flight and ground systems have been developed largely-independently, with the flight system taking the lead, and dominating the development process. Operability issues have been addressed poorly in planning, requirements, design, I&T, and system-contracting activities. In many cases, as documented in lessons-learned, this has resulted in significant avoidable increases in cost and risk. With complex missions and systems, operability is being recognized as an important end-to-end design issue. Never-the-less, lessons-learned and operability concepts remain, in many cases, poorly understood and sporadically applied. A key to effective application of operability concepts is adopting a 'mission system' paradigm. In this paradigm, flight and ground systems are treated, from an engineering and management perspective, as inter-related elements of a larger mission system. The mission system consists of flight hardware, flight software, telecom services, ground data system, testbeds, flight teams, science teams, flight operations processes, procedures, and facilities. The system is designed in functional layers, which span flight and ground. It is designed in response to project-level requirements, mission design and an operations concept, and is developed incrementally, with early and frequent integration of flight and ground components.
Conceptual Commitments of AGI Systems: Editorial, Commentaries, and Response
NASA Astrophysics Data System (ADS)
2013-06-01
Editorial: Conceptual Commitments of AGI Systems Haris Dindo / James Marshall / Giovanni Pezzulo 23 General Problems of Unified Theories of Cognition, and Another Conceptual Commitment of LIDA Benjamin Angerer / Stefan Schneider 26 LIDA, Committed to Consciousness Antonio Chella 28 The Radical Interactionism Conceptual Commitment Olivier L. Georgeon / David W. Aha 31 Commitments of the Soar Cognitive Architecture John E. Laird 36 Conceptual Commitments of AGI Projects Pei Wang 39 Will (dis)Embodied LIDA Agents be Socially Interactive? Travis J. Wiltshire / Emilio J. C. Lobato / Florian G. Jentsch / Stephen M. Fiore 42 Author's Response to Commentaries Steve Strain / Stan Franklin 48
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Special Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Special Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS...
Multi-team dynamics and distributed expertise in imission operations.
Caldwell, Barrett S
2005-06-01
The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.
Flight control system design factors for applying automated testing techniques
NASA Technical Reports Server (NTRS)
Sitz, Joel R.; Vernon, Todd H.
1990-01-01
Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.
Software control and system configuration management - A process that works
NASA Technical Reports Server (NTRS)
Petersen, K. L.; Flores, C., Jr.
1983-01-01
A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2008-01-01
The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.
14 CFR 417.311 - Flight safety crew roles and qualifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...
14 CFR 417.311 - Flight safety crew roles and qualifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...
14 CFR 417.311 - Flight safety crew roles and qualifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... crew roles and qualifications. (a) A flight safety crew must operate the flight safety system hardware... the knowledge, skills, and abilities needed to operate the flight safety system hardware in accordance... rules. (3) An individual who operates flight safety support systems must have knowledge of and be...
Effects of redundancy in the comparison of speech and pictorial displays in the cockpit environment.
Byblow, W D
1990-06-01
Synthesised speech and pictorial displays were compared in a spatially compatible simulated cockpit environment. Messages of high or low levels of redundancy were presented to subjects in both modality conditions. Subjects responded to warnings presented in a warning-only condition and in a dual-task condition, in which a simulated flight task was performed with visual and manual input/output modalities. Because the amount of information presented in most real-world applications and experimental paradigms is quantifiably large with respect to present guidelines for the use of synthesised speech warnings, the low-redundancy condition was hypothesised to allow for better performance. Results showed that subjects respond quicker to messages of low redundancy in both modalities. It is suggested that speech messages with low-redundancy levels were effective in minimising message length and ensuring that messages did not overload the short-term memory required to process and maintain speech in memory. Manipulation of phrase structure was used to optimise message redundancy and enhance the conceptual compatibility of the message without increasing message length or imposing a perceptual cost or memory overload. The results also suggest that system response times were quicker when synthesised speech warnings were used. This result is consistent with predictions from multiple resource theory which states that the resources required for the perception of verbal warnings are different from those for the flight task. It is also suggested that the perception of a pictorial display requires the same resources used for the perception of the primary flight task. An alternative explanation is that pictorial displays impose a visual scanning cost which is responsible for decreased performance. Based on the findings reported here, it is suggested that speech displays be incorporated in a spatially compatible cockpit environment because they allow equal or better performance when compared with pictorial displays. More importantly, the amount of time that the operator must direct his vision away from information vital to the flight task is decreased.
NASA Technical Reports Server (NTRS)
Carter, John; Stephenson, Mark
1999-01-01
The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sridhar, Banavar (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Sheth, Kapil S. (Inventor)
2012-01-01
Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.
