Science.gov

Sample records for flight system preliminary

  1. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  2. Preliminary flight prototype potable water bactericide system

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1973-01-01

    The development, design, and testing of a preliminary flight prototype potable water bactericide system are described. The system is an assembly of upgraded canisters composed of: (1) A biological filter; (2) an activated charcoal and ion exchange resin canister; (3) a silver chloride canister, (4) a deionizer, (5) a silver bromide canister with a partial bypass, and (6) mock-up instrumentation and circuitry. The system exhibited bactericidal activity against 10 to the 9th power Pseudomonas aeruginosa and/or Type IIIa, and reduced Bacillus subtilis by up to 5 orders of magnitude in 24 hours at ambient temperatures with a 1 ppm silver ion dose. Four efficacy tests were performed with a AgBr canister dosing anticipated fuel cell water. Tests show that a 0.05 ppm silver ion dose was bactericidal against 3 plus or minus 1 x 10 to the 9th power (5 plus or minus 1 x 10,000/ml Pseudomonas aeruginosa and/or Type IIIa in 15 minutes or less.

  3. Preliminary Flight Rating Tests of the HAST Propulsion System

    DTIC Science & Technology

    1975-01-01

    project engineer for propulsion was Mr. Fred Hewitt. Contractor personnel providing support included Messrs. William Bryne , James Auiler, Gary...Management Assembly ....... 11 Controlled Thrust Assembly .......... . Z Event Sequencing ................. 24 III TES.2 FACILITY...system will reliably perform the intended flight test missions, ( Z ) verify safe altitude ignition and operation so as to be able to certify flight safety

  4. Energy efficient engine: Flight propulsion system preliminary analysis and design

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.

    1980-01-01

    The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.

  5. Energy efficient engine: flight propulsion system preliminary analysis and design

    SciTech Connect

    Johnston, R.P.; Beitler, R.S.; Bobinger, R.O.; Broman, C.L.; Gravitt, R.D.; Heineke, H.; Holloway, P.R.; Klem, J.S.; Nash, D.O.; Ortiz, P.

    1980-06-01

    The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.

  6. Energy efficient engine. Flight propulsion system preliminary analysis and design

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.

    1979-01-01

    The characteristics of an advanced Flight Propulsion System (FPS) suitable for introduction in the late 1980's to early 1990's, were defined. It was determined that NASA goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine-system integration (including nacelle), and aircraft integration considerations. In terms of the NASA goals, the current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel-burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study-aircraft characteristics relative to the reference engine.

  7. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  8. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  9. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  10. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    NASA Technical Reports Server (NTRS)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  11. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Preliminary Design

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.

  12. Energy efficient engine flight propulsion system preliminary analysis and design report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.

  13. Energy efficient engine: Flight propulsion system, preliminary analysis and design update

    NASA Technical Reports Server (NTRS)

    Stearns, E. M.

    1982-01-01

    The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.

  14. Preliminary system design of a Three Arm Capture Mechanism (TACM) flight demonstration article

    NASA Technical Reports Server (NTRS)

    Schaefer, Otto; Stasi, Bill

    1993-01-01

    The overall objective of the Three Arm Capture Mechanism (TACM) is to serve as a demonstration of capability for capture of objects in space. These objects could be satellites, expended boosters, pieces of debris, etc.; anything of significant size. With this capability we can significantly diminish the danger of major collisions of debris with valuable space assets and with each other, which would otherwise produce many smaller, high velocity pieces of debris which also become concerns. The captured objects would be jettisoned into the atmosphere, relocated in 'parking' orbits, or recovered for disposition or refurbishment. The dollar value of satellites launched into space continues to grow along with the cost of insurance; having a capture capability takes a positive step towards diminishing this added cost. The effort covered is a planning step towards a flight demonstration of the satellite capture capability. Based on the requirement to capture a communication class satellite, its associated booster, or both, a preliminary system definition of a retrieval kit is defined. The objective of the flight demonstration is to demonstrate the techniques proposed to perform the mission and to obtain data on technical issues requiring an in situ space environment. The former especially includes issues such as automated image recognition techniques and control strategies that enable an unmanned vehicle to rendezvous and capture a satellite, contact dynamics between the two bodies, and the flight segment level of automation required to support the mission. A development plan for the operational retrieval capability includes analysis work, computer and ground test simulations, and finally a flight demonstration. A concept to perform a selected mission capturing a precessing communications satellite is described. Further development efforts using analytical tools and laboratory facilities are required prior to reaching the point at which a full commitment to the flight

  15. Preliminary Candidate Advanced Avionics System (PCAAS). [reduction in single pilot workload during instrument flight rules flight

    NASA Technical Reports Server (NTRS)

    Teper, G. L.; Hon, R. H.; Smyth, R. K.

    1977-01-01

    Specifications which define the system functional requirements, the subsystem and interface needs, and other requirements such as maintainability, modularity, and reliability are summarized. A design definition of all required avionics functions and a system risk analysis are presented.

  16. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  17. Turbulence flight director analysis and preliminary simulation

    NASA Technical Reports Server (NTRS)

    Johnson, D. E.; Klein, R. E.

    1974-01-01

    A control column and trottle flight director display system is synthesized for use during flight through severe turbulence. The column system is designed to minimize airspeed excursions without overdriving attitude. The throttle system is designed to augment the airspeed regulation and provide an indication of the trim thrust required for any desired flight path angle. Together they form an energy management system to provide harmonious display indications of current aircraft motions and required corrective action, minimize gust upset tendencies, minimize unsafe aircraft excursions, and maintain satisfactory ride qualities. A preliminary fixed-base piloted simulation verified the analysis and provided a shakedown for a more sophisticated moving-base simulation to be accomplished next. This preliminary simulation utilized a flight scenario concept combining piloting tasks, random turbulence, and discrete gusts to create a high but realistic pilot workload conducive to pilot error and potential upset. The turbulence director (energy management) system significantly reduced pilot workload and minimized unsafe aircraft excursions.

  18. X-48B Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2009-01-01

    This slide presentation reviews the preliminary Flight tests of the X-48B development program. The X-48B is a blended wing body aircraft that is being used to test various features of the BWB concept. The research concerns the following: (1) Turbofan Development, (2) Intelligent Flight Control and Optimization, (3) Airdata Calibration (4) Parameter Identification (i.e., Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response.)

  19. Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary over-the-wing flight propulsion system analysis report

    NASA Technical Reports Server (NTRS)

    Howard, D. F.

    1977-01-01

    The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.

  20. Energy Efficient Engine flight propulsion system preliminary analysis and design report

    SciTech Connect

    Bisset, J.W.; Howe, D.C.

    1983-09-01

    The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.

  1. Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.; Howe, D. C.

    1983-01-01

    The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.

  2. Preliminary design-lift/cruise fan research and technology airplane flight control system

    NASA Technical Reports Server (NTRS)

    Gotlieb, P.; Lewis, G. E.; Little, L. J.

    1976-01-01

    This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.

  3. Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D. K.

    1976-01-01

    The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.

  4. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  5. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  6. Preliminary flight prototype waste collection subsystem. [performance of waste disposal system in weightless environment

    NASA Technical Reports Server (NTRS)

    Swider, J. E., Jr.

    1974-01-01

    The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.

  7. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 2: Accident Model Document (AMD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.

  8. Conjugating binary systems for spacecraft thermal control. Appendix C: Aeroassist Flight Experiment Carrier Vehicle preliminary stress analysis

    NASA Technical Reports Server (NTRS)

    Ingram, J. E.; Murray, T. O.

    1989-01-01

    An assessment of the static strength of the Aeroassist Flight Experiment (AFE) Carrier Vehicle is presented. The Carrier Vehicle is the structural component which provides the mounting platform for the experiments, on-board computers, batteries, and other black boxes. In addition, the Solid Rocket Motor (SRM), the Thrusters, and the Aerobrake are all attached directly to the Carrier Vehicle. The basic approach in this analysis was to develop a NASTRAN Finite Element Model as a parallel effort to the preliminary design, and to use the internal loads from this model to perform the stress analysis. The NASTRAN method of Inertial Relief was employed. This method involves either specifying a set of CG (center of gravity) accelerations or applying forces at the CG and representing the Carrier Vehicle and all its mounted devices with the proper stiffness and mass properties.

  9. A Flight Evaluation of an Airborne Physiological Instrumentation System, Including Preliminary Results Under Conditions of Varying Accelerations

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Holden, George R.; Smith, Joseph R., Jr.

    1960-01-01

    A physiological instrumentation system capable of recording the electrocardiogram, pulse rate, respiration rate, and systolic and diastolic blood pressures during flight has been developed. This instrumentation system was designed for use during control studies at varied levels of acceleration in order to monitor the well-being of the pilot and at the same time to obtain data for study of the relationships between his various physiological functions and his performance capability. Flights, made in a T-33 aircraft, demonstrated the ability of the system to obtain the desired physiological data in flight. The data obtained in these flights, although limited in nature, indicate a slowing of the pulse rate under the subgravity conditions of brief duration. There appeared to be a proportional nearly in-phase relationship between pulse rate and acceleration. A decrease in diastolic blood pressure together with an increase in pulse pressure was noted during subgravity conditions and an elevation of the diastolic pressure together with a decrease in pulse pressure du-ring increased accelerations. No change worthy of note was seen in the records of the systolic blood pressure, the respiration rate, or the electrocardiogram over the range of acceleration studied (0 to 3 g).

  10. A preliminary design for flight testing the FINDS algorithm

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1986-01-01

    This report presents a preliminary design for flight testing the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a target flight computer. The FINDS software was ported onto the target flight computer by reducing the code size by 65%. Several modifications were made to the computational algorithms resulting in a near real-time execution speed. Finally, a new failure detection strategy was developed resulting in a significant improvement in the detection time performance. In particular, low level MLS, IMU and IAS sensor failures are detected instantaneously with the new detection strategy, while accelerometer and the rate gyro failures are detected within the minimum time allowed by the information generated in the sensor residuals based on the point mass equations of motion. All of the results have been demonstrated by using five minutes of sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment.

  11. SLS-1 flight experiments preliminary significant results

    NASA Astrophysics Data System (ADS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  12. SLS-1 flight experiments preliminary significant results

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  13. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  14. Quiet Clean Short-haul Experimental Engine (QCSEE) preliminary under the wing flight propulsion system analysis report

    NASA Technical Reports Server (NTRS)

    Howard, D. F.

    1976-01-01

    The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.

  15. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  16. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  17. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  18. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  19. Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Takallu, Mohammad A.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of

  20. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  1. Preliminary Helicopter Design Decision Making Based on Flight Performance Factors.

    DTIC Science & Technology

    1984-09-01

    7 AD-Aib 488 PRELIMINRY HELICOPTER DESIGN DECISION MKING BSED ON i’.. FLIGHT PERFORMAiNCE FACTOR (U) NAiVAL POSTGRADUATE SCHOOLMONTEREY CA P Y ADAMCIK...California II 00 THESIS PRELIMINARY HELICOPTER DESIGN DECISION MAKING BASED ON FLIGHT PERFORMANCE FACTORS by liELECTE D Patrick V. Adamcik LJ September 1984...TITLE (end Subtite) 5. TYPE OF REPORT & PERIOD COVERED Preliminary Helicopter Design Decision Master’s Thesis Making Based on Flight Performance

  2. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  3. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  4. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  5. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  6. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  7. UAVSAR Flight-Planning System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  8. A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    ONeill, John; Shalin, Valerie L.

    2000-01-01

    The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.

  9. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  10. Preliminary Report on Free Flight Tests

    NASA Technical Reports Server (NTRS)

    Warner, E P; Norton, F H

    1920-01-01

    Results are presented for a series of tests made by the Advisory Committee's staff at Langley Field during the summer of 1919 with the objectives of determining the characteristics of airplanes in flight and the extent to which the actual characteristics differ from those predicted from tests on models in the wind tunnel, and of studying the balance of the machines and the forces which must be applied to the controls in order to maintain longitudinal equilibrium.

  11. Space Shuttle flight control system

    NASA Technical Reports Server (NTRS)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  12. Preliminary Results of Bisphosphonate ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Jones, Jeff; Shapiro, Jay; Lang, Tom; Shackelford, Linda C.; Smith, Scott M.; Evans, Harlan J.; Spector, Elisabeth R.; Sibonga, Jean; Matsumoti, Toshio; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi

    2010-01-01

    Bone loss has been recognized as a potential problem from the beginning of human spaceflight. With the spaceflight missions lasting 6 months to potentially 3 years or longer this issue has assumed increased significance. Detailed measurements from the Mir and ISS long duration missions have documented losses in bone mineral density (BMD) from the total skeleton and critical sub-regions. The most important losses are from the femoral hip averaging about -1.6%/mo integral to -2.3%/mo trabecular BMD. Importantly these studies have documented the wide range in individual response from -0.5 to -5%/mo in BMD. Given the small size of any expedition crew, the wide range of responses has to be considered in the implementation of any countermeasure. Assuming that it is unlikely that the susceptibility for bone loss in any given crewmember will be known, a suite of bone loss countermeasures will likely be needed to insure protection of all crewmembers. The hypothesis for this experiment is that the combined effect of anti-resorptive drugs plus the standard in-flight exercise regimen will have a measurable effect on preventing space flight induced bone loss and strength and will reduce renal stone risk. To date, 4 crewmembers have completed the flight portion of the protocol in which crewmembers take a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch. Compared to previous ISS crewmembers (n=14) not taking alendronate, DXA measurements of the total hip BMD were significantly changed from -1.1 0.5%/mo to 0.04 0.3%/mo (p<0.01); QCT-determined trabecular BMD of the total hip was significantly changed from -2.3 1.0%/mo to -0.3 1.6%/mo (p<0.01). Significance was calculated from a one-tailed t test. While these results are encouraging, the current n (4) is small, and the large SDs indicate that while the means are improved there is still high variability in individual response. Four additional crewmembers have been recruited to participate

  13. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  14. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  15. Preliminary results of flight tests of the propulsion system of the YF-12 airplane at Mach numbers to 3.0

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Holzman, J. K.; Reukauf, P. J.

    1973-01-01

    Flight tests of the propulsion system of a YF-12 airplane were made which included off-schedule inlet operation and deliberately induced unstarts and compressor stalls. The tests showed inlet/engine compatibility to be good through most of the flight envelope. The position of the terminal shock wave could be determined from throat static pressure profiles or from root-mean-square levels of throat static pressure fluctuations. A digital simulation of the control system showed an oscillation of the forward bypass doors to be caused by hysteresis in the bypass door actuator linkages.

  16. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.

    1990-01-01

    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.

  17. Preliminary Design Program: Vapor Compression Distillation Flight Experiment Program

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Boyda, R. B.

    1995-01-01

    This document provides a description of the results of a program to prepare a preliminary design of a flight experiment to demonstrate the function of a Vapor Compression Distillation (VCD) Wastewater Processor (WWP) in microgravity. This report describes the test sequence to be performed and the hardware, control/monitor instrumentation and software designs prepared to perform the defined tests. the purpose of the flight experiment is to significantly reduce the technical and programmatic risks associated with implementing a VCD-based WWP on board the International Space Station Alpha.

  18. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  19. A preliminary investigation of the use of throttles for emergency flight control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  20. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  1. Preliminary analysis of STS-4 entry flight data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A preliminary analysis of the data obtained during entry of the STS-4 Flight was completed. Planned maneuvers were flown during this flight to increase the quality of stability and control analysis, similar to the techniques used during STS-3. The derivatives obtained from STS-4 agreed fairly well with the derivatives obtained on previous flights. The dependence of aileron effectiveness on a elevon position above a Mach number of 10 seen on STS-3 was conclusively verified on STS-4. CSS Mode was engaged to fly the heading alignment circle. After engagement, several cycles of a low amplitude pilot induced oscillation (1 deg/sec) at about 0.3 hertz can be seen. No PIO suppressor activity was seen between preflare and touchdown. This approach demonstrates the advantage of the shallow final glideslope approach. In this type of approach, the pilot is not required to make accurate altitude judgments since an acceptable landing can be made without performing the final flare.

  2. Flight Model Discharge System

    DTIC Science & Technology

    1989-09-01

    Itterconnection wiring diagram for the ESA ............................... 34 3-13 Typical gain versus total count curve for CEM...42 3-16 Calibration curve for energy bin 12 of the ion ESA ....................... 43 3-17 Flight ESA S/N001...Calibration curves for SPM S/N001 ......................................... 67 4-11 Calibration curves for SPM S/N002

  3. Flight Model Discharge System

    DTIC Science & Technology

    1988-06-01

    Dielectric Sensor ................................... 12 5 ESA S/N 001 ......................................... 24 6 Preliminary Test Sequence...71 28 Optical Transmission Loss of Contamination "Witness" Slide 3 .................................. 72 29 Apparatus used in FMDS Spectroscopic...Monitor ( TPU ). This sensor detects the electromagnetic pulses generated by the onset of arcing. (2) An active discharge device (plasma source). (3) A

  4. Decision-Making in Flight with Different Convective Weather Information Sources: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.; Chamberlain, James P.

    2004-01-01

    This paper reports preliminary and partial results of a flight experiment to address how General Aviation (GA) pilots use weather cues to make flight decisions. This research presents pilots with weather cue conditions typically available to GA pilots in visual meteorological conditions (VMC) and instrument meteorological conditions (IMC) today, as well as in IMC with a Graphical Weather Information System (GWIS). These preliminary data indicate that both VMC and GWIS-augmented IMC conditions result in better confidence, information sufficiency and perceived performance than the current IMC condition. For all these measures, the VMC and GWIS-augmented conditions seemed to provide similar pilot support. These preliminary results are interpreted for their implications on GWIS display design, training, and operational use guidelines. Final experimental results will compare these subjective data with objective data of situation awareness and decision quality.

  5. Technology drivers for flight telerobotic system software

    NASA Technical Reports Server (NTRS)

    Labaugh, Robert

    1993-01-01

    Viewgraphs on technology drivers for flight telerobotic system software are included. Topics covered include: flight software lines of code; flight computer architecture; system safety; safety critical parameters; system safety - software functions.

  6. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. Auxiliary propulsion system flight package

    NASA Technical Reports Server (NTRS)

    Collett, C. R.

    1987-01-01

    Hughes Aircraft Company developed qualified and integrated flight, a flight test Ion Auxiliary Propulsion System (IAPS), on an Air Force technology satellite. The IAPS Flight Package consists of two identical Thruster Subsystems and a Diagnostic Subsystem. Each thruster subsystem (TSS) is comprised of an 8-cm ion Thruster-Gimbal-Beam Shield Unit (TGBSU); Power Electronics Unit; Digital Controller and Interface Unit (DCIU); and Propellant Tank, Valve and Feed Unit (PTVFU) plus the requisite cables. The Diagnostic Subsystem (DSS) includes four types of sensors for measuring the effect of the ion thrusters on the spacecraft and the surrounding plasma. Flight qualifications of IAPS, prior to installation on the spacecraft, consisted of performance, vibration and thermal-vacuum testing at the unit level, and thermal-vacuum testing at the subsystem level. Mutual compatibility between IAPS and the host spacecraft was demonstrated during a series of performance and environmental tests after the IAPS Flight Package was installed on the spacecraft. After a spacecraft acoustic test, performance of the ion thrusters was reverified by removing the TGBSUs for a thorough performance test at Hughes Research Laboratories (HRL). The TGBSUs were then reinstalled on the spacecraft. The IAPS Flight Package is ready for flight testing when Shuttle flights are resumed.

  9. Preliminary Results From the First Flight of ATIC

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is designed to measure the composition C and energy spectra of Z = 1 to 28 cosmic rays over the energy range approximately 10 GeV - 100 TeV. The instrument was calibrated in September 1999 at CERN using accelerated electron, proton and pion beams. ATIC was launched as a long duration balloon test flight on 12/28/00 local time from McMurdo, Antarctica. After flying successfully for about 16 days the payload was recovered in excellent condition. Absolute calibration of the detector response was made using cosmic-ray muons. The data analysis algorithm which was developed with Monte Carlo simulations and validated with the CERN beam test will be used for the flight data analysis. Preliminary results of the protons and C helium spectra will be reported in this paper.

  10. Preliminary Results From The First Flight of ATIC

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range approximately 10 GeV - 100 TeV. The instrument was calibrated in September 1999 at CERN using accelerated electron, proton and pion beams. ATIC was launched as a long duration balloon test flight on 12/28/00 local time from McMurdo, Antarctica. After flying successfully for about 16 days the payload was recovered in excellent condition. Absolute calibration of the detector response was made using cosmic-ray muons. The data analysis algorithm which was developed with Monte Carlo simulations and validated with the CERN beam test will be used for the flight data analysis. Preliminary results of the proton and helium spectra will be reported in this paper.

  11. Preliminary Results From The First Flight of ATIC

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range approximately 10 GeV - 100 TeV. The instrument was calibrated in September 1999 at CERN using accelerated electron, proton and pion beams. ATIC was launched as a long duration balloon test flight on 12/28/00 local time from McMurdo, Antarctica. After flying successfully for about 16 days the payload was recovered in excellent condition. Absolute calibration of the detector response was made using cosmic-ray muons. The data analysis algorithm which was developed with Monte Carlo simulations and validated with the CERN beam test will be used for the flight data analysis. Preliminary results of the proton and helium spectra will be reported in this paper.

  12. Preliminary Results From the First Flight of ATIC

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is designed to measure the composition C and energy spectra of Z = 1 to 28 cosmic rays over the energy range approximately 10 GeV - 100 TeV. The instrument was calibrated in September 1999 at CERN using accelerated electron, proton and pion beams. ATIC was launched as a long duration balloon test flight on 12/28/00 local time from McMurdo, Antarctica. After flying successfully for about 16 days the payload was recovered in excellent condition. Absolute calibration of the detector response was made using cosmic-ray muons. The data analysis algorithm which was developed with Monte Carlo simulations and validated with the CERN beam test will be used for the flight data analysis. Preliminary results of the protons and C helium spectra will be reported in this paper.

