Sample records for flight test article

  1. Aerothermodynamic Insight From The HIFIRE Program

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott

    2011-05-01

    The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.

  2. Sierra Nevada Corporation's Dream Chaser Test Article Altitude T

    NASA Image and Video Library

    2017-08-30

    Sierra Nevada Corporation’s Dream Chaser completed an important step toward orbital flight with a successful captive carry test at NASA’s Armstrong Flight Research Center in California, located on Edwards Air Force Base. A helicopter successfully carried a Dream Chaser test article, which has the same specifications as a flight-ready spacecraft, to the same altitude and flight conditions of an upcoming free flight test. The Dream Chaser is a lifting-body, winged spacecraft that will fly back to Earth in a manner similar to NASA’s space shuttles. The successful captive carry test clears the way for a free flight test of the spacecraft later this year in which the uncrewed Dream Chaser will be released to glide on its own and land.

  3. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  4. Robotic Lunar Lander Development Status

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  5. NASA's Robotic Lunar Lander Development Program

    NASA Technical Reports Server (NTRS)

    Ballard, Benjamin W.; Reed, Cheryl L. B.; Artis, David; Cole, Tim; Eng, Doug S.; Kubota, Sanae; Lafferty, Paul; McGee, Timothy; Morese, Brian J.; Chavers, Gregory; hide

    2012-01-01

    NASA Marshall Space Flight Center and the Johns Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  6. The right wing of the LEFT airplane

    NASA Technical Reports Server (NTRS)

    Powell, Arthur G.

    1987-01-01

    The NASA Leading-Edge Flight Test (LEFT) program addressed the environmental issues which were potential problems in the application of Laminar Flow Control (LFC) to transport aircraft. These included contamination of the LFC surface due to dirt, rain, insect remains, snow, and ice, in the critical leading-edge region. Douglas Aircraft Company designed and built a test article which was mounted on the right wing of the C-140 JetStar aircraft. The test article featured a retractable leading-edge high-lift shield for contamination protection and suction through perforations on the upper surface for LFC. Following a period of developmental flight testing, the aircraft entered simulated airline service, which included exposure to airborne insects, heavy rain, snow, and icing conditions both in the air and on the ground. During the roughly 3 years of flight testing, the test article has consistently demonstrated laminar flow in cruising flight. The experience with the LEFT experiment was summarized with emphasis on significant test findings. The following items were discussed: test article design and features; suction distribution; instrumentation and transition point reckoning; problems and fixes; system performance and maintenance requirements.

  7. Acquisition/expulsion system for earth orbital propulsion system study. Volume 4: Flight test article

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Two orbital test plans were prepared to verify one of the passive cryogenic storage tank/feedline candidate designs. One plan considered the orbital test article to be launched as a dedicated payload using an Atlas F burner launching configuration. The second plan proposed to launch the orbital test article as a secondary payload on the Titan E/Centaur proof flight. The secondary payload concept was pursued until January 1973, when work to build the hardware for this phase of the contract was terminated for lack of a sponsor for the flight. The dedicated payload launched on an Atlas F is described.

  8. Manned remote work station development article. Volume 1, book 1: Flight article requirements. Appendix A: Mission requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The requirements for several configurations of flight articles are presented. These requirements provide the basis to design manned remote work station development test articles and establish tests and simulation objectives for the resolution of development issues. Mission system and subsystem requirements for four MRWS configurations included: open cherry picker; closed cherry picker; crane turret; and free flyer.

  9. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  10. GO1 Inert Test Article Captive Carry

    NASA Image and Video Library

    2018-01-10

    Generation Orbit Launch Services, Inc. (GO) completed the GO1 Inert Test Article captive carry flight test at NASA’s Armstrong Flight Research Center in December. Under a public-private partnership with NASA, GO developed the GO1-ITA, a mass properties and outer mold line simulator for the GO1 hypersonic flight testbed and earned NASA airworthiness approval for flight on NASA’s C-20a. NASA’s C-20a was originally modified to add a centerline hard point to carry the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) pod. Together with the NASA Armstrong team, a campaign of three flight tests was conducted, successfully completing all test objectives including clearing the operational flight envelope of the C-20a with the GO1-ITA mounted to the centerline hard point, and demonstrated the unique launch maneuver designed for air launch of the GO1 on operational flights starting in 2019. Data collected during the campaign will be used to validate models and inform the ongoing design and development of GO1.

  11. Analytical and Experimental Verification of a Flight Article for a Mach-8 Boundary-Layer Experiment

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Monaghan, Richard C.

    1996-01-01

    Preparations for a boundary-layer transition experiment to be conducted on a future flight mission of the air-launched Pegasus(TM) rocket are underway. The experiment requires a flight-test article called a glove to be attached to the wing of the Mach-8 first-stage booster. A three-dimensional, nonlinear finite-element analysis has been performed and significant small-scale laboratory testing has been accomplished to ensure the glove design integrity and quality of the experiment. Reliance on both the analysis and experiment activities has been instrumental in the success of the flight-article design. Results obtained from the structural analysis and laboratory testing show that all glove components are well within the allowable thermal stress and deformation requirements to satisfy the experiment objectives.

  12. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  13. Waterhammer modeling for the Ares I Upper Stage Reaction Control System cold flow development test article

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan Hunter

    The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  14. Utilization survey of prototype structural test article

    NASA Technical Reports Server (NTRS)

    Baber, S.; Mcdaniel, H. M.; Berry, M. J.

    1974-01-01

    A survey was conducted of six aerospace companies and two NASA agencies to determine how prototype structural test articles are used in flight operations. The prototype structures are airframes and similar devices which are used for testing and generally are not flown. The survey indicated the following: (1) prototype test articles are not being discarded after development testing is complete, but are used for other purposes, (2) only two cases of prototypes being refurbished and flown were identified, (3) protective devices and inspection techniques are available to prevent or minimize test article damage, (4) substitute programs from design verification are availabel in lieu of using prototype structural articles, and (5) there is a trend away from dedicated test articles. Four options based on these study results were identified to reduce test and hardware costs without compromising reliability of the flight program.

  15. The development and testing of the Lens Antenna Deployment Demonstration (LADD) test article

    NASA Technical Reports Server (NTRS)

    Pugh, Mark L.; Denton, Robert J., Jr.; Strange, Timothy J.

    1993-01-01

    The USAF Rome Laboratory and NASA Marshall Space Flight Center, through contract to Grumman Corporation, have developed a space-qualifiable test article for the Strategic Defense Initiative Organization to demonstrate the critical structural and mechanical elements of single-axis roll-out membrane deployment for Space Based Radar (SBR) applications. The Lens Antenna Deployment Demonstration (LADD) test article, originally designed as a shuttle-attached flight experiment, is a large precision space structure which is representative of operational designs for space-fed lens antennas. Although the flight experiment was cancelled due to funding constraints and major revisions in the Strategic Defense System (SDS) architecture, development of this test article was completed in June 1989. To take full advantage of the existence of this unique structure, a series of ground tests are proposed which include static, dynamic, and thermal measurements in a simulated space environment. An equally important objective of these tests is the verification of the analytical tools used to design and develop large precision space structures.

  16. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles

    2008-01-01

    NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.

  17. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    NASA and its commercial industry team achieved significant progress in 2016 in manufacturing and testing of the Block 1 vehicle for the first launch of the Space Launch System (SLS). Test and flight article hardware for the liquid hydrogen fuel tank as well as the engine section for the core stage were completed at Michoud Assembly Facility (MAF) in New Orleans. Test stands neared completion at Marshall Space Flight Center for the propellant tanks, engine section, intertank and payload section. Stennis Space Center completed major structural renovations on the B2 test stand, where the core stage "green run" test program will be conducted. The SLS team completed a hotfire test series at Stennis to successfully demonstrate the ability of the RS-25 engine to operate under SLS environments and performance conditions. The team also test fired the second qualification five-segment solid rocket motor and cast the first six motor segments for the first SLS mission. The Interim Cryogenic Propulsion Stage (ICPS) test article was delivered to Marshall for structural tests, and work is nearly finished on the flight stage. Flight software testing completed at Marshall included power quality and command and data handling. In 2017, that work continues. SLS completed Preliminary Design Review (PDR) on the Exploration Upper Stage (EUS), a powerful, human-rated spacecraft that will propel explorers to cis-lunar space. In 2017, hardware will continue to be integrated at MAF for core stage structural test articles and the first two operational flights. RS-25 hotfire testing will continue to explore engine performance, as well as test flight-like software and four new Engine Controller Units (ECUs) for the first mission. Production of development components for a more affordable RS-25 design is underway. Core stage structural test articles have begun arriving at Marshall. While engineering challenges typical of a new development are possible, SLS is working toward launch readiness in late 2018. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before first flight

  18. Assembly Test Article (ATA)

    NASA Technical Reports Server (NTRS)

    Ricks, Glen A.

    1988-01-01

    The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.

  19. Finite-Element Analysis of a Mach-8 Flight Test Article Using Nonlinear Contact Elements

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1997-01-01

    A flight test article, called a glove, is required for a Mach-8 boundary-layer experiment to be conducted on a flight mission of the air-launched Pegasus(reg) space booster. The glove is required to provide a smooth, three-dimensional, structurally stable, aerodynamic surface and includes instrumentation to determine when and where boundary-layer transition occurs during the hypersonic flight trajectory. A restraint mechanism has been invented to attach the glove to the wing of the space booster. The restraint mechanism securely attaches the glove to the wing in directions normal to the wing/glove interface surface, but allows the glove to thermally expand and contract to alleviate stresses in directions parallel to the interface surface. A finite-element analysis has been performed using nonlinear contact elements to model the complex behavior of the sliding restraint mechanism. This paper provides an overview of the glove design and presents details of the analysis that were essential to demonstrate the flight worthiness of the wing-glove test article. Results show that all glove components are well within the allowable stress and deformation requirements to satisfy the objectives of the flight research experiment.

  20. Thermal performance demonstration of a prototype internally cooled nose tip/forebody/window assembly

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Carl J.; Brooks, Lori C.; Teal, Gene; Karu, Zain; Kalin, David A.; Jones, Gregory W.; Romero, Harold

    1996-11-01

    Internally liquid cooled apertures (windows) installed in a full size forebody have been characterized under high heat flux conditions representative of endoatmospheric flight. Analysis and test data obtained in the laboratory and at arc heater test facilities at Arnold Engineering Development Center and NASA Ames are presented in this paper. Data for several types of laboratory bench tests are presented: transmission interferometry and imaging, coolant pressurization effects on optical quality, and coolant flow rate calibrations for both the window and other internally cooled components. Initially, using heat transfer calibration models identical in shape to the flight test articles, arc heater facility thermal test environments were obtained at several conditions representative of full flight thermal environments. Subsequent runs tested the full-up flight article including nosetip, forebody and aperture for full flight duplication of surface heating rates and exposure ties. Pretest analyses compared will to test measurements. These data demonstrate a very efficient internal liquid cooling design which can be applied to other applications such as cooled mirrors for high heat flux applications.

  1. Aerothermal Assment Of The Expert Flap In The SCIROCCO Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Walpot, L.; Di Clemente, M.; Vos, J.; Etchells, J.; Trifoni, E.; Thoemel, J.; Gavira, J.

    2011-05-01

    In the frame of the “In-Flight Test Measurement Techniques for Aerothermodynamics” activity of the EXPERT Program, the EXPERT Instrumented Open Flap Assembly experiment has the objective to verify the design/sensor integration and validate the CFD tools. Ground based measurements were made in Europe’s largest high enthalpy plasma facility, Scirocco in Italy. Two EXPERT flaps of the flight article, instrumented with 14 thermocouples, 5 pressure ports, a pyrometer and an IR camera mounted in the cavity instrumented flap will collect in-flight data. During the Scirocco experiment, an EXPERT flap model identical to the flight article was mounted at 45 deg on a holder including cavity and was subjected to a hot plasma flow at an enthalpy up to 11MJ/kg at a stagnation pressure of 7 bar. The test model sports the same pressure sensors as the flight article. Hypersonic state-of-the-art codes were then be used to perform code-to-code and wind tunnel-to-code comparisons, including thermal response of the flap as collected during the tests by the sensors and camera.

  2. INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE UNLOADED PRIOR T

    NASA Image and Video Library

    2016-06-20

    TWO CRANES LIFT THE APPROXIMATELY 8,000-POUND INTERIM CRYOGENIC PROPULSION STAGE TEST ARTICLE OUT OF ITS CRATE AT MARSHALL. THE TEST ARTICLE ARRIVED AT MARSHALL SPACE FLIGHT CENTER VIA BARGE ON THE TENNESSEE RIVER AND WAS TRANSPORTED TO BUILDING 4649 WHERE TESTING WILL BEGIN.

  3. Satellite Power Systems (SPS). LSST systems and integration task for SPS flight test article

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1981-01-01

    This research activity emphasizes the systems definition and resulting structural requirements for the primary structure of two potential SPS large space structure test articles. These test articles represent potential steps in the SPS research and technology development.

  4. Transient Pressure Test Article Test Program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1989-01-01

    The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.

  5. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  6. RMS upper boom framed by aft flight deck viewing window W10

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.

  7. Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System

    NASA Technical Reports Server (NTRS)

    McKay, Heather; Coffman, Eric; May, Sarah; Freeman, Rich; Cain, George; Albright, John; Schoenberg, Rich; Delventhal, Rex

    2014-01-01

    The Orion Crew Module Propulsion Reaction Control System is currently complete and ready for flight as part of the Orion program's first flight test, Exploration Flight Test One (EFT-1). As part of the first article design, build, test, and integration effort, several key lessons learned have been noted and are planned for incorporation into the next build of the system. This paper provides an overview of those lessons learned and a status on the Orion propulsion system progress to date.