The Next Giant Leap: NASA's Ares Launch Vehicles Overview
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Vanhooser, Teresa
2008-01-01
The next chapter in NASA's history also promises to write the next chapter in America's history, as the Agency makes measurable strides toward developing new space transportation capabilities that wi!! put astronauts on course to explore the Moon as the next giant leap toward the first human footprint on Mars. This paper will present top-level plans and progress being made toward fielding the Ares I crew launch vehicle in the 2013 timeframe and the Ares V cargo launch vehicle in the 2018 timeframe. It also gives insight into the objectives for the first test flight, known as the Ares I-X, which is scheduled for April 2009. The U.S. strategy to scientifically explore space will fuel innovations such as solar power and water recycling, as well as yield new knowledge that directly benefits life on Earth. For the Ares launch vehicles, NASA is building on heritage hardware and unique capabilities; as well as almost 50 years of lessons learned from the Apollo Saturn, Space Shuttle, and commercial launch vehicle programs. In the Ares I Project's inaugural year, extensive trade studies and evaluations were conducted to improve upon the designs initially recommended by the Exploration Systems Architecture Study, resulting in significant reduction of near-term and long-range technical and programmatic risks; conceptual designs were analyzed for fitness against requirements; and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. The Exploration Launch Projects team completed the Ares I System Requirements Review (SRR) at the end of 2006--the first such engineering milestone for a human-rated space transportation system in over 30 years.
Rover imaging system for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1993-01-01
In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.
Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle
NASA Technical Reports Server (NTRS)
Tillier, Clemens Emmanuel
1998-01-01
This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.
Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)
NASA Technical Reports Server (NTRS)
Tow, David K.
2011-01-01
This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.
NASA Technical Reports Server (NTRS)
Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.
1988-01-01
The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.
What can formal methods offer to digital flight control systems design
NASA Technical Reports Server (NTRS)
Good, Donald I.
1990-01-01
Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.
NASA Technical Reports Server (NTRS)
Butler, G. F.; Graves, A. T.; Disbrow, J. D.; Duke, E. L.
1989-01-01
A joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on knowledge-based systems has been agreed. Under the agreement, a flight status monitor knowledge base developed at Ames-Dryden has been implemented using the real-time AI (artificial intelligence) toolkit MUSE, which was developed in the UK. Here, the background to the cooperation is described and the details of the flight status monitor and a prototype MUSE implementation are presented. It is noted that the capabilities of the expert-system flight status monitor to monitor data downlinked from the flight test aircraft and to generate information on the state and health of the system for the test engineers provides increased safety during flight testing of new systems. Furthermore, the expert-system flight status monitor provides the systems engineers with ready access to the large amount of information required to describe a complex aircraft system.
Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.
1994-01-01
Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.
Flight Test Results from the Rake Airflow Gage Experiment on the F-15B
NASA Technical Reports Server (NTRS)
Frederick, Michael; Ratnayake, Nalin
2011-01-01
The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
NASA Astrophysics Data System (ADS)
Cross, Jack; Schneider, John; Cariani, Pete
2013-05-01
Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.
14 CFR 29.1335 - Flight director systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...
14 CFR 27.1335 - Flight director systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight director systems. 27.1335 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...
14 CFR 27.1335 - Flight director systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 27.1335 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...
14 CFR 29.1335 - Flight director systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...
14 CFR 29.1335 - Flight director systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...
Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.
2006-01-01
Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.
L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu
2010-01-01
Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.
A New Method for Conceptual Modelling of Information Systems
NASA Astrophysics Data System (ADS)
Gustas, Remigijus; Gustiene, Prima
Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.
Stability and control flight test results of the space transportation system's orbiter
NASA Technical Reports Server (NTRS)
Culp, M. A.; Cooke, D. R.
1982-01-01
Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
Information Display System for Atypical Flight Phase
NASA Technical Reports Server (NTRS)
Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris J. (Inventor);
2007-01-01
Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase.
Conceptual designs study for a Personnel Launch System (PLS)
NASA Technical Reports Server (NTRS)
Wetzel, E. D.
1990-01-01
A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
14 CFR 121.125 - Flight following system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...
Tadić, Jovan M; Michalak, Anna M; Iraci, Laura; Ilić, Velibor; Biraud, Sébastien C; Feldman, Daniel R; Bui, Thaopaul; Johnson, Matthew S; Loewenstein, Max; Jeong, Seongeun; Fischer, Marc L; Yates, Emma L; Ryoo, Ju-Mee
2017-09-05
In this study, we explore observational, experimental, methodological, and practical aspects of the flux quantification of greenhouse gases from local point sources by using in situ airborne observations, and suggest a series of conceptual changes to improve flux estimates. We address the major sources of uncertainty reported in previous studies by modifying (1) the shape of the typical flight path, (2) the modeling of covariance and anisotropy, and (3) the type of interpolation tools used. We show that a cylindrical flight profile offers considerable advantages compared to traditional profiles collected as curtains, although this new approach brings with it the need for a more comprehensive subsequent analysis. The proposed flight pattern design does not require prior knowledge of wind direction and allows for the derivation of an ad hoc empirical correction factor to partially alleviate errors resulting from interpolation and measurement inaccuracies. The modified approach is applied to a use-case for quantifying CH 4 emission from an oil field south of San Ardo, CA, and compared to a bottom-up CH 4 emission estimate.