  13. Preliminary Results of the MOSES II 2015 Flight

    NASA Astrophysics Data System (ADS)

    Smart, Roy; Courrier, Hans; Kankelborg, Charles

    2016-05-01

    The Multi-Order Extreme Ultraviolet Spectrograph (MOSES) is a slitless spectrograph which aims to produce simultaneous spatial-spectral imaging of the solar transition region. This is accomplished through a multilayer concave diffraction grating which produces three images for the spectral orders m = 0, ± 1. The multilayer coating provides a narrow passband, dominated by Ne VII (46.5 nm), which allows the three images to be compared in order to determine line broadenings and identify explosive events in the Solar Transition Region. Here, we examine the preliminary results of MOSES II, the instrument’s second flight which was launched on a sounding rocket from White Sands Missile Range, NM in August 2015. We present the first images of the Sun in Ne VII since Skylab and the preliminary results of observed doppler shifts within an active region.

  14. Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.

    2010-01-01

    INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.

  15. Preliminary flight test of hydrogen peroxide retro-propulsion module

    NASA Astrophysics Data System (ADS)

    An, Sungyong; Jo, Sungkwon; Wee, Jeonghyun; Yoon, Hosung; Kwon, Sejin

    2010-09-01

    In this paper, we present the development of a retro-thruster, the design of a retro-propulsion module, and a preliminary flight of the module in a landing demonstration. First, a retro-monopropellant thruster with the maximum thrust of 350 N that employs hydrogen peroxide as a monopropellant was developed. It's thrust force, efficiency of characteristic velocity, and specific impulse were evaluated during the course of it's development. To control the thrust force, two solenoid valves and a pulse width modulation (PWM) flow control valve were incorporated into the thruster design. Second, a retro-propulsion module with a wet mass of 23 kg was designed and fabricated. All the required components including tanks, propellant tubes, a pressure regulator, valves, a retro-thruster, and support structure were integrated into the module. Finally, a preliminary flight test with thrust and altitude control was carried out successfully. In this test, the throttling of the thrust force and altitude control was performed manually for safety purposes.

  16. Information Display System for Atypical Flight Phase

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris J. (Inventor); Rosenthal, Loren J. (Inventor); Lynch, Robert E. (Inventor); Chidester, Thomas R. (Inventor); Prothero, Gary L. (Inventor); Andrei, Adi (Inventor); Romanowski, Timothy P. (Inventor); Robin, Daniel E. (Inventor); Prothero, Jason W. (Inventor)

    2007-01-01

    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase.

  17. Flight Tests Validate Collision-Avoidance System

    NASA Image and Video Library

    Flights tests of a smartphone-assisted automatic ground collision avoidance system at NASA's Dryden Flight Research Center consistently commanded evasive maneuvers when it sensed that the unmanned ...

  18. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  19. Enhanced Flight Termination System Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2007-01-01

    This paper discusses the methodology, requirements, tests, and implementation plan for the live demonstration of the Enhanced Flight Termination System (EFTS) using a missile program at two locations in Florida: Eglin Air Force Base (AFB) and Tyndall AFB. The demonstration included the integration of EFTS Flight Termination Receivers (FTRs) onto the missile and the integration of EFTS-program-developed transmitter assets with the mission control system at Eglin and Tyndall AFBs. The initial test stages included ground testing and captive-carry flights, followed by a launch in which EFTS was designated as the primary flight termination system for the launch.

  20. Flight Termination Systems Commonality Standard

    DTIC Science & Technology

    2014-09-01

    conducted at ambient temperature. 2. Launch Vehicle Transport a. A full functional test shall be performed before and after all shock tests to evaluate... transportation , or installation. The component need not function after this drop. The component shall be dropped from 12 m (40 ft) onto a steel plate...3-1 3.1 Flight Termination System Functional Requirements

  1. Seasat. Volume 2: Flight systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    Flight systems used in the Seasat Project are described. Included are (1) launch operation; (2) satellite performance after launch; (3) sensors that collected data; and (4) the launch vehicle that placed the satellite into Earth orbit. Techniques for sensor management are explained.

  2. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  3. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  4. Flight Systems Integration and Test

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2011-01-01

    Topics to be Covered in this presentation are: (1) Integration and Test (I&T) Planning (2) Integration and Test Flows (3) Overview of Typical Mission I&T (4) Supporting Elements (5) Lessons-Learned and Helpful Hints (6) I&T Mishaps and Failures (7) The Lighter Side of I&T and (8) Small-Group Activity. This presentation highlights a typical NASA "in-house" I&T program (1) For flight systems that are developed by NASA at a space flight center (like GSFC) (2) Requirements well-defined: qualification/acceptance, documentation, configuration management. (3) Factors: precedents, human flight, risk-aversion ("failure-phobia"), taxpayer dollars, jobs and (4) Some differences among NASA centers, but generally a resource-intensive process

  5. Small Payload Flight Systems (SPFS)

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1984-01-01

    The Small Payload Flight System (SPFS) provides a simple and cost-effective approach to carrying small size experiments on the space shuttle. The system uses a bridge-like structure which spans the orbiter cargo bay but is only 3 feet in length. The structure can carry up to 4300 lb of payload weight and can be positioned at any location along the length of the cargo bay. In addition to the structural support, the SPFS provides avionics services to experiments. These include electrical power distribution and control, command and telemetry for control of the experiments and subsystem health monitoring, and software computations. The avionics system includes a flight qualified electrical power branching distributor, and a system control unit based on the Intel 8086 microprocessor. Data can be recorded on magnetic tape or transmitted to the ground. Finally, a Freon pump and cold plate system provides environmental control for both the avionics hardware and the experiments as necessary.

  6. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  7. Flight Model Discharge System.

    DTIC Science & Technology

    1987-04-01

    will immediately remove the charge from the front surface of the dielectric and return it to ground. The 2-hour time constant network will then reset the...ATDP programs. NEWT5 permits the digitized input of board and component position data, while ATDP automates certain phases of input and output table...format. 8.5 RESULTS The system-level results are presented as curves of AR (normalized radiator area) versus THOT and as curves of Q (heater

  8. Flight Model Discharge System.

    DTIC Science & Technology

    1986-02-01

    of adverse space-environmental conditions. Operational .Jrtcr-,tcsof tLe entire, s*ystem are llreseilted, including the electrostatic analyzers, * so... health diagnostics (i.e., temperature, voltages, and currents). The technical discussion which follows presents the results of the second year’s effort on...TIME, s ECLIPSE CHARGING - -2 LU; -J-3 0 Lu -4 O KAPTON TO SPACECRAFTz Lu cr -5 LL SLt -SPACECRAFT a - TO SPACE -7 -8 F 0 200 400 600 800 TIME,s (𔃻

  9. Aircraft flight path angle display system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1991-01-01

    A display system for use in an aircraft control wheel steering system provides the pilot with a single, quickened flight path angle display to overcome poor handling qualities due to intrinsic flight path angle response lags, while avoiding multiple information display symbology. The control law for the flight path angle control system is designed such that the aircraft's actual flight path angle response lags the pilot's commanded flight path angle by a constant time lag .tau., independent of flight conditions. The synthesized display signal is produced as a predetermined function of the aircraft's actual flight path angle, the time lag .tau. and command inputs from the pilot's column.

  10. Peak Seeking Control for Reduced Fuel Consumption with Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2012-01-01

    The Environmentally Responsible Aviation project seeks to accomplish the simultaneous reduction of fuel burn, noise, and emissions. A project at NASA Dryden Flight Research Center is contributing to ERAs goals by exploring the practical application of real-time trim configuration optimization for enhanced performance and reduced fuel consumption. This peak-seeking control approach is based on Newton-Raphson algorithm using a time-varying Kalman filter to estimate the gradient of the performance function. In real-time operation, deflection of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of a modified F-18 are directly optimized, and the horizontal stabilators and angle of attack are indirectly optimized. Preliminary results from three research flights are presented herein. The optimization system found a trim configuration that required approximately 3.5% less fuel flow than the baseline trim at the given flight condition. The algorithm consistently rediscovered the solution from several initial conditions. These preliminary results show the algorithm has good performance and is expected to show similar results at other flight conditions and aircraft configurations.

  11. USV test flight by stratospheric balloon: Preliminary mission analysis

    NASA Astrophysics Data System (ADS)

    Cardillo, A.; Musso, I.; Ibba, R.; Cosentino, O.

    The Unmanned Space Vehicle test flights will use a 7 m 1300 kg aircraft. The first three launches will take place at the Italian Space Agency ASI base in Trapani Milo, Sicily, through a stratospheric balloon that will drop the aircraft at a predefined height. After free fall acceleration to transonic velocities, the parachute deployment will allow a safe splash down in the central Mediterranean Sea. The goal of this article is to show the preliminary analysis results for the first USV flight. We carried out a statistical study for the year 2000 2003, evaluating the typical summer and winter launch windows of the Trapani Milo base. First, in the center Mediterranean, we define safe recovery areas. They cannot be reached during the balloon ascending phase so, after a sufficiently long floating part able to catch the open sea, the balloon will go down to the release height (24 km). The simulation foresees a 400,000 m3 balloon and 3 valves for the altitude transfer. A safe splash down must occur far enough from the nearest coast: the minimum distance is considered around 25 km. The vehicle should be released at a distance, from the nearest coast, greater than this minimum amount plus the USV model maximum horizontal translation, during its own trajectory from balloon separation to splash down. In this way we define safe release areas for some possible translations. Winter stratospheric winds are less stable. The winter average flight duration is 7 h and it is probably too long for the diurnal recovery requirement and its scheduled procedures. Comparing past stratospheric balloons flights and trajectories computed using measured meteorological data (analysis), with their predictions made using forecast models and soundings, we obtain the standard deviation of the trajectory forecast uncertainty at the balloon aircraft separation. Two cases are taken into account: predictions made 24 and 6 h before the launch. Assuming a Gaussian latitudinal uncertainty distribution for

  12. Vision based flight procedure stereo display system

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  13. Laser docking system flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Experiments necessary in the development of the Laser Docking System (LDS) are described. The LDS would be mounted in the Orbiter payload bay, along with a grid connected by fiber optic link to a computer in the cabin. The tests would be performed to aid in the design of an operational sensor which could track a passive target accurately enough to permit soft docking. Additional data would be gained regarding the LDS performance in space, the effects of Orbiter RCS plume impingement on the target, and refinements needed for the flight hardware. A working model which includes an IR laser steered by galvanometer-driven motors for bouncing beams off retroreflectors mounted on targets is described, together with a 300 ft long indoor test facility. Tests on Orbiter flights would first be in a wholly automatic mode and then in a man-in-the-loop mode.

  14. NEAR spacecraft flight system performance

    NASA Astrophysics Data System (ADS)

    Santo, Andrew G.

    2002-01-01

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft was built and launched in 29 months. After a 4-year cruise phase the spacecraft was in orbit about the asteroid Eros for 1 year, which enabled the science payload to return unprecedented scientific data. A summary of spacecraft in-flight-performance, including a discussion of the December 1998 aborted orbit insertion burn, is provided. Several minor hardware failures that occurred during the last few years of operations are described. Lessons learned during the cruise phase led to new features being incorporated into several in-flight software uploads. The added innovative features included the capability for the spacecraft to autonomously choose a spacecraft attitude that simultaneously kept the medium-gain antennas pointed at Earth while using solar pressure to control system momentum and a capability to combine a propulsive momentum dump with a trajectory correction maneuver. The spacecraft proved flexible, reliable, and resilient over the 5-year mission.

  15. Preliminary SEU analysis of the SAMPEX MIL-STD-1773 space-flight data

    NASA Astrophysics Data System (ADS)

    Crabtree, Christina M.; LaBel, Kenneth A.; Stassinopoulos, E. G.; Miller, Jay T.

    1993-09-01

    The Small Explorer Data System (SEDS) relies heavily on new technologies in the electrical designs. Among the key technologies utilized are fiber optics. The effects of the harsh space radiation environment on these spacecraft components can be quite severe. This paper takes a preliminary look at the single event upset (SEU) data seen during the early portion of SAMPEX flight (launched in July 1992) versus the ground test predictions. The new technologies are addressed along with the error handling abilities of the fiber optic system (MIL-STD-1773). The predicted SAMPEX radiation environment is discussed as well as the methodology of SEU rate prediction utilizing both cosmic ray and proton concerns. A comparison of the flight data to ground test predictions is discussed along with information concerning the significance of where and when the SEUs have occurred.

  16. Flight Guidance System Requirements Specification

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Tribble, Alan C.; Carlson, Timothy M.; Danielson, Eric J.

    2003-01-01

    This report describes a requirements specification written in the RSML-e language for the mode logic of a Flight Guidance System of a typical regional jet aircraft. This model was created as one of the first steps in a five-year project sponsored by the NASA Langley Research Center, Rockwell Collins Inc., and the Critical Systems Research Group of the University of Minnesota to develop new methods and tools to improve the safety of avionics designs. This model will be used to demonstrate the application of a variety of methods and techniques, including safety analysis of system and subsystem requirements, verification of key properties using theorem provers and model checkers, identification of potential sources mode confusion in system designs, partitioning of applications based on the criticality of system hazards, and autogeneration of avionics quality code. While this model is representative of the mode logic of a typical regional jet aircraft, it does not describe an actual or planned product. Several aspects of a full Flight Guidance System, such as recovery from failed sensors, have been omitted, and no claims are made regarding the accuracy or completeness of this specification.

  17. Computer Resources Handbook for Flight Critical Systems.

    DTIC Science & Technology

    1985-01-01

    in avionic systems are suspected of being due to software. In a study of software reliability for digital flight controls conducted by SoHaR for the...aircraft and flight crew -- the use of computers in flight critical applications. Special reliability and fault tolerance (RAFT) techniques are being Used...tolerance in flight critical systems. Conventional reliability techniques and analysis and reliability improvement techniques at the system level are

  18. Space Systems - Flight Pressurized Systems

    DTIC Science & Technology

    2009-06-03

    Hazard: An existing or potential condition that can result in an accident. Hydrogen Embrittlement : A mechanical-environmental failure process that...environments. Materials which are susceptible to stress- corrosion cracking or hydrogen embrittlement shall be evaluated by performing sustained-load...Oxygen and Oxygen Systems NSS 1740.16 NASA Safety Standard for Hydrogen and Hydrogen Systems SMC-TR-06-11 (AKA TR-2004

  19. Intelligent redundant actuation system requirements and preliminary system design

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Geiger, L. J.; Harris, J.

    1985-01-01

    Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.

  20. F-15 IFCS Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2008-01-01

    This viewgraph presentation gives a detailed description of the F-15 aircraft, flight tests, aircraft performance and overall advanced neural network based flight control technologies for aerospace systems designs.

  1. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  2. Autonomous Flight Safety System - Phase III

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.

  3. System-level flight test

    SciTech Connect

    Cornwall, J.; Dyson, F.; Eardley, D.; Happer, W.; LeLevier, R.; Nierenberg, W.; Press, W.; Ruderman, M.; Sullivan, J.; York, H.

    1999-11-23

    System-level flight tests are an important part of the overall effort by the United States to maintain confidence in the reliability, safety, and performance of its nuclear deterrent forces. This study of activities by the Department of Energy in support of operational tests by the Department of Defense was originally suggested by Dr. Rick Wayne, Director, National Security Programs, Sandia National Laboratory/Livermore, and undertaken at the request of the Department of Energy, Defense Programs Division. It follows two 1997 studies by JASON that focused on the Department of Energy's Enhanced Surveillance Program for the physics package — i.e. the nuclear warhead.

  4. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  5. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  6. The effects of workload on respiratory variables in simulated flight: a preliminary study.

    PubMed

    Karavidas, Maria Katsamanis; Lehrer, Paul M; Lu, Shou-En; Vaschillo, Evgeny; Vaschillo, Bronya; Cheng, Andrew

    2010-04-01

    In this pilot study, we investigated respiratory activity and end-tidal carbon dioxide (P(et)CO(2)) during exposure to varying levels of work load in a simulated flight environment. Seven pilots (age: 34-60) participated in a one-session test on the Boeing 737-800 simulator. Physiological data were collected while pilots wore an ambulatory multi-channel recording device. Respiratory variables, including inductance plethysmography (respiratory pattern) and pressure of end-tidal carbon dioxide (P(et)CO(2)), were collected demonstrating change in CO(2) levels proportional to changes in flight task workload. Pilots performed a set of simulation flight tasks. Pilot performance was rated for each task by a test pilot; and self-report of workload was taken using the NASA-TLX scale. Mixed model analysis revealed that respiration rate and minute ventilation are significantly associated with workload levels and evaluator scores controlling for "vanilla baseline" condition. Hypocapnia exclusively occurred in tasks where pilots performed more poorly. This study was designed as a preliminary investigation in order to develop a psychophysiological assessment methodology, rather than to offer conclusive findings. The results show that the respiratory system is very reactive to high workload conditions in aviation and suggest that hypocapnia may pose a flight safety risk under some circumstances. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. ["Soiuz-Apollo" experimental flight. Preliminary results of medicobiological studies, carried out during the flight of "Soiuz-19" spaceship].

    PubMed

    Vorob'ev, E I; Gazenko, O G; Gurovskiĭ, N N; Nefedov, Iu G; Egorov, B B

    1976-01-01

    The paper presents brief information on the Apollo-Soyuz test mission, its program biomedical investigations to be carried out in flight and specific medical aspects. It discusses the main tasks of the joint US-USSR experiments and Soviet experiments. It gives and analyzes preliminary results of medical monitoring and postflight examinations of the crew members.

  8. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  9. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  10. Preliminary characterization of persisting circadian rhythms during space flight

    NASA Astrophysics Data System (ADS)

    Sulzman, Frank M.

    In order to evaluate the function of the circadian timing system in space, the circadian rhythm of conidiation of the fungus Neurospora crassa was monitored in constant darkness on the STS 9 flight of the Space Shuttle Columbia. During the first 7 days of spaceflight many tubes showed a marked reduction in the apparent amplitude of the conidiation rhythm, and some cultures appeared arrhythmic. There was more variability in the growth rate and circadian rhythms of individual cultures in space than is usually seen on earth. The results of this experiment indicate that while the circadian rhythm of Neurospora conidiation can persist outside of the earth's environment, either the timekeeping process or its expression is altered in space.

  11. Preliminary characterization of persisting circadian rhythms during space flight

    NASA Technical Reports Server (NTRS)

    Sultzman, F. M.

    1984-01-01

    In order to evaluate the function of the circadian timing system in space, the circadian rhythm of conidiation of the fungus Neurospora crassa was monitored in constant darkness on the STS 9 flight of the Space Shuttle Columbia. During the first 7 days of spaceflight many tubes showed a marked reduction in the apparent amplitude of the conidiation rhythm, and some cultures appeared arrhythmic. There was more variability in the growth rate and circadian rhythms of individual cultures in space than is usually seen on earth. The results of this experiment indicate that while the circadian rhythm of Neurospora conidiation can persist outside of the earth's environment, either the timekeeping process or its expression is altered in space.

  12. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    DTIC Science & Technology

    2013-11-01

    AFRL) and Australian Defence Science and Technology Organisation ( DSTO ). HIFiRE flight five flew in April 2012. Principle goals of this flight were...OH 45433, USA DSTO AVD Brisbane Team Air Vehicles Division, Defence Science and Technology Organisation, PO Box 883 Kenmore, 4069 Australia The...Laboratory (AFRL) and Australian Defence Science and Technology Organisation ( DSTO ). HIFiRE flight five flew in April 2012. Principle goals of this

  13. EVA Systems Flight Controller Talks With Students

    NASA Image and Video Library

    From NASA's International Space Station Mission Control Center, EVA Systems Flight Controller Sandy Fletcher participates in a Digital Learning Network (DLN) event with students from Northtowne Ele...

  14. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  15. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damaged aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  16. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damaged aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  17. Flight Projects Office Information Systems Testbed (FIST)

    NASA Technical Reports Server (NTRS)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  18. Preliminary results of medical investigations during manned flights of the Salyut 4 orbital station.

    PubMed

    Vorobyov, E I; Gazenko, O G; Gurovsky, N N; Nefyodov, Y G; Egorov, B B; Bryanov, I I; Genin, A M; Degtyarev, V A; Egorov, A D; Eryomin, A V; Kakurin, L I; Pestov, I D; Shulzhenko, E B

    1977-01-01

    In 1975 the Soviet Union performed two manned flights on board the orbital station Salyut 4. The first mission of 30 days was flown by A. A. Gubarev (Commander) and G. M. Grechko (Flight Engineer) and the second mission of 63 days by P.I. Klimuk (Commander) and V.I. Sevastyanov (Flight Engineer). The present paper gives preliminary data on the general health and cardiovascular investigations of the crew members during and after flight. The clinical and physiological examinations of the cosmonauts showed that the work-rest cycles and counter-measures used helped to maintain their good health and high performance in flight, to alleviate adverse reactions and to facilitate readaptation post-flight. Medical results of the post-flight investigations revealed no changes that may detract from further increasing the duration of manned space missions.

  19. X-29 flight control system: Lessons learned

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Burken, John J.; Bosworth, John T.; Bauer, Jeffery E.

    1994-01-01

    Two X-29A aircraft were flown at the NASA Dryden Flight Research Center over a period of eight years. The airplanes' unique features are the forward-swept wing, variable incidence close-coupled canard and highly relaxed longitudinal static stability (up to 35-percent negative static margin at subsonic conditions). This paper describes the primary flight control system and significant modifications made to this system, flight test techniques used during envelope expansion, and results for the low- and high-angle-of-attack programs. Through out the paper, lessons learned will be discussed to illustrate the problems associated with the implementation of complex flight control systems.