  8. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  9. Manned remote work station development article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The two prime objectives of the Manned Remote Work Station (MRWS) Development Article Study are to first, evaluate the MRWS flight article roles and associated design concepts for fundamental requirements and embody key technology developments into a simulation program; and to provide detail manufacturing drawings and schedules for a simulator development test article. An approach is outlined which establishes flight article requirements based on past studies of Solar Power Satellite, orbital construction support equipments, construction bases and near term shuttle operations. Simulation objectives are established for those technology issues that can best be addressed on a simulator. Concepts for full-scale and sub-scale simulators are then studied to establish an overall approach to studying MRWS requirements. Emphasis then shifts to design and specification of a full-scale development test article.

  10. Integration of optical measurement methods with flight parameter measurement systems

    NASA Astrophysics Data System (ADS)

    Kopecki, Grzegorz; Rzucidlo, Pawel

    2016-05-01

    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  11. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  12. HIFIRE Flight 2 Overview and Status Update 2011

    NASA Technical Reports Server (NTRS)

    Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore

    2011-01-01

    A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.

  13. Field joint protection system rain qualification test report

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    This report documents the procedures, performance, and results obtained from the Field Joint Protection System (FJPS) rain test. This test was performed to validate that the flight configuration FJPS prevents the accumulation of moisture in the redesigned solid rocket motor (RSRM) field joints when subjected to simulated prelaunch natural rain environments. The FJPS test article was exposed to rain simulation for approximately 50 minutes. During the test, water entered through the open upper end of the systems tunnel and was funneled down between the tunnel and case. A sealant void at the moisture seal butt splice allowed this water to flow underneath the FJPS. The most likely cause of voids was improper bondline preparation, particularly on the moisture seal surface. In total, water penetrated underneath approximately 60 percent of the FJPS circumference. Because the test article was substantially different from flight configuration (no systems tunnel closeout), results of this test will not affect current flight motors. Due to the omission of systems tunnel covers and systems tunnel floor plate closeout, the test assembly was not representative of flight hardware and resulted in a gross overtest. It is therefore recommended that the test be declared void. It is also recommended that the test be repeated with a complete closeout of the systems tunnel, sealed systems tunnel ends, and improved adhesive bondline preparation.

  14. SLS Engine Section Test Article Moves From NASA Barge Pegasus To Test Stand at NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2017-05-18

    The NASA barge Pegasus made its first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from the barge to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  15. Orion Pad Abort 1 GN and C Design and Development

    NASA Technical Reports Server (NTRS)

    Medina, Edgar A.; Stachowiak, Susan J.

    2010-01-01

    The first flight test of the Orion Abort Flight Test project is scheduled to launch in Spring 2010. This flight test is known as Pad Abort 1 (PA-1) and it is intended to accomplish a series of flight test objectives, including demonstrating the capability of the Launch Abort System (LAS) to propel the Crew Module (CM) to a safe distance from a launch vehicle during a pad abort. The PA-1 Flight Test Article (FTA) is actively controlled by a guidance, navigation, and control (GN&C) system for much of its flight. The purpose of this paper is to describe the design, development, and analysis of the PA-1 GN&C system. A description of the technical solutions that were developed to meet the challenge of satisfying many competing requirements is presented. A historical perspective of how the Orion LAV compares to the Apollo Launch Escape Vehicle (LEV) design will also be included.

  16. Aerothermodynamic Testing and Boundary Layer Trip Sizing of the HIFiRE Flight 1 Vehicle

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Greene, Frank A.; Kimmel, Roger; Alba, Christopher; Johnson, Heath

    2008-01-01

    An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Air Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this article is focused on the Flight 1 configuration, the first in a series of flight experiments. The article documents experimental measurements made over a Reynolds numbers range of 2.1x10(exp 6)/ft to 5.6x10(exp 6)/ft and angles of attack of -5 to +5 deg on several scaled ceramic heat transfer models of the Flight 1 configuration. Global heat transfer was measured using phosphor thermography and the resulting images and heat transfer distributions were used to infer the state of the boundary layer on the vehicle windside and leeside surfaces. Boundary layer trips were used to force the boundary layer turbulent and the experimental data highlighted in this article were used to size and place the boundary layer trip for the flight vehicle. The required height of the flight boundary layer trip was determined to be 0.079 in and the trip was moved from the design location of 7.87 in to 20.47 in to ensure that augmented heating would not impact the laminar side of the vehicle. Allowable roughness was selected to be 3.2x10(exp -3) in.

  17. Improved Orbiter Waste Collection System Study, Appendix D

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Basic requirements for a space shuttle orbiter waste collection system are established. They are intended to be an aid in the development and procurement of a representative flight test article. Orbiter interface requirements, performance requirements, flight crew operational requirements, flight environmental requirements, and ground operational and environmental requirements are considered.

  18. Initial Flight Tests of the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nathan; Moes, Timothy R.; Vachon, M. Jake

    2002-01-01

    Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.

  19. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    ERIC Educational Resources Information Center

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  20. A Data System for a Rapid Evaluation Class of Subscale Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Quach, Cuong C.; Vazquez, Sixto L.; Hill, Boyd L.

    2011-01-01

    A low cost, rapid evaluation, test aircraft is used to develop and test airframe damage diagnosis algorithms at Langley Research Center as part of NASA's Aviation Safety Program. The remotely operated subscale aircraft is instrumented with sensors to monitor structural response during flight. Data is collected for good and compromised airframe configurations to develop data driven models for diagnosing airframe state. This paper describes the data acquisition system (DAS) of the rapid evaluation test aircraft. A PC/104 form factor DAS was developed to allow use of Matlab, Simulink simulation code in Langley's existing subscale aircraft flight test infrastructure. The small scale of the test aircraft permitted laboratory testing of the actual flight article under controlled conditions. The low cost and modularity of the DAS permitted adaptation to various flight experiment requirements.

  1. Laminar flow control leading edge glove flight test article development

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.; Mcnay, D. E.; Thelander, J. A.

    1984-01-01

    A laminar flow control (LFC) flight test article was designed and fabricated to fit into the right leading edge of a JetStar aircraft. The article was designed to attach to the front spar and fill in approx. 70 inches of the leading edge that are normally occupied by the large slipper fuel tank. The outer contour of the test article was constrained to align with an external fairing aft of the front spar which provided a surface pressure distribution over the test region representative of an LFC airfoil. LFC is achieved by applying suction through a finely perforated surface, which removes a small fraction of the boundary layer. The LFC test article has a retractable high lift shield to protect the laminar surface from contamination by airborne debris during takeoff and low altitude operation. The shield is designed to intercept insects and other particles that could otherwise impact the leading edge. Because the shield will intercept freezing rain and ice, a oozing glycol ice protection system is installed on the shield leading edge. In addition to the shield, a liquid freezing point depressant can be sprayed on the back of the shield.

  2. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Cook, Jerry; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100 metric tons and, ultimately, to 130 metric tons. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  3. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  4. Simulated airline service experience with laminar-flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.

    1987-01-01

    The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.

  5. Entry, Descent, and Landing Mission Design for the Crew Exploration Vehicle Thermal Protection System Qualification Flight Test

    NASA Technical Reports Server (NTRS)

    Ivanov, Mark; Strauss, William; Maddock, Robert

    2007-01-01

    The TORCH team was challenged to generate the lowest cost mission design solution that meets the CEV aerothermal test objectives on a sub-scale flight article. The test objectives resulted from producing representative lunar return missions and observing the aerothermal envelopes of select surface locations on the CEV. From these aerothermal envelopes, two test boxes were established: one for high shear and one for high radiation. The unique and challenging trajectory design objective for the flight test was to fly through these aerothermal boxes in shear, pressure, heat flux, and radiation while also not over testing. These test boxes, and the max aerothermal limits, became the driving requirements for defining the mission design.

  6. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture). This hard-point has large weight margins, and, because it is located near the center of gravity of the airplane, the weight of equipment mounted there exerts a minimal effect on the stability and controllability of the airplane. The PFTF (see Figure 2) includes a one-piece aluminum structure that contains space for instrumentation, propellant tanks, and feed-system components. The PFTF also houses a force balance, on which is mounted the subscale engine or other experimental apparatus that is to be the subject of a flight test. The force balance measures a combination of inertial and aerodynamic forces and moments acting on the experimental apparatus.

  7. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  8. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    NASA Technical Reports Server (NTRS)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on NASA's F-15B aircraft, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. For future flight data from this platform to be valid, more information must be gathered concerning the quality of the airflow underneath the body of the F-15B at various flight conditions, especially supersonic conditions. The flow angularity and Mach number must be known at multiple locations on any test article interface plane for measurement data at these locations to be valid. To determine this prerequisite information, flight data will be gathered in the Rake Airflow Gauge Experiment using a custom-designed flowfield rake to probe the airflow underneath the F-15B at the desired flight conditions. This paper addresses the design considerations of the rake and probe assembly, including the loads and stress analysis using analytical methods, computational fluid dynamics, and finite element analysis. It also details the flow calibration procedure, including the completed wind-tunnel test and posttest data reduction, calibration verification, and preparation for flight-testing.

  9. Prototype test article verification of the Space Station Freedom active thermal control system microgravity performance

    NASA Technical Reports Server (NTRS)

    Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.

    1993-01-01

    To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.

  10. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    DTIC Science & Technology

    2013-11-01

    DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test article leading edge...Reference System (DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test...pitch angle relative to earth as measured by IMU , or flight-path elevation angle as measured by GPS or IMU , degrees  = body-fixed angular coordinate

  11. Flowfield Analysis of a Small Entry Probe (SPRITE) Tested in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.

    2012-01-01

    A novel concept of small size (diameter less than 15 inches) entry probes named SPRITE (Small Probe Re-entry Investigation for TPS Engineering) has been developed at NASA Ames Research Center (ARC). These flight probes have on-board data acquisition systems that have also been developed in parallel at NASA ARC by Greg Swanson1. Flight probes of this size facilitate testing over a wide range of conditions in arc jets available at NASA ARC, thereby fulfilling a 'test what you fly' paradigm. As indicated by the acronym, these probes, with suitably tailored trajectories, are primarily meant to be robotic flight test beds for TPS materials, although the design is flexible enough to accommodate additional objectives of flight-testing other vehicle subsystems. A first step towards establishing the feasibility of the SPRITE concept is to arc-jet test fully instrumented models at flight scale. In a follow-on to the Large-Scale Article Tests (LSAT2) performed in the 60 MW Interaction Heating Facility (IHF) in late 2008/early 2009, a full-scale model of Deep Space-2 (DS23) made of red oak was tested in the 20 MW Aerodynamic Heating Facility (AHF). There were no issues with mass capture by the diffuser for blunt bodies of roughly 15 inches diameter tested in the 18-inch nozzle of the AHF. Building on this initial success, two identical test articles - SPRITE-T1-1 and SPRITE-T1-2 (T1 indicating the choice of back shell geometry) - were fabricated, and one of them, SPRITE-T1-1, was tested in the AHF recently. Both these test articles, 14 inches in diameter, have a 45deg sphere-cone (like DS2) made of PICA bonded on to a 1/8th inch thick aluminum shell using RTV. The aft portion of the test article is a conical frustum (15deg cone angle) with LI-2200 bonded on to the aluminum shell. Each model is fully instrumented with: (a) thermocouples imbedded in plugs in the heat shield, (b) thermocouples bonded to the aluminum substructure; the thermocouples are distributed over the entire shell, and (c) a few strain gages. Data from some of the thermocouples and gages are acquired by the on-board data acquisition system (DAS), while data from the others are routed to the facility-provided DAS, thereby enabling a cross check on the in situ measurement capability. as inputs to v2.6.1 of the in-house materials thermal response code, FIAT

  12. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  13. Space shuttle orbiter avionics software: Post review report for the entry FACI (First Article Configuration Inspection). [including orbital flight tests integrated system

    NASA Technical Reports Server (NTRS)

    Markos, H.

    1978-01-01

    Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.

  14. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  15. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Askins, Bruce R.; Bland, Jeffrey; Davis, Stephan; Holladay, Jon B.; Taylor, James L.; Taylor, Terry L.; Robinson, Kimberly F.; Roberts, Ryan E.; Tuma, Margaret

    2007-01-01

    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  16. Thermal Test Verification of Emission Control through Directional Baffles for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Garrison, Matthew; Rashford, Robert; Switzer, Timothy; Shaw, David; White, Bryant; Lynch, Michael; Huber, Frank; Bachtell, Neal

    2009-01-01

    The thermal performance of NASA s planned James Webb Space Telescope is highly reliant on a collection of directional baffles that are part of the Integrated Science Instrument Module Electronics Compartment. In order to verify the performance of the baffle concept, two test assemblies were recently fabricated and tested at the Goddard Space Flight Center. The centerpiece of the testing was a fixture that used bolometers to measure the emission field through the baffles while the radiator panels and baffles ran a flight-like temperature. Although not all test goals were able to be met due to facility malfunctions, the test was able to prove the design viability enough to gain approval to begin manufacturing the flight article.

  17. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  18. A Sub-Orbital Platform for Flight Tests of Small Space Capsules

    NASA Astrophysics Data System (ADS)

    Pereira, P. Moraes A. L., Jr.; Silva, C. R.; Villas Bôas, D. J.; Corrêa, F., Jr.; Miyoshi, J. H.; Loures da Costa, L. E.