NASA Technical Reports Server (NTRS)
Shontz, W. D.; Records, R. M.; Antonelli, D. R.
1992-01-01
The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.
NASA Technical Reports Server (NTRS)
Knighton, Donna L.
1992-01-01
A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.
2013-03-01
Unmanned Aircraft Systems Flight Plan that identified small unmanned aerial systems ( SUAS ) as “a profound technological...advances in small unmanned aerial systems ( SUAS ) cooperative control. The end state objective of the research effort was to flight test an autonomous...requirements were captured in the Unmanned Aircraft Systems Flight Plan . The flight plan
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry
1991-01-01
A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.
Movable Ground Based Recovery System for Reuseable Space Flight Hardware
NASA Technical Reports Server (NTRS)
Sarver, George L. (Inventor)
2013-01-01
A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.
Feasibility of Implementing an All-Volunteer Force for the ROK Armed Forces
2007-03-01
Korea’s current military/economic/political/social factors for voluntary recruitment through an open-systems conceptual model. Results indicate that the...recruitment through an open-systems conceptual model. Results indicate that the draft should be maintained for the near future, but this does not...7 A. A CONCEPTUAL MODEL FOR DEFENSE ORGANIZATION
ERIC Educational Resources Information Center
Guzman-Orth, Danielle; Laitusis, Cara; Thurlow, Martha; Christensen, Laurene
2016-01-01
This paper is the second in a series from Educational Testing Service (ETS) that conceptualizes next-generation English language proficiency (ELP) assessment systems for K-12 English learners (ELs) in the United States.The first paper articulated a high-level conceptualization of next-generation ELP assessment systems (Hauck, Wolf, & Mislevy,…
2000-04-01
18 Flight Testing of Radio Navigation Systems (les Essais en vol des systemes de radionavigation) This AGARDograph has been sponsored by the Systems...Techniques Series - Volume 18 Flight Testing of Radio Navigation Systems (les Essais en vol des syst~mes de radionavigation) Edited by H. Bothe H.J...Landing Test and Other Short-Range 19853 Applications by P. de Benquoe D’Agut, H. Rieheek and A. Pool 17. Analogue Signal Conditioning for Flight Test
Cognition and procedure representational requirements for predictive human performance models
NASA Technical Reports Server (NTRS)
Corker, K.
1992-01-01
Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods including procedural backtracking with concurrent search, temporal reasoning, and constraint checking for partial ordering of procedures. Finally, the representation is being linked to models of human decision making processes that include heuristic, propositional and prescriptive judgement models that are sensitive to the procedural content in which the valuative functions are being performed.
A neural based intelligent flight control system for the NASA F-15 flight research aircraft
NASA Technical Reports Server (NTRS)
Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James
1993-01-01
A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.
NASA Astrophysics Data System (ADS)
Escher, William J. D.
1998-01-01
Deriving from the initial planning activity of early 1965, which led to NASA's Advanced Space Transportation Program (ASTP), an early-available airbreathing/rocket combined propulsion system powered ``ultralight payload'' launcher was defined at the conceptual design level. This system, named the ``W Vehicle,'' was targeted to be a ``second generation'' successor to the original Bantam Lifter class, all-rocket powered systems presently being pursued by NASA and a selected set of its contractors. While this all-rocket vehicle is predicated on a fully expendable approach, the W-Vehicle system was to be a fully reusable 2-stage vehicle. The general (original) goal of the Bantam class of launchers was to orbit a 100 kg payload for a recurring per-launch cost of less than one million dollars. Reusability, as the case for larger vehicles focusing on single stage to orbit (SSTO) configurations, is considered the principal key to affordability. In the general context of a range of space transports, covering the payload range of 0.1 to 10 metric ton payloads, the W Vehicle concept-predicated mainly on ground- and flight-test proven hardware-is described in this paper, along with a nominal development schedule and budgetary estimate (recurring costs were not estimated).
Evolution of systems concepts for a 100 kWe class Space Nuclear Power System
NASA Technical Reports Server (NTRS)
Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.
1985-01-01
Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.
Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative
NASA Technical Reports Server (NTRS)
Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike
2006-01-01
NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level systems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.
NASA Technical Reports Server (NTRS)
Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.
2016-01-01
Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.
NASA Technical Reports Server (NTRS)
1990-01-01
Evaluations are summarized directed towards defining optimal instrumentation for performing planetary polarization measurements from a spacecraft platform. An overview of the science rationale for polarimetric measurements is given to point out the importance of such measurements for future studies and exploration of the outer planets. The key instrument features required to perform the needed measurements are discussed and applied to the requirements for the Cassini mission to Saturn. The resultant conceptual design of a spectro-polarimeter photometer for Cassini is described in detail.
A scheme for parameterizing ice cloud water content in general circulation models
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Donner, Leo J.
1989-01-01
A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.