  20. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  1. Haptic-Multimodal Flight Control System Update

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  2. Robust flight design for an advanced launch system vehicle

    NASA Technical Reports Server (NTRS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    1991-01-01

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  3. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  4. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  5. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  6. Thermal protection system flight repair kit

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A thermal protection system (TPS) flight repair kit required for use on a flight of the Space Transportation System is defined. A means of making TPS repairs in orbit by the crew via extravehicular activity is discussed. A cure in place ablator, a precured ablator (large area application), and packaging design (containers for mixing and dispensing) for the TPS are investigated.

  7. Preliminary Centaur Systems Analysis

    NASA Technical Reports Server (NTRS)

    Maronde, R. G.; Holmes, J. K.; Iwasaki, R. S.

    1981-01-01

    The Centaur is stored in the Orbiter payload bay on the Centaur Integrated Support System (CISS). The CISS not only cradles the Centaur prior to deployment but also provides any signal conditioning required to make the Centaur/Orbiter hardwire interfaces compatible. In addition, the CISS provides other Centaur functions such as controlling all the avionics safety features and providing all the helium supplies for tank pressurizations. Problems associated with a Centaur design concept using a transponder and two switchable antennas are defined. Solutions to these problems are presented.

  8. Apollo 14 flight support and system performance

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1971-01-01

    The Apollo 13 incident and subsequent oxygen tank redesign for Apollo 14 placed unique requirements on the flight support activity. A major part of this activity was the integration of the various analytical efforts into a single team function. Additionally, the first flight of the redesigned system without an orbital test required an extensive analytical base. The support team philosophy, objectives, and organization are presented. Various analytical tools that were used during the flight are discussed. Investigations made during the postflight period are considered and their impact upon subsequent flights shown.

  9. Satellite servicer system flight demonstration program

    NASA Technical Reports Server (NTRS)

    Moore, James S.

    1989-01-01

    A program to develop the capability of servicing satellites in remote locations, where a series of flight that will demonstrate autonomous rendezvous and docking, supervised autonomous Orbital Replacement Unit (ORU) exchange, supervised autonomous fluid transfer and, proximity operations for Space Station Freedom were planned, is described. The flight demonstrations are the results of several mission scenarios with complex technical objectives. Three Shuttle flights are planned to complete the multi-objective program. The major hardware elements of the program are described and discussed. Demonstration objectives and technical approaches to the flight demonstrations are discussed. Existing and developing technologies are assessed for applicability to the Satellite Servicer System (SSSFD) program.

  10. A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Pahle, Joe; Berger, Dave; Venti, Michael W.; Faber, James J.; Duggan, Chris; Cardinal, Kyle

    2012-01-01

    Many theoretical and experimental studies have shown that aircraft flying in formation could experience significant reductions in fuel use compared to solo flight. To date, formation flight for aerodynamic benefit has not been thoroughly explored in flight for large transport-class vehicles. This paper summarizes flight data gathered during several two ship, C-17 formation flights at a single flight condition of 275 knots, at 25,000 ft MSL. Stabilized test points were flown with the trail aircraft at 1,000 and 3,000 ft aft of the lead aircraft at selected crosstrack and vertical offset locations within the estimated area of influence of the vortex generated by the lead aircraft. Flight data recorded at test points within the vortex from the lead aircraft are compared to data recorded at tare flight test points outside of the influence of the vortex. Since drag was not measured directly, reductions in fuel flow and thrust for level flight are used as a proxy for drag reduction. Estimated thrust and measured fuel flow reductions were documented at several trail test point locations within the area of influence of the leads vortex. The maximum average fuel flow reduction was approximately 7-8%, compared to the tare points flown before and after the test points. Although incomplete, the data suggests that regions with fuel flow and thrust reduction greater than 10% compared to the tare test points exist within the vortex area of influence.

  11. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  12. Preliminary Design Study of a Hybrid Airship for Flight Research

    NASA Technical Reports Server (NTRS)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  13. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David K.

    2011-01-01

    This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.

  14. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  15. Validation of Flight Critical Control Systems

    DTIC Science & Technology

    1991-12-01

    Operations and Control System ADIRS Air Data & Inertial Reference Systems AFB Air Force Base AFTI Advanced Fighter Technology Integration AGARD Advisory...redundancy is employed at the aircraft effector plane. The objective is to generate forces and moments about some control axis, in the case of failure of...Flight Control System", Proceedings of the United States Air Force Academy Advanced Flight Controls Symposium, 198 1. 2-13 2 fFlapper, J.A., and

  16. Mass transport phenomena in microgravity: Preliminary results of the first MEPHISTO flight experiment

    NASA Technical Reports Server (NTRS)

    Favier, Jean Jacques; Garandet, J. P.; Rouzaud, A.; Camel, D.

    1994-01-01

    The MEPHISTO space program is the result of a cooperative effort that involves the French nuclear and space agencies (Commissariat a l'energie atomique, CEA - Centre National d'Etudes Spatiales, CNES) and the American National Aeronautics and Space Administration (NASA). The scientific studies and apparatus development were funded in the frame of the GRAMME agreement between CEA and CNES, the flight costs being taken in charge by NASA. Six flight opportunities are scheduled, with alternating French and American principal investigators. It is the purpose of this paper to briefly present MEPHISTO along with the preliminary results obtained during its first flight on USMP-1 in October 1992.

  17. Airborne flight planning and information system

    SciTech Connect

    Cline, J.D.; Wilson, J.A.; Feher, S.H.; Ward, G.D.

    1987-02-10

    A flight planning system is described for use with an aircraft having a computerized navigation system comprising: a data center at a first site that is remotely located from the aircraft includes a database storing navigation route information, performance characteristics for the aircraft and weather data, along with processing means responsive to flight plan input information for generating flight plans from the database. The processor of the data center is accessible by means of a data communications link for transmitting the flight plan input information to the data center from a second site remote from both the aircraft and the data center and for transmitting the flight plans to the second remote site; a portable computer for use at a location remote from the aircraft. The portable computer has a processor, a memory, data input means for permitting an operator to input flight planning data, display means for displaying data to an operator and data recording means for recording one or more flight plans on a storage medium; data communications means for selectively establishing a data communication link between the portable computer and the data center; and a data transfer unit secured within the aircraft including means for receiving and reading the storage medium and reading the one or more flight plans recorded on the storage medium.

  18. Controlled Hypersonic Flight Air Data System and Flight Instrumentation

    DTIC Science & Technology

    2007-06-01

    strongly on the flight envelope, re-entry trajectory and vehicle structure. Flight envelope and re-entry trajectory influence primarily the sensor...6 3.3 Flight Wind angles and basic considerations...determination the Mach number independence principle can however be used to derive simple analytic expressions. 3.3 Flight Wind angles and basic

  19. Space Launch Flight Termination System initial development

    NASA Astrophysics Data System (ADS)

    Ratkevich, B.; Brierley, S.; Lupia, D.; Leiker, T.

    This paper describes the studies, capabilities and challenges in initial development of a new digital encrypted termination system for space launch vehicles. This system is called the Space Launch Flight Termination System (SLFTS). Development of SLFTS is required to address an obsolescence issue and to improve the security of flight termination systems presently in use on the nation's space launch vehicles. SLFTS development was implemented in a four phase approach with the goal of producing a high secure, cost effective flight termination system for United Launch Alliance (ULA) and the United States Air Force (USAF) Evolved Expendable Launch Vehicle (EELV). These detailed study phases developed the requirements, design and implementation approach for a new high secure flight termination system. Studies led to a cost effective approach to replace the High Alphabet Command Receiver Decoders (HA-CRD) presently used on the EELV (Delta-IV & Atlas-V), with a common SLFTS unit. SLFTS is the next generation flight termination system for space launch vehicles, providing an assured high secure command destruct system for launch vehicles in flight. The unique capabilities and challenges to develop this technology for space launch use will be addressed in this paper in detail. This paper summarizes the current development status, design and capabilities of SLFTS for EELV.

  20. Robust and reconfigurable flight control system design

    NASA Astrophysics Data System (ADS)

    Siwakosit, Wichai

    2001-07-01

    A reconfigurable flight control system is a control system which can automatically adapt itself to maintain the performance of a damaged aircraft to be as close as possible to that of the normal or undamaged one. This research focuses mainly on Multi-Input, Multi-Output (MIMO) reconfigurable flight control for an aircraft with damaged actuator(s) which may greatly affect the performance and control of the aircraft, and also pose a challenging flight control problem. The foundation of the control system is a baseline controller and an adaptive module which constitutes a reconfigurable part. The baseline controller ensures that the aircraft has acceptable performance and handling qualities throughout the flight envelope. The combination of a Quantitative Feedback Theory (QFT) Pre-Design Technique (PDT) and a Reduced-order, Linear, Dynamic Inversion (RLDI) control strategy yields a flight control system with good tracking performance and handling qualities with no Pilot Induced Oscillation (PIO) tendencies throughout the designated set of flight conditions. In addition, the system is highly immune to large uncertainties in the aircraft dynamics. The modified filtered-ɛ adaptive algorithm is developed and utilized in the adaptive module of the system. This adaptive algorithm performs well with MIMO system with the added advantage of not having to pre-identify the dynamics of the damaged aircraft, provided that the conditions of reconfigurability are met. An example of the proposed control system with the NASA F-18 HARV vehicle model and a damaged actuator demonstrates the effectiveness of the concept.

  1. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  2. Interactive flight control system analysis program

    NASA Technical Reports Server (NTRS)

    Mahesh, J. K.; Konar, A. F.; Ward, M. D.

    1984-01-01

    A summary of the development, use, and documentation of the interactive software (DIGIKON IV) for flight control system analyses is presented. A list of recommendations for future development is also included.

  3. Enhanced Flight Termination System (EFTS): Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2008-01-01

    The Enhanced Flight Termination System (EFTS) program was initiated and propelled due to the inadvertent terminations of Global Hawk and the Strategic Target System and the NASA Inspector General's assessment letter and recommendations regarding the exploration of low-cost, lightweight space COMSEC for FTS. Additionally, the standard analog and high alphabet systems most commonly used in FTS are secure, but not encrypted. A study group was initiated to select and document a robust, affordable, reliable technology that provides encrypted FTS capability. A flight demonstration was conducted to gain experience using EFTS in an operational environment, provide confidence in the use of the EFTS components, integrate EFTS into an existing range infrastructure to demonstrate the scalability of system components, to provide a command controller that generated the EFTS waveform using an existing range infrastructure, and to provide a report documenting the results of the demonstration. The primary goal of the demonstration was to obtain operational experience with EFTS. Areas of operational experience include: mission planning, pre-flight configuration and testing, mission monitoring and recording, vehicle termination, developing mission procedures. and post mission data reduction and other post mission activities. An Advanced Medium-Range Air-to-Air Missile (AMRAAM) was selected to support the EFTS demonstration due to interest in future use of EFTS by the AMRAAM program, familiarity of EFTS by range personnel, and the availability of existing operational environment to support EFTS testing with available program funding. For demonstration purposes, the AMRAAM was successfully terminated using an EFTS receiver and successfully demonstrating EFTS. The EFTS monitoring software with spectrum analyzer and digital graphical display of aircraft, missile, and target were also demonstrated.

  4. Cosmonauts' haemostasis system status before and after space flights

    NASA Astrophysics Data System (ADS)

    Kuzichkin, Dmitry; Markin, Andrey; Morukov, Boris

    Introduction. It is known that cosmonauts expose themselves to psychophysical effort in different phases of space flights as well as in pre- and post-flight period. Stress affects different body systems functioning changes including haemostasis system. It is shown that adrenalin directly activates XII coagulation cascade factor [McKay D. G., Latour I. G., Parrish M. N.,1970], initiating intrinsic clotting pathway and affects fibrinogen concentration increase in plasma [Zubairov D. M., 1978]. A post-flight increase in the fibrinogen concentration was revealed with its drop up to the pre-flight level within rehabilitation period [T. Peter Stein, Margaret D., 2006]. Stress agents influence on haemostasis system is physiologically determined and directed to body preparation before probable blood loss. One can consider this process as a function of intrinsic clotting pathway. But in case of blood loss absence the preliminary permanent coagulation activation can lead to appearance of thrombosis risk. Purpose. The purpose was to study haemostasis system main components functional activity features before and after space flights. Methods. In the citrated plasma of astronauts who performed short-term (10 to 11 days) or long-term (196 to 199 days) the following values were determined: activated partial thrombin time (APTT); prothrombin time; prothrombin index; international normalized ratio; thrombin time (TT); activity of enzymes influencing the function of proteins involved in the formation and lysis of a clot such as antithrombin III, protein C, plasminogen, antiplasmin; content of fibrinogen, as well as intermediate products of formation and degradation of fibrin such as D-dimer, soluble fibrin-monomer complexes (SFMC). Sampling of biomaterial was perfomed 30 to 45 days prior to the flight, during the 1st day of the post flight period (all the examined persons), and in the 7th and 14th day (long-term flights member only) Results. In pre-flight period cosmonauts’ APTT

  5. Flights in a pseudo-chaotic system.

    PubMed

    Lowenstein, J H; Vivaldi, F

    2011-09-01

    We consider the problem of transport in a one-parameter family of piecewise rotations of the torus, for rotation number approaching 1∕4. This is a zero-entropy system which in this limit exhibits a divided phase space, with island chains immersed in a "pseudo-chaotic" region. We identify a novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode islands. This process originates from the approximate translational invariance of the phase space and leads to long flights of linear motion, for a significant measure of initial conditions. We show that the asymptotic probability distribution of the flight lengths is determined by the geometric properties of a partition of the accelerator-mode island associated with the flight. We establish the existence of flights travelling distances of order O(1) in phase space. We provide evidence for the existence of a scattering process that connects flights travelling in opposite directions.

  6. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  7. Microwave power transmission system studies. Volume 3, section 8: Mechanical systems and flight operations

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.

  8. Preliminary report: Biomedical considerations for future manned space flights

    NASA Technical Reports Server (NTRS)

    Akins, F. R.

    1978-01-01

    The behavioral, psychological, and sociological aspects of space travel, particularly with emphasis on longer duration missions, are discussed along with the biomedical aspects of space flight. These factors may strongly interact with the various psycho-social factors and as such they stand as an immensely important area of concern in and of themselves. A foundation for understanding weightlessness related medical problems through a discussion of the history of symptoms reported specific details on the major areas of concern and approaches to their investigation are presented. Also, discussion is given to the possibility of various countermeasures. Some indication of the effects of various biomedical changes in performance are also covered.

  9. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  10. Space shuttle digital flight control system

    NASA Technical Reports Server (NTRS)

    Minott, G. M.; Peller, J. B.; Cox, K. J.

    1976-01-01

    The space shuttle digital, fly by wire, flight control system presents an interesting challenge in avionics system design. In residence in each of four redundant general purpose computers at lift off are the guidance, navigation, and control algorithms for the entire flight. The mission is divided into several flight segments: first stage ascent, second stage ascent; abort to launch site, abort once around; on orbit operations, entry, terminal area energy management; and approach and landing. The FCS is complicated in that it must perform the functions to fly the shuttle as a boost vehicle, as a spacecraft, as a reentry vehicle, and as a conventional aircraft. The crew is provided with both manual and automatic modes of operations in all flight phases including touchdown and rollout.

  11. Laser Docking System Radar flight experiment

    NASA Technical Reports Server (NTRS)

    Erwin, Harry O.

    1986-01-01

    Flight experiments to verify the Laser Docking System Radar are discussed. The docking requirements are summarized, and the breadboarded hardware is described, emphasizing the two major scanning concepts being utilized: a mechanical scanning technique employing galvanometer beamsteerers and an electronic scanning technique using an image dissector. The software simulations used to apply hardware solutions to the docking requirements are briefly discussed, the tracking test bed is described, and the objectives of the flight experiment are reviewed.

  12. Digital Flight Control System Redundancy Study

    DTIC Science & Technology

    1974-07-01

    microseconds to transfer the data to a memory location on DMA, 2 274 4P4 275 or to an accumulator if under program control. While it is possible, in principle ...March, 1973, to May, 1974, by the Flight Systems Division of The Bendix Corporation, Teterboro, New Jersey under Air Force Contract No. 333615-73-C...3035 AFFDL. The work was administered under the direction of the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 45433, by

  13. Ares I Flight Control System Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedrossian, Nazareth; Hall, Charles; Ryan, Stephen; Jackson, Mark

    2010-01-01

    The Ares I launch vehicle represents a challenging flex-body structural environment for flight control system design. This paper presents a design methodology for employing numerical optimization to develop the Ares I flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares I time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time launch control systems in the presence of parametric uncertainty. Flex filters in the flight control system are designed to minimize the flex components in the error signals before they are sent to the attitude controller. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constraints minimizes performance degradation caused by the addition of the flex filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The flight control system designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC 6DOF nonlinear time domain simulation.

  14. Preliminary Results from the QuietSpike Flight Test

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Howe, Don; Waithe, Kenrick

    2007-01-01

    This viewgraph presentation reviews the QuietSpike flight test results. It shows the previous tests from Nearfield probes. The presentation then reviews the approach to test the QuietSpike, and shows graphics of the positions of the test vehicles. It also shows the components of the Sonic Boom Probing Noseboom. A graph of the Pressure Over- Under-shoot (Shaped Sonic Boom Demonstration (SSBD)Data) is presented. It reviews the Shock Probing Orientations, explaining that the probing plane is always behind the tail of the QuietSpike jet. Graphs of the Shock Position Geometry (SSBD Data) and the QuietSpike signature as of the test on 12/13/06, Near-Field Probing Directly Under the QuietSpike jet, and Near-Field Probing to Side, Near-Field Probing Above and to Side. Several slides review the Computational Fluid Dynamic models, and results compared to the probe tests.

  15. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight safety system analysis. 417.309..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.309 Flight safety system analysis. (a) General. (1) Each flight termination system and command control system, including each of...

  16. Preliminary flight trajectories for the Apollo Soyuz test project

    NASA Technical Reports Server (NTRS)

    Brooks, J. D.

    1973-01-01

    Preliminary data are documented for a typical launch window opening, a typical in-plane case, and a typical launch window closing trajectory, not necessarily in the same daily launch window, for the Apollo Soyuz test project mission. The Soyuz will be launched first and the Apollo will be launched on the first opportunity, 7 hours 21 minutes later. If the Apollo is unable to be launched on the first opportunity, four additional opportunities are available at 30 hours 56 minutes, 54 hours 31 minutes, 78 hours 05 minutes, and 101 hours 40 minutes. If the Apollo cannot be launched in this time frame, no further attempt will be made to launch and rendezvous with the first Soyuz. Soyuz will then be deorbited; however, a second Soyuz was made available for the same purposes.

  17. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  18. Description of the primary flight display and flight guidance system logic in the NASA B-737 transport systems research vehicle

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1990-01-01

    A primary flight display format was integrated with the flight guidance and control system logic in support of various flight tests conducted with the NASA Transport Systems Research Vehicle B-737-100 airplane. The functional operation of the flight guidance mode control panel and the corresponding primary flight display formats are presented.

  19. Autonomous Flight Safety System Road Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.

    2005-01-01

    On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.

  20. Bronchoesophageal and related systems in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  1. Bronchoesophageal and related systems in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  2. A laser-powered flight transportation system

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.; Jones, W. S.

    1978-01-01

    Laser energy transmitted from a solar-power satellite via a set of relay satellites is used to power a cruising air transport; i.e., a laser-powered airplane. The result is a nearly fuelless pollution-free flight transportation system which is cost competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser-power satellite, relay satellites, laser-powered turbofans, and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  3. A laser-powered flight transportation system

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.; Jones, W. S.

    1978-01-01

    Laser energy transmitted from a solar-power satellite via a set of relay satellites is used to power a cruising air transport; i.e., a laser-powered airplane. The result is a nearly fuelless pollution-free flight transportation system which is cost competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser-power satellite, relay satellites, laser-powered turbofans, and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  4. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  5. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

    SciTech Connect

    D. H. BULTMAN; D. WEINACHT - AIRES CORP.

    2000-08-01

    This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule).

  6. Current and Future Flight Operating Systems

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  7. System safety education focused on flight safety

    NASA Technical Reports Server (NTRS)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  8. Next Generation Flight Controller Trainer System

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; hide

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  9. A plume spectroscopy system for flight applications

    NASA Astrophysics Data System (ADS)

    Makel, D. B.; Petersen, T. V.; Duncan, D. B.; Madzsar, G. C.

    1993-06-01

    An operational plume spectroscopy system will be an important element of any rocket engine health management system (HMS). The flight capable FPI spectrometer will enable prognosis and response to incipient rocket engine failures as well as diagnosis of wear and degradation for on-condition maintenance. Spectrometer application to development programs, such as the Space Lifter, NASP, and SSTO, will reduce program risks, allow better adherence to schedules and save money by reducing or eliminating redesign and test costs. The diagnostic capability of a proven, calibrated spectrometer will enhance post-burn certification of high value, reusable engines, such as the Space Shuttle Main Engine (SSME), where life and reliability are key cost drivers. This paper describes a prototype FPI spectrometer for demonstration and validation testing on NASA's Technology Test Bed Engine (TTBE) at Marshall Space Flight Center. The TTBE test unit is designed with flight prototype optics and a commercial off-the-shelf data processing system.

  10. A plume spectroscopy system for flight applications

    NASA Technical Reports Server (NTRS)

    Makel, D. B.; Petersen, T. V.; Duncan, D. B.; Madzsar, G. C.