    2002-01-01

    In the development of a small recoverable space capsule, flight tests using sub-orbital rockets are considered. For this test series, a platform for aerodynamic and thermal measurements as also for qualification tests of onboard sub-systems and equipment was specified and is actually under development. This platform, known as SARA Suborbital, is specified to withstand a sub-orbital flight with the high performance sounding rocket VS40 and to be recovered at the sea. To perform the testing program, a flight trajectory with adequate aeroballistic parameters, as for instance high velocities in dense atmosphere and average re-entry velocity, is considered. The testing program includes measurements of aerodynamic pressures and thermal characteristics, three- axis acceleration, acoustic pressure level inside the platform and vibration environment. Beside this, tests to characterise the performance of the data acquisition and transmission system, the micro-gravity environment and to qualify the recovery system will be carried out. During the return flight, the dynamics of parachutes deployment and platform water impact, as also rescue procedures will also be observed. The present article shows the concept of the platform, describes in detail the experiments, and concludes with a discussion on the flight trajectory and recovery procedure.

  19. Space Construction Experiment Definition Study (SCEDS), part 2. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Construction Experiment (SCE) was defined for integration into the Space Shuttle. This included development of flight assignment data, revision and update of preliminary mission timelines and test plans, analysis of flight safety issues, and definition of ground operations scenarios. New requirements for the flight experiment and changes for a large space antenna feed mask test article were incorporated. The program plan and cost estimates were updated. Revised SCE structural dynamics characteristics were provided for simulation and analysis of experimental tests to define and verify control limits and interactions effects between the SCE and the Orbiter digital automatic pilot.

  20. Manned remote work station development article, executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The mission requirements for the manned remote work station (MRWS) flight article and the manned remote work station open cherry picker development test article is defined. Considerations are given for the near, mid, and far term use of the MRWS with emphasis on its ultimate application: constructing the Solar Power Satellite.

  1. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  2. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, M. E.; Marichalar, J. J.; Kinder, G. R.; Campbell, C. H.; Riccio, J. R.; Nquyen, T. Q.; DelPapa, S. V.; Pulsonetti, M. V.

    2009-01-01

    A series of arc-jet tests in support of the Shuttle Orbiter Boundary Layer Transition flight experiment was conducted in the Channel Nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility. The boundary layer trip was a protrusion of a certain height and geometry fabricated as part of a 6"x6" tile insert, a special test article made of the Boeing Rigid Insulation tile material and coated with the Reaction Cured Glass used for the bottom fuselage tiles of the Space Shuttle Orbiter. A total of five such tile inserts were manufactured: four with the 0.25-in. trip height, and one with the 0.35-in. trip height. The tile inserts were interchangeably installed in the center of the 24"x24" variable configuration tile array mounted in the 24"x24" test section of the channel nozzle. The objectives of the test series were to demonstrate that the boundary layer trip can safely withstand the Space Shuttle Orbiter flight-like re-entry environments and provide temperature data on the protrusion surface, surfaces of the nearby tiles upstream and downstream of the trip, as well as the bond line between the tiles and the structure. The targeted test environments were defined for the tip of the protrusion, away from the nominal surface of the tile array. The arc jet test conditions were approximated in order to produce the levels of the free stream total enthalpy at the protrusion height similar to those expected in flight. The test articles were instrumented with surface, sidewall and bond line thermocouples. Additionally, Tempilaq temperature-indicating paint was applied to the nominal tiles of the tile array in locations not interfering with the protrusion trip. Five different grades of paint were used that disintegrate at different temperatures between 1500 and 2000 deg F. The intent of using the paint was to gauge the RCG-coated tile surface temperature, as well as determine its usefulness for a flight experiment. This paper provides an overview of the channel nozzle arc jet, test articles and test conditions, as well as the results of the arc-jet tests including the measured temperature response of the test articles, their pre- and post-test surface scans, condition of the thermal paint, and continents on the protrusion tip heating achieved in tests compared to the computational fluid dynamics predictions.

  3. Effect of Surface Imperfections and Excrescences on the Crossflow Instability

    NASA Astrophysics Data System (ADS)

    Tufts, Matthew; Duncan, Glen, Jr.; Crawford, Brian; Reed, Helen; Saric, William

    2012-11-01

    Presented is analysis of the planned SWIFTER experiment to be flown on Texas A&M University's O-2A aircraft. Simultaneous control of the crossflow and streamwise boundary-layer instabilities is a challenge for laminar flow control on swept wings. Solving this problem is an active area of research, with a specific need to quantify the effect of surface imperfections and outer mold line excrescences on crossflow instabilities. The SWIFTER test article is a modification of a prior-tested flight model, with the additional capability of creating controlled excrescences in flight. Using a finite-element Navier-Stokes solution and a spectrally accurate boundary-layer solver, coupled with linear and nonlinear stability analyses, we show that the flow field over the test article is well suited to this study. Results are compared with flight data. The work is supported by the Air Force Research Laboratory through General Dynamics Information Technology, Inc. under sub Agreement No USAF-3446-11-50-SC-01 and the Texas A&M Supercomputing Facility.

  4. International Aviation (Selected Articles)

    DTIC Science & Technology

    1991-04-25

    Vibration and Flutter, by Guan Peifang, Zhong Dejun ....................................................... 21 CAAC Xian Administratio Bureau has Been... aErOEngines and main airborne equipments. For thirty years, it- ha ac pLied the national evaluation flight tests c ’ --. cre th-an- 10 types of aircraft and... aeroengines and evaluatio- fli.ght tests of Several hundreds of systems and products related L l insrumTents5, higlh al t itude e scape and’ fre control

  5. Spacelab

    NASA Image and Video Library

    1970-11-01

    At Marshall Space Flight Center, Skylab's Multiple Docking Adapter (MDA) flight article undergoes center-of-gravity testing. Developed and fabricated by MSFC, the MDA housed the control units for the Apollo Telescope Mount (ATM), Earth Resources Experiment Package (EREP), and the Zero-Gravity Material Processing Facility and provided a docking port for the Apollo Command Module.

  6. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  7. Analysis of the effect on optical equipment caused by solar position in target flight measure

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-hua; Hu, Hai-bin

    2012-11-01

    Optical equipment is widely used to measure flight parameters in target flight performance test, but the equipment is sensitive to the sun's rays. In order to avoid the disadvantage of sun's rays directly shines to the optical equipment camera lens when measuring target flight parameters, the angle between observation direction and the line which connects optical equipment camera lens and the sun should be kept at a big range, The calculation method of the solar azimuth and altitude to the optical equipment at any time and at any place on the earth, the equipment observation direction model and the calculating model of angle between observation direction and the line which connects optical equipment camera lens are introduced in this article. Also, the simulation of the effect on optical equipment caused by solar position at different time, different date, different month and different target flight direction is given in this article.

  8. Robotic Lunar Lander Development Project Status

    NASA Technical Reports Server (NTRS)

    Hammond, Monica; Bassler, Julie; Morse, Brian

    2010-01-01

    This slide presentation reviews the status of the development of a robotic lunar lander. The goal of the project is to perform engineering tests and risk reduction activities to support the development of a small lunar lander for lunar surface science. This includes: (1) risk reduction for the flight of the robotic lander, (i.e., testing and analyzing various phase of the project); (2) the incremental development for the design of the robotic lander, which is to demonstrate autonomous, controlled descent and landing on airless bodies, and design of thruster configuration for 1/6th of the gravity of earth; (3) cold gas test article in flight demonstration testing; (4) warm gas testing of the robotic lander design; (5) develop and test landing algorithms; (6) validate the algorithms through analysis and test; and (7) tests of the flight propulsion system.

  9. NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  10. NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule.

    NASA Image and Video Library

    2008-01-24

    NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.

  11. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  12. Underway Recovery Test 6 (URT-6) - Day 3 Activities

    NASA Image and Video Library

    2018-01-19

    NASA Recovery Director Melissa Jones watches part of Underway Recovery Test 6, from the flight deck of the USS Anchorage. During this portion, the Orion test article is intentionally subjected to an increased sea state as the NASA Recovery Team works hard to keep control of the spacecraft. The testing with Kennedy Space Center's NASA Recovery Team and the U.S. Navy will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  13. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles.

  14. HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.

    2010-01-01

    The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.

  15. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Banks, Daniel W.; Garzon, G. A.; Matisheck, J. R.

    2015-01-01

    A flight-test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane (McDonnell Douglas Corporation, now The Boeing Company, Chicago, Illinois). The test article was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  16. Hot-Fire Testing of 5N and 22N HPGP Thrusters

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin W.; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends.NASA completed hot-fire testing of 5N and 22N HPGP thrusters at the Marshall Space Flight Center’s Component Development Area altitude test stand in April 2015. Both thrusters are ground test articles and not flight ready units, but are representative of potential flight hardware with a known path towards flight application. The purpose of the 5N testing was to perform facility check-outs and generate a small set of data for comparison to ECAPS and Orbital ATK data sets. The 5N thruster performed as expected with thrust and propellant flow-rate data generated that are similar to previous testing at Orbital ATK. Immediately following the 5N testing, and using the same facility, the 22N testing was conducted on the same test stand with the purpose of demonstrating the 22N performance. The results of 22N testing indicate it performed as expected.The results of the hot-fire testing are presented in this paper and presentation.

  17. 2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Swerterlitsch, Jeffrey J.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment, with simulated and real human metabolic loads, in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended

  18. 2009 Continued Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy Lin; Sweterlitsch, Jeffrey

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated and real human metabolic loads in both open and closed-loop configurations. The test article design was iterated a third time before the latest series of such tests, which was performed in the first half of 2009. The new design incorporates a canister configuration modification for overall unit compactness and reduced pressure drop, as well as a new process flow control valve that incorporates both compressed gas purge and dual-end vacuum desorption capabilities. This newest test article is very similar to the flight article designs. Baseline tests of the new unit were performed to compare its performance to that of the previous test articles. Testing of compressed gas purge operations helped refine launchpad operating condition recommendations developed in earlier testing. Operating conditions used in flight program computer models were tested to validate the model projections. Specific operating conditions that were recommended by the JSC test team based on past test results were also tested for validation. The effects of vacuum regeneration line pressure on resulting cabin conditions was studied for high metabolic load periods, and a maximum pressure is recommended.

  19. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  20. Liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.

    1993-01-01

    Testing of a simplified LO2 propellant conditioning concept for future expendable launch vehicles is discussed. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and He bubbling. A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from an LO2 turbopump, is to be tested at the Cold Flow Facility of the Marshall Space Flight Center West Test Area. Work to date includes: design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test articles.

  1. KSC-07pd1491

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepared three test articles that will be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles were flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Photo credit: NASA/Kim Shiflett

  2. Saturn Apollo Program

    NASA Image and Video Library

    1980-09-23

    Pictured is a dual position Saturn I/IB test at the T-Stand at Marshall Space Flight Center. This stand was built to test two articles at the same time, thus providing engineers at MSFC with the opportunity to compare identical burns.

  3. Full-Scale Passive Earth Entry Vehicle Landing Tests: Methods and Measurements

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Kellas, Sotiris

    2018-01-01

    During the summer of 2016, a series of drop tests were conducted on two passive earth entry vehicle (EEV) test articles at the Utah Test and Training Range (UTTR). The tests were conducted to evaluate the structural integrity of a realistic EEV vehicle under anticipated landing loads. The test vehicles were lifted to an altitude of approximately 400m via a helicopter and released via release hook into a predesignated 61 m landing zone. Onboard accelerometers were capable of measuring vehicle free flight and impact loads. High-speed cameras on the ground tracked the free-falling vehicles and data was used to calculate critical impact parameters during the final seconds of flight. Additional sets of high definition and ultra-high definition cameras were able to supplement the high-speed data by capturing the release and free flight of the test articles. Three tests were successfully completed and showed that the passive vehicle design was able to withstand the impact loads from nominal and off-nominal impacts at landing velocities of approximately 29 m/s. Two out of three test resulted in off-nominal impacts due to a combination of high winds at altitude and the method used to suspend the vehicle from the helicopter. Both the video and acceleration data captured is examined and discussed. Finally, recommendations for improved release and instrumentation methods are presented.

  4. Low Cost Propulsion Technology Testing at the Stennis Space Center: Propulsion Test Article and the Horizontal Test Facility

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.

    1998-01-01

    The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.

  5. LITTLE JOE 2 - LAUNCH VEHICLES - VA

    NASA Image and Video Library

    1961-04-13

    G61-00030 (4 Nov. 1959) --- Launch of Little Joe-2 from Wallops Island carrying Mercury spacecraft test article. The suborbital test flight of the Mercury capsule was to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. Photo credit: NASA

  6. Development and Overview of CPAS Sasquatch Airdrop Landing Location Predictor Software

    NASA Technical Reports Server (NTRS)

    Bledsoe, Kristin J.; Bernatovich, Michael A.

    2015-01-01

    The Capsule Parachute Assembly System (CPAS) is the parachute system for NASA's Orion spacecraft. CPAS is currently in the Engineering Development Unit (EDU) phase of testing. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish a release point from the aircraft that will ensure that the article and all items released from it during flight will land in a designated safe area. The Sasquatch footprint tool was developed to determine this safe release point and to predict the probable landing locations (footprints) of the payload and all released objects. In 2012, a new version of Sasquatch, called Sasquatch Polygons, was developed that significantly upgraded the capabilities of the footprint tool. Key improvements were an increase in the accuracy of the predictions, and the addition of an interface with the Debris Tool (DT), an in-flight debris avoidance tool for use on the test observation helicopter. Additional enhancements include improved data presentation for communication with test personnel and a streamlined code structure. This paper discusses the development, validation, and performance of Sasquatch Polygons, as well as its differences from the original Sasquatch footprint tool.