Port-O-Sim Object Simulation Application
NASA Technical Reports Server (NTRS)
Lanzi, Raymond J.
2009-01-01
Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.
Optical Diagnostic System for Solar Sails: Phase 1 Final Report
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.
2004-01-01
NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.
Challenges of CPAS Flight Testing
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Morris, Aaron L.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown via a series of Drogue, Pilot, and Main parachutes. Because Orion is considerably larger and heavier than Apollo, many of the flight test techniques developed during the Apollo program must be modified. The Apollo program had a dedicated C-133 aircraft, which was modified to allow a simple airdrop of "boilerplate" flight test vehicles. However, the CPAS program must use either commercial or military assets with minimal modifications to airframes or procedures. Conceptual envelopes from 2-Degree Of Freedom trajectories are presented for several existing and novel architectures. Ideally, the technique would deliver a representative capsule shape to the desired altitude and dynamic pressure at test initiation. However, compromises must be made on the characteristics of trajectories or the fidelity of test articles to production hardware. Most of the tests to date have used traditional pallet and weight tub or missile-shaped test vehicles. New test vehicles are being designed to better incorporate Orion structural components and deploy parachutes in a more representative fashion. The first attempt to test a capsule-shaped vehicle failed due to unexpected events while setting up the test condition through a series of complex procedures. In order to avoid the loss of another expensive test article which will delay the program, simpler deployment methods are being examined and more positive control of the vehicle will be maintained. Existing challenges include interfacing with parent aircraft, separating test vehicles, achieving test conditions, and landing within limited test ranges. All these challenges must be met within cost and schedule limits.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.
Development of a simple, self-contained flight test data acquisition system
NASA Technical Reports Server (NTRS)
Clarke, R.; Shane, D.; Roskam, J.; Rummer, D. I.
1982-01-01
The flight test system described combines state-of-the-art microprocessor technology and high accuracy instrumentation with parameter identification technology which minimize data and flight time requirements. The system was designed to avoid permanent modifications of the test airplane and allow quick installation. It is capable of longitudinal and lateral-directional stability and control derivative estimation. Details of this system, calibration and flight test procedures, and the results of the Cessna 172 flight test program are presented. The system proved easy to install, simple to operate, and capable of accurate estimation of stability and control parameters in the Cessna 172 flight tests.
14 CFR 415.131 - Flight safety system crew data.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2013 CFR
2013-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2011 CFR
2011-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2012 CFR
2012-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2014 CFR
2014-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2015-01-01
NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
Conceptual Spaces of the Immune System.
Fierz, Walter
2016-01-01
The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.
Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters
NASA Technical Reports Server (NTRS)
Jentink, Henk W.; Bogue, Rodney K.
2005-01-01
Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Lee, M. G.
1985-01-01
The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.
Fuel cell technology program contract summary report
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program which was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using the P and WA PC8B technology as the base is reported. The major tasks of this program consisted of (1) fuel cell system studies of a space shuttle powerplant conceptual design (designated engineering model -1, EM-1) supported by liaison with the space shuttle prime contractors; (2) component and subsystem technology advancement and; (3) a demonstrator powerplant test. Fuel cell system studies, with the EM-1 as the focal point of design activities, included determination of voltage regulation, specific reactant consumption, weight, voltage level and performance characteristics. These studies provided the basis for coordination activities with the space shuttle vehicle prime contractor. Interface information, on-board checkout and in-flight monitoring requirements, and development cost data were also provided as part of this activity. Even though the two vehicles primes had different voltage requirements (115 volts in one case and 28 volts in the other), it was concluded that either option could be provided in the fuel cell power system by the electrical hook-up of the cells in the stack.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Research flight-control system development for the F-18 high alpha research vehicle
NASA Technical Reports Server (NTRS)
Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven
1991-01-01
The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.
A knowledge-based system for prototypical reasoning
NASA Astrophysics Data System (ADS)
Lieto, Antonio; Minieri, Andrea; Piana, Alberto; Radicioni, Daniele P.
2015-04-01
In this work we present a knowledge-based system equipped with a hybrid, cognitively inspired architecture for the representation of conceptual information. The proposed system aims at extending the classical representational and reasoning capabilities of the ontology-based frameworks towards the realm of the prototype theory. It is based on a hybrid knowledge base, composed of a classical symbolic component (grounded on a formal ontology) with a typicality based one (grounded on the conceptual spaces framework). The resulting system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science with the dual process theories of reasoning and rationality. The system has been experimentally assessed in a conceptual categorisation task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially extends the representational and reasoning 'conceptual' capabilities of standard ontology-based systems.
Digital Fly-By-Wire Flight Control Validation Experience
NASA Technical Reports Server (NTRS)
Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.
1978-01-01
The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.