    1993-01-01

    An operational plume spectroscopy system will be an important element of any rocket engine health management system (HMS). The flight capable FPI spectrometer will enable prognosis and response to incipient rocket engine failures as well as diagnosis of wear and degradation for on-condition maintenance. Spectrometer application to development programs, such as the Space Lifter, NASP, and SSTO, will reduce program risks, allow better adherence to schedules and save money by reducing or eliminating redesign and test costs. The diagnostic capability of a proven, calibrated spectrometer will enhance post-burn certification of high value, reusable engines, such as the Space Shuttle Main Engine (SSME), where life and reliability are key cost drivers. This paper describes a prototype FPI spectrometer for demonstration and validation testing on NASA's Technology Test Bed Engine (TTBE) at Marshall Space Flight Center. The TTBE test unit is designed with flight prototype optics and a commercial off-the-shelf data processing system.

  11. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  12. 14 CFR 23.1335 - Flight director systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight director systems. 23.1335 Section 23...: Installation § 23.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the flight crew its current mode of operation. Selector switch position is not...

  13. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  14. GENIE Flight Test Results and System Overview

    NASA Technical Reports Server (NTRS)

    Brady, Tye; Paschall, Stephen, II; Crain, Timothy P., II; Demars, Kyle; Bishop, Robert

    2011-01-01

    NASA has envisioned a suite of lander test vehicles that will be flown in Earth s atmosphere to incrementally demonstrate applicable lunar lander performance in the terrestrial environment. As each terrestrial rocket progresses in maturity, relevant space flight technology matures to a higher technology readiness level, preparing it for inclusion on a future lunar lander design.. NASA s "Project M" lunar mission concept flew its first terrestrial rocket, RR1, in June 2010 in Caddo Mills, Texas. The Draper Laboratory built GENIE (Guidance Embedded Navigator Integration Environment) successfully demonstrated accurate, real time, embedded performance of Project M navigation and guidance algorithms in a highly dynamic environment. The RR1 vehicle, built by Armadillo Aerospace, performed a successful 60 second free flight and gave the team great confidence in Project M s highly reliable and robust GNC system design and implementation. This paper provides an overview of the GENIE system and describes recent flight performance test results onboard the RR1 terrestrial rocket.

  15. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  16. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  17. Preliminary Flight Deck Observations During Flight in High Ice Water Content Conditions

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas; Duchanoy, Dominque; Bourdinot, Jean-Francois; Harrah, Steven; Strapp, Walter; Schwarzenboeck, Alfons; Dezitter, Fabien; Grandin, Alice

    2015-01-01

    In 2006, Mason et al. identified common observations that occurred in engine power-loss events attributed to flight in high concentrations of ice crystals. Observations included light to moderate turbulence, precipitation on the windscreen (often reported as rain), aircraft total temperature anomalies, lack of significant airframe icing, and no flight radar echoes at the location and altitude of the engine event. Since 2006, Mason et al. and others have collected information from pilots who experienced engine power-loss events via interviews and questionnaires to substantiate earlier observations and support event analyses. In 2011, Mason and Grzych reported that vertical acceleration data showed increases in turbulence prior to engine events, although the turbulence was usually light to moderate and not unique to high ice water content (HIWC) clouds. Mason concluded that the observation of rain on the windscreen was due to melting of ice high concentrations of ice crystals on the windscreen, coalescing into drops. Mason also reported that these pilot observations of rain on the windscreen were varied. Many pilots indicated no rain was observed, while others observed moderate rain with unique impact sounds. Mason concluded that the variation in the reports may be due to variation in the ice concentration, particle size, and temperature.

  18. The Shuttle Orbiter high resolution accelerometer package experiment - Preliminary flight results

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Rutherford, J. F.

    1984-01-01

    A description of the High Resolution Accelerometer Package (HiRAP) experiment, designed to measure rarefied flow aerodynamic accelerations, is given. The ground test calibration factors, as well as post-flight data processing techniques to extract aerodynamic accelerations, are discussed and applied to the recorded reentry data of the recent STS-6 Shuttle Orbiter flight. The ratio of the measured normal-to-axial aerodynamic accelerations during reentry is used to obtain the first flight measurement of the lift-to-drag ratio (L/D) of a winged entry vehicle in the rarefied flow flight regime. The preliminary result for the free-molecule flow L/D is 0.10 + or - 0.03. The initial flight results on L/D are compared with current predictions which are based upon theoretical and empirical considerations. The measured free-molecule flow L/D value is higher than predicted by a factor of about three, indicating that surface reflection is not completely diffuse as currently assumed. In the rarefied flow transition regime, the Shuttle data book-bridging formula fits the flight data adequately. Upper altitude density profiles are also deduced from the measurements and presented. The density profiles show a wave phenomena with amplitude of about 60 percent, relative to a standard model.

  19. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  20. Flight testing an integrated synthetic vision system

    NASA Astrophysics Data System (ADS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-05-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream G-V aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  1. Crash Survivable Flight Data Recording System Study.

    DTIC Science & Technology

    1981-06-30

    on the design of adding parameters associated with structural integrity, turbine engine health , and flight control Ij monitoring. 81-17693 AIRES.ARCH...recording, each wi iii different objective. There are programs concerned with engine health and performance, with the objective to improve system support...it is recommended that any CITSE requirement would be met with a separate system. Many other engine health monitoring systems with various degrees of

  2. Characteristics of flight simulator visual systems

    NASA Technical Reports Server (NTRS)

    Statler, I. C. (Editor)

    1981-01-01

    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.

  3. High pressure gas storage system consumable analyses for ALT flights free flight 1 and free flight 6

    NASA Technical Reports Server (NTRS)

    Hurst, J. E.

    1977-01-01

    Consumables analyses are presented for the high pressure gas storage oxygen (O2), and hydrogen (H2) reactant systems for orbiter vehicle 101 approach and landing tests, for two flights, free flight 1 and free flight 6 are given. The consumables analyses are based on average power data. The required system and mission data updates were made in order to perform the analyses, notably the thermal environment profiles of the reactant storage cylinders and the power profile for the Electrical power subsystem. No mission-dependent environment profiles were provided; therefore, nominal free flight mission profile was used to generate environment profiles for free flights 1 and 6.

  4. Business System Planning Project, Preliminary System Design

    SciTech Connect

    EVOSEVICH, S.

    2000-10-30

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time.

  5. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  6. Flight Experiment Demonstration System (FEDS) analysis report

    NASA Technical Reports Server (NTRS)

    Shank, D. E.

    1986-01-01

    The purpose of the Flight Experiment Demonstration System (FEDS) was to show, in a simulated spacecraft environment, the feasibility of using a microprocessor to automate the onboard orbit determination functions. The software and hardware configuration used to support FEDS during the demonstration and the results of the demonstration are discussed.

  7. Satellite Servicer System flight demonstration program

    NASA Technical Reports Server (NTRS)

    Moore, James S.; Levin, George M.; Ely, Neal

    1990-01-01

    The major hardware elements, demonstration objectives, and technical approaches, as well as existing and developing technologies for applicability to the Satellite Servicer System (SSSFD) program are presented. In a project to develop the capability of servicing satellites in remote locations, NASA and SDI have planned a series of flights to demonstrate autonomous rendezvous and docking, supervised autonomous fluid transfer, and supervised autonomous orbital replacement unit exchange. Program objectives, design reference mission, and flight demonstrations are described. The expanded capability demonstrated by the SSSFD program will provide alternatives to excessive dependence on ground operations personnel and training, increase the reach into unique space environments, and decrease the costs of managing and operating space assets.

  8. Panoramic, large-screen, 3-D flight display system design

    NASA Technical Reports Server (NTRS)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  9. Flight termination system equipment. Volume 2: Batteries

    NASA Astrophysics Data System (ADS)

    1983-03-01

    This catalog provides a ready reference to batteries of flight termination systems used to support range safety functions at various U.S. missile ranges and test facilities. Inclusion in this catalog does not constitute approval by the Range Commander with in-flight safety responsibility. Approval for use of a particular battery on one range for a given missile does not constitute automatic approval for use of the some battery for other missile/space vehicles on the same range, or for the same missile/space vehicle on other ranges. The information in this catalog is taken from manufacturer's specifications and is provided only as a guide. Nothing is implied as to the relative merits of any one battery over another. The minimum specifications cited herein are representative of the individual range requirements. Detailed specifications requirements must be obtained from and coordinated with the lead range. A history of flight usage and laboratory tests is included, where possible.

  10. Flight termination system equipment. Volume 2. Batteries

    SciTech Connect

    Not Available

    1983-03-01

    This catalog provides a ready reference to batteries of flight termination systems used to support range safety functions at various U.S. missile ranges and test facilities. Inclusion in this catalog does not constitute approval by the Range Commander with in-flight safety responsibility. Approval for use of a particular battery on one range for a given missile does not constitute automatic approval for use of the same battery for other missile/space vehicles on the same range, or for the same missile/space vehicle on other ranges. The information in this catalog is taken from manufacturer's specifications and is provided only as a guide. Nothing is implied as to the relative merits of any one battery over another. The minimum specifications cited herein are representative of the individual range requirements. Detailed specifications requirements must be obtained from and coordinated with the lead range. A history of flight usage and laboratory tests is included, where possible.

  11. Synthetic Flight Training System Study

    DTIC Science & Technology

    1983-12-23

    System Component Development Program (VSCDP) as a baseline. In addition, the study investiqated commonality issues of such subsystems as motion...Combat Development Command issued the first in a series of what are now entitled Training Device Requirements (TDR) documents for the development of the...study’s basic issues of visual technology application and commonality are analyzed. The study focuses on approximately five prinicpal organizations

  12. A HILS System for the Simulation of MAV Flight

    DTIC Science & Technology

    2014-11-17

    A HILS System for the Simulation of MAV Flight In this research a HILS system in which a small autopilot can experience flight stimuli, such as...pitch, roll, yaw, and GPS is investigated. These stimuli are controlled by a flight simulator hosting an airframe model that the autopilot in question...fly’s. Such a system allows the autopilot to fly the virtual model of the flight simulator while experiencing all flight stimuli as if it is in real

  13. Space Shuttle flying qualities and flight control system assessment study

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D.

    1982-01-01

    The suitability of existing and proposed flying quality and flight control system criteria for application to the space shuttle orbiter during atmospheric flight phases was assessed. An orbiter experiment for flying qualities and flight control system design criteria is discussed. Orbiter longitudinal and lateral-directional flying characteristics, flight control system lag and time delay considerations, and flight control manipulator characteristics are included. Data obtained from conventional aircraft may be inappropriate for application to the shuttle orbiter.

  14. Airfoil System for Cruising Flight

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

    2014-01-01

    An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

  15. Flight Testing a Digital Flight Control System. Issues and Results

    DTIC Science & Technology

    1984-07-01

    Program is primarily oriented to the development, integration, and I - evaluation of new flight control technologies . The testbed used in this program is...will be tested for safe operations to give confidence in case of non-rUettable automatic IBU engagement. ISSUE: CONTROL LAW AND REDUNDANCY MAGEMENT CO...were available. Being an advanced development program evaluating new aspects of integrated flight control technology , the latter approach was chosen

  16. Integrated flight path planning system and flight control system for unmanned helicopters.

    PubMed

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  17. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    PubMed Central

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  18. Deployment Optimization for Embedded Flight Avionics Systems

    DTIC Science & Technology

    2011-11-01

    architecture containing many computing nodes. At the individual node level, ARINC 653 -compliant time and space partitioning separates the soft...Efficiently In real - time systems , such as the embedded flight avionics case study from Section 4, either fixed priority scheduling algo- rithms, such as...Marchok. Responsive, deterministic IEEE 802.5 token ring scheduling. Real - Time Systems , 1(2):133–158, 1989. 3. L. Lehoczky, J.P. snf Sha and J. Strosnider

  19. SAAB IRST: the system and flight trials

    NASA Astrophysics Data System (ADS)

    Andersson, Ingmar A.; Haglund, Leif

    2003-01-01

    Saab Bofors Dynamics has developed an IRST-system (Infra Red Search and Track) named IR-OTIS (Optical Tracking and Identification System) and flight trials have been carried out with the system mounted on a Saab JA37 Viggen fighter aircraft. This paper consists of three major parts. First an overview of Saab's IRST-programs. The second part describes the system ( IR-OTIS(Viggen) ) that made flight trials during 1998 and 1999 and finally a report from the flight trials. IR-OTIS has mainly three operating modes: 1) IRST-mode where the system covers several different FOS (Field Of Search). 2) FLIR-mode (Forward Looking IR) where the systems LOS (Line Of Sight) is directed from the aircraft. 3) Track-mode where the built-in-tracker controls the LOS. It is also possible to switch from IRST-mode to track-mode automatically. Physically the IR-OTIS(Viggen) consists of the SU (Sensor Unit) and the SPU (Signal Processing Unit). The SU is operating in the longwave IR-band with a 288*4 detector. In all modes the Sensor Unit generates images in 25 Hz and it is also possible to choose one of three FOV. The SPU consists of a Saab designed image processing hardware and several DSPs. Functions in the SPU includes a scene-based NUC (Non Uniformity Correction), anti-Narcissus, a point-target detector including estimation of SNR and a clutter classifier for CFAR, target association, a correlation target tracker and an AGC for image presentation. We carried out over 50 flight trials during 1998 and 1999 in three different rounds. The functionality of the system has increased during the rounds and at the end of the trials all major goals were achieved.

  20. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  1. Quadruplex digital flight control system assessment

    NASA Technical Reports Server (NTRS)

    Mulcare, D. B.; Downing, L. E.; Smith, M. K.

    1988-01-01

    Described are the development and validation of a double fail-operational digital flight control system architecture for critical pitch axis functions. Architectural tradeoffs are assessed, system simulator modifications are described, and demonstration testing results are critiqued. Assessment tools and their application are also illustrated. Ultimately, the vital role of system simulation, tailored to digital mechanization attributes, is shown to be essential to validating the airworthiness of full-time critical functions such as augmented fly-by-wire systems for relaxed static stability airplanes.

  2. Architecting Systems for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Wocken, Gerald

    2002-01-01

    Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.

  3. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  4. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  5. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  6. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  7. 14 CFR 121.127 - Flight following system; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system; requirements. 121... Supplemental Operations § 121.127 Flight following system; requirements. (a) Each certificate holder conducting supplemental operations using a flight following system must show that— (1) The system has adequate facilities...

  8. Development of SEDS data system flight software

    NASA Technical Reports Server (NTRS)

    Pierson, William E.

    1990-01-01

    The Small Expendable-tether Deployer System (SEDS) is being built for a 1991 flight on a Delta launch vehicle. SEDS will deploy a 50 lb instrument satellite as an end mass at the end of a 20 km tether. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on application of the brake, and cut the tether at the proper time after it swings to the vertical. SEDS will also collect data that will be used to test the accuracy of tether dynamics models for this type of deployment. Radar tracking is planned. In addition, the SEDS on-board computer system will record, store, and continuously transmit data over the Delta II S-band telemetry channel. Initial testing of the software under simulated flight conditions was performed. These tests used both assembly language routines running on SEDS data systems and C-language routines on an IBM-PC. As the software now stands relatively few additions are needed before the entire set of flight software is complete.

  9. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  10. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    SciTech Connect

    Patt, R.F.

    1980-06-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  11. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  12. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1992-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flown. The objective of the TCSE on the LDEF was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in the lab. The performance of the TCSE flight system on the LDEF was excellent.

  13. Tethered satellite system deployer flight thermal performance

    NASA Astrophysics Data System (ADS)

    Chapter, John J.

    The Tethered Satellite System (TSS) is a Space Shuttle payload that was flown on July 31, 1992. Though anomalies prevented full deployment, the duration of the mission was approximately as planned, so it was possible to assess system thermal performance. The deployer, which supports the satellite and controls tether movement, has a thermal design that includes multilayer insulation, heaters, and the Spacelab Freon Loop. The deployer Thermal Subsystem met all requirements, and there were no anomalies during the flight. This paper summarizes the TSS deployer thermal design and compares pre- and post-flight thermal analyses. It also decribes simplified personal-computer thermal models of the TSS-1 and presents analysis results for the as-flown timeline.

  14. Ares I Flight Control System Overview

    NASA Technical Reports Server (NTRS)

    Hall, Charles; Lee, Chong; Jackson, Mark; Whorton, Mark; West, mark; Brandon, Jay; Hall, Rob A.; Jang, Jimmy; Bedrossian, Naz; Compton, Jimmy; Rutherford, Chad

    2008-01-01

    This paper describes the control challenges posed by the Ares I vehicle, the flight control system design and performance analyses used to test and verify the design. The major challenges in developing the control system are structural dynamics, dynamic effects from the powerful first stage booster, aerodynamics, first stage separation and large uncertainties in the dynamic models for all these. Classical control techniques were employed using innovative methods for structural mode filter design and an anti-drift feature to compensate for translational and rotational disturbances. This design was coded into an integrated vehicle flight simulation and tested by Monte Carlo methods. The product of this effort is a linear, robust controller design that is easy to implement, verify and test.

  15. Variable acuity remote viewing system flight demonstration

    NASA Technical Reports Server (NTRS)

    Fisher, R. W.

    1983-01-01

    The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.

  16. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  17. Optical technology for flight control systems

    NASA Technical Reports Server (NTRS)

    Mayanagi, M.

    1986-01-01

    Optical applications to the flight control system including optical data bus, sensors, and transducers are analyzed. Examples of optical data bus include airborne light optical fiber technology (ALOFT), F-5E, YA-7D, MIL-STD-1553 fiber optic data bus and NAL-optic data bus. This NAL-optic data bus is applied to STOL, and its characteristics are stressed. Principles and advantages of optical pulse-digital transducers are discussed.

  18. 14 CFR 23.1335 - Flight director systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Instruments: Installation § 23.1335 Flight director systems. If a flight director system is installed, means must be... acceptable as a means of indication. ...

  19. The NASA Dryden Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2005-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented

  20. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  1. Generic architectures for future flight systems

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1992-01-01

    Generic architecture for future flight systems must be based on open system architectures (OSA). This provides the developer and integrator the flexibility to optimize the hardware and software systems to match diverse and unique applications requirements. When developed properly OSA provides interoperability, commonality, graceful upgradability, survivability and hardware/software transportability to greatly minimize life cycle costs and supportability. Architecture flexibility can be achieved to take advantage of commercial developments by basing these developments on vendor-neutral commercially accepted standards and protocols. Rome Laboratory presently has a program that addresses requirements for OSA.

  2. Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight: Preliminary PSP Results from Test 581 in the 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.

    2011-01-01

    This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. This report will also detail possible improvements to the system.

  3. Preliminary assessment of the robustness of dynamic inversion based flight control laws

    NASA Technical Reports Server (NTRS)

    Snell, S. A.

    1992-01-01

    Dynamic-inversion-based flight control laws present an attractive alternative to conventional gain-scheduled designs for high angle-of-attack maneuvering, where nonlinearities dominate the dynamics. Dynamic inversion is easily applied to the aircraft dynamics requiring a knowledge of the nonlinear equations of motion alone, rather than an extensive set of linearizations. However, the robustness properties of the dynamic inversion are questionable especially when considering the uncertainties involved with the aerodynamic database during post-stall flight. This paper presents a simple analysis and some preliminary results of simulations with a perturbed database. It is shown that incorporating integrators into the control loops helps to improve the performance in the presence of these perturbations.

  4. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  5. Preliminary feasibility study of sea-anchored stratospheric balloon for long duration flight

    NASA Astrophysics Data System (ADS)

    Akita, Daisuke

    Long duration flights are required for many scientific observations on stratospheric balloons. The flight duration of a super-pressure balloon is limited mainly by the flight distance due to limitations of the telemetry link, recovery possibility and national borders. A stratospheric super-pressure balloon which is anchored to the sea would have following ca-pabilities. 1) Long duration flight 2) Easy telemetry link to ground station 3) Wide launch window 4) Rapid gondola recovery 5) Fixed-point observation 6) Safety flight operation On the other hand, free-flying super-pressure balloons would be required to develop a flight trajectory control system for the long duration flight. Conventional quasi-static launch of a tethered bal-loon is difficult to ascent into the stratosphere through the jet stream. Because the dynamic pressure of the jet stream is significantly high for the balloon structure. The sea-anchored stratospheric balloon system consists of a long tether, a tether reel and a drag sail at the tether end. The flight sequence of the balloon is as follows. 1) Balloon launch with the reeled-in tether 2) Level flight at a designed altitude on the sea 3) Reel-out the tether with the drag sail 4) Sink the drag sail into the sea 5) Anchor the balloon by the drag sail 6) Observation 7) Cut the tether and terminate the flight The sea-anchored balloon does not require additional ground systems. The flight operation is same as normal balloon flights except for the reel-out and the cut of the tether. The sea-anchored balloon would have an appropriate altitude for its feasibility. The lower balloon altitude in the stratosphere results in significant increase of the dynamic pressure due to the jet stream, while the stress on the tether increases with increasing the balloon altitude by its own weight. In this study, the feasibility of the sea-anchored ballon is investigated in particular on the tether strength, balloon altitude and the system mass based on the present

  6. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  7. 14 CFR 27.1335 - Flight director systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight director systems. 27.1335 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  8. 14 CFR 29.1335 - Flight director systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  9. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  10. 14 CFR 27.1335 - Flight director systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight director systems. 27.1335 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  11. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  12. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...

  13. 14 CFR 121.125 - Flight following system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight following system. 121.125 Section... Operations § 121.125 Flight following system. (a) Each certificate holder conducting supplemental operations must show that it has— (1) An approved flight following system established in accordance with subpart U...

  14. 14 CFR 29.1335 - Flight director systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight director systems. 29.1335 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1335 Flight director systems. If a flight director system is installed, means must be provided to indicate to the...