  7. Flight Tests of a Supersonic Natural Laminar Flow Airfoil

    NASA Technical Reports Server (NTRS)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2014-01-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80-inch (203 cm) chord and 40-inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The wing was designed with a leading edge sweep of effectively 0 deg to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2-D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, were similar to that of subsonic natural laminar flow wings.

  8. HyBoLT Flight Experiment

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jeng (Frank); Berry, Scott A.

    2010-01-01

    HyBoLT was a Hypersonic Boundary Layer Transition flight experiment funded by the Hypersonics Project of the Fundamental Aeronautics Program in NASA's Aeronautics Research Mission Directorate. The HyBoLT test article mounted on the top of the ALV X-1 rocket was launched from Virginia's Wallops Island on August 22, 2008. Unfortunately a problem in the rocket's flight control system caused the vehicle to veer off the designed flight course. Launch officials activated a self-destruct mechanism in the rocket's nose cone after 20 seconds into flight. This report is a closeout document about the HyBoLT flight experiment. Details are provided of the objectives and approach associated with this experimental program as well as the 20 seconds flight data acquired before the vehicle was destroyed.

  9. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  10. [Peculiarities of pilot's perception of flight information presented on on-board liquid crystal displays].

    PubMed

    Lemeshchenko, N A; Ivanov, A I; Lapa, V V; Davydov, V V; Zhelonkin, V I; Riabinin, V A; Golosov, S Iu

    2014-01-01

    The article deals with results of experimental studies conducted on flight testing desk and covering peculiarities of pilot's perception of flight information presented on on-board liquid crystal display in dependence on changes speed and update rate of the screen. The authors determine frequency characteristics of information update rate, that achieve acceptable quality of the flight parameters perception in accordance with the changes speed. Vigorous maneuvering with high angular velocities of changed parameters of roll and pitch causes visual distortions that are connected with poor frequency of information update rate, deteriorate piloting quality and can cause flight unsafety.

  11. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark

    2011-01-01

    A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.

  12. F15B-Quiet Spike Aeroservoelastic Flight Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    2007-01-01

    Airframe structural morphing technologies designed to mitigate sonic boom strength are being developed by Gulfstream Aerospace Corporation (GAC). Among these technologies is a concept in which an aircraft's frontend would be extended prior to supersonic acceleration. This morphing would effectively lengthen the vehicle, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. This combination of boom shaping techniques is predicted to transform the classic, high-impulse N-wave pattern typically generated by an aircraft traveling at supersonic speed into a signature more closely resembling a sinusoidal wave with a greatly reduced perceived loudness. 'QuietSpike' is GAC's nomenclature for its recently patented front-end vehicle morphing arrangement. The ability of Quiet Spike to effectively shape a vehicle's far- field sonic boom signature is highly dependent on the area distribution characteristics of the aircraft. The full aeroacoustic benefits of front-end morphing at farfield are only possible when the QuietSpike article and vehicle configuration are designed in consideration of each other. Adding QuietSpike technology to the airframe of an existing, non-boom-optimized supersonic vehicle is unlikely to result in an improved far-field signature due to the generally over-powering influence of wing- and inlet-generated shocks. Therefore, it is generally recognized within NASA and the industry that a clean-sheet vehicle design is required to demonstrate the theoretically predicted far-field aeroacoustic benefits of QuietSpike type morphing and other boom- mitigating concepts. NASA's Aeronautics Research Mission Directorate (ARMD) Supersonics Division has placed increased priority on near-term development and flight-testing of such a vehicle. To help achieve this objective, static and dynamic aerostructural proof-of-concept testing was considered a prudent step prior to a clean-sheet effort in order to reduce risk associated with a follow-on test program. Following a survey of potential test platforms, NASA Dryden's F-15B was selected as the target test vehicle primarily because of its unique ability to carry a largescale test apparatus to relevant supersonic flight speeds, so called the F15 -QS. The QuietSpike test article was constructed primarily of composite materials and attached to the forward fuselage of the F-1 5B bulkhead (see Figures 1,2). The QuietSpike test article replaces the current flight test noseboom and radome assembly. Power is supplied to the Quiet Spike motor assembly in order to extend and retract the Spike, and the Quiet Spike test article was appropriately instrumented with accelerometers, strain gages, pressure transducers, and thermocouples.

  13. Video of SLS Liquid Hydrogen Tank Qualification Structural Test Article Being Moved to Cell E at NASA’s Michoud Assembly Facility

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  14. Launch of Little Joe I-B from Wallops Island

    NASA Image and Video Library

    1960-01-21

    B60-00364 (4 Nov. 1959) --- Launch of Little Joe-2 from Wallops Island carrying Mercury spacecraft test article. The suborbital test flight of the Mercury capsule was to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. Photo credit: NASA

  15. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Torus Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Chen, Tony; Moholt, Matthew R.; Hudson, Larry D.

    2017-01-01

    The Armstrong Flight Research Center has performed loads testing of a series of developmental atmospheric entry decelerator structural components. Test setup hardware were designed and fabricated. In addition, test plan and checklist were developed for the consistent and efficient execution of the tests. Eight test articles were successfully tested in over one hundred test runs as test objectives were met. Test article buckling shapes and buckling loads were observed. Displacements and strains were also recorded as various load cases were applied. The test data was sent to Langley Research Center to help with the construction of the finite element model of the decelerator assembly.

  16. Time-Lapse Video of SLS Engine Section Test Article Being Stacked at Michoud

    NASA Image and Video Library

    2017-04-25

    This time-lapse video shows the Space Launch System engine section structural qualification test article being stacked at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  17. SLS Engine Section Test Article Moved for Stacking at Michoud

    NASA Image and Video Library

    2017-04-25

    Stacking is underway for the Space Launch System core stage engine section structural qualification test article at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved to Michoud's Cell A in Building 110 for vertical stacking with hardware that simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. Once stacked, the entire test article will load onto the barge Pegasus and ship to NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  18. Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Manning, Rob

    2015-01-01

    NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.

  19. Comparisons Between Pretest Prediction and Flight Test Data of Aerodynamic Loading for EFT-1

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.

    2016-01-01

    Exploration Flight Test One (EFT-1) was an incredible milestone in the development NASA's Orion spacecraft. It incorporated hundreds of articles of flight test instrumentation and returned with a wealth of data. Aerodynamic surface pressures were collected during launch vehicle ascent and capsule reentry and descent. These discrete surface pressure measurements enable comparisons to computational results and ground test data. This paper details the comparisons between pre-test predictions and flight test data for the Orion MPCV Crew Module (CM) and Launch Abort Tower (LAT) during all phases of flight. Regions with strong comparisons, poor predictions, and lessons learned are discussed. 38 pressure measurements were made on the LAT during ascent. Nine of the gauges were Honeywell PPTs and the remainder were Kulite pressure transducers. In order to address bias in the Kulites, a two-point linear calibration was used and the details are discussed. Results from the flight are compared to existing database products. 44 pressure measurements were made on the CM during reentry and descent. Nine of the gauges were Honeywell PPTs and the remainder were Kulite pressure transducers. In order to address bias in the Kulites, a tare was made against the vacuum measurements as described below. Once the bias was removed from the gauges, comparisons between predicted loading and the measured results are compared.

  20. Solid Rocket Booster Structural Test Article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  1. Design of 8-ft-Diameter Barrel Test Article Attachment Rings for Shell Buckling Knockdown Factor Project

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2010-01-01

    The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.

  2. LUNAR MODULE TEST ARTICLE [LTA] [2R] IS MOVED FOR MATING TO LUNAR MODULE ADAPTER

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The Lunar Module Test Article [LTA] 2R, for the second Saturn V mission, is being moved from the low bay of the Manned Spacecraft Operations Building for mating with the spacecraft Lunar Module Adapter. The second Saturn V [502], except for a different lunar return trajectory, will be a repeat of the Apollo 4 unmanned Earth orbital flight of a high apogee for systems testing using several propulsion system burns and a heat shield test at lunar re-entry speed.

  3. Orion EFT-1 Heat Shield move from LASF to VAB for Ground Test Article Integration

    NASA Image and Video Library

    2017-04-26

    The heat shield for Exploration Flight Test-1 is transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations to be integrated with the Ground Test Article to be utilized for future Underway Recovery Testing. After transport from the Launch Abort System Facility (LASF) to the Vehicle Assembly Building (VAB), the heat shield is lifted off of the transport truck and placed onto foam pads (dunnage) for inspection in Highbay 2 of the VAB.

  4. Preliminary Analysis of the 30-m UltraBoom Flight Test

    NASA Technical Reports Server (NTRS)

    Agnes, Gregory S.; Abelson, Robert D.; Miyake, Robert; Lin, John K. H.; Welsh, Joe; Watson, Judith J.

    2005-01-01

    Future NASA missions require long, ultra-lightweight booms to enable solar sails, large sunshields, and other gossamer-type spacecraft structures. The space experiment discussed in this paper will flight validate the non-traditional ultra lightweight rigidizable, inflatable, isogrid structure utilizing graphite shape memory polymer (GR/SMP) called UltraBoom(TradeMark). The focus of this paper is the analysis of the 3-m ground test article. The primary objective of the mission is to show that a combination of ground testing and analysis can predict the on-orbit performance of an ultra lightweight boom that is scalable, predictable, and thermomechanically stable.

  5. SLS Test Hardware Taken to Redstone Arsenal Airfield for Guppy Loading

    NASA Image and Video Library

    2017-07-10

    A structural test article of the Orion Stage Adapter for NASA’s Space Launch System, built at NASA's Marshall Space Flight Center, is transported and prepared to be loaded onto NASA's Super Guppy aircraft. With integrated structural testing complete at Marshall, the stage adapter will soon be transported to Lockheed Martin in Denver for further testing with NASA's Orion spacecraft. The Guppy -- a plane large enough to carry cargo weighing more than 26 tons -- arrived at the U.S. Army's Redstone Arsenal Airfield July 10 to transport the stage adapter. On SLS's first integrated flight with Orion, the OSA will connect Orion to the Interim Cryogenic Propulsion Stage.

  6. Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.

    2006-01-01

    The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such as the real-time angle of attack system and the new programmable logic controller enhance the test efficiency of the facility. The motivation for the upgrades and the expanded capabilities is described here.

  7. Solid Propellant Test Article (SPTA) Test Stand

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  8. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Brewer, Ethan J.; Pawlik, Ralph

    2013-01-01

    This report provides test methodology details and qualitative results for the first structural benchmark creep test of an Advanced Stirling Convertor (ASC) heater head of ASC-E2 design heritage. The test article was recovered from a flight-like Microcast MarM-247 heater head specimen previously used in helium permeability testing. The test article was utilized for benchmark creep test rig preparation, wall thickness and diametral laser scan hardware metrological developments, and induction heater custom coil experiments. In addition, a benchmark creep test was performed, terminated after one week when through-thickness cracks propagated at thermocouple weld locations. Following this, it was used to develop a unique temperature measurement methodology using contact thermocouples, thereby enabling future benchmark testing to be performed without the use of conventional welded thermocouples, proven problematic for the alloy. This report includes an overview of heater head structural benchmark creep testing, the origin of this particular test article, test configuration developments accomplished using the test article, creep predictions for its benchmark creep test, qualitative structural benchmark creep test results, and a short summary.

  9. Test Plan for the Technology Maturation of Supersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Kelly, Jenny R.; Cruz, Juan R.

    2009-01-01

    Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.

  10. Residual Stress Measurements After Proof and Flight: ETP-0403

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  11. Underway Recovery Test 6 (URT-6) - Day 3 Activities

    NASA Image and Video Library

    2018-01-19

    After a day of working with the Orion test article under rough seas, the NASA Recovery Team inspects the capsule and their lines. As part of Underway Recovery Test 6, the Orion test article was intentionally subjected to an increased sea state to ensure the team could control the spacecraft under all possible scenarios. The testing with Kennedy Space Center's NASA Recovery Team and the U.S. Navy will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  12. Space Shuttle reaction control system thruster metal nitrate removal and characterization

    NASA Technical Reports Server (NTRS)

    Saulsberry, R. L.; Mccartney, P. A.

    1993-01-01

    The Space Shuttle hypergolic primary reaction control system (PRCS) thrusters continue to fail-leak or fail-off at a rate of approximately 1.5 per flight, attributed primarily to metal nitrate formation in the nitrogen tetroxide (N2O4) pilot operated valves (POV's). The failures have continued despite ground support equipment (GSE) and subsystem operational improvements. As a result, the Johnson Space Center (JSC) White Sands Test Facility (WSTF) performed a study to characterize the contamination in the N204 valves. This study prompted the development and implementation of a highly successful flushing technique using deionized (DI) water and gaseous nitrogen (GN2) to remove the contamination while minimizing Teflon seat damage. Following flushing a comprehensive acceptance test is performed before the thruster is deemed recovered. Between the time WSTF was certified to process flight thrusters (March 1992) and September 1993, a 68 percent thruster recovery rate was achieved. The contamination flushed from these thrusters was analyzed and has provided insight into the corrosion process, which is reported in this publication. Additionally, the long-term performance of 24 flushed thrusters installed in the WSTF Fleet Leader Shuttle reaction control subsystem (RCS) test articles is being assessed. WSTF continues to flush flight and test article thrusters and compile data to investigate metal nitrate formation characteristics in leaking and nonleaking valves.