Innovative use of global navigation satellite systems for flight inspection
NASA Astrophysics Data System (ADS)
Kim, Eui-Ho
The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight Inspection Systems (FIS) by using GPS and WAAS in novel manners. The algorithms include Adaptive Carrier Smoothing (ACS), optimizing WAAS accuracy and stability, and reference point-based precise relative positioning for real-time and near-real-time applications. The developed systems are WAAS-aided FIS, WAAS-based FIS, and stand-alone GPS-based FIS. These systems offer both high efficiency and low cost, and they have different advantages over one another in terms of accuracy, integrity, and worldwide availability. The performance of each system is tested with experimental flight test data and shown to have accuracy that is sufficient for flight inspection and superior to the current Inertial-based AFIS.
Space Synthetic Biology Project
NASA Technical Reports Server (NTRS)
Howard, David; Roman, Monsi; Mansell, James (Matt)
2015-01-01
Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the project in selecting the best approaches to the application of bioelectrochemical technologies to ECLS. Figure 1 shows results of simulation of charge transport in an experimental system. Figure 2 shows one of five conceptual designs for ECLS subsystems based on bioelectrochemical reactors. Also during the first 2 years, some work was undertaken to gather fundamental data (conductivities, overpotentials) relevant to the modeling efforts.
NASA Technical Reports Server (NTRS)
Stewart, James F.; Shuck, Thomas L.
1990-01-01
Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim
2004-01-01
Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.
Design and Development of a Flight Route Modification, Logging, and Communication Network
NASA Technical Reports Server (NTRS)
Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.
2016-01-01
There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.
NASA Technical Reports Server (NTRS)
Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.
1989-01-01
The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.
Propulsion system-flight control integration-flight evaluation and technology transition
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.
1990-01-01
Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.
ERIC Educational Resources Information Center
Stahl, Bernd Carsten
2011-01-01
Teaching ethics to students of information systems (IS) raises a number of conceptual and content-related issues. The present paper starts out by developing a conceptual framework of moral and ethical issues that distinguishes between moral intuition, explicit morality, ethical theory and meta-ethical reflection. This conceptual framework…
Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth
2013-01-01
Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.
Shigayeva, Altynay; Coker, Richard J
2015-04-01
There is renewed concern over the sustainability of disease control programmes, and re-emergence of policy recommendations to integrate programmes with general health systems. However, the conceptualization of this issue has remarkably received little critical attention. Additionally, the study of programmatic sustainability presents methodological challenges. In this article, we propose a conceptual framework to support analyses of sustainability of communicable disease programmes. Through this work, we also aim to clarify a link between notions of integration and sustainability. As a part of development of the conceptual framework, we conducted a systematic literature review of peer-reviewed literature on concepts, definitions, analytical approaches and empirical studies on sustainability in health systems. Identified conceptual proposals for analysis of sustainability in health systems lack an explicit conceptualization of what a health system is. Drawing upon theoretical concepts originating in sustainability sciences and our review here, we conceptualize a communicable disease programme as a component of a health system which is viewed as a complex adaptive system. We propose five programmatic characteristics that may explain a potential for sustainability: leadership, capacity, interactions (notions of integration), flexibility/adaptability and performance. Though integration of elements of a programme with other system components is important, its role in sustainability is context specific and difficult to predict. The proposed framework might serve as a basis for further empirical evaluations in understanding complex interplay between programmes and broader health systems in the development of sustainable responses to communicable diseases. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
Operational viewpoint of the X-29A digital flight control system
NASA Technical Reports Server (NTRS)
Chacon, Vince; Mcbride, David
1988-01-01
In the past few years many flight control systems have been implemented as full-authority, full-time digital systems. The digital design has allowed flight control systems to make use of many enhanced elements that are generally considered too complex to implement in an analog system. Examples of these elements are redundant information exchanged between channels to allow for continued operation after multiple failures and multiple variable gain schedules to optimize control of the aircraft throughout its flight envelope and in all flight modes. The introduction of the digital system for flight control also created the problem of obtaining information from the system in an understandable and useful format. This paper presents how the X-29A was dealt with during its operations at NASA Ames-Dryden Flight Research Facility. A brief description of the X-29A control system, a discussion of the tools developed to aid in daily operations, and the troubleshooting of the aircraft are included.
NASA Technical Reports Server (NTRS)
Tow, David
2010-01-01
This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.
NASA Technical Reports Server (NTRS)
2008-01-01
A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.
Regulatory physiology discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
The focus of the Regulatory Physiology discipline of the Space Physiology and Countermeasures Program is twofold. First, to determine and study how microgravity and associated factors of space flight affect the regulatory mechanisms by which humans adapt and achieve homeostasis and thereby regulate their ability to respond to internal and external signals; and, second, to study selected physiological systems that have been demonstrated to be influenced by gravity. The Regulatory Physiology discipline, as defined here, is composed of seven subdisciplines: (1) Circadian Rhythms, (2) Endocrinology, (3) Fluid and Electrolyte Regulation, (4) Hematology, (5) Immunology, (6) Metabolism and Nutrition, and (7) Temperature Regulation. The purpose of this Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the area of regulatory physiology. It covers the research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in regulatory physiology. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.