  15. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of that...

  16. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety system crew data. 415.131... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant's safety review document must identify each flight safety system crew position and the role of...

  17. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  18. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  19. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  20. Cost Estimation and Control for Flight Systems

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)

    2002-01-01

    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  1. Cost Estimation and Control for Flight Systems

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)

    2002-01-01

    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  2. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  3. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  4. Flight test of takeoff performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Srivatsan, Raghavachari; Person, Lee H., Jr.

    1994-01-01

    The Takeoff Performance Monitoring System (TOPMS) is a computer software and hardware graphics system that visually displays current runway position, acceleration performance, engine status, and other situation advisory information to aid pilots in their decision to continue or to abort a takeoff. The system was developed at the Langley Research Center using the fixed-base Transport Systems Research Vehicle (TSRV) simulator. (The TSRV is a highly modified Boeing 737-100 research airplane.) Several versions of the TOPMS displays were evaluated on the TSRV B-737 simulator by more than 40 research, United States Air Force, airline and industry and pilots who rated the system satisfactory and recommended further development and testing. In this study, the TOPMS was flight tested on the TSRV. A total of 55 takeoff and 30 abort situations were investigated at 5 airfields. TOPMS displays were observed on the navigation display screen in the TSRV research flight deck during various nominal and off-nominal situations, including normal takeoffs; reduced-throttle takeoffs; induced-acceleration deficiencies; simulated-engine failures; and several gross-weight, runway-geometry, runway-surface, and ambient conditions. All tests were performed on dry runways. The TOPMS software executed accurately during the flight tests and the displays correctly depicted the various test conditions. Evaluation pilots found the displays easy to monitor and understand. The algorithm provides pretakeoff predictions of the nominal distances that are needed to accelerate the airplane to takeoff speed and to brake it to a stop; these predictions agreed reasonably well with corresponding values measured during several fully executed and aborted takeoffs. The TOPMS is operational and has been retained on the TSRV for general use and demonstration.

  5. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  6. Automated Flight Strip Management System Functional Description

    DTIC Science & Technology

    1990-11-19

    Strips at Boston 16 4.3.1 Use of Flight Progress Strips in the Logan Tower Cab 16 4.3.2 Use of Flight Progress Strips in Boston TRACON 16 4.4 Flight...of Terminal Flight Progress Strip 9 4 Use of Flight Progress Strips in Boston Logan Airport 15 5 Figure Progress Strip Flow for Departure Aircraft at... Boston Logan Airport 17 6 Flight Progress Strip Flow for Arrival Aircraft at Boston Logan Airport 23 7 Current Interfaces for Flight Data Information

  7. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  8. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  9. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  10. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  11. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  12. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  13. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  14. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  15. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... list of all flight termination system test procedures and a synopsis of the procedures that... flight termination system components. An applicant's safety review document must contain a reuse qualification test, refurbishment plan, and acceptance test plan for the use of any flight termination...

  16. Preliminary design of flight hardware for two-phase fluid research

    NASA Technical Reports Server (NTRS)

    Hustvedt, D. C.; Oonk, R. L.

    1982-01-01

    This study defined the preliminary designs of flight software for the Space Shuttle Orbiter for three two-phase fluid research experiments: (1) liquid reorientation - to study the motion of liquid in tanks subjected to small accelerations; (2) pool boiling - to study low-gravity boiling from horizontal cylinders; and (3) flow boiling - to study low-gravity forced flow boiling heat transfer and flow phenomena in a heated horizontal tube. The study consisted of eight major tasks: reassessment of the existing experiment designs, assessment of the Spacelab facility approach, assessment of the individual carry-on approach, selection of the preferred approach, preliminary design of flight hardware, safety analysis, preparation of a development plan, estimates of detailed design, fabrication and ground testing costs. The most cost effective design approach for the experiments is individual carry-ons in the Orbiter middeck. The experiments were designed to fit into one or two middeck lockers. Development schedules for the detailed design, fabrication and ground testing ranged from 15 1/2 to 18 months. Minimum costs (in 1981 dollars) ranged from $463K for the liquid reorientation experiment to $998K for the pool boiling experiment.

  17. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: flight termination system; command control system; tracking; telemetry; communications; flight safety... demonstration of the compatibility of the onboard launch vehicle flight termination system with the command control system. (7) Flight termination system component storage, operating, and service life. A......

  18. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: flight termination system; command control system; tracking; telemetry; communications; flight safety... demonstration of the compatibility of the onboard launch vehicle flight termination system with the command control system. (7) Flight termination system component storage, operating, and service life. A......

  19. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: flight termination system; command control system; tracking; telemetry; communications; flight safety... demonstration of the compatibility of the onboard launch vehicle flight termination system with the command control system. (7) Flight termination system component storage, operating, and service life. A......

  20. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  1. Telemetry Computer System at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Bell, H.; Strock, J.

    1980-01-01

    This paper describes the Telemetry Computer System in operation at NASA's Wallops Flight Center for real-time or off-line processing, storage, and display of telemetry data from rockets and aircraft. The system accepts one or two PCM data streams and one FM multiplex, converting each type of data into computer format and merging time-of-day information. A data compressor merges the active streams, and removes redundant data if desired. Dual minicomputers process data for display, while storing information on computer tape for further processing. Real-time displays are located at the station, at the rocket launch control center, and in the aircraft control tower. The system is set up and run by standard telemetry software under control of engineers and technicians. Expansion capability is built into the system to take care of possible future requirements.

  2. IRAS cryogenic system flight performance report

    NASA Technical Reports Server (NTRS)

    Urbach, A. R.; Mason, P. V.

    1984-01-01

    It is pointed out that the Infrared Astronomical Satellite (IRAS) is the first telescope to perform observations in the far infrared from orbit. IRAS was launched on January 25, 1983 into a 900 km orbit. The use of the first large superfluid helium dewar in space makes it possible to provide a 2 K telescope environment for an anticipated period of one year. A description of the cryogenic system of IRAS is presented, taking into account the superfluid helium tank, the insulation system, the vacuum shell, the aperture cover, and the fluid management system. The dynamic performance of the cryogenic system is considered along with aspects of prelaunch preparations. Details of flight performance are also discussed, giving attention to transient performance, and steady state performance.

  3. Telemetry Computer System at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Bell, H.; Strock, J.

    1980-01-01

    This paper describes the Telemetry Computer System in operation at NASA's Wallops Flight Center for real-time or off-line processing, storage, and display of telemetry data from rockets and aircraft. The system accepts one or two PCM data streams and one FM multiplex, converting each type of data into computer format and merging time-of-day information. A data compressor merges the active streams, and removes redundant data if desired. Dual minicomputers process data for display, while storing information on computer tape for further processing. Real-time displays are located at the station, at the rocket launch control center, and in the aircraft control tower. The system is set up and run by standard telemetry software under control of engineers and technicians. Expansion capability is built into the system to take care of possible future requirements.

  4. Integrated restructurable flight control system demonstration results

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1987-01-01

    The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.

  5. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  6. Equilibrium response of flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1980-01-01

    The steady-state behavior of an aircraft in response to control and disturbance inputs has a major impact on its performance and flying qualities, and it is, to a large extent, not readily predicted by the aircraft's stability and transient behavior. Singular as well as nonsingular response can result as a consequence of the command vector's definition, i.e., equilibrium in the command vector can imply disequilibrium in the state. The flight control structure can be modified to account for this characteristic, and it is shown that systems with identical eigenvalues and eigenvectors but dissimilar command vectors have markedly different responses.

  7. Description of an experimental expert system flight status monitor

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.

    1985-01-01

    This paper describes an experimental version of an expert system flight status monitor being developed at the Dryden Flight Research Facility of the NASA Ames Research Center. This experimental expert system flight status monitor (ESSFSM) is supported by a specialized knowledge acquisition tool that provides the user with a powerful and easy-to-use documentation and rule construction tool. The EESFSM is designed to be a testbed for concepts in rules, inference mechanisms, and knowledge structures to be used in a real-time expert system flight status monitor that will monitor the health and status of the flight control system of state-of-the-art, high-performance, research aircraft.

  8. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  9. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  10. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  11. A preliminary comparison between the SR-3 propeller noise in flight and in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Lasagna, P. L.

    1982-01-01

    The noise generated by supersonic-tip-speed propellers is addressed. Models of such propellers were tested for acoustics in the Lewis 8-by-6-foot wind tunnel. One of these propeller models, SR-3, was tested in flight on the Jetstar airplane and noise data were obtained. Preliminary comparisons of the maximum blade passing tone variation with helical tip Mach number taken in flight with those taken in the tunnel showed good agreement when corrected to the same test conditions. This indicated that the wind tunnel is a viable location for measuring the noise of these propeller models. Comparisons of the directivities at 0.6 and 0.7 axial Mach number showed reasonable agreement. At 0.75 and 0.8 axial Mach number the tunnel directivity data fell off more towards the front than did the airplane data. A possible explanation for this is boundary layer refraction which could be different in the wind tunnel from that in flight. This may imply that some corrections should be applied to both the airplane and wind tunnel data at the forward angles. At and aft of the peak noise angle the boundary layer refraction does not appear to be significant and no correction appears necessary.

  12. A preliminary comparison between the SR-3 propeller noise in flight and in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Dittmar, J. H.; Lasagna, P. L.

    The noise generated by supersonic-tip-speed propellers is addressed. Models of such propellers were tested for acoustics in the Lewis 8-by-6-foot wind tunnel. One of these propeller models, SR-3, was tested in flight on the Jetstar airplane and noise data were obtained. Preliminary comparisons of the maximum blade passing tone variation with helical tip Mach number taken in flight with those taken in the tunnel showed good agreement when corrected to the same test conditions. This indicated that the wind tunnel is a viable location for measuring the noise of these propeller models. Comparisons of the directivities at 0.6 and 0.7 axial Mach number showed reasonable agreement. At 0.75 and 0.8 axial Mach number the tunnel directivity data fell off more towards the front than did the airplane data. A possible explanation for this is boundary layer refraction which could be different in the wind tunnel from that in flight. This may imply that some corrections should be applied to both the airplane and wind tunnel data at the forward angles. At and aft of the peak noise angle the boundary layer refraction does not appear to be significant and no correction appears necessary.

  13. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  14. [Review of visual display system in flight simulator].

    PubMed

    Xie, Guang-hui; Wei, Shao-ning

    2003-06-01

    Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed.

  15. Human System Risk Management for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  16. [The countermeasure system for extended space flights].

    PubMed

    Kozlovskaia, I B; Pestov, I D; Egorov, A D

    2008-01-01

    The article summarizes the results of developing countermeasures by the team of winners of the USSR state prize under the leadership of academician O.G. Gazenko, and ensuing investigations at the Institute for Biomedical Problems. The system of countermeasures against the debilitating developments in cosmonaut's organism first developed in Russia ensured successful completion of long-term SF (64 to 438 days) aboard the Salyut and Mir orbital stations. The system incorporates exercises on the treadmill and veloergometer, axial body loading in suit Pinguin, application of negative pressure on the lower part of the body vacuum suit Chibis and several others. The system proved high efficiency in preventing or smoothing over the negative effects of microgravity in the course and after long-term space flight.

  17. Design of Flight Vehicle Management Systems

    NASA Technical Reports Server (NTRS)

    Meyer, George; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  18. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  19. Summary of NASA Aerospace Flight Battery Systems Program activities

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; Odonnell, Patricia

    1994-01-01

    A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.

  20. Flight evaluation of the terminal guidance system

    NASA Technical Reports Server (NTRS)

    Sandlin, D. R.

    1981-01-01

    The terminal guidance system (TGS) is avionic equipment which gives guidance along a curved descending flight path to a landing. A Cessna 182 was used as the test aircraft and the TGS was installed and connected to the altimeter, DME, RMI, and gyro compass. Approaches were flown by three different pilots. When the aircraft arrives at the termination point, it is set up on final approach for a landing. The TGS provides guidance for curved descending approaches with guideslopes of 6 deg which required, for experienced pilots, workloads that are approximately the same as for an ILS. The glideslope is difficult to track within 1/2 n.m. of the VOR/DME station. The system permits, for experienced pilots, satisfactory approaches with a turn radius as low as 1/2 n.m. and a glideslope of 6 deg. Turn angles have little relation to pilot workload for curved approaches. Pilot experience is a factor for curved approaches. Pilots with low instrument time have difficulty flying steep approaches with small turn radius. Turbulence increases the pilot workload for curved approaches. The TGS does not correct to a given flight path over the ground nor does it adequately compensate for wind drift.

  1. Design of energy-based terrain following flight control system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Aijun; Xie, Yanwu; Tan, Jian

    2006-11-01

    Historically, aircraft longitudinal control has been realized by means of two loops: flight path (the control variable is elevator displacement) and speed control (the control variable is propulsive thrust or engine power). Both the elevator and throttle control cause coupled altitude and speed response, which exerts negative effects on longitudinal flight performance of aircraft, especially for Terrain Following(TF) flight. Energy-based method can resolve coupled problem between flight speed and path by controlling total energy rate and energy distribution rate between elevator and throttle. In this paper, energy-based control method is applied to design a TF flight control system for controlling flight altitude directly. An error control method of airspeed and altitude is adopted to eliminate the stable error of the total energy control system when decoupling control. Pitch loop and pitch rate feedback loop are designed for the system to damp the oscillatory response produced by TF system. The TF flight control system structure diagram and an aircraft point-mass energy motion model including basic control loops are given and used to simulate decoupling performance of the TF fight control system. Simulation results show that the energy-based TF flight control system can decouple flight velocity and flight path angle, exactly follow planned flight path, and greatly reduce altitude error, which is between +10m and -8m.

  2. Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brown, Nelson A.

    2009-01-01

    This video presentation reviews the F-15 Intelligent Flight Control System and contains clips of flight tests and aircraft performance in the areas of target tracking, takeoff and differential stabilators. Video of the APG milestone flight 1g formation is included.

  3. Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Brown, Nelson A.

    2009-01-01

    This video presentation reviews the F-15 Intelligent Flight Control System and contains clips of flight tests and aircraft performance in the areas of target tracking, takeoff and differential stabilators. Video of the APG milestone flight 1g formation is included.

  4. Movable Ground Based Recovery System for Reuseable Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Sarver, George L. (Inventor)

    2013-01-01

    A reusable space flight launch system is configured to eliminate complex descent and landing systems from the space flight hardware and move them to maneuverable ground based systems. Precision landing of the reusable space flight hardware is enabled using a simple, light weight aerodynamic device on board the flight hardware such as a parachute, and one or more translating ground based vehicles such as a hovercraft that include active speed, orientation and directional control. The ground based vehicle maneuvers itself into position beneath the descending flight hardware, matching its speed and direction and captures the flight hardware. The ground based vehicle will contain propulsion, command and GN&C functionality as well as space flight hardware landing cushioning and retaining hardware. The ground based vehicle propulsion system enables longitudinal and transverse maneuverability independent of its physical heading.

  5. Peacekeeper - Guidance system flight readiness review

    NASA Astrophysics Data System (ADS)

    Knight, D. S.; Harrington, E. V.

    The Ballistic Missile Office (BMO) has developed and employed a procedure to insure the flight readiness of a Peacekeeper guidance system. The goals of this additional review procedure (over and above acceptance testing) are to minimize the risk of the guidance system failure and/or achieving substantially less than the designed accuracy. The roles, mission and interaction of teams of personnel from seven associate contractors are discussed using flow diagrams. The paper also includes methods used to identify and resolve areas of concern as well as examples of actual concerns discovered. The scope is discused, including both the various technical disciplines involved and the lowest level of build and test areas reviewed. Resulting build and test improvements are shown.

  6. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    NASA Technical Reports Server (NTRS)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  7. The human cardiovascular system during space flight

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Kotovskaya, A. R.; Fomina, G. A.

    2011-05-01

    Purpose of the work is to analyze and to summarize the data of investigations into human hemodynamics performed over 20 years aboard orbital stations Salyut-7 and Mir with participation of 26 cosmonauts on space flights (SF) from 8 to 438 days in duration. The ultrasonic techniques and occlusive plethysmography demonstrated dynamics of changes in the cardiovascular system during SF of various durations. The parameters of general hemodynamics, the pumping function of the heart and arterial circulation in the brain remained stable in all the space flights; however, there were alterations in peripheral circulation associated with blood redistribution and hypovolemie in microgravity. The anti-gravity distribution of the vascular tone decayed gradually as unneeded. The most considerable changes were observed in leg vessels, equally in arteries (decrease in resistance) and veins (increase in maximum capacity). The lower body negative pressure test (LBNP) revealed deterioration of the gravity-dependent reactions that changed for the worse as SF duration extended. The cardiovascular deconditioning showed itself as loss of descent acceleration tolerance and orthostatic instability in the postflight period.

  8. Real-Time Flight Envelope Monitoring System

    NASA Technical Reports Server (NTRS)

    Kerho, Michael; Bragg, Michael B.; Ansell, Phillip J.

    2012-01-01

    The objective of this effort was to show that real-time aircraft control-surface hinge-moment information could be used to provide a robust and reliable prediction of vehicle performance and control authority degradation. For a given airfoil section with a control surface -- be it a wing with an aileron, rudder, or elevator -- the control-surface hinge moment is sensitive to the aerodynamic characteristics of the section. As a result, changes in the aerodynamics of the section due to angle-of-attack or environmental effects such as icing, heavy rain, surface contaminants, bird strikes, or battle damage will affect the control surface hinge moment. These changes include both the magnitude of the hinge moment and its sign in a time-averaged sense, and the variation of the hinge moment with time. The current program attempts to take the real-time hinge moment information from the aircraft control surfaces and develop a system to predict aircraft envelope boundaries across a range of conditions, alerting the flight crew to reductions in aircraft controllability and flight boundaries.

  9. Trusted Autonomy for Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John

    2005-01-01

    NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is

  10. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  11. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  12. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  13. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  14. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  15. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  16. Mars Pathfinder flight system integration and test.

    NASA Astrophysics Data System (ADS)

    Muirhead, B. K.

    This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.

  17. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center have developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system. AVRADA's NUH-60A STAR (Systems Testbed for Avionics Research) helicopter was specially modified, in house, for the flight evaluation of the CALAHF system. The near terrain trajectory generation algorithm runs on a multiprocessor flight computer. Global Positioning System (GPS) data are integrated with Inertial Navigation Unit (INU) data in the flight computer to provide a precise navigation solution. The near-terrain trajectory and the aircraft state information are passed to a Silicon Graphics computer to provide the graphical 'pilot centered' guidance, presented on a Honeywell Integrated Helmet And Display Sighting System (IHADSS). The system design, piloted simulation, and initial flight test results are presented.

  18. Towards a Decision Support System for Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of

  19. Mercury contamination study for flight system safety

    NASA Technical Reports Server (NTRS)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1972-01-01

    The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.

  20. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  1. The flight of the tethered satellite system

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dennis; Drobot, Adam; Stone, Nobie

    The first Tethered Satellite System (TSS-1) Electrodynamics Mission is scheduled for launch aboard the space shuttle ST-46 on July 31, 1992, as a joint mission between the United States and Italy. A 500-kg, 1.6-m-diameter satellite, attached to the shuttle by a thin (.24 cm), conducting, insulated wire (tether), will be reeled upwards from the orbiter payload to a distance of 20 km when the shuttle is at a projected altitude of 300 km.TSS-1 is an extremely ambitious mission with high-risk payoff potential. This is the type of pioneering mission NASA and the United States should be encouraging, with the risk in the achievement of the mission objectives rather than in safety. The mission has been likened to the maiden flight of a new airplane. We expect surprises and hope to set the stage for the next mission, the TSS-reflight.

  2. Time of flight system on a chip

    NASA Technical Reports Server (NTRS)

    Paschalidis, Nicholas P. (Inventor)

    2006-01-01

    A CMOS time-of-flight TOF system-on-a-chip SoC for precise time interval measurement with low power consumption and high counting rate has been developed. The analog and digital TOF chip may include two Constant Fraction Discriminators CFDs and a Time-to-Digital Converter TDC. The CFDs can interface to start and stop anodes through two preamplifiers and perform signal processing for time walk compensation (110). The TDC digitizes the time difference with reference to an off-chip precise external clock (114). One TOF output is an 11-bit digital word and a valid event trigger output indicating a valid event on the 11-bit output bus (116).

  3. A Preliminary Investigation of Supercharging an Air-Cooled Engine in Flight

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Schey, Oscar W

    1929-01-01

    This report presents the results of preliminary tests made on the effects of supercharging an air-cooled engine under airplane flight conditions. Service training airplanes were used in the investigation equipped with production types of Wright J engines. A N.A.C.A. Roots type supercharger was driven from the rear of the engine. In addition to measuring those quantities that would enable the determination of the climb performance, measurements were made of the cylinder-head temperatures and the carburetor pressures and temperatures. The supercharging equipment was not removed from the airplane when making flights without supercharging, but a by-pass valve, which controlled the amount of supercharging by returning to the atmosphere the surplus air delivered by the supercharger, was left full open. With the supercharger so geared that ground-level pressure could be maintained to 18,500 feet, it was found that the absolute ceiling was increased from 19,400 to 32,600 feet, that the time to climb to 16,00 feet was decreased from 32 to 16 minutes, and that this amount of supercharging apparently did not injure the engine. (author)

  4. Metabolic and Regulatory Systems in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP2, the discussion focuses on the following topics: The Dynamics of Blood Biochemical Parameters in Cosmonauts During Long-Term Space Flights; Efficiency of Functional Loading Test for Investigations of Metabolic Responses to Weightlessness; Human Cellular Immunity and Space Flight; Cytokine Production and Head-Down Tilt Bed Rest; Plasma and Urine Amino Acids During Human Space Flight; and DNA Fingerprinting, Applications to Space Microbiology.