  13. Remotely piloted vehicles. Citations from the International Aerospace abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    These citations from the international literature cover various aspects of remotely piloted vehicles. Included are articles concerning aircraft design, flight tests, aircraft control, cost effectiveness, automatic flight control, automatic pilots, and data links. Civil aviation applications are included, although military uses of remotely piloted vehicles are stressed. This updated bibliography contains 224 citations, 43 of which are new additions to the previous edition.

  14. High-Flux, High-Temperature Thermal Vacuum Qualification Testing of a Solar Receiver Aperture Shield

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Mason, Lee S.; Strumpf, Hal J.

    1997-01-01

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LERC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world's first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal Multi-Foil Insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near equilibrium temperature of 2072 K was achieved. The aperture shield sustained no visible damage as a result of the exposures. This paper describes the aperture shield thermal-vacuum qualification test program including the test article, test facility, procedures, data collection, test success criteria, results and conclusions.

  15. 2007 Research and Engineering Annual Report

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data Rack; Intelligent Data Mining Capabilities as Applied to Integrated Vehicle Health Management; STARS Flight Demonstration No. 2 IP Data Formatter; Space-Based Telemetry and Range Safety (STARS) Flight Demonstration No. 2 Range User Flight Test Results; Aerodynamic Effects of the Quiet Spike(tm) on an F-15B Aircraft; F-15 Intelligent Flight Controls-Increased Destabilization Failure; F-15 Integrated Resilient Aircraft Control (IRAC) Improved Adaptive Controller; Aeroelastic Analysis of the Ikhana/Fire Pod System; Ikhana: Western States Fire Missions Utilizing the Ames Research Center Fire Sensor; Ikhana: Fiber-Optic Wing Shape Sensors; Ikhana: ARTS III; SOFIA Closed-Door Flutter Envelope Flight Testing; F-15B Quiet Spike(TM) Aeroservoelastic Flight Test Data Analysis; and UAVSAR Platform Precision Autopilot Flight Results.

  16. Waterhammer Testing and Modeling of the Ares I Upper Stage Reaction Control System

    NASA Technical Reports Server (NTRS)

    Williams, J. Hunter; Holt, Kimberly A.

    2010-01-01

    NASA's Ares I rocket is the agency's first step in completing the goals of the Constellation Program, which plans to deliver a new generation of space explorers into low earth orbit for future missions to the International Space Station, the moon, and other destinations within the solar system. Ares I is a two-stage rocket topped by the Orion crew capsule and its service module. The launch vehicle's First Stage is a single, five-segment reusable solid rocket booster (RSRB), derived from the Space Shuttle Program's four segment RSRB. The vehicle's Upper Stage, being designed at Marshall Space Flight Center (MSFC), is propelled by a single J-2X Main Engine fueled with liquid oxygen and liquid hydrogen. During active Upper Stage flight of the Ares I launch vehicle, the Upper Stage Reaction Control System (US ReCS) will perform attitude control operations for the vehicle. The US ReCS will provide three-axis attitude control capability (roll, pitch, and yaw) for the Upper Stage while the J-2X is not firing and roll control capability while the engine is firing. Because of the requirements imposed upon the system, the design must accommodate rapid pulsing of multiple thrusters simultaneously to maintain attitude control. In support of these design activities and in preparation for Critical Design Review, analytical models of the US ReCS propellant feed system have been developed using the Thermal Hydraulic Library of MSC.EASY5 v.2008, herein referred to as EASY5. EASY5 is a commercially available fluid system modeling package with significant history of modeling space propulsion systems. In Fall 2009, a series of development tests were conducted at MSFC on a cold-flow test article for the US ReCS, herein referred to as System Development Test Article (SDTA). A subset of those tests performed were aimed at examining the effects of waterhammer on a flight-representative system and to ensure that those effects could be quantified with analytical models and incorporated into the design of the flight system. This paper presents an overview of the test article and the test approach, along with a discussion of the analytical modeling methodology. In addition, the results of that subset of development tests, along with analytical model pre-test predictions and post-test model correlations, will also be discussed in detail.

  17. Buckling Test Results and Preliminary Test and Analysis Correlation from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA02

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.; Thornburgh, Robert P

    2017-01-01

    Results from the testing of cylinder test article SBKF-P2-CYL-TA02 (referred to herein as TA02) are presented. TA02 is an 8-foot-diameter (96-inches), 78.0-inch-long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch-vehicle structures and was designed to exhibit global buckling when subjected to combined compression and bending loads. The testing was conducted at the Marshall Space Flight Center (MSFC), February 3-6, 2009, in support of the Shell Buckling Knockdown Factor Project (SBKF). The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF researchers.

  18. Background Oriented Schlieren (BOS) of a Supersonic Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Banks, Daniel W.; Schairer, Edward T.; Haering, Edward A.; Bean, Paul S.

    2016-01-01

    This article describes the development and use of Background Oriented Schlieren on a full-scale supersonic jet in flight. A series of flight tests was performed in October, 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date.

  19. Development of the Lens Antenna Deployment Demonstration (LADD) shuttle-attached flight experiment

    NASA Technical Reports Server (NTRS)

    Hill, H.; Johnston, D.; Frauenberger, H.

    1986-01-01

    The primary objective of the LADD Program is to develop a technology demonstration test article that can be used for both ground and flight tests to demonstrate the structural and mechanical feasibility and reliability of the single-axis roll-out space based radar (SBR) approach. As designed, the LADD will essentially be a generic strucutural experiment which incorporates all critical technology elements of the operational satellite and is applicable to a number of future antenna systems. However, to fully determine its design integrity for meeting the lens flatness and constant geometry requirements in a zero g environment under extreme thermal conditions, the LADD must be space flight tested. By accurately surveying the structure under varying conditions the membrane tolerance-holding capabilities of the structure will be demonstrated. The flight test will provide data to verify analytical tools used to predict thermal and structural behavior. Most important, the experiment will provide an initial indication of structural damping in a zero g vacuum environment. The recently completed Solar Array Flight Experiment (SAFE) showed orbital damping greater than that experienced during ground testing. From the experience and the information obtained from LADD it is hoped that designs can be confidently extrapolated to operational satellites with apertures in the 20 m by 60 m size range.

  20. Autonomous mission management for UAVs using soar intelligent agents

    NASA Astrophysics Data System (ADS)

    Gunetti, Paolo; Thompson, Haydn; Dodd, Tony

    2013-05-01

    State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.

  1. Orbiter integrated active thermal control subsystem test

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.

    1980-01-01

    Integrated subsystem level testing of the systems within the orbiter active thermal chamber capable of simulating ground, orbital, and entry temperature and pressure profiles. The test article was in a closed loop configuration that included flight type and functionally simulated protions of all ATCS components for collecting, transporting, and rejecting orbiter waste heat. Specially designed independently operating equipment simulated the transient thermal input from the cabin, payload, fuel cells, freon cold plates, hydraulic system, and space environment. Test team members using data, controls, and procedures available to a flight crew controlled the operation of the ATCS. The ATCS performance met or exceeded all thermal and operational requirements for planned and contingency mission support.

  2. Manned remote work station development article

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Flight article and associated design concepts are evaluated to meet fundamental requirements of a universal crew cabin to be used as a construction cherrypicker, a space crane turret, a railed work station, or a free flyer. Key technology developments are embodied into a simulation program. A schedule and simulation test plan matrix is given for the open cabin cherry picker.

  3. Challenges of CPAS Flight Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Morris, Aaron L.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown via a series of Drogue, Pilot, and Main parachutes. Because Orion is considerably larger and heavier than Apollo, many of the flight test techniques developed during the Apollo program must be modified. The Apollo program had a dedicated C-133 aircraft, which was modified to allow a simple airdrop of "boilerplate" flight test vehicles. However, the CPAS program must use either commercial or military assets with minimal modifications to airframes or procedures. Conceptual envelopes from 2-Degree Of Freedom trajectories are presented for several existing and novel architectures. Ideally, the technique would deliver a representative capsule shape to the desired altitude and dynamic pressure at test initiation. However, compromises must be made on the characteristics of trajectories or the fidelity of test articles to production hardware. Most of the tests to date have used traditional pallet and weight tub or missile-shaped test vehicles. New test vehicles are being designed to better incorporate Orion structural components and deploy parachutes in a more representative fashion. The first attempt to test a capsule-shaped vehicle failed due to unexpected events while setting up the test condition through a series of complex procedures. In order to avoid the loss of another expensive test article which will delay the program, simpler deployment methods are being examined and more positive control of the vehicle will be maintained. Existing challenges include interfacing with parent aircraft, separating test vehicles, achieving test conditions, and landing within limited test ranges. All these challenges must be met within cost and schedule limits.

  4. Antenna Technology Shuttle Experiment (ATSE)

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

    1987-01-01

    Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

  5. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  6. Space Shuttle Project

    NASA Image and Video Library

    1988-01-01

    Marshall Space Flight Center workers install Structural Test Article Number Three (STA-3) into a Center test facility. From December 1987 to April 1988, STA-3 (a test model of the Redesigned Solid Rocket Motor) underwent a series of six tests at the Marshall Center designed to demonstrate the structural strength of the Space Shuttle's Solid Rocket Booster, redesigned after the January 1986 Challenger accident.

  7. CM-2 Environmental / Modal Testing of Spacehab Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.; Farkas, Michael A.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that launches on Shuttle mission STS 107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the Shuttle.

  8. Development of 3D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.

  9. Coupled Facility-Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael A.

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at National Aeronautics and Space Administration/Goddard Space Flight Center an analysis is performed to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combined dynamics of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA/Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  10. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the pressurization system, including regulator blowdown and propellant ullage performance, measure system pressure drops for comparison to analysis of tubing and components, and validate system activation and re-activation procedures for the helium pressurant system. Secondary objectives included: validating system processes for loading, unloading, and purging, validating procedures and system response for multiple failure scenarios, including relief valve operation, and evaluating system performance for contingency scenarios. The test results of the cold flow development test program are essential in validating the performance and interaction of the Roll Control System and anchoring analysis tools and results to a Critical Design Review level of fidelity.

  11. Reverse Engineering Crosswind Limits - A New Flight Test Technique?

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.

    2013-01-01

    During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.

  12. Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing

    NASA Image and Video Library

    2018-03-08

    A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.

  13. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, themore » test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.« less

  14. KSC-07pd1499

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  15. KSC-07pd1498

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  16. KSC-07pd1497

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  17. KSC-07pd1501

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  18. KSC-07pd1496

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance employee prepares a test article that will be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  19. KSC-07pd1500

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance employees prepare test articles to be used in wind tunnel testing by NASA to collect data for analysis of the detached Flexible Insulation Blanket, or FIB, on Atlantis. A tear occurred in an area of the OMS pod on Atlantis during launch of mission STS-117 on June 8, 2007. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles will be flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Repair is under consideration following testing at KSC and Houston. Photo credit: NASA/Amanda Diller

  20. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the Aerocover configuration. Both the Aerocovers and the TPS were populated with high contrast targets so that photogrammetric solutions of the loaded surface could be created. These solutions both refined the aerodynamic shape for CFD modeling and provided a deformed shape to validate structural Finite Element Analysis (FEA) models. Extensive aerothermal testing has been performed on the TPS candidates. This testing has been conducted in several facilities across the country. The majority of the testing has been conducted in the Boeing Large Core Arc Tunnel (LCAT). HIAD is continuing to mature testing methodology in this facility and is developing new test sample fixtures and control methodologies to improve understanding and quality of the environments to which the samples are subjected. Additional testing has been and continues to be performed in the NASA LaRC 8ft High Temperature Tunnel, where samples up to 2ft by 2ft are being tested over representative underlying structures incorporating construction features such as sewn seams and through-thickness quilting. With the successful completion to the IRVE-3 flight demonstration, mission planning efforts are ramping up on the development of the HIAD Earth Atmospheric Reenty Test (HEART) which will demonstrate a relevant scale vehicle in relevant environments via a large-scale aeroshell (approximately 8.5m) entering at orbital velocity (approximately 7km/sec) with an entry mass on the order of 4MT. Also, the Build to Print (BTP) hardware built as a risk mitigation for the IRVE-3 project to have a "spare" ready to go in the event of a launch vehicle delivery failure is now available for an additional sub-orbital flight experiment. Mission planning is underway to define a mission that can utilize this existing hardware and help the HIAD project further mature this technology.

  1. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  3. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  4. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  5. Report on research and technology-FY 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    More than 65 technical reports, papers, and articles published by personnel and contractors at the Dryden Flight Research Center are listed. Activities performed for the Offices of Aeronautics and Space Technology, Space and Terrestrial Applications, Space Transportation Systems, and Space Tracking and Data Systems are summarized. Preliminary stability and control derivatives were determined for the shuttle orbiter at hypersonic speeds from the data obtained at reentry. The shuttle tile tests, spin research vehicle nose shapes flight investigations, envelope expansion flights for the Ames tilt rotor research aircraft, and the AD-1 oblique wing programs were completed as well as the KC-135 winglet program.