Cardiopulmonary discipline science plan
NASA Technical Reports Server (NTRS)
1991-01-01
Life sciences research in the cardiopulmonary discipline must identify possible consequences of space flight on the cardiopulmonary system, understand the mechanisms of these effects, and develop effective and operationally practical countermeasures to protect crewmembers inflight and upon return to a gravitational environment. The long-range goal of the NASA Cardiopulmonary Discipline Research Program is to foster research to better understand the acute and long-term cardiovascular and pulmonary adaptation to space and to develop physiological countermeasures to ensure crew health in space and on return to Earth. The purpose of this Discipline Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of cardiopulmonary sciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of both cardiovascular and pulmonary function. It contains a general plan that will be used by both NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational (intramural and extramural) research and development activities in this area.
2017-12-08
This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Tamir, David
1992-01-01
As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.
SIM Lite Astrometric Observatory progress report
NASA Astrophysics Data System (ADS)
Marr, James C., IV; Shao, Michael; Goullioud, Renaud
2010-07-01
The SIM Lite Astrometric Observatory (aka SIM Lite), a micro-arcsecond astrometry space mission, has been developed in response to NASA's indefinite deferral of the SIM PlanetQuest mission. The SIM Lite mission, while significantly more affordable than the SIM PlanetQuest mission concept, still addresses the full breadth of SIM science envisioned by two previous National Research Council (NRC) Astrophysics Decadal Surveys at the most stringent "Goal" level of astrometric measurement performance envisioned in those surveys. Over the past two years, the project has completed the conceptual design of the SIM Lite mission using only the completed SIM technology; published a 250 page book describing the science and mission design (available at the SIM website: http://sim.jpl.nasa.gov); been subject to an independent cost and technical readiness assessment by the Aerospace Corporation; and submitted a number of information responses to the NRC Astro2010 Decadal Survey. The project also conducted an exoplanet-finding capability double blind study that clearly demonstrated the ability of the mission to survey 60 to 100 nearby sun-like dwarf stars for terrestrial, habitable zone planets in complex planetary systems. Additionally, the project has continued Engineering Risk Reduction activities by building brassboard (form, fit & function to flight) version of key instrument elements and subjecting them to flight qualification environmental and performance testing. This paper summarizes the progress over the last two years and the current state of the SIM Lite project.
URV Flight Test of an ADA Implemented Self-Repairing Flight Control System
1992-08-01
USE ONLY(Leave blank) I2. REPORT DATE j3.REOTYPANDTSCVRD JAUG 1992 j FINAL 01/01/85--08/31/92 4. TITLE AND SUBTITLE URV FL GHT TEST OF AN ADA IMPLEMESNT...History of the XBQM-106 2 2.0 Self-Repairing Flight Control System 4 Introduction 2.1 Control System Reconfiguration 5 Strategy 2.2 Failure Detection...ji * Ill ’ha A GJ s.d I I I C S U L 3 2.0 Self-Repairing Flight Control System Introduction Self-Repairing Flight Control Systems (SRFCS) are an
Advanced flight control system study
NASA Technical Reports Server (NTRS)
Mcgough, J.; Moses, K.; Klafin, J. F.
1982-01-01
The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.
Design and Manufacturing of Extremely Low Mass Flight Systems
NASA Technical Reports Server (NTRS)
Johnson, Michael R.
2002-01-01
Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.
NASA Technical Reports Server (NTRS)
Bosworth, John T.
2008-01-01
Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.
Orion Launch Abort System Performance During Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
McCauley, Rachel; Davidson, John; Gonzalez, Guillo
2015-01-01
The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.
Components for digitally controlled aircraft engines
NASA Technical Reports Server (NTRS)
Meador, J. D.
1981-01-01
Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
The X-43A Flush Airdata Sensing System Flight Test Results
NASA Technical Reports Server (NTRS)
Baumann, Ethan; Pahle, Joseph W.; Davis, Mark; White, John Terry
2008-01-01
The National Aeronautics and Space Administration (NASA) has flight-tested a flush airdata sensing (FADS) system on the Hyper-X Research Vehicle (X-43A) at hypersonic speeds during the course of two successful flights. For this series of tests, the FADS system was calibrated to operate between Mach 3 and Mach 8, and flight test data was collected between Mach 1 and Mach 10. The FADS system acquired pressure data from surface-mounted ports and generated a real-time angle-of-attack (alpha) estimate on board the X-43A. The collected data were primarily intended to evaluate the FADS system performance, and the estimated alpha was used by the flight control algorithms on the X-43A for only a portion of the first successful flight. This paper provides an overview of the FADS system and alpha estimation algorithms, presents the in-flight alpha estimation algorithm performance, and provides comparisons to wind tunnel results and theory. Results indicate that the FADS system adequately estimated the alpha of the vehicle during the hypersonic portions of the two flights.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2007-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Williams-Hayes, Peggy S.
2010-01-01
Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.
NASA Technical Reports Server (NTRS)
Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2015-01-01
NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.