  5. Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.

  6. Accommodating Actuator Failures in Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Siwakosit, W.; Chung, J.

    1998-01-01

    A technique for the design of flight control systems that can accommodate a set of actuator failures is presented. As employed herein, an actuator failure is defined as any change in the parametric model of the actuator which can adversely affect actuator performance. The technique is based upon the formulation of a fixed feedback topology which ensures at least stability in the presence of the failures in the set. The fixed compensation is obtained from a loop-shaping design procedure similar to Quantitative Feedback Theory and provides stability robustness in the presence of uncertainty in the vehicle dynamics caused by the failures. System adaptation to improve performance after actuator failure(s) occurs through a static gain adjustment in the compensator followed by modification of the system prefilter. Precise identification of the vehicle dynamics is unnecessary. Application to a single-input, single-output design using a simplified model of the longitudinal dynamics of the NASA High Angle of Attack Research Vehicle is discussed. Non-real time simulations of the system including a model of the pilot demonstrate the effectiveness and limitations of the approach.

  7. Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas

    2008-01-01

    The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.

  8. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  9. Automated CPX support system preliminary design phase

    NASA Technical Reports Server (NTRS)

    Bordeaux, T. A.; Carson, E. T.; Hepburn, C. D.; Shinnick, F. M.

    1984-01-01

    The development of the Distributed Command and Control System (DCCS) is discussed. The development of an automated C2 system stimulated the development of an automated command post exercise (CPX) support system to provide a more realistic stimulus to DCCS than could be achieved with the existing manual system. An automated CPX system to support corps-level exercise was designed. The effort comprised four tasks: (1) collecting and documenting user requirements; (2) developing a preliminary system design; (3) defining a program plan; and (4) evaluating the suitability of the TRASANA FOURCE computer model.

  10. Preliminary design features of the RASCAL: A NASA /Army rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1993-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  11. Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1992-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  12. Preliminary design features of the RASCAL - A NASA/Army rotorcraft in-flight simulator

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Jacobsen, Robert A.; Eshow, Michelle M.; Hindson, William S.; Doane, Douglas H.

    1992-01-01

    Salient design features of a new NASA/Army research rotorcraft - the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) - are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system, including safety-of-flight. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system and a real-time obstacle detection and avoidance system which will generate low-latitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display.

  13. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  14. The Flight Telerobotic Servicer (FTS) NASA's first operational robotic system

    NASA Technical Reports Server (NTRS)

    Andary, J.; Halterman, K.; Hewitt, D.; Sabelhaus, P.

    1990-01-01

    NASA has completed the preliminary definition phase of the Flight Telerobotic Servicer (FTS) and is now preparing to begin the detailed design and fabrication phase. The FTS will be designed and built by Martin Marietta Astronautics Group in Denver, CO, for the Goddard Space Flight Center, in support of the Space Station Freedom Program. The design concepts for the FTS are discussed, as well as operational scenarios for the assembly, maintenance, servicing and inspection tasks which are being considered for the FTS. The upcoming Development Test Flight (DTF-1) is the first of two shuttle test flights to test FTS operations in the environment of space and to demonstrate the FTS capabilities in performing tasks for Space Station Freedom. Operational planning for DTF-1 is discussed as well as development plans for the operational support of the FTS on the space station.

  15. Integrated assurance assessment of a reconfigurable digital flight control system

    NASA Technical Reports Server (NTRS)

    Ness, W. G.; Davis, R. M.; Benson, J. W.; Smith, M. K.; Eldredge, D.

    1983-01-01

    The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety.

  16. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  17. PRELIMINARY SYSTEMS ANALYSIS AND SIMULATION

    DTIC Science & Technology

    stability augmentation system specification; the development of the bridge concept for roll and yaw louver control; support of various hardware tests; the generation of the specification for the DeFlorez point light source visual display; furnishing consolation services during the DeFlorez display installation and testing, and developing the yaw, roll and pitch direction cosine

  18. The depression system: preliminary studies.

    PubMed

    Richardson, D E; Dempsey, C W; Song, J H

    1997-01-01

    The learned helplessness paradigm was used to test the notion that lesions of a theatrical depression system in the rat will produce antidepression similar to antidepressive medication. Lateral brain stem lesions were effective in producing antidepression and unilateral lesions were as effective as bilateral lesions. Ibotenic acid lesions were not effective, indicating that the effective target site was in a fiber tract and not a cell nucleus.

  19. Design and Manufacturing of Extremely Low Mass Flight Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2002-01-01

    Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.

  20. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  1. Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

  2. Flight Guidance System Validation Using SPIN

    NASA Technical Reports Server (NTRS)

    Naydich, Dimitri; Nowakowski, John

    1998-01-01

    To verify the requirements for the mode control logic of a Flight Guidance System (FGS) we applied SPIN, a widely used software package that supports the formal verification of distributed systems. These requirements, collectively called the FGS specification, were developed at Rockwell Avionics & Communications and expressed in terms of the Consortium Requirements Engineering (CoRE) method. The properties to be verified are the invariants formulated in the FGS specification, along with the standard properties of consistency and completeness. The project had two stages. First, the FGS specification and the properties to be verified were reformulated in PROMELA, the input language of SPIN. This involved a semantics issue, as some constructs of the FGS specification do not have well-defined semantics in CoRE. Then we attempted to verify the requirements' properties using the automatic model checking facilities of SPIN. Due to the large size of the state space of the FGS specification an exhaustive state space analysis with SPIN turned out to be impossible. So we used the supertrace model checking procedure of SPIN that provides for a partial analysis of the state space. During this process, we found some subtle errors in the FGS specification.

  3. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    NASA Technical Reports Server (NTRS)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  4. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  5. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight safety system crew data. 415.131 Section 415.131 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant...

  6. 14 CFR 415.131 - Flight safety system crew data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight safety system crew data. 415.131 Section 415.131 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... Launch Vehicle From a Non-Federal Launch Site § 415.131 Flight safety system crew data. (a) An applicant...

  7. Asynchronous Message Passing in the JPL Flight System Testbed

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    1996-01-01

    The flight mission simulation software in the Jet Propulsion Laboratory's Flight System Testbed (FST) is a heterogeneous, distributed system that is built on an interprocess communication model of asynchronous message passing rather than remote procedure calls (RPCs). The reasoning behind this design decision is discussed; the mechanism used to implement it (.

  8. Mated Flight Control Issues for Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Markley, F. Landis; Whorton, Mark S.

    2006-01-01

    Several unique issues related to mated flight control have been broadly identified. These issues include redundancies in subsystems, controllability, command and control authority distribution, information flow across elements, and changes and variability in system characteristics due to variable mated configurations during operations. Architectural options for mated flight control are discussed in the context of evolving space systems.

  9. Asynchronous Message Passing in the JPL Flight System Testbed

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott

    1996-01-01

    The flight mission simulation software in the Jet Propulsion Laboratory's Flight System Testbed (FST) is a heterogeneous, distributed system that is built on an interprocess communication model of asynchronous message passing rather than remote procedure calls (RPCs). The reasoning behind this design decision is discussed; the mechanism used to implement it (.

  10. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  11. F-16XL ship #1 (#849) takes off for first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The F-16XL #1 (NASA 849) takes off for the first flight of the Digital Flight Control System (DFCS) on December 16, 1997. Like most first flight, the DFCS required months of preparations. During July 1997, crews worked on the engine, cockpit, canopy, seat, and instrumentation. By late August, the aircraft began combined systems tests and a flight readiness review. Although the Air Force Safety Review Board (AFSRB)- a group that provided double checks on all flight operations - approved the program in late November 1997, a problem with the aircraft flight computer delayed the functional check flight until mid-December.

  12. Recent GSFC Space Power Systems Flight Experience

    NASA Technical Reports Server (NTRS)

    Enciso, Marlon L.; Ahmad, Anisa

    2003-01-01

    This viewgraph presentation provides information on the power supplies on scientific satellites, including batteries, and power supply anomalies during in-flight operations. The recent Goddard Space Flight Center (GSFC) missions profiled include the Tropical Rainfall Measuring Mission (TRMM), Landsat 7, Terra-EOS AM, Earth Observing Mission (EO1), Microwave Anistropy Probe (MAP), AQUA-EOS PM, and the Ice, Cloud and Land Elevation Satellite (ICESAT).

  13. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  14. Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.

  15. An improved waste collection system for space flight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry

    1986-01-01

    Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.

  16. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  17. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  18. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  19. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    NASA Astrophysics Data System (ADS)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  20. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  1. Flight tests of the total automatic flight control system (Tafcos) concept on a DHC-6 Twin Otter aircraft

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R., Jr.; Meyer, G.

    1980-01-01

    Flight control systems capable of handling the complex operational requirements of the STOL and VTOL aircraft designs as well as designs using active control concepts are considered. Emphasis is placed on the total automatic flight control system (TACOS) (TAFCOS). Flight test results which verified the performance of the system concept are presented.

  2. Preliminary results of a balloon flight of the solar disk sextant

    NASA Technical Reports Server (NTRS)

    Maier, E.; Twigg, L.; Sofia, S.

    1992-01-01

    Preliminary results of a balloon flight on October 11, 1991, of the solar disk sextant (SDS) experiment are reported. The SDS is an instrument which measures the solar diameter at different orientations with respect to the solar polar axis. Fitting straight lines through two fixed-angle data sets with time as the independent variable yields slopes of (7.1 +/ - 1.5) x 10 exp -3 and (6.7 +/- 1.6) x 10 exp -3/mas s, consistent with the value of 6.47 x 10 exp -3/mas s expected from the earth's approach to the sun due to the orbital motion toward perihelion. Upon the instrument's rotation on its axis a sinusoidal component of the diameter measurement was observed in each rotation cycle, with a variable amplitude of about 150 mas. The present result is epsilon of (5.6 +/- 6.3) x 10 exp -6, about 30 deg offset from the polar-equator position. The absolute diameter obtained by means of the FFT definition is found to be 1919.269 +/- 0.240 arcsec or 1919.131 +/- 0.240 arcsec, depending on the orientation mode of the measurement.

  3. SHARP Demonstration Flight: Video Broadcast System for Research in Intelligent Flight Characterization and Control

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher

    2001-01-01

    The NASA Ames Research Center (Thermal Protection Materials and Systems Branch) is investigating new ceramic materials for the thermal protection of atmospheric entry vehicles. An incremental approach to proving the capabilities of these materials calls for a lifting entry flight test of a sharp leading edge component on the proposed SHARP (Slender Hypervelocity Aerothermodynamic Research Probe) vehicle. This flight test will establish the aerothermal performance constraint under real lifting entry conditions. NASA Ames has been developing the SHARP test flight with SSDL (responsible for the SHARP S I vehicle avionics), Montana State University (responsible for the SHARP S I vehicle airframe), the Wickman Spacecraft and Propulsion Company (responsible for the sounding rocket and launch operations), and with the SCU Intelligent Robotics Program, The SCU team was added well after the rest of the development team had formed. The SCU role was to assist with the development of a real-time video broadcast system which would relay onboard flight video to a communication groundstation. The SCU team would also assist with general vehicle preparation as well as flight operations. At the time of the submission of the original SCU proposal, a test flight in Wyoming was originally targeted for September 2000. This date was moved several times into the Fall of 2000. It was then postponed until the Spring of 2001, and later pushed into late Summer 2001. To date, the flight has still not taken place. These project delays resulted in SCU requesting several no-cost extensions to the project. Based on the most recent conversations with the project technical lead, Paul Kolodjiez, the current plan is for the overall SHARP team to assemble what exists of the vehicle, to document the system, and to 'mothball' the vehicle in anticipation of future flight and funding opportunities.

  4. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  5. Knowledge-based system for flight information management. Thesis

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1990-01-01

    The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment.

  6. Space Shuttle Orbiter thermal protection system design and flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1993-01-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  7. Transfer of Instrument Training and the Synthetic Flight Training System.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    One phase of an innovative flight training program, its development, and initial administration is described in this paper. The operational suitability test activities related to a determination of the transfer of instrument training value of the Army's Synthetic Flight Training System (SFTS) Device 2B24. Sixteen active Army members of an Officer…

  8. Parachute-Deployment Flight Termination System on X-48C

    NASA Image and Video Library

    2013-02-28

    The X-48C Hybrid Wing Body aircraft flew over Rogers Dry Lake on Feb. 28, 2013, from NASA's Dryden Flight Research Center, Edwards, CA. The long boom protruding from between the tails was part of the aircraft's parachute-deployment flight termination system.

  9. Space Shuttle Orbiter thermal protection system design and flight experience

    NASA Astrophysics Data System (ADS)

    Curry, Donald M.

    1993-07-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  10. Brown, Rominger and Curbeam conduct flight control systems checkout

    NASA Image and Video Library

    1997-08-29

    STS085-330-034 (7 - 19 August 1997) --- From the left, astronauts Curtis L. Brown, Jr., mission commander; Robert L. Curbeam, Jr., mission specialist; and Kent V. Rominger, pilot, are pictured on the Space Shuttle Discovery's flight deck during a checkout of flight control systems.

  11. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  12. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  13. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  14. Preliminary System Design of the SWRL Financial System.

    ERIC Educational Resources Information Center

    Ikeda, Masumi

    The preliminary system design of the computer-based Southwest Regional Laboratory's (SWRL) Financial System is outlined. The system is designed to produce various management and accounting reports needed to maintain control of SWRL operational and financial activities. Included in the document are descriptions of the various types of system…

  15. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  16. Visual advantage of enhanced flight vision system during NextGen flight test evaluation

    NASA Astrophysics Data System (ADS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2014-06-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  17. Propulsion systems for vertical flight aircraft

    SciTech Connect

    Brooks, A.

    1990-01-01

    The present evaluation of VTOL airframe/powerplant integration configurations combining high forward flight speed with safe and efficient vertical flight identifies six configurations that can be matched with one of three powerplant types: turboshafts, convertible-driveshaft lift fans, and gas-drive lift fans. The airframes configurations are (1) tilt-rotor, (2) folded tilt-rotor, (3) tilt-wing, (4) rotor wing/disk wing, (5) lift fan, and (6) variable-diameter rotor. Attention is given to the lift-fan VTOL configuration. The evaluation of these configurations has been conducted by both a joint NASA/DARPA program and the NASA High Speed Rotorcraft program. 7 refs.

  18. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    NASA Technical Reports Server (NTRS)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  19. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  20. Flight testing TECS - The Total Energy Control System

    NASA Technical Reports Server (NTRS)

    Kelly, James R.; Person, Lee H., Jr.; Bruce, Kevin R.

    1986-01-01

    This paper describes some of the unique features of an integrated throttle-elevator control law known as the Total Energy Control System (TECS) which has been flight tested on NASA Langley's Transport Systems Research Vehicle. The TECS concept is designed around total energy principles. It utilizes a full-time autothrottle to control the total energy of the aircraft and the elevator to distribute the energy between speed and flight path objectives. Time histories of selected parameters generated from flight data are used to illustrate the pilot-like control strategy of the system and the priority logic employed when throttle limiting is encountered.

  1. Preliminary Planar Formation-Flight Dynamics Near Sun-Earth L2 Point

    NASA Technical Reports Server (NTRS)

    Segerman, Alan M.; Zedd, Michael F.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    A few space agencies are planning missions to the vicinity of the Sun-Earth L(sub 2) point, some involving a distributed space system of telescope spacecraft, configured in a plane about a hub. An improved understanding is developed of the relative motion of such objects in formation flight. The telescope equations of motion are written relative to the hub, in terms of the hub s distance from L(sub 2), and an analytical solution is developed, useful for performing orbit control analysis. A halo telescope orbit is investigated, with initial conditions selected to avoid resonance excitation. An example case of the resulting solution is presented.

  2. The 747 primary flight control systems reliability and maintenance study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The major operational characteristics of the 747 Primary Flight Control Systems (PFCS) are described. Results of reliability analysis for separate control functions are presented. The analysis makes use of a NASA computer program which calculates reliability of redundant systems. Costs for maintaining the 747 PFCS in airline service are assessed. The reliabilities and cost will provide a baseline for use in trade studies of future flight control system design.

  3. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  4. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  5. The endocrine system in space flight

    NASA Astrophysics Data System (ADS)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  6. An in-flight interaction of the X-29A canard and flight control system

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Bjarke, Lisa J.; Laurie, Edward J.

    1990-01-01

    Many of today's high performance airplanes use high gain, digital flight control systems. These sytems are liable to couple with the aircraft's structural dynamics and aerodynamics to cause an aeroservoelastic interaction. These interactions can be stable or unstable depending upon damping and phase relationships within the system. The details of an aeroservoelastic interaction experienced in flight by the X-29A forward-swept wing airplane. A 26.5-Hz canard pitch mode response was aliased by the digital sampling rate in the canard position feedback loop of the flight control system, resulting in a 13.5-Hz signal being commanded to the longitudinal control surfaces. The amplitude of this commanded signal increased as the wear of the canard seals increased, as the feedback path gains were increased, and as the canard aerodynamic loading decreased. The resultant control surface deflections were of sufficient amplitude to excite the structure. The flight data presented shows the effect of each component (structural dynamics, aerodynamics, and flight control system) for this aeroservoelastic interaction.

  7. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  8. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  9. Geophysical flight line flying and flight path recovery utilizing the Litton LTN-76 inertial navigation system

    SciTech Connect

    Mitkus, A.F.; Cater, D.; Farmer, P.F.; Gay, S.P. Jr.

    1981-11-01

    The Litton LTN-76 Inertial Navigation Systems (INS) with Inertial Track guidance System (ITGS) software is geared toward the airborne survey industry. This report is a summary of tests performed with the LTN-76 designed to fly an airborne geophysical survey as well as to recover the subsequent flight path utilizing INS derived coordinates.

  10. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  11. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  12. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  13. Potential flow calculations and preliminary wing design in support of an NLF variable sweep transition flight experiment

    NASA Technical Reports Server (NTRS)

    Waggoner, E. G.; Phillips, P. S.; Viken, J. K.; Davis, W. H.

    1985-01-01

    NASA Langley and NASA Ames-Dryden have defined a variable-sweep transition-flight experiment utilizing the F-14 aircraft to enhance understanding of the interaction of crossflow and Tollmien-Schlichting instabilities on a laminar-boundary-layer transition. The F-14 wing outer panel will be modified to generate favorable pressure gradients on the upper wing surface over a wide range of flight conditions. Extensive computations have been performed using two-dimensional and three-dimensional transonic analysis codes. Flight-test and computational data are compared and shown to validate the applicability of the three-dimensional codes (WBPPW and TAWFIVE). In addition, results from two preliminary glove designs derived from two different approaches to the design problem are presented. Advantages and disadvantages of each approach are identified, and it is concluded that coupling an analysis code with an automated design procedure yields a powerful code with distinct advantages over a 'cut-and-dry' approach.

  14. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  15. A study of nonlinear flight control system designs

    NASA Astrophysics Data System (ADS)

    Tian, Lijun

    This thesis discusses both normal aircraft flight control where the control surfaces are the primary effectors, and unconventional emergency flight control by engines only. It has long been realized that nonlinearity in aircraft dynamics is a prominent consideration in design of high-performance conventional flight control systems. The engine-only flight control problem also faces strong nonlinearity, although due to different reasons. A nonlinear predictive control method and an approximate receding-horizon control method are used for normal and engine-only flight control system designs for an F-18 aircraft. The comparison of the performance with that of linear flight controllers provides some insight into when nonlinear controllers may render a much improved performance. The concept of nonlinear flight control system design is extended to output tracking control problem. The capability of the nonlinear controller to stabilize the aircraft and accomplish output tracking control for non-minimum phase system is successfully demonstrated. Numerical simulation results of longitudinal motion based on two typical flight conditions for an F-18 aircraft is presented to illustrate some of these aspects. It is suggested in this thesis that nonlinear flight control system design, particularly the engine-only controller design and output tracking control design for non-minimum phase system by using a nonlinear method is more effective for the highly nonlinear environment. The recently developed continuous-time predictive control approach and an approximate receding-horizon control method are shown to be effective methods in the situation while the conventional linear or popular nonlinear control designs are either ineffective or inapplicable.

  16. Biomechanics and biomimetics in insect-inspired flight systems.

    PubMed

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  17. Region Three Aerial Measurement System Flight Planning Tool - 12006

    SciTech Connect

    Messick, Chuck; Pham, Minh; Smith, Ron; Isiminger, Dave

    2012-07-01

    The Region 3 Aerial Measurement System Flight Planning Tool is used by the National Nuclear Security Agency (NNSA), United States Department of Energy, Radiological Assistance Program, Region 3, to respond to emergency radiological situations. The tool automates the flight planning package process while decreasing Aerial Measuring System response times and decreases the potential for human error. Deployment of the Region Three Aerial Measurement System Flight Planning Tool has resulted in an immediate improvement to the flight planning process in that time required for mission planning has been reduced from 1.5 hours to 15 minutes. Anecdotally, the RAP team reports that the rate of usable data acquired during surveys has improved from 40-60 percent to over 90 percent since they began using the tool. Though the primary product of the flight planning tool is a pdf format document for use by the aircraft flight crew, the RAP team has begun carrying their laptop computer on the aircraft during missions. By connecting a Global Positioning System (GPS) device to the laptop and using ESRI ArcMap's GPS tool bar to overlay the aircraft position directly on the flight plan in real time, the RAP team can evaluate and correct the aircraft position as the mission is executed. (authors)

  18. Effects of the space flight environment on the immune system.

    PubMed

    Sonnenfeld, Gerald; Butel, Janet S; Shearer, William T

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  19. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  20. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  1. Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

    1976-01-01

    A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

  2. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  3. Development of Field Measurement Systems for Flight Vehicle Noise

    NASA Technical Reports Server (NTRS)

    Yu, James C.; Wright, Kenneth D.; Preisser, John S.; Marcolini, Michael A.