  6. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  7. Return to Flight Resource Reel 1 of 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A video presentation detailing the tests performed on the Space Shuttle Discovery in preparation for its return to flight is shown. The tests include: 1) Reinforced Carbon-Carbon (RCC) Impact Test Article; 2) RCC Foam Impact Testing; 3) Thermal Protection System (TPS) Ice Impact Testing featuring Justin Kerr, Project Engineer; 4) Wing Leading Edge Wireless Sensors featuring Karl Kiefer, President and CEO of Invocon, and Kevin Champaigne of Invocon; 5) TPS Repair Testing KC-135 Zero-G Environment featuring Soichi Noguchi, Mission Specialist; 6) TPS Extravehicular Activity Tool Demonstration; 7) TPS Repair Testing Vacuum Glove box; 8) TPS Repair Testing Human Thermal Vacuum Chamber; 9) TPS Reentry Testing Atmospheric Reentry Materials and Structures Evaluation Facility; 10) TPS Alternative Repair Concept; 11) Lora Bailey Lead Engineer for EVA Tools; 12) Reinforced Carbon-Carbon ATK Thiokol Plug Repair Animation; 13) 3-Percent Model Build-Up; and 14) Wind Tunnel Testing RCC Aging Research Ballistic Testing.

  8. Developing a Data Set and Processing Methodology for Fluid/Structure Interaction Code Validation

    DTIC Science & Technology

    2007-06-01

    50 29. 9-Probe Wake Survey Rake Configurations...structural stability and fatigue in test article components and, in general, in facility support structures and rotating machinery blading . Both T&E... blade analysis and simulations. To ensure the accuracy of the U of CO technology, validation using flight-test data and test data from a wind tunnel

  9. Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.; Cronkhite, J. D.

    1986-01-01

    Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.

  10. Development of Polarized UV Raman and Infrared Emission/Absorption Spectroscopy for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Farmer, Richard; Trinh, Huu; Dobson, Chris; Eskridge, Richard; Cramer, John; Hartfield, Roy; Turner, Jim (Technical Monitor)

    2001-01-01

    The objective of this project is to provide measurements of species concentrations and temperature for hot-fire test articles at Test Stand 115 at NASA Marshall Space Flight Center. Measurements can be useful for comparison to computational fluid dynamics simulations and help to evaluate combustion performance.

  11. [Causes of death among pilots: "acute myocardial infarction"--are the present examination methods for airworthiness sufficient?].

    PubMed

    Germerott, Tanja; Fieguth, Armin; Albrecht, Knut; Eidam, Joachim; Breitmeier, Dirk

    2009-01-01

    The European Union plans to harmonize the aviation requirements, in particular the flight crew licensing requirements. On 23 May 2007, the German Federal Ministry of Transport, Building and Urban Affairs published the Flight Crew Licensing Requirements, which are based on the Joint Aviation Requirements, Flight Crew Licensing 3, Amendment 5. These guidelines also list the examination methods to be used for testing the medical fitness of pilots. In this Amendment some examinations which were part of the routine tests before JAR-FCL3 became effective have been deleted, e.g. the exercise ECG. This article presents two cases from the autopsy material of the Institute of Legal Medicine in Hanover and discusses the problems associated with the new examination guidelines.

  12. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  13. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  14. Summary of LSST systems analysis and integration task for SPS flight test articles

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1981-02-01

    The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.

  15. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  16. Performance Testing of a Trace Contaminant Control Subassembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Curtis, R. E.; Alexandre, K. L.; Ruggiero, L. L.; Shtessel, N.

    1998-01-01

    As part of the International Space Station (ISS) Trace Contaminant Control Subassembly (TCCS) development, a performance test has been conducted to provide reference data for flight verification analyses. This test, which used the U.S. Habitation Module (U.S. Hab) TCCS as the test article, was designed to add to the existing database on TCCS performance. Included in this database are results obtained during ISS development testing; testing of functionally similar TCCS prototype units; and bench scale testing of activated charcoal, oxidation catalyst, and granular lithium hydroxide (LiOH). The present database has served as the basis for the development and validation of a computerized TCCS process simulation model. This model serves as the primary means for verifying the ISS TCCS performance. In order to mitigate risk associated with this verification approach, the U.S. Hab TCCS performance test provides an additional set of data which serve to anchor both the process model and previously-obtained development test data to flight hardware performance. The following discussion provides relevant background followed by a summary of the test hardware, objectives, requirements, and facilities. Facility and test article performance during the test is summarized, test results are presented, and the TCCS's performance relative to past test experience is discussed. Performance predictions made with the TCCS process model are compared with the U.S. Hab TCCS test results to demonstrate its validation.

  17. Hot-Fire Testing of a 1N AF-M315E Thruster

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  18. F-1 Gas Generator test

    NASA Image and Video Library

    2015-09-03

    THE GAS GENERATOR TO AN F-1 ENGINE, THE MOST POWERFUL ROCKET ENGINE EVER BUILT, IS TEST-FIRED AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, ON SEPT. 3. ALTHOUGH THE ENGINE WAS ORIGINALLY BUILT TO POWER THE SATURN V ROCKETS DURING AMERICA'S MISSIONS TO THE MOON, THIS TEST ARTICLE HAD NEW PARTS CREATED USING ADDITIVE MANUFACTURING, OR 3-D PRINTING, TO TEST THE VIABILITY OF THE TECHNOLOGY FOR BUILDING NEW ENGINE DESIGNS.

  19. Modeling and Analysis of Chill and Fill Processes for the EDU Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.

    2015-01-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.

  20. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  1. Underway Recovery Test 6 (URT-6) - Day 6 Activities

    NASA Image and Video Library

    2018-01-22

    During Underway Recovery Test 6, Kennedy Space Center's NASA Recovery Team spent a week aboard the USS Anchorage where they and the U.S. Navy tested procedures and ground support equipment to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean. The Orion test article sits inside the well deck of the USS Anchorage after a successful recovery test.

  2. Development and Results of a First Generation Least Expensive Approach to Fission: Module Tests and Results

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Godfroy, Tom; Pederson, Kevin; Sena, J. Tom; VanDyke, Melissa; Dickens, Ricky; Reid, Bob J.; Martin, Jim

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments and identifies future tests to be performed.

  3. Altitude Compensating Nozzle

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  4. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    NASA Astrophysics Data System (ADS)

    Augere, B.; Besson, B.; Fleury, D.; Goular, D.; Planchat, C.; Valla, M.

    2016-05-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms-1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed.

  5. Full-scale Transport Controlled Impact Demonstration Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Federal Aviation Administration (FAA) and NASA conducted a full-scale air-to-surface impact-survivable impact demonstration with a remotely piloted transport aircraft on 1 December 1984, at Edwards Air Force Base, California. The test article consisted of experiments, special equipment, and supporting systems, such as antimisting kerosene (AMK), crashworthiness structural/restraint, analytical modeling, cabin fire safety, flight data recorders, post-impact investigation, instrumentation/data acquisition systems, remotely piloted vehicle/flight control systems, range and flight safety provisions, etc. This report describes the aircraft, experiments, systems, activities, and events which lead up to the Controlled Impact Demonstration (CID). An overview of the final unmanned remote control flight and sequence of impact events are delineated. Preliminary post CID observations are presented.

  6. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  7. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.

  8. Underway Recovery Test 6 (URT-6) - Day 1 Activities

    NASA Image and Video Library

    2018-01-17

    A test article of Orion floats in 6-feet of water in the well deck of the USS Anchorage. The NASA Recovery Team from Kennedy Space Center is working with the U.S. Navy to improve recovery procedures and hardware ahead of Orion’s next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  9. SPRITE: A TPS Test Bed for Ground and Flight

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Peterson, Keith; Swanson, Gregory; Skokova, Kristina; Mangini, Nancy; Empey, Daniel M.; Gorbunov, Sergey; Venkatapathy, Ethiraj

    2012-01-01

    Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.

  10. KSC-2014-2361

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  11. KSC-2014-2359

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  12. KSC-2014-2358

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  13. KSC-2014-2362

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  14. KSC-2014-2360

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  15. Free-Flight Experiments in LISA Pathfinder

    NASA Technical Reports Server (NTRS)

    Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  16. Data Oscillation Resolution of Propellant Flowmeter Used in FASTRAC Engine Testing

    NASA Technical Reports Server (NTRS)

    Heflin, J.; Koelbl, M.; Martin, M. A.; Nesman, T.; Hicks, G. D.; Kennedy, Jim W. (Technical Monitor)

    2000-01-01

    The Stennis Space Centers' horizontal test facility, Marshall Space Flight Centers' propulsion test article and the X-34 flight vehicle are designed with V-cone flowmeters for measurement of both RP-1 and LOX flow-rates for Fastrac engine testing. Delta pressure transducer data from these flowmeters are used to calibrate the RP-1 and LOX mixture ratio in the Fastrac engine. Data from the V-Cone flowmeter delta pressure transducers have excessive oscillation. The delta pressure oscillations have caused flowrate data fluctuations that interfered with making the accurate readings necessary to calibrate the RP-1 and LOX mixture ratio required for Fastrac engine operation. The objective of this report is to document the flowmeter data oscillation problem and the method used to obtain more reliable flowmeter data.

  17. KSC-2011-5620

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the Delta turn basin at Cape Canaveral Air Force Station in Florida, United Space Alliance (USA) divers and boat crew monitor an Orion test article while waiting for its lift bags to inflate. The uprighting tests are part of USA's research and development program to help develop ground operations support equipment that could be used to reorient and recover an uncrewed Orion flight test capsule after splashdown. USA is a major subcontractor to Lockheed Martin for the Orion spacecraft. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft designed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. Orion's first uncrewed orbital flight test is slated for 2013. For more information, visit http://www.nasa.gov/exploration/systems/mpcv/. Photo credit: NASA/Frankie Martin

  18. KSC-2011-5619

    NASA Image and Video Library

    2011-07-14

    CAPE CANAVERAL, Fla. -- In the Delta turn basin at Cape Canaveral Air Force Station in Florida, United Space Alliance (USA) divers and boat crew tend an Orion test article while waiting for its lift bags to inflate. The uprighting tests are part of USA's research and development program to help develop ground operations support equipment that could be used to reorient and recover an uncrewed Orion flight test capsule after splashdown. USA is a major subcontractor to Lockheed Martin for the Orion spacecraft. The Orion Multi-Purpose Crew Vehicle is NASA's next-generation spacecraft designed for deep space missions to asteroids, moons and other interplanetary destinations throughout the solar system. Orion's first uncrewed orbital flight test is slated for 2013. For more information, visit http://www.nasa.gov/exploration/systems/mpcv/. Photo credit: NASA/Frankie Martin

  19. Flight Testing of the Gulfstream Quiet Spike(TradeMark) on a NASA F-15B

    NASA Technical Reports Server (NTRS)

    Smolka, James W.; Cowert, Robert A.; Molzahn, Leslie M.

    2007-01-01

    Gulfstream Aerospace has long been interested in the development of an economically viable supersonic business jet (SBJ). A design requirement for such an aircraft is the ability for unrestricted supersonic flight over land. Although independent studies continue to substantiate that a market for a SBJ exists, regulatory and public acceptance challenges still remain for supersonic operation over land. The largest technical barrier to achieving this goal is sonic boom attenuation. Gulfstream's attention has been focused on fundamental research into sonic boom suppression for several years. This research was conducted in partnership with the NASA Aeronautics Research Mission Directorate (ARMD) supersonic airframe cruise efficiency technical challenge. The Quiet Spike, a multi-stage telescopic nose boom and a Gulfstream-patented design (references 1 and 2), was developed to address the sonic boom attenuation challenge and validate the technical feasibility of a morphing fuselage. The Quiet Spike Flight Test Program represents a major step into supersonic technology development for sonic boom suppression. The Gulfstream Aerospace Quiet Spike was designed to reduce the sonic boom signature of the forward fuselage for an aircraft flying at supersonic speeds. In 2004, the Quiet Spike Flight Test Program was conceived by Gulfstream and NASA to demonstrate the feasibility of sonic boom mitigation and centered on the structural and mechanical viability of the translating test article design. Research testing of the Quiet Spike consisted of numerous ground and flight operations. Each step in the process had unique objectives, and involved numerous test team members from the NASA Dryden Flight Research Center (DFRC) and Gulfstream Aerospace. Flight testing of the Quiet Spike was conducted at the NASA Dryden Flight Research Center on an F-15B aircraft from August, 2006, to February, 2007. During this period, the Quiet Spike was flown at supersonic speeds up to Mach 1.8 at the maximum design dynamic pressure of 685 pounds per square foot. Extension and retraction tests were conducted at speeds up to Mach 1.4. The design of the Quiet Spike to shape the forward shock wave environment of the aircraft was confirmed during near-field shock wave probing at Mach 1.4. Thirty-two flights were performed without incident and all project objectives were achieved. The success of the Quiet Spike Flight Test Program represents an important step towards developing commercial aircraft capable of supersonic flight over land within the continental United States and in international airspace.

  20. An Experiment to Evaluate Transfer of Upset-Recovery Training Conducted Using Two Different Flight Simulation Devices

    DTIC Science & Technology

    2009-09-01

    air transport operations, causing almost 25% of all crashes and nearly 40% of all fatalities.1 During the years 1991 - 2000, statistics for general...several reports result from research at the Calspan In-Flight Upset-Recovery Training Program in Roswell , Nm.5 a second set of articles focuses on...resulted in air transport upsets leading to uncontrolled crashes . gawron used Calspan’s Learjet to test five groups of airline pilots with varying

  1. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  2. Space Shuttle Projects

    NASA Image and Video Library

    1991-07-01

    This photograph shows the Solid Propellant Test Article (SPTA) test stand with the Modified Nasa Motor (M-NASA) test article at the Marshall Space Flight Center (MSFC). The SPTA test stand, 12-feet wide by 12-feet long by 24-feet high, was built in 1989 to provide comparative performance data on nozzle and case insulation material and to verify thermostructural analysis models. A modified NASA 48-inch solid motor (M-NASA motor) with a 12-foot blast tube and 10-inch throat makes up the SPTA. The M-NASA motor is being used to evaluate solid rocket motor internal non-asbestos insulation materials, nozzle designs, materials, and new inspection techniques. New internal motor case instrumentation techniques are also being evaluated.