NASA Technical Reports Server (NTRS)
Murray, Jennifer; Birr, Richard
2010-01-01
This slide presentation reviews the development of technical requirements for Unmanned Aircraft Systems (UAS) utilization of the Iridium Satellite Constellation to provide flight safety. The Federal Aviation Authority (FAA) required an over-the-horizon communication standard to guarantee flight safety before permitting widespread UAS flights in the National Air Space (NAS). This is important to ensure reliable control of UASs during loss-link and over-the-horizon scenarios. The core requirement was to utilize a satellite system to send GPS tracking data and other telemetry from a flight vehicle down to the ground. Iridium was chosen as the system because it is one of the only true satellite systems that has world wide coverage, and the service has a highly reliable link margin. The Iridium system, the flight modems, and the test flight are described.
NASA Technical Reports Server (NTRS)
Hang, Richard
2015-01-01
The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.
Applying Ada to Beech Starship avionics
NASA Technical Reports Server (NTRS)
Funk, David W.
1986-01-01
As Ada solidified in its development, it became evident that it offered advantages for avionics systems because of it support for modern software engineering principles and real time applications. An Ada programming support environment was developed for two major avionics subsystems in the Beech Starship. The two subsystems include electronic flight instrument displays and the flight management computer system. Both of these systems use multiple Intel 80186 microprocessors. The flight management computer provides flight planning, navigation displays, primary flight display of checklists and other pilot advisory information. Together these systems represent nearly 80,000 lines of Ada source code and to date approximately 30 man years of effort. The Beech Starship avionics systems are in flight testing.
Digital flight control actuation system study
NASA Technical Reports Server (NTRS)
Rossing, R.; Hupp, R.
1974-01-01
Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.
Determination of UAV pre-flight Checklist for flight test purpose using qualitative failure analysis
NASA Astrophysics Data System (ADS)
Hendarko; Indriyanto, T.; Syardianto; Maulana, F. A.
2018-05-01
Safety aspects are of paramount importance in flight, especially in flight test phase. Before performing any flight tests of either manned or unmanned aircraft, one should include pre-flight checklists as a required safety document in the flight test plan. This paper reports on the development of a new approach for determination of pre-flight checklists for UAV flight test based on aircraft’s failure analysis. The Lapan’s LSA (Light Surveillance Aircraft) is used as a study case, assuming this aircraft has been transformed into the unmanned version. Failure analysis is performed on LSA using fault tree analysis (FTA) method. Analysis is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. Pre-flight checklist of the UAV is then constructed based on the basic causes obtained from failure analysis.
A Conceptual Framework for Evolving, Recommender Online Learning Systems
ERIC Educational Resources Information Center
Peiris, K. Dharini Amitha; Gallupe, R. Brent
2012-01-01
A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…
On the Origins of the Conceptual System
ERIC Educational Resources Information Center
Mandler, Jean M.
2007-01-01
Contrary to the conventional view of infancy as a sensorimotor period without conceptual thought, research over the past 20 years has shown that preverbal infants are capable of at least 3 conceptual functions: forming concepts with which to interpret the world, recall of the past, and engaging in conceptual generalization. Research is described…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... Committee 213, Enhanced Flight Vision/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation..., Enhanced Flight Vision/ Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing this notice to advise the public of the seventeenth meeting of RTCA Special Committee 213, Enhanced Flight Vision...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices Begin...
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... failure, malfunction, or defect in an aircraft concerning— (1) Fires during flight and whether the related fire-warning system functioned properly; (2) Fires during flight not protected by related fire-warning system; (3) False fire-warning during flight; (4) An exhaust system that causes damage during flight to...
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... failure, malfunction, or defect in an aircraft concerning— (1) Fires during flight and whether the related fire-warning system functioned properly; (2) Fires during flight not protected by related fire-warning system; (3) False fire-warning during flight; (4) An exhaust system that causes damage during flight to...
Mechanization of and experience with a triplex fly-by-wire backup control system
NASA Technical Reports Server (NTRS)
Lock, W. P.; Petersen, W. R.; Whitman, G. B.
1975-01-01
A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.
NASA Astrophysics Data System (ADS)
Lopes, Rita; Videira, Nuno
2015-12-01
A participatory system dynamics modelling approach is advanced to support conceptualization of feedback processes underlying ecosystem services and to foster a shared understanding of leverage intervention points. The process includes systems mapping workshop and follow-up tasks aiming at the collaborative construction of causal loop diagrams. A case study developed in a natural area in Portugal illustrates how a stakeholder group was actively engaged in the development of a conceptual model depicting policies for sustaining the climate regulation ecosystem service.
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029
Integrated flight path planning system and flight control system for unmanned helicopters.