    1999-01-01

    Field measurement of noise radiated from flight vehicles is an important element of aircraft noise research programs. At NASA Langley, a dedicated effort that spans over two decades was devoted to the development of acoustic measurement systems to support the NASA noise research programs. The new challenge for vehicle operational noise reduction through varying glide slope and flight path require noise measurement to be made over a very large area under the vehicle flight path. Such a challenge can be met through the digital remote system currently under final development at NASA Langley.

  4. Design of flight control system for a robotic blimp

    NASA Astrophysics Data System (ADS)

    Rao, Jinjun; Luo, Jun; Gong, Zhenbang; Jiang, Zhen; Xie, Shaorong

    2005-12-01

    Robotic blimps present an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make our lighter-than-air platform a robotic blimp with significant levels of autonomy, the decoupled longitude and latitude dynamic model are developed, and the hardware and software of the flight control system are designed. The onboard hardware consists of blimp state observer, actuators, MCU, etc. The software functions include signals processing, data filtering and fault tolerance, ground command execution, etc. Based on decoupled dynamic model, the control system architecture is presented, and navigation strategy for waypoint flight problem is discussed. The paper gives results of a flight experiment using the designed flight control system, and the results manifests that the system is applicable and initial machine intelligence of robotic blimp is achieved.

  5. ISS Update: Space Flight and the Immune System

    NASA Image and Video Library

    NASA Public Affairs Officer Kelly Humphries interviews Brian Crucian, NASA immunologist, about the issues with space flight and the immune system. Questions? Ask us on Twitter @NASA_Johnson and inc...

  6. Flight control systems properties and problems, volume 1

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Johnston, D. E.

    1975-01-01

    This volume contains a delineation of fundamental and mechanization-specific flight control characteristics and problems gleaned from many sources and spanning a period of over two decades. It is organized to present and discuss first some fundamental, generic problems of closed-loop flight control systems involving numerator characteristics (quadratic dipoles, non-minimum phase roots, and intentionally introduced zeros). Next the principal elements of the largely mechanical primary flight control system are reviewed with particular emphasis on the influence of nonlinearities. The characteristics and problems of augmentation (damping, stability, and feel) system mechanizations are then dealt with. The particular idiosyncracies of automatic control actuation and command augmentation schemes are stressed, because they constitute the major interfaces with the primary flight control system and an often highly variable vehicle response.

  7. A smoke generator system for aerodynamic flight research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Curry, Robert E.; Tracy, Gene V.

    1989-01-01

    A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.

  8. Space flight and the immune system

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1993-01-01

    Depression of lymphocyte response to mitogens in cosmonauts after space flight was reported for the first time in the early 1970s by Soviet immunologists. Today we know that depression of lymphocyte function affects at least 50% of space crew members. Investigations on the ground on subjects undergoing physical and psychological stress indicate that stress is a major factor in immune depression of astronauts. This is despite the fact that weightlessness per se has a strong inhibitory effect on lymphocyte activation in vitro. Although the changes observed never harmed the health of astronauts, immunological changes must be seriously investigated and understood in view of long-duration flight on space stations in an Earth orbit, to other planets such as Mars and to the Moon.

  9. Time-of-flight radio location system

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence.

  10. The endocrine system in space flight

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    1988-01-01

    A trial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, has been measured in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF has increased by 59 percent, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell proudction, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1 alpha, 25-dihydroxyvitamin D-3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  11. Time-of-flight radio location system

    DOEpatents

    McEwan, T.E.

    1996-04-23

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. 7 figs.

  12. F-15 837 IFCS Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2007-01-01

    This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.

  13. Spacecraft flight control system design selection process for a geostationary communication satellite

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.

  14. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  15. Feasibility of using a knowledge-based system concept for in-flight primary-flight-display research

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1991-01-01

    Flight test results have been obtained which demonstrate the feasibility and desirability of using knowledge-based systems architectures for flight test investigations of primary flight display information management-related issues. LISP-based software was used for real-time operation of the primary flight display. The two integrated knowledge-based systems designed to control the primary flight displays were implemented aboard a NASA-Langley B-737. The programmer is noted to be capable of more easily developing initial systems via the present method than with more conventional techniques.

  16. Preliminary description of the transportation operations systems

    SciTech Connect

    Not Available

    1988-03-01

    This document presents a preliminary description of the transportation operations systems designed to ship spent fuel and high-level waste (HLW) from waste generator sites to authorized waste receiving facilities. It is an initial effort to define the operations system and identifies the activities and system components necessary to provide complete transportation capability. It is intended that this be a project level working document to facilitate dialog for further identification of system elements and functional requirements. This process will lead to issuance of a System Requirements and Description (SRD) document for the transportation operations systems and will identify detailed system functional requirements, performance criteria, and functional interfaces. The transportation system is quite complex and is influenced by a large number of external factors and interfaces. Some of these interfaces (such as the repository) are just now being developed. Others (such as utility-handling capabilities) are currently in existence and must be accommodated or modified. Additionally, the allocation of requirements is likewise both developing (with the repository) and somewhat fixed. 16 refs., 15 figs., 12 tabs.

  17. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David

    2009-01-01

    NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.

  18. New experimental approaches to the biology of flight control systems.

    PubMed

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  19. Thermal control surfaces experiment (SOO69) flight systems performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The thermal control surfaces experiment (TCSE) was the most complex hardware system aboard the Long Duration Exposure Facility (LDEF). The TCSE system consists of a scanning spectroreflectometer that measured test samples mounted on a rotatable carousel assembly. A microprocessor based data system controlled all aspects of TCSE system operation. Power was provided by four primary batteries. Flight measurement and housekeeping data were stored on a tape recorder for postflight analysis. The TCSE is a microcosm of complex electro-optical payloads being developed by NASA, DoD, and the aerospace community. The TCSE provides valuable data on the performance of these systems in space. The TCSE flight system and its excellent performance on the LDEF mission are described. A few operational anomalies were encountered and are discussed. Initial post-flight tests show that the TCSE system remains functional although some degradation in the optical measurements were observed. The results of these tests are also presented.

  20. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  1. Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo

    2000-01-01

    This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.

  2. Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo

    2000-01-01

    This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.

  3. Time-of-flight radio location system

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation.

  4. Time-of-flight radio location system

    DOEpatents

    McEwan, T.E.

    1997-08-26

    A bi-static radar configuration measures the direct time-of-flight of a transmitted RF pulse and is capable of measuring this time-of-flight with a jitter on the order of about one pico-second, or about 0.01 inch of free space distance for an electromagnetic pulse over a range of about one to ten feet. A transmitter transmits a sequence of electromagnetic pulses in response to a transmit timing signal, and a receiver samples the sequence of electromagnetic pulses with controlled timing in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the sequence of electromagnetic pulses such that the time between transmission of pulses in the sequence and sampling by the receiver sweeps over a range of delays. The receive timing signal sweeps over the range of delays in a sweep cycle such that pulses in the sequence are sampled at the pulse repetition rate, and with different delays in the range of delays to produce a sample signal representing magnitude of a received pulse in equivalent time. Automatic gain control circuitry in the receiver controls the magnitude of the equivalent time sample signal. A signal processor analyzes the sample signal to indicate the time-of-flight of the electromagnetic pulses in the sequence. The sample signal in equivalent time is passed through an envelope detection circuit, formed of an absolute value circuit followed by a low pass filter, to convert the sample signal to a unipolar signal to eliminate effects of antenna misorientation. 8 figs.

  5. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  6. Testing Flight Systems with Machine Executable Scripts

    NASA Technical Reports Server (NTRS)

    Gibbs, Don; Bone, Brian

    2009-01-01

    The MSAP project at JPL has been testing spacecraft avionics and flight software since 2005, in part using computer executable scripts. The scripts are document files of a common word processor and comply with the format of a traditional, formal test procedure common at JPL. These procedures use keywords to issue commands and evaluate responses, mimicking a human test operator. In effect, script lines are inserted into a normal procedure. Even though the executable structure of the procedures is limited to linear sequences of fairly simple operations, we have found significant value in certain test regimes given the repeatability, ease of execution, and readily understandable intent of these procedures.

  7. Performance benefits of adaptive in-flight propulsion system optimization

    SciTech Connect

    Tempelman, W.G.; Gallops, G.W. )

    1992-07-01

    The communication throughput and data-processing capacities of integrated flight/propulsion control systems allow engine operating schedules to be adjusted in-flight, on the basis of adaptive optimization algorithms which identify engine component performance variations due to manufacturing, wear, and damage. A quantification is presently made of the performance benefits accruing to adaptive in-flight optimization, via comparisons of fuel consumption and turbine temperature data for variable geometry and component match optimized cases with conventional cases. A low-bypass mixed-flow turbofan and a high-bypass nonmixed turbofan are thus treated. 6 refs.

  8. Flying Qualities Flight Testing of Digital Flight Control Systems. Flight Test Techniques Series - Volume 21 (les Essais en vol des performances des systemes de ommande de vol numeriques)

    DTIC Science & Technology

    2001-12-01

    monographs should be published covering aspects of Volume 1 and 2 of the original Flight Test Manual , including the flight testing of aircraft systems. The...cross system interactions. Where appropriate, measurements may be made of transients produced on the aircraft electrical bus bars as manually or... manual procedures as well as emergency procedures for use during the test program can be developed and practiced on the simulation. For the test

  9. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  10. Biomechanics and biomimetics in insect-inspired flight systems

    PubMed Central

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-01-01

    Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528780

  11. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  12. User's guide for the Flight Design System (FDS)

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Frisius, W. G.; Turner, A. A.; Willoughby, J. K.

    1980-01-01

    Information about the Flight Design System (FDS) in the context of flight design is presented. The guide introduces the FDS user to the structure of FDS and to constructs within FDS (such as files of information or the part of FDS which interacts directly with the user). A guide to the commands available to FDS users is presented. A glossary of important terms, an index to terms, and a quick reference to the commands of FDS are included.

  13. Investigation of a Simple Visual System for Flight Control

    DTIC Science & Technology

    2011-07-01

    wings or ocelli Mizunami, The diversity of insect ocellar systems, 1994 Fleas lice proturans Dragonflies and damselflies mayflies 7 Identifying...and some do not). – Dragonflies vs. nearctic owlflies •Same sensor suites different behaviors – Very different flight, but all have the same sensor...Flight setup, by David Forester. Network 13 Similar behaving insects, different sensors. \\.J ••• • AFR .!;l 14 Dragonfly in field \\.J ••• • , AFR

  14. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  15. NASA Bioculture System: From Experiment Definition to Flight Payload

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.; Almeida, Eduardo; Austin, Edward M.

    2014-01-01

    Starting in 2015, the NASA Bioculture System will be available to the science community to conduct cell biology and microbiology experiments on ISS. The Bioculture System carries ten environmentally independent Cassettes, which house the experiments. The closed loop fluids flow path subsystem in each Cassette provides a perfusion-based method for maintain specimen cultures in a shear-free environment by using a biochamber based on porous hollow fiber bioreactor technology. Each Cassette contains an incubator and separate insulated refrigerator compartment for storage of media, samples, nutrients and additives. The hardware is capable of fully automated or manual specimen culturing and processing, including in-flight experiment initiation, sampling and fixation, up to BSL-2 specimen culturing, and the ability to up to 10 independent cultures in parallel for statistical analysis. The incubation and culturing of specimens in the Bioculture System is a departure from standard laboratory culturing methods. Therefore, it is critical that the PI has an understanding the pre-flight test required for successfully using the Bioculture System to conduct an on-orbit experiment. Overall, the PI will conduct a series of ground tests to define flight experiment and on-orbit implementation requirements, verify biocompatibility, and determine base bioreactor conditions. The ground test processes for the utilization of the Bioculture System, from experiment selection to flight, will be reviewed. Also, pre-flight test schedules and use of COTS ground test equipment (CellMax and FiberCell systems) and the Bioculture System will be discussed.

  16. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    NASA Technical Reports Server (NTRS)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  17. Development and flight test of a deployable precision landing system

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale

    1994-01-01

    A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles that resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several novel techniques for computing the winds postflight were evaluated. Future program objectives are also presented.

  18. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  19. Dynamic verification of a digital flight control system.

    NASA Technical Reports Server (NTRS)

    Nabers, J. P., Jr.; Bowman, J. D.

    1972-01-01

    Development of a digital control system dynamic variation technique which accounts for the limitation of available frequency response analyzers. Digital control system theory is briefly reviewed, and generation of the necessary theoretical frequency responses is discussed. Results of the dynamic verification of a digital control system for a Saturn V launch vehicle are presented, and attention is given to the limitations of this technique along with its applicability to other types of digital control systems. A technique for performing open-loop frequency response analyses of a flight program implemented in a 'flight-type' digital computer and interface hardware with vehicle dynamics simulated on an analog computer is described.

  20. Flight test of a resident backup software system

    NASA Technical Reports Server (NTRS)

    Deets, D. A.; Lock, W. P.; Megna, V. A.

    1986-01-01

    A new fault-tolerant system software concept employing the primary digital computers as host for the backup software portion has been implemented and flight tested in the F-8 digital fly-by-wire airplane. The system was implemented in such a way that essentially no transients occurred in transferring from primary to backup software. This was accomplished without a significant increase in the complexity of the backup software. The primary digital system was frame synchronized, which provided several advantages in implementing the resident backup software system. Since the time of the flight tests, two other flight vehicle programs have made a commitment to incorporate resident backup software similar in nature to the system described in this paper.

  1. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  2. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  3. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  4. Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2008-01-01

    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system.

  5. Helicopter In-Flight Tracking System (HITS) for the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Martone, Patrick; Tucker, George; Aiken, Edwin W. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) is sponsoring deployment and testing of the Helicopter In-flight Tracking System (HITS) in a portion of the Gulf of Mexico offshore area. Using multilateration principles, HITS determines the location and altitude of all transponder-equipped aircraft without requiring changes to current Mode A, C or S avionics. HITS tracks both rotary and fixed-wing aircraft operating in the 8,500 sq. mi. coverage region. The minimum coverage altitude of 100 ft. is beneficial for petroleum industry, allowing helicopters to be tracked onto the pad of most derricks. In addition to multilateration, HITS provides surveillance reports for aircraft equipped for Automatic Dependent Surveillance - Broadcast (ADS-B), a new surveillance system under development by the Federal Aviation Administration (FAA). The U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe Center) is supporting NASA in managing HITS installation and operation, and in evaluating the system's effectiveness. Senses Corporation is supplying, installing and maintaining the HITS ground system. Project activities are being coordinated with the FAA and local helicopter operators. Flight-testing in the Gulf will begin in early 2002. This paper describes the HITS project - specifically, the system equipment (architecture, remote sensors, central processing system at Intracoastal City, LA, and communications) and its performance (accuracy, coverage, and reliability). The paper also presents preliminary results of flight tests.

  6. Helicopter In-Flight Tracking System (HITS) for the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Martone, Patrick; Tucker, George; Aiken, Edwin W. (Technical Monitor)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) is sponsoring deployment and testing of the Helicopter In-flight Tracking System (HITS) in a portion of the Gulf of Mexico offshore area. Using multilateration principles, HITS determines the location and altitude of all transponder-equipped aircraft without requiring changes to current Mode A, C or S avionics. HITS tracks both rotary and fixed-wing aircraft operating in the 8,500 sq. mi. coverage region. The minimum coverage altitude of 100 ft. is beneficial for petroleum industry, allowing helicopters to be tracked onto the pad of most derricks. In addition to multilateration, HITS provides surveillance reports for aircraft equipped for Automatic Dependent Surveillance - Broadcast (ADS-B), a new surveillance system under development by the Federal Aviation Administration (FAA). The U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe Center) is supporting NASA in managing HITS installation and operation, and in evaluating the system's effectiveness. Senses Corporation is supplying, installing and maintaining the HITS ground system. Project activities are being coordinated with the FAA and local helicopter operators. Flight-testing in the Gulf will begin in early 2002. This paper describes the HITS project - specifically, the system equipment (architecture, remote sensors, central processing system at Intracoastal City, LA, and communications) and its performance (accuracy, coverage, and reliability). The paper also presents preliminary results of flight tests.

  7. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  8. Flight assessment of an integrated DNAW helicopter pilotage display system; flight trial 'HAWKOWL'

    NASA Astrophysics Data System (ADS)

    Thorndycraft, David C.; Longman, Peter J.; Marsden, David F.; Jennings, Sion

    2007-04-01

    Military helicopter operations are often constrained by environmental conditions including low light levels and poor weather. Recent operational experience has also shown the difficulty presented by certain terrain when operating at low altitude by day and night. For example, poor visual cues when flying over featureless terrain with low scene contrast, or obscuration of vision caused by wind blown and re-circulated dust at low level (brown out). These types of conditions can result in loss of spatial awareness and loss of precise control of the aircraft. Atmospheric obscurants such as fog, cloud, rain and snow can similarly lead to hazardous situations. Day Night All Weather (DNAW) systems applied research, sponsored by UK MOD, has developed a systematic, human centred approach, to understanding and developing pilotage display systems for challenging environments. A prototype DNAW system has been developed using an incremental flight test programme, leading to the flight assessment of a fully integrated pilotage display solution, trial HAWKOWL, installed in a Sea King helicopter. The system comprises several sub-systems including; a multi-spectral sensor suite, image processing and fusion; head down and head-tracked Display Night Vision Goggles; onboard mission planning and route generation; precision navigation; dynamic flight path guidance; and conformal, task dependent, symbology. A variety of qualitative and quantitative assessment techniques have been developed and applied to determine the performance of the system and the capability it provides. This paper describes the approach taken in the design, implementation and assessment of the system and identifies key results from the flight trial.

  9. Pilot control through the TAFCOS automatic flight control system

    NASA Technical Reports Server (NTRS)

    Wehrend, W. R., Jr.

    1979-01-01

    The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.

  10. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  11. Flight tests of IFR landing approach systems for helicopters

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  12. Preliminary flight prototype silver ion monitoring system, addendum

    NASA Technical Reports Server (NTRS)

    Wilson, R. I.

    1975-01-01

    A number of electrode fabrication techniques are investigated, to achieve an electrode meeting shuttle mission requirements for functional life and stability as well as accuracy and precision of measurement. The instability of a silver bromide column when employed in a closed loop calibration scheme is discussed.

  13. Fiber optic signal collection system for primary flight control applications

    NASA Astrophysics Data System (ADS)

    Harper, Sandy L.

    1994-10-01

    The FOPMN is a fiber-optic signal collection system for primary flight control applications. An avionics bay protected electro-optic interface unit transmits light down fiber optic cable to an optical sensor housed in the harsh environment of a hydraulic actuator. The interface unit also receives the sensor's reflected pattern and calculates independent positions from the multiplexed signals. This paper discusses the FOPMN method for fiber-optically sensing and multiplexing two channels of position of a TEF actuator's main ram cylinder. Currently installed in NASA Dryden's SRA F/A-18, the FOPMN has accumulated approximately 15 hours of flight time. A performance comparison is made between the FOPMN positions and the flight control computer's feedback mechanism (the actuator LVDTs). Included is a discussion of some of the lessons learned as a result of testing the FOPMN in the lab and in flight. The FOPMN is well on its way to proving itself as a robust fiber optic system with the ability to multiplex numerous optical sensors for primary flight control. The success of the FOPMN leads to the second phase of the project--optical loop closure. Our goal for this phase is to have four FOPMN sensor channels on the main ram and/or the main control valve of the actuator to serve as the quad redundant feedback mechanism for flight control.

  14. Preliminary basic performance analysis of the Cedar multiprocessor memory system

    NASA Technical Reports Server (NTRS)

    Gallivan, K.; Jalby, W.; Turner, S.; Veidenbaum, A.; Wijshoff, H.

    1991-01-01

    Some preliminary basic results on the performance of the Cedar multiprocessor memory system are presented. Empirical results are presented and used to calibrate a memory system simulator which is then used to discuss the scalability of the system.

  15. Preliminary design activities for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  16. CREW INTERACTION DURING A THIRTY-DAY SIMULATED SPACE FLIGHT. PRELIMINARY STUDY

    DTIC Science & Technology

    AN ANALYSIS WAS MADE OF CREW INTERACTION DURING A TWO-MAN SIMULATED SPACE CHAMBER FLIGHT. By use of the well-known Bales Interaction Process ... Analysis , the behavior of the two subjects was rated during 2 hours of observation each day throughout the 30-day flight. Four kinds of summary interaction

  17. Apollo experience report: Communications system flight evaluation and verification

    NASA Technical Reports Server (NTRS)

    Travis, D.; Royston, C. L., Jr.

    1972-01-01

    Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.

  18. Cloud particle effects on laminar flow in the NASA LEFT program - Preliminary results. [Leading Edge Flight Test

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Fischer, M. C.; Fisher, D. F.; Young, R.

    1986-01-01

    Laminar flow offers the promise of significant fuel savings on future commercial transport aircraft, but laminar flow can be lost while encountering clouds or haze at cruise conditions. To quantify the effect of cloud particles on laminar flow during typical airline operating conditions, and evaluate candidate cloud particle detection instrument concepts for future laminar flow aircraft, two types of cloud particle detectors are being flown aboard a NASA JetStar aircraft in the Leading Edge Flight Test (LEFT) program. The instrumentation is described, and preliminary results and conclusions are presented.

  19. Design and Analysis of Morpheus Lander Flight Control System

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  20. NASA Space Flight Human System Standards

    NASA Technical Reports Server (NTRS)

    Tillman, Barry; Pickett, Lynn; Russo, Dane; Stroud, Ken; Connolly, Jan; Foley, Tico

    2007-01-01

    NASA has begun a new approach to human factors design standards. For years NASA-STD-3000, Manned Systems Integration Standards, has been a source of human factors design guidance for space systems. In order to better meet the needs of the system developers, NASA is revising its human factors standards system. NASA-STD-3000 will be replaced by two documents: set of broad human systems specifications (including both human factors and medical topics) and a human factors design handbook

  1. CSI Flight Computer System and experimental test results

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Peri, F., Jr.; Schuler, P.