  3. KSC-07pd1494

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Another view of the area of orbiter Endeavour's orbital maneuvering system, or OMS, pod where the tear occurred on Atlantis during launch of mission STS-117 on June 8, 2007. Repair is under consideration following testing at KSC and Houston. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles were flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd1495

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Another view of the area of orbiter Endeavour's orbital maneuvering system, or OMS, pod where the tear occurred on Atlantis during launch of mission STS-117 on June 8, 2007. Repair is under consideration following testing at KSC and Houston. The test articles each feature three tiles (Low Temperature Reusable Surface Insulation, or LRSI) affixed next to two FIB blankets, simulating the thermal protection system set-up on Atlantis' OMS pod in the vicinity of the in-flight anomaly. These test articles were flown to Texas the morning of June 14. The TPS team at KSC has also provided a total of 22 FIB samples for other testing and analysis. Photo credit: NASA/Kim Shiflett

  5. SLS Engine Section Test Article Arrives at Marshall on NASA Barge Pegasus

    NASA Image and Video Library

    2017-05-16

    The NASA barge Pegasus made it’s first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article will be moved to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  6. Underway Recovery Test 6 (URT-6) - Day 5 Activities

    NASA Image and Video Library

    2018-01-21

    Navy Diver 2nd Class Laethem and his fellow divers get briefed before heading out to sea to recover the Orion test article during Underway Recovery Test 6 off the coast of San Diego. Kennedy Space Center’s NASA Recovery Team works with the U.S. Navy to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  7. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  8. Thermal Analysis of Small Re-Entry Probe

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh K.; Chen, Y. K.

    2012-01-01

    The Small Probe Reentry Investigation for TPS Engineering (SPRITE) concept was developed at NASA Ames Research Center to facilitate arc-jet testing of a fully instrumented prototype probe at flight scale. Besides demonstrating the feasibility of testing a flight-scale model and the capability of an on-board data acquisition system, another objective for this project was to investigate the capability of simulation tools to predict thermal environments of the probe/test article and its interior. This paper focuses on finite-element thermal analyses of the SPRITE probe during the arcjet tests. Several iterations were performed during the early design phase to provide critical design parameters and guidelines for testing. The thermal effects of ablation and pyrolysis were incorporated into the final higher-fidelity modeling approach by coupling the finite-element analyses with a two-dimensional thermal protection materials response code. Model predictions show good agreement with thermocouple data obtained during the arcjet test.

  9. NASA's Space Launch Transitions: From Design to Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  10. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  11. Determination of Offgassed Products

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician at Marshall Space Flight Center's Materials Combustion Research Facility begins the Determination of Offgassed Products Test to determine the identity and quantity of volatile offgassed products from materials and assembled articles. Materials are measured, weighed, and loaded into a clean toxicity chamber (pictured). The chamber is purged with high-purity air and loaded into an oven where it will be held at 120 degrees Fahrenheit (48.9 degrees Celsius) for 72 hours. At the end of the 72-hour period, the chamber is removed and allowed to cool to room temperature. Gas samples are taken from the chamber and analyzed using gas chromatography and mass spectrometry. From this, the quantity of the material that may be used safely in habitable areas of spacecraft is determined. This test also determines whether a flight hardware item may be flown safely in a crew compartment. Everything going into space with the astronauts is tested prior to flight to ensure the health and safety of the crew members.

  12. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  13. TESTING OF A 20-METER SOLAR SAIL SYSTEM

    NASA Technical Reports Server (NTRS)

    Gaspar, J. L.; Behun, V.; Mann, T.; Murphy D.; Macy, B.

    2005-01-01

    This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program1-3. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance4. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods were evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.

  14. TESTING OF A 20-METER SOLAR SAIL SYSTEM

    NASA Technical Reports Server (NTRS)

    Gaspar, Jim L.; Behun, Vaughan; Mann, Troy; Murphy, Dave; Macy, Brian

    2005-01-01

    This paper describes the structural dynamic tests conducted in-vacuum on the Scalable Square Solar Sail (S(sup 4)) System 20-meter test article developed by ATK Space Systems as part of a ground demonstrator system development program funded by NASA's In-Space Propulsion program. These tests were conducted for the purpose of validating analytical models that would be required by a flight test program to predict in space performance. Specific tests included modal vibration tests on the solar sail system in a 1 Torr vacuum environment using various excitation locations and techniques including magnetic excitation at the sail quadrant corners, piezoelectric stack actuation at the mast roots, spreader bar excitation at the mast tips, and bi-morph piezoelectric patch actuation on the sail cords. The excitation methods are evaluated for their suitability to in-vacuum ground testing and their traceability to the development of on-orbit flight test techniques. The solar sail masts were also tested in ambient atmospheric conditions and these results are also discussed.

  15. Performance of laminar-flow leading-edge test articles in cloud encounters

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.

    1987-01-01

    An extensive data bank of concurrent measurements of laminar flow (LF), particle concentration, and aircraft charging state was gathered for the first time. From this data bank, 13 flights in the simulated airline service (SAS) portion were analyzed to date. A total of 6.86 hours of data at one-second resolution were analyzed. An extensive statistical analysis, for both leading-edge test articles, shows that there is a significant effect of cloud and haze particles on the extent of laminar flow obtained. Approximately 93 percent of data points simulating LFC flight were obtained in clear air conditions; approximately 7 percent were obtained in cloud and haze. These percentages are consistent with earlier USAF and NASA estimates and results. The Hall laminar flow loss criteria was verified qualitatively. Larger particles and higher particle concentrations have a more marked effect on LF than do small particles. A particle spectrometer of a charging patch are both acceptable as diagnostic indicators of the presence of particles detrimental to laminar flow.

  16. Underway Recovery Test 6 (URT-6) - Day 3 Activities

    NASA Image and Video Library

    2018-01-19

    As part of Underway Recovery Test 6, the Orion test article is intentionally subjected to an increased sea state as the NASA Recovery Team works hard to keep control of the spacecraft. The testing with Kennedy Space Center's NASA Recovery Team and the U.S. Navy will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  17. Comparison of nozzle and afterbody surface pressures from wind tunnel and flight test of the YF-17 aircraft

    NASA Technical Reports Server (NTRS)

    Lucas, E. J.; Fanning, A. E.; Steers, L. I.

    1978-01-01

    Results are reported from the initial phase of an effort to provide an adequate technical capability to accurately predict the full scale, flight vehicle, nozzle-afterbody performance of future aircraft based on partial scale, wind tunnel testing. The primary emphasis of this initial effort is to assess the current capability and identify the cause of limitations on this capability. A direct comparison of surface pressure data is made between the results from an 0.1-scale model wind tunnel investigation and a full-scale flight test program to evaluate the current subscale testing techniques. These data were acquired at Mach numbers 0.6, 0.8, 0.9, 1.2, and 1.5 on four nozzle configurations at various vehicle pitch attitudes. Support system interference increments were also documented during the wind tunnel investigation. In general, the results presented indicate a good agreement in trend and level of the surface pressures when corrective increments are applied for known effects and surface differences between the two articles under investigation.

  18. Nozzle Side Load Testing and Analysis at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2009-01-01

    Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed

  19. Build-Up Approach to Updating the Mock Quiet Spike Beam Model

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Pak, Chan-gi

    2007-01-01

    When a new aircraft is designed or a modification is done to an existing aircraft, the aeroelastic properties of the aircraft should be examined to ensure the aircraft is flight worthy. Evaluating the aeroelastic properties of a new or modified aircraft can include performing a variety of analyses, such as modal and flutter analyses. In order to produce accurate results from these analyses, it is imperative to work with finite element models (FEM) that have been validated by or correlated to ground vibration test (GVT) data, Updating an analytical model using measured data is a challenge in the area of structural dynamics. The analytical model update process encompasses a series of optimizations that match analytical frequencies and mode shapes to the measured modal characteristics of structure. In the past, the method used to update a model to test data was "trial and error." This is an inefficient method - running a modal analysis, comparing the analytical results to the GVT data, manually modifying one or more structural parameters (mass, CG, inertia, area, etc.), rerunning the analysis, and comparing the new analytical modal characteristics to the GVT modal data. If the match is close enough (close enough defined by analyst's updating requirements), then the updating process is completed. If the match does not meet updating-requirements, then the parameters are changed again and the process is repeated. Clearly, this manual optimization process is highly inefficient for large FEM's and/or a large number of structural parameters. NASA Dryden Flight Research Center (DFRC) has developed, in-house, a Mode Matching Code that automates the above-mentioned optimization process, DFRC's in-house Mode Matching Code reads mode shapes and frequencies acquired from GVT to create the target model. It also reads the current analytical model, as we11 as the design variables and their upper and lower limits. It performs a modal analysis on this model and modifies it to create an updated model that has similar mode shapes and frequencies as those of the target model. The Mode Matching Code output frequencies and modal assurance criteria (MAC) values that allow for the quantified comparison of the updated model versus the target model. A recent application of this code is the F453 supersonic flight testing platform, NASA DFRC possesses a modified F-15B that is used as a test bed aircraft for supersonic flight experiments. Traditionally, the finite element model of the test article is generated. A GVT is done on the test article ta validate and update its FEM. This FEM is then mated to the F-15B model, which was correlated to GVT data in fall of 2004, A GVT is conducted with the test article mated to the aircraft, and this mated F-15B/ test article FEM is correlated to this final GVT.

  20. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  1. A flight test of laminar flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Wright, A. S., Jr.; Wagner, R. D.

    1983-01-01

    NASA's program for development of a laminar flow technology base for application to commercial transports has made significant progress since its inception in 1976. Current efforts are focused on development of practical reliable systems for the leading-edge region where the most difficult problems in applying laminar flow exist. Practical solutions to these problems will remove many concerns about the ultimate practicality of laminar flow. To address these issues, two contractors performed studies, conducted development tests, and designed and fabricated fully functional leading-edge test articles for installation on the NASA JetStar aircraft. Systems evaluation and performance testing will be conducted to thoroughly evaluate all system capabilities and characteristics. A simulated airline service flight test program will be performed to obtain the operational sensitivity, maintenance, and reliability data needed to establish that practical solutions exist for the difficult leading-edge area of a future commercial transport employing laminar flow control.

  2. Orion Boiler Plate Airdrop Test System

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Evans, Carol T.

    2013-01-01

    On the 29th of February 2012 the Orion Capsule Parachute Assembly System (CPAS) project attempted to perform an airdrop test of a boilerplate test article for the second time. The first attempt (Cluster Development Test 2, July 2008) to deliver a similar boilerplate from a C-17 using the Low Velocity Air Drop (LVAD) technique resulted in the programmer parachute failing to properly inflate, the test article failing to achieve the desired test initiation conditions, and the test article a total loss. This paper will pick up where the CDT-2 failure investigation left off, describing the test technique that was adopted, and outline the modeling that was performed to gain confidence that the second attempt would be successful. The second boiler plate test (Cluster Development Test 3-3) was indeed a complete success and has subsequently been repeated several times, allowing the CPAS project to proceed with the full scale system level development testing required to integrate the hardware to the first Entry Flight Test vehicle as well as go into the Critical Design Review with minimum risk and a mature design.

  3. Evaluation of Hardware and Procedures for Astronaut Assembly and Repair of Large Precision Reflectors

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Heard, Walter L., Jr.; Watson, Judith J.; Collins, Timothy J.

    2000-01-01

    A detailed procedure is presented that enables astronauts in extravehicular activity (EVA) to efficiently assemble and repair large (i.e., greater than 10m-diameter) segmented reflectors, supported by a truss, for space-based optical or radio-frequency science instruments. The procedure, estimated timelines, and reflector hardware performance are verified in simulated 0-g (neutral buoyancy) assembly tests of a 14m-diameter, offset-focus, reflector test article. The test article includes a near-flight-quality, 315-member, doubly curved support truss and 7 mockup reflector panels (roughly 2m in diameter) representing a portion of the 37 total panels needed to fully populate the reflector. Data from the tests indicate that a flight version of the design (including all reflector panels) could be assembled in less than 5 hours - less than the 6 hours normally permitted for a single EVA. This assembly rate essentially matches pre-test predictions that were based on a vast amount of historical data on EVA assembly of structures produced by NASA Langley Research Center. Furthermore, procedures and a tool for the removal and replacement of a damaged reflector panel were evaluated, and it was shown that EVA repair of this type of reflector is feasible with the use of appropriate EVA crew aids.

  4. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  5. Acoustic Analysis and Design of the E-STA MSA Simulator

    NASA Technical Reports Server (NTRS)

    Bittinger, Samantha A.

    2016-01-01

    The Orion European Service Module Structural Test Article (E-STA) Acoustic Test was completed in May 2016 to verify that the European Service Module (ESM) can withstand qualification acoustic environments. The test article required an aft closeout to simulate the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA) cavity, however, the flight MSA design was too cost-prohibitive to build. NASA Glenn Research Center (GRC) had 6 months to design an MSA Simulator that could recreate the qualification prediction MSA cavity sound pressure level to within a reasonable tolerance. This paper summarizes the design and analysis process to arrive at a design for the MSA Simulator, and then compares its performance to the final prediction models created prior to test.