Jan, Shau Shiun; Lin, Yu Hsiang
2011-01-01
This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
NASA Technical Reports Server (NTRS)
Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard
2006-01-01
NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include: executive and senior management sponsorship, KM awareness, promotion and training, cultural change management, process improvement, leveraging existing resources and new innovative technologies to align with other NASA KM initiatives (convergence: the big picture). To enable results based incremental implementation and future growth of the KM initiative, key performance measures have been identified including stakeholder value, system utility, learning and growth (knowledge capture, sharing, reduced anomaly recurrence), cultural change, process improvement and return-on-investment. The next steps for the initial implementation spiral (focused on SSME Turbomachinery) have been identified, largely based on the organization and compilation of summary level engineering process models, data capture matrices, functional models and conceptual-level svstems architecture. Key elements include detailed KM requirements definition, KM technology architecture assessment, - evaluation and selection, deployable KM Pilot design, development, implementation and evaluation, and justifying full implementation (estimated Return-on-Investment). Features identified for the notional system architecture include the knowledge presentation layer (and its components), knowledge network layer (and its components), knowledge storage layer (and its components), User Interface and capabilities. This paper provides a snapshot of the progress to date, the near term planning for deploying the KM pilot project and a forward look at results based growth of KM capabilities with-in the MSFC PSD.
Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests
1977-04-01
Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight
Flight evaluation of a computer aided low-altitude helicopter flight guidance system
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond
1993-01-01
The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.
ERIC Educational Resources Information Center
Larsson, Asa; Hallden, Ola
2010-01-01
Conceptual change is often described as a causal process in which changes in an embraced system of beliefs result in a new system of beliefs. Here, it is argued that conceptual change is better understood as an intentional activity with regard to the learner, that is, what the learner is doing when trying to understand something. Children were…
ERIC Educational Resources Information Center
Koponen, Ismo T.; Kokkonen, Tommi; Nousiainen, Maiji
2017-01-01
We discuss here conceptual change and the formation of robust learning outcomes from the viewpoint of complex dynamic systems (CDS). The CDS view considers students' conceptions as context dependent and multifaceted structures which depend on the context of their application. In the CDS view the conceptual patterns (i.e. intuitive conceptions…
NASA Technical Reports Server (NTRS)
1979-01-01
The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.
SSI-ARC Flight Test 3 Data Review
NASA Technical Reports Server (NTRS)
Gong, Chester; Wu, Minghong G.
2015-01-01
The "Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS)" Project conducted flight test program, referred to as Flight Test 3, at Armstrong Flight Research Center from June - August 2015. Four flight test days were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as Autoresolver. The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Resulting flight test data and analysis results will be used to evaluate the DAA system performance (e.g., trajectory prediction accuracy, threat detection) and to add fidelity to simulation models used to inform Minimum Operating Performance Standards (MOPS) for integrating UAS into routine NAS operations.
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA TSRV essential flight control system requirements via object oriented analysis
NASA Technical Reports Server (NTRS)
Duffy, Keith S.; Hoza, Bradley J.
1992-01-01
The objective was to analyze the baseline flight control system of the Transport Systems Research Vehicle (TSRV) and to develop a system specification that offers high visibility of the essential system requirements in order to facilitate the future development of alternate, more advanced software architectures. The flight control system is defined to be the baseline software for the TSRV research flight deck, including all navigation, guidance, and control functions, and primary pilot displays. The Object Oriented Analysis (OOA) methodology developed is used to develop a system requirement definition. The scope of the requirements definition contained herein is limited to a portion of the Flight Management/Flight Control computer functionality. The development of a partial system requirements definition is documented, and includes a discussion of the tasks required to increase the scope of the requirements definition and recommendations for follow-on research.
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
Advanced flight control system study
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.
1982-01-01
A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.
HIDEC F-15 adaptive engine control system flight test results
NASA Technical Reports Server (NTRS)
Smolka, James W.
1987-01-01
NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.
Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.
Summary of NASA Aerospace Flight Battery Systems Program activities
NASA Technical Reports Server (NTRS)
Manzo, Michelle; Odonnell, Patricia
1994-01-01
A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.
Development of a Conceptual Structure for Architectural Solar Energy Systems.
ERIC Educational Resources Information Center
Ringel, Robert F.
Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…
Propulsion system/flight control integration for supersonic aircraft
NASA Technical Reports Server (NTRS)
Reukauf, P. J.; Burcham, F. W., Jr.
1976-01-01
Digital integrated control systems are studied. Such systems allow minimization of undesirable interactions while maximizing performance at all flight conditions. One such program is the YF-12 cooperative control program. The existing analog air data computer, autothrottle, autopilot, and inlet control systems are converted to digital systems by using a general purpose airborne computer and interface unit. Existing control laws are programed and tested in flight. Integrated control laws, derived using accurate mathematical models of the airplane and propulsion system in conjunction with modern control techniques, are tested in flight. Analysis indicates that an integrated autothrottle autopilot gives good flight path control and that observers are used to replace failed sensors.
Crew Exploration Vehicle Launch Abort System Flight Test Overview
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2007-01-01
The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.
The Use of Behavior Models for Predicting Complex Operations
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2010-01-01
Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.
Effects of the space flight environment on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.
2003-01-01
Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.