    1993-01-01

    This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments.

  2. Flight Tests of the Turbulence Prediction and Warning System (TPAWS)

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.; Ahmad, Nashat N.

    2012-01-01

    Flight tests of the National Aeronautics and Space Administration's Turbulence Prediction And Warning System (TPAWS) were conducted in the Fall of 2000 and Spring of 2002. TPAWS is a radar-based airborne turbulence detection system. During twelve flights, NASA's B-757 tallied 53 encounters with convectively induced turbulence. Analysis of data collected during 49 encounters in the Spring of 2002 showed that the TPAWS Airborne Turbulence Detection System (ATDS) successfully detected 80% of the events at least 30 seconds prior to the encounter, achieving FAA recommended performance criteria. Details of the flights, the prevailing weather conditions, and each of the turbulence events are presented in this report. Sensor and environmental characterizations are also provided.

  3. TDRSS Onboard Navigation System (TONS) flight qualification experiment

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.

    1994-05-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.

  4. Integrated Digital Flight Control System for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.

  5. RSRA/X-Wing flight control system development - Lessons learned

    NASA Technical Reports Server (NTRS)

    Corliss, Lloyd D.; Dunn, William R.; Morrison, Michael A.

    1989-01-01

    The X-Wing, in concept, marries the efficiencies of a helicopter and fixed wing aircraft through the use of a four-bladed wing/rotor that can be rotated or stopped in flight. The RSRA/X-Wing flight test program was a technology demonstration of this concept which, after three successful flights, was discontinued in late 1987. In spite of many technical challenges in this program, such as the use of circulation control, the fabrication of a large all-composite rotor, the development of an advanced, quadruplex digital flight control system, and the need for higher harmonic control, no major technical problems had been encountered at the time of the stop-work order. This paper addresses the issues of flight control system development and focuses on lessons learned. As with other such programs, software development was the most consuming issue. Other subjects of discussion include the problems of balancing program goals with technical goals, software- and hard-ware-related problems, safety issues, and system testing.

  6. Development and Evaluation of Fault-Tolerant Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  7. Use of the Pseudo-Inverse for Design of a Reconfigurable Flight Control System.

    DTIC Science & Technology

    1981-12-01

    Scheme for the Reconfigurable Flight Control System ------------------------ 54 4.1 Pitch Stability Augmentation System and Normal "g" Command System...64 4.4 Yaw Stability Augmentation System with Washout Circuit ------------------------------- 67 4.5 p-command System...Longitudinal Flight Control System. The design of a longitudinal flight control system with pitch stability augmentation system and normal g command

  8. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  9. Modern digital flight control system design for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Berry, P. W.; Stengel, R. F.

    1979-01-01

    Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

  10. Characterization of a Recoverable Flight Control Computer System

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar; Torres, Wilfredo

    1999-01-01

    The design and development of a Closed-Loop System to study and evaluate the performance of the Honeywell Recoverable Computer System (RCS) in electromagnetic environments (EME) is presented. The development of a Windows-based software package to handle the time-critical communication of data and commands between the RCS and flight simulation code in real-time while meeting the stringent hard deadlines is also submitted. The performance results of the RCS and characteristics of its upset recovery scheme while exercising flight control laws under ideal conditions as well as in the presence of electromagnetic fields are also discussed.

  11. Cassini - Huygens: Heavily instrumented flight systems approaching Saturn and Titan

    NASA Technical Reports Server (NTRS)

    Doody, D.

    2003-01-01

    Abstract?? Cassini and Huygens flight systems are described including capabilities, launch, flight path, mission science objectives, and instruments. Interplanetary cruise, Saturn arrival, and science-tour operations are also discussed, including use of JPL's worldwide Deep Space Network for two-way communications. Launched 15 October 1997, Cassini/Huygens will arrive at the Saturnian system on 1 July 2004. The Cassini Orbiter begins a four-year tour of the ringed gas giant, and the Huygens Probe descends through Titan's dense atmosphere on 14 January 2005.

  12. Stress testing of digital flight-control system software

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Defeo, P. V.; Saito, J.

    1983-01-01

    A technique for dynamically testing digital flight-control system software on a module-by-module basis is described. Each test module is repetitively executed faster than real-time with an exhaustive input sequence. Outputs of the test module are compared with outputs generated by an alternate, simpler implementation for the same input data. Discrepancies between the two sets of output indicate the possible presence of a software error. The results of an implementation of this technique in the Digital Flight-Control System Software Verification Laboratory are discussed.

  13. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  14. System design from mission definition to flight validation

    NASA Technical Reports Server (NTRS)

    Batill, S. M.

    1992-01-01

    Considerations related to the engineering systems design process and an approach taken to introduce undergraduate students to that process are presented. The paper includes details on a particular capstone design course. This course is a team oriented aircraft design project which requires the students to participate in many phases of the system design process, from mission definition to validation of their design through flight testing. To accomplish this in a single course requires special types of flight vehicles. Relatively small-scale, remotely piloted vehicles have provided the class of aircraft considered in this course.

  15. Lockheed L-1101 avionic flight control redundant systems

    NASA Technical Reports Server (NTRS)

    Throndsen, E. O.

    1976-01-01

    The Lockheed L-1011 automatic flight control systems - yaw stability augmentation and automatic landing - are described in terms of their redundancies. The reliability objectives for these systems are discussed and related to in-service experience. In general, the availability of the stability augmentation system is higher than the original design requirement, but is commensurate with early estimates. The in-service experience with automatic landing is not sufficient to provide verification of Category 3 automatic landing system estimated availability.

  16. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  17. Space shuttle on-orbit flight control software requirements, preliminary version

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.

  18. How Cheap Is Soaring Flight in Raptors? A Preliminary Investigation in Freely-Flying Vultures

    PubMed Central

    Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L.; Sarrazin, François; Ropert-Coudert, Yan

    2014-01-01

    Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80–100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food. PMID:24454760

  19. How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.

    PubMed

    Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L; Sarrazin, François; Ropert-Coudert, Yan

    2014-01-01

    Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80-100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food.

  20. Flight termination system equipment. Volume 1: Antennas and antenna couplers

    NASA Astrophysics Data System (ADS)

    This document is the result of the efforts of the Flight Termination System Ad Hoc Committee of the Range Safety Group, Range Commanders Council. The Flight Termination System Equipment Catalog provides a ready reference to missile antennas and antenna couplers used at U.S. missile ranges and test facilities. Since use of each antenna/antenna coupler must be approved by the Range Commander with the in-flight range safety responsibility, inclusion in this catalog does not constitute sanction of such use nor approval for use on other missiles/space vehicles on the same range or on the same missile/space vehicle on other ranges. This catalog is not intended to be a comprehensive review of all flight termination antennas/antenna couplers available on the open market. The information contained in this publication has been provided by the manufacturer or extracted from manufacturers' specifications and is provided only as a guide. No conclusions are to be implied or assumed relative to the merits of one antenna/antenna coupler versus another. Where applicable, a history of the flight usage has been provided.

  1. Small parachute flight data acquisition system

    SciTech Connect

    Ryerson, D.E.; Hauser, G.C.

    1989-01-01

    Sandia National Laboratories does extensive parachute design and testing. In support of that work, Sandia's Telemetry Department has designed and fielded a small, inexpensive data acquisition system. The system has been used in over fifty parachute and water entry tests. It consists of a microprocessor controlled unit which digitizes up to eight channels of signal-conditioned analog data and stores the data in memory for readout after the test. The system is also capable of doing control functions such as releasing the parachute at a predetermined time after unit release. 4 refs., 7 figs.

  2. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  3. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1993-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs is reported. The data loggers, the sensors, and the hardware and software developed to complete the systems are described. How the systems were used is described and the challenges encountered to make them work are covered. Examples of raw data and derived results are shown as well. Finally, future plans for these systems are discussed. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  4. Flight tests of the Digital Integrated Automatic Landing System (DIALS)

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1984-01-01

    The design, development, implementation and flight tests of the Digital Integrated Automatic Landing System (DIALS) are discussed. The system was implemented and flight tested on the Transport Systems Research Vehicle (TSRV), a Boeing 737-100. The design uses modern optimal control methods. The direct digital design obtained uses a 10 Hz rate for the sampling of sensors and the control commands. The basic structure of the control law consists of a steady state Kalman filter followed by a control gain matrix. The sensor information used includes Microwave Landing System (MLS) position, attitude, calibrated airspeed, and body accelerations. The phases of the final approach considered are localized and steep glideslope capture (which may be performed simultaneously or independently), localizer and glideslope track, crab/decrab, and flare to touchdown. The system can capture, track, and flare from conventional, as well as steep, glideslopes ranging from 2.5 deg to 5.5 deg. All of the modes of the control law including the Kalman filters were implemented on the TSRV flight computers which use fixed point arithmetic with 16 bit words. The implementation considerations are described as well as an analysis of the flight test results.

  5. Unique Aspects of Flight Testing Unmanned Aircraft Systems

    DTIC Science & Technology

    2010-04-01

    successful using alternative acquisition strategies , which essentially only test the system mission capabilities. These are highly automated vehicles...Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis and...manned flight testing are directly applicable to UAS applications, the fact that these air vehicles are NOT MANNED demands some unique approaches to UAS

  6. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  7. Validation methods for flight crucial systems

    NASA Technical Reports Server (NTRS)

    Holt, H. M.

    1983-01-01

    Research to develop techniques that can aid in determining the reliability and performance of digital electronic fault-tolerant systems, that have probability of catastrophic system failure on the order of 10 to the -9th at 10 hours, is reviewed. The computer-aided reliability estimation program (CARE III) provides general-purpose reliability analysis and a design tool for fault-tolerant systems; large reduction of state size; and a fault-handling model based on probabilistic description of detection, isolation, and recovery mechanisms. The application of design proof techniques as part of the design and development of the software implemented fault-tolerance computer is mentioned. Emulation techniques and experimental procedures are verified using specimens of fault-tolerant computers and the capabilities of the validation research laboratory, AIRLAB.

  8. Validation methods for flight crucial systems

    NASA Technical Reports Server (NTRS)

    Holt, H. M.

    1983-01-01

    Research to develop techniques that can aid in determining the reliability and performance of digital electronic fault-tolerant systems, that have probability of catastrophic system failure on the order of 10 to the -9th at 10 hours, is reviewed. The computer-aided reliability estimation program (CARE III) provides general-purpose reliability analysis and a design tool for fault-tolerant systems; large reduction of state size; and a fault-handling model based on probabilistic description of detection, isolation, and recovery mechanisms. The application of design proof techniques as part of the design and development of the software implemented fault-tolerance computer is mentioned. Emulation techniques and experimental procedures are verified using specimens of fault-tolerant computers and the capabilities of the validation research laboratory, AIRLAB.

  9. Design and Test Requirements for Space Flight Pressurized Systems

    DTIC Science & Technology

    2014-11-26

    in death, injury, occupational illness, damage to or loss of equipment or property, or damage to the environment. Hazard Analysis: The analysis of...systems to determine potential hazards and recommended actions to eliminate or control the hazards . Hydrogen Embrittlement: A mechanical...operations, orbital operations, refurbishment, retesting, reentry or recovery from orbit , and reuse that may be required or specified for the flight

  10. Software conversion history of the Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Liu, K.

    1984-01-01

    This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.

  11. Geographic information systems at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1982-01-01

    The basic functions of a Geographic Information System (GIS) and the different ways that a GIS may be implemented are described. It surveys that GIS software packages that are currently in operation at the Goddard Space Flight Center and discusses the types of applications for which they are best suited. Future plans for in-house GIS research and development are outlined.

  12. Flight dynamics system software development environment (FDS/SDE) tutorial

    NASA Technical Reports Server (NTRS)

    Buell, John; Myers, Philip

    1986-01-01

    A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool.

  13. Integrated Crew Health Care System for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2007-01-01

    Dr. Davis' presentation includes a brief overview of space flight and the lessons learned for health care in microgravity. He will describe the development of policy for health care for international crews. He will conclude his remarks with a discussion of an integrated health care system.

  14. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1994-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this article is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. This article will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. It also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  15. Flight experience with lightweight, low-power miniaturized instrumentation systems

    NASA Technical Reports Server (NTRS)

    Hamory, Philip J.; Murray, James E.

    1994-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this article is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. This article will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. It also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

  16. Economical graphics display system for flight simulation avionics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During the past academic year the focal point of this project has been to enhance the economical flight simulator system by incorporating it into the aero engineering educational environment. To accomplish this goal it was necessary to develop appropriate software modules that provide a foundation for student interaction with the system. In addition experiments had to be developed and tested to determine if they were appropriate for incorporation into the beginning flight simulation course, AERO-41B. For the most part these goals were accomplished. Experiments were developed and evaluated by graduate students. More work needs to be done in this area. The complexity and length of the experiments must be refined to match the programming experience of the target students. It was determined that few undergraduate students are ready to absorb the full extent and complexity of a real-time flight simulation. For this reason the experiments developed are designed to introduce basic computer architectures suitable for simulation, the programming environment and languages, the concept of math modules, evaluation of acquired data, and an introduction to the meaning of real-time. An overview is included of the system environment as it pertains to the students, an example of a flight simulation experiment performed by the students, and a summary of the executive programming modules created by the students to achieve a user-friendly multi-processor system suitable to an aero engineering educational program.

  17. Integrated Crew Health Care System for Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2007-01-01

    Dr. Davis' presentation includes a brief overview of space flight and the lessons learned for health care in microgravity. He will describe the development of policy for health care for international crews. He will conclude his remarks with a discussion of an integrated health care system.

  18. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  19. Backup flight control system functional evaluator software manual

    NASA Technical Reports Server (NTRS)

    Helmke, C. A.; Hasara, S. H.; Mount, F. E.

    1977-01-01

    The software for the Backup Flight Control System Functional Evaluator (BFCSFE) on a Data General Corporation Nova 1200 computer consists of three programs: the ground support program, the operational flight program (OFP), and the ground pulse code modulation (PCM) program. The Nova OFP software is structurally as close as possible to the AP101 code; therefore, this document highlights and describes only those areas of the Nova OFP that are significantly different from the AP101. Since the Ground Support Program was developed to meet BFCSFE requirements and differs considerably from the AP101 code, it is described in detail.

  20. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  1. Apollo experience report: Systems and flight procedures development

    NASA Technical Reports Server (NTRS)

    Kramer, P. C.

    1973-01-01

    This report describes the process of crew procedures development used in the Apollo Program. The two major categories, Systems Procedures and Flight Procedures, are defined, as are the forms of documentation required. A description is provided of the operation of the procedures change control process, which includes the roles of man-in-the-loop simulations and the Crew Procedures Change Board. Brief discussions of significant aspects of the attitude control, computer, electrical power, environmental control, and propulsion subsystems procedures development are presented. Flight procedures are subdivided by mission phase: launch and translunar injection, rendezvous, lunar descent and ascent, and entry. Procedures used for each mission phase are summarized.

  2. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  3. Thermal protection systems manned spacecraft flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1992-01-01

    Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.

  4. Thermal protection systems manned spacecraft flight experience

    NASA Astrophysics Data System (ADS)

    Curry, Donald M.

    1992-10-01

    Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.

  5. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  6. The use of reference systems for UAV flight routing

    NASA Astrophysics Data System (ADS)

    Fellner, A.; Sulkowski, J.; Trominski, P.; Zadrag, P.

    2012-04-01

    Tasks to UAVs in the world today require greater precision and increased the area of flight, what causes that piloting the UAV becomes a task requiring precise data on the planned trip and the current position. During the work on a dedicated industrial video-surveillance system using UAVs have been tested two solutions to determine the precise position using ASG-EUPOS and EGNOS SISNET. As a result of experiments, the solution guarantees on Polish territory accurate data is ASG-EUPOS, while the solution based on EGNOS SISNET a solution to operate within the range of EGNOS, the whole of Europe. The solutions were tested in two ranges: 1.Post-processing, 2.Real Time. The post processing and measurement sessions performed on the flights were carried out to map the route. In real time the position was made corrections obtained in real time during flight.

  7. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  8. Man-machine interface analysis of the flight design system

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1978-01-01

    The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested.

  9. The NASA F-15 Intelligent Flight Control Systems: Generation II

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Bosworth, John

    2006-01-01

    The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.

  10. Dawn Spacecraft Reaction Control System Flight Experience

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Nakazono, Barry

    2014-01-01

    The NASA Dawn spacecraft mission is studying conditions and processes of the solar system's earliest epoch by investigating two protoplanets remaining intact since their formations, Ceres and Vesta. Launch was in 2007. Ion propulsion is used to fly to and enter orbit around Vesta, depart Vesta and fly to Ceres, and enter orbit around Ceres. A conventional blowdown hydrazine reaction control system (RCS) is used to provide external torques for attitude control. Reaction wheel assemblies were intended to provide attitude control in most cases. However, the spacecraft experienced one, then two apparent failures of reaction wheels. Also, similar thrusters experienced degradation in a long life application on another spacecraft. Those factors led to RCS being operated in ways completely different than anticipated prior to launch. Numerous mitigations and developments needed to be implemented. The Vesta mission was fully successful. Even with the compromises necessary due to those anomalies, the Ceres mission is also projected to be feasible.

  11. Dawn Spacecraft Reaction Control System Flight Experience

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Nakazono, Barry

    2014-01-01

    The NASA Dawn spacecraft mission is studying conditions and processes of the solar system's earliest epoch by investigating two protoplanets remaining intact since their formations, Ceres and Vesta. Launch was in 2007. Ion propulsion is used to fly to and enter orbit around Vesta, depart Vesta and fly to Ceres, and enter orbit around Ceres. A conventional blowdown hydrazine reaction control system (RCS) is used to provide external torques for attitude control. Reaction wheel assemblies were intended to provide attitude control in most cases. However, the spacecraft experienced one, then two apparent failures of reaction wheels. Also, similar thrusters experienced degradation in a long life application on another spacecraft. Those factors led to RCS being operated in ways completely different than anticipated prior to launch. Numerous mitigations and developments needed to be implemented. The Vesta mission was fully successful. Even with the compromises necessary due to those anomalies, the Ceres mission is also projected to be feasible.

  12. Laser Obstacle Detection System Flight Testing

    DTIC Science & Technology

    2003-09-01

    without hazardous effect or adverse biological changes in the eye for a repetitively pulsed laser is the more restrictive of several MPE calculations...crossed above them. The LODS system detection ranges appeared not to be effected by sunlight from behind the aircraft. - Raw Data and Safety Line ...obstacles - Raw data and safety line detection ranges were similar to those at wire set 1 (900-1000 meters) and did not appear to be effected by the

  13. Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Kohlman, D. L.; Crane, H. L.

    1976-01-01

    The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel.

  14. Preliminary design of an Orbiter/IUS separation sequence. [requirements for Space Shuttle Orbital Flight 8

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1978-01-01

    An orbiter/IUS separation sequence to satisfy the assumed requirements of Shuttle Flight 8 was defined for the purpose of gaining an insight into the flight design software requirements. The key to economical and effective flight design for orbiter/IUS proximity operations is considered to be the capability for rapid and accurate generation of graphical displays that will facilitate not only decision making on the part of the designer, but also lucid documentation of rationale and the resulting design features. The data indicate that (1) an OMS burn is required to attain the necessary velocity without subjecting the IUS and its payload to undue plume impingement, and (2) a departure trajectory that places the orbiter above and behind the IUS at SRM ignition time is preferred over the alternative which would place it below and ahead.

  15. Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Kohlman, D. L.; Crane, H. L.

    1976-01-01

    The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel.

  16. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.

  17. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.

  18. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  19. Preliminary design package for prototype solar heating system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include system candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test.

  20. Post-Flight Assessment of Avcoat Thermal Protection System for the Exploration Flight Test-1

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Santos, Jose; Rodriguez, Erika; Mahzari, Milad; Remark, Brian; Muppidi, Suman

    2016-01-01

    On December 5, 2014 NASA conducted the first flight test of its next generation human-class Orion spacecraft. The flight was called the Exploration Flight Test -1 (EFT-1) which lasted for 4 hours and culminated into a re-entry trajectory at 9 km/s. This flight test of the 5-meter Orion Crew Module demonstrated various sub-systems including the Avcoat ablative thermal protection system (TPS) on the heat shield. The Avcoat TPS had been developed from the Apollo-era recipe with a few key modifications. The engineering for thermal sizing was supported by modeling, analysis, and ground tests in arc jet facilities. This paper will describe a postlfight analysis plan and present results from post-recovery inspections, data analysis from embedded sensors, TPS sample extraction and characterization in the laboratory. After the recovery of the vehicle, a full photographic survey and surface scans of the TPS were performed. The recovered vehicle showed physical evidence of flow disturbances, varying degrees of surface roughness, and excessive recession downstream of compression pads. The TPS recession was measured at more than 200 locations of interest on the Avcoat surface. The heat shield was then processed for sample extraction prior to TPS removal using the 7-Axis Milling machine at Marshall Space Flight Center. Around 182 rectangular TPS samples were extracted for subsequent analysis and investigation. The final paper will also present results of sample analysis. The planned investigation includes sidewall imaging, followed by image analysis to characterize TPS response by quantifying different layers in the char and pyrolysis zones. A full postmortem of the instrumentation and sensor ports will also be performed to confirm no adverse effects due to the sensors themselves. A subset of the samples will undergo structural testing and perform detailed characterization of any cracks and integrity of gore seams. Finally, the material will be characterized with layer