  6. Gas Emission Measurements from the RD 180 Rocket Engine

    NASA Technical Reports Server (NTRS)

    Ross, H. R.

    2001-01-01

    The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.

  7. Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Lake, Mark S.

    1995-01-01

    This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.

  8. An Overview of NASA Efforts on Zero Boiloff Storage of Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Hastings, Leon J.; Plachta, D. W.; Salerno, L.; Kittel, P.; Haynes, Davy (Technical Monitor)

    2001-01-01

    Future mission planning within NASA has increasingly motivated consideration of cryogenic propellant storage durations on the order of years as opposed to a few weeks or months. Furthermore, the advancement of cryocooler and passive insulation technologies in recent years has substantially improved the prospects for zero boiloff storage of cryogenics. Accordingly, a cooperative effort by NASA's Ames Research Center (ARC), Glenn Research Center (GRC), and Marshall Space Flight Center (MSFC) has been implemented to develop and demonstrate "zero boiloff" concepts for in-space storage of cryogenic propellants, particularly liquid hydrogen and oxygen. ARC is leading the development of flight-type cryocoolers, GRC the subsystem development and small scale testing, and MSFC the large scale and integrated system level testing. Thermal and fluid modeling involves a combined effort by the three Centers. Recent accomplishments include: 1) development of "zero boiloff" analytical modeling techniques for sizing the storage tankage, passive insulation, cryocooler, power source mass, and radiators; 2) an early subscale demonstration with liquid hydrogen 3) procurement of a flight-type 10 watt, 95 K pulse tube cryocooler for liquid oxygen storage and 4) assembly of a large-scale test article for an early demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Near term plans include the large-scale integrated system demonstration testing this summer, subsystem testing of the flight-type pulse-tube cryocooler with liquid nitrogen (oxygen simulant), and continued development of a flight-type liquid hydrogen pulse tube cryocooler.

  9. Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Manalo, Russel; Tessler, Alexander

    2016-01-01

    A study was undertaken to investigate the measurement of wing deformation and internal loads using measured strain data. Future aerospace vehicle research depends on the ability to accurately measure the deformation and internal loads during ground testing and in flight. The approach uses the inverse Finite Element Method (iFEM). The iFEM is a robust, computationally efficient method that is well suited for real-time measurement of real-time structural deformation and loads. The method has been validated in previous work, but has yet to be applied to a large-scale test article. This work is in preparation for an upcoming loads test of a half-span test wing in the Flight Loads Laboratory at the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California). The method has been implemented into an efficient MATLAB® (The MathWorks, Inc., Natick, Massachusetts) code for testing different sensor configurations. This report discusses formulation and implementation along with the preliminary results from a representative aerospace structure. The end goal is to investigate the modeling and sensor placement approach so that the best practices can be applied to future aerospace projects.

  10. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  11. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  12. Results of a First Generation Propellant Energy Source Module Testing: Non-Nuclear Testing of Fission System

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob

    1999-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal- hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made.

  13. Results of a first generation least expensive approach to fission module tests: Non-nuclear testing of a fission system

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Godfroy, Tom; Houts, Mike; Dickens, Ricky; Dobson, Chris; Pederson, Kevin; Reid, Bob; Sena, J. Tom

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  14. Dynamic test results for the CASES ground experiment

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Patterson, Alan F.; Jones, Victoria L.

    1993-01-01

    The Controls, Astrophysics, and Structures Experiment in Space (CASES) Ground Test Facility (GTF) has been developed at Marshall Space Flight Center (MSFC) to provide a facility for the investigation of Controls/Structures Interaction (CSI) phenomena, to support ground testing of a potential shuttle-based CASES flight experiment, and to perform limited boom deployment and retraction dynamics studies. The primary objectives of the ground experiment are to investigate CSI on a test article representative of a Large Space Structure (LSS); provide a platform for Guest Investigators (GI's) to conduct CSI studies; to test and evaluate LSS control methodologies, system identification (ID) techniques, failure mode analysis; and to compare ground test predictions and flight results. The proposed CASES flight experiment consists of a 32 meter deployable/retractable boom at the end of which is an occulting plate. The control objective of the experiment is to maintain alignment of the tip plate (occulter) with a detector located at the base of the boom in the orbiter bay. The tip plate is pointed towards a star, the sun, or the galactic center to collect high-energy X-rays emitted by these sources. The tip plate, boom, and detector comprise a Fourier telescope. The occulting holes in the tip plate are approximately one millimeter in diameter making the alignment requirements quite stringent. Control authority is provided by bidirectional linear thrusters located at the boom tip and Angular Momentum Exchange Devices (AMED's) located at mid-boom and at the tip. The experiment embodies a number of CSI control problems including vibration suppression, pointing a long flexible structure, and disturbance rejection. The CASES GTF is representative of the proposed flight experiment with identical control objectives.

  15. Large Liquid Rocket Testing: Strategies and Challenges

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.

  16. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    NASA Technical Reports Server (NTRS)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  17. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  18. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1987-07-01

    A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at the Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1987-07-01

    A forward segment is being lowered into the Transient Pressure Test Article (TPTA) test stand at thw Marshall Space Flight Center (MSFC) east test area. The TPTA test stand, 14-feet wide, 27-feet long, and 33-feet high, was built in 1987 to provide data to verify the sealing capability of the redesign solid rocket motor (SRM) field and nozzle joints. The test facility applies pressure, temperature, and external loads to a short stack of solid rocket motor hardware. The simulated SRM ignition pressure and temperature transients are achieved by firing a small amount of specially configured solid propellant. The pressure transient is synchronized with external programmable dynamic loads that simulate lift off loads at the external tank attach points. Approximately one million pounds of dead weight on top of the test article simulates the weight of the other Shuttle elements.

  1. Extraction-Separation Performance and Dynamic Modeling of Orion Test Vehicles with Adams Simulation: 3rd Edition

    NASA Technical Reports Server (NTRS)

    Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith

    2017-01-01

    NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.

  2. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  3. Pressurization System Modeling for a Generic Bimese Two- Stage-to-Orbit Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Mazurkivich, Pete; Chandler, Frank; Nguyen, Han

    2005-01-01

    A pressurization system model was developed for a generic bimese Two-Stage-to-orbit Reusable Launch Vehicle using a cross-feed system and operating with densified propellants. The model was based on the pressurization system model for a crossfeed subscale water test article and was validated with test data obtained from the test article. The model consists of the liquid oxygen and liquid hydrogen pressurization models, each made up of two submodels, Booster and Orbiter tank pressurization models. The tanks are controlled within a 0.2-psi band and pressurized on the ground with ambient helium and autogenously in flight with gaseous oxygen and gaseous hydrogen. A 15-psi pressure difference is maintained between the Booster and Orbiter tanks to ensure crossfeed check valve closure before Booster separation. The analysis uses an ascent trajectory generated for a generic bimese vehicle and a tank configuration based on the Space Shuttle External Tank. It determines the flow rates required to pressurize the tanks on the ground and in flight, and demonstrates the model's capability to analyze the pressurization system performance of a full-scale bimese vehicle with densified propellants.

  4. Results of 30 kWt Safe Affordable Fission Engine (SAFE-30) primary heat transport testing

    NASA Astrophysics Data System (ADS)

    Pedersen, Kevin; van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvil, Pat; Reid, Bob

    2001-02-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Safe Affordable Fission Engine-30 kilowatt (SAFE30) test article are being performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .

  5. Determining Damping Trends from a Range of Cable Harness Assemblies on a Launch Vehicle Panel from Test Measurements

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; Davis, R. Ben; LaVerde, Bruce; Jones, Douglas

    2012-01-01

    The team of authors at Marshall Space Flight Center (MSFC) has been investigating estimating techniques for the vibration response of launch vehicle panels excited by acoustics and/or aero-fluctuating pressures. Validation of the approaches used to estimate these environments based on ground tests of flight like hardware is of major importance to new vehicle programs. The team at MSFC has recently expanded upon the first series of ground test cases completed in December 2010. The follow on tests recently completed are intended to illustrate differences in damping that might be expected when cable harnesses are added to the configurations under test. This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that employs a finite element model (FEM) of the panel in conjunction with advanced optimization techniques. This paper will report on the \\damping trend differences. observed from response measurements for several different configurations of cable harnesses. The data should assist vibroacoustics engineers to make more informed damping assumptions when calculating vibration response estimates when using model based analysis approach. Achieving conservative estimates that have more flight like accuracy is desired. The paper may also assist analysts in determining how ground test data may relate to expected flight response levels. Empirical response estimates may also need to be adjusted if the measured response used as an input to the study came from a test article without flight like cable harnesses.

  6. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  7. Manned remote work station development article. Volume 2: Simulation requirements. Appendix A: Open cherry picker development test articles specification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A manned remote work station (MRWS) mission scenario, broken down into the three time phases was selected as the basis for analysis of the MRWS flight article requirements and concepts. The mission roles for the three time phases, supporting tradeoff and evaluation studies, was used to identify key issues requiring simulation. The MRWS is discussed in terms of its capability to perform such operations as support of Spacelab experiments, servicing and repair of satellites, and construction. Future considerations for the use of the MRWS are also given.

  8. Power Reactant Storage Assembly (PRSA) (Space Shuttle). PRSA hydrogen and oxygen DVT tank refurbishment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.

  9. Aerospike Engine Post-Test Diagnostic System Delivered to Rocketdyne

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field, in cooperation with Rocketdyne, has designed, developed, and implemented an automated Post-Test Diagnostic System (PTDS) for the X-33 linear aerospike engine. The PTDS was developed to reduce analysis time and to increase the accuracy and repeatability of rocket engine ground test fire and flight data analysis. This diagnostic system provides a fast, consistent, first-pass data analysis, thereby aiding engineers who are responsible for detecting and diagnosing engine anomalies from sensor data. It uses analytical methods modeled after the analysis strategies used by engineers. Glenn delivered the first version of PTDS in September of 1998 to support testing of the engine s power pack assembly. The system was used to analyze all 17 power pack tests and assisted Rocketdyne engineers in troubleshooting both data acquisition and test article anomalies. The engine version of PTDS, which was delivered in June of 1999, will support all single-engine, dual-engine, and flight firings of the aerospike engine.

  10. KSC-2013-2360

    NASA Image and Video Library

    2013-05-15

    EDWARDS, Calif. – ED13-0142-10: The flatbed truck and trailer that transported Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article pauses on the aircraft ramp at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif., upon arrival at the center. Following removal of the protective plastic wrap and reinstallation of its wings and tail structure, the Dream Chaser will begin ground tests in the next few weeks leading to approach and landing flight tests this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida

  11. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    NASA Technical Reports Server (NTRS)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  12. Space Shuttle AFRSI OMS pod environment test using model 81-0 test fixture in the Ames Research Center 9x7-foot supersonic wind tunnel (OS-314A/B/C)

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1984-01-01

    A test was conducted in the NASA/Ames Research Center 9x7-foot Supersonic Wind Tunnel to help resolve an anomaly that developed during the STS-6 orbiter flight wherein sections of the Advanced Flexible Reusable Surface Insulation (AFRSI) covering the OMS pods suffered some damage. A one-third scale two-dimensional shell structure model of an OMS pod cross-section was employed to support the test articles. These consisted of 15 AFRSI blanket panels form-fitted over the shell structures for exposure to simulated flight conditions. Of six baseline blankets, two were treated with special surface coatings. Two other panels were configured with AFRSI sections removed from the OV099 orbiter vehicle after the STS-6 flight. Seven additional specimens incorporated alternative designs and repairs. Following a series of surface pressure calibration runs, the specimens were exposed to simulated ascent and entry dynamic pressure profiles. Entry conditions included the use of a vortex generator to evaluate the effect of shed vortices on the AFRSI located in the area of concern.

  13. NASA's Space Launch System Transitions From Design To Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block 1, SLS will a minimum of 70 metric tons (t) (154,324 pounds) of payload to low Earth orbit (LEO). It will evolve to a 130 t (286,601 pound) payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test-fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility in New Orleans, Louisiana. Renovations to the B-2 test stand for stage green run testing were completed at NASA's Stennis Space Center (SSC), near Bay St. Louis, Mississippi. Core stage test stands are reaching completion at NASA's Marshall Space Flight Center in Huntsville, Alabama. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered to SSC. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1988-03-21

    The Marshall Space Flight Center (MSFC) successfully test fired the third in a series of Transient Pressure Test Articles (TPTA) in its east test area. The test article was a short-stack solid rocket motor 52-feet long and 12-feet in diameter. The TPTA tests were designed to evaluate the effects of temperature, pressure and external loads encountered by the SRM, primarily during ignition transients. Instrumentation on the motor recorded approximately 1,000 charnels of data to verify the structural performance, thermal response, sealing capability of the redesign field, and case-to-nozzle joints. The TPTA test stand, 14-feet wide by 26-feet long by 33-feet high, was built in 1987. The TPTA series was a joint effort among Morton Thiokol, Inc., United Space Boosters, Inc., Wyle Laboratories, and MSFC. Wyle Laboratories conducted the tests for the MSFC, which manages the redesigned SRM program for NASA.

  15. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  16. Buckling Test Results from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA01. [Test Dates: 19-21 November 2008

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.

    2015-01-01

    Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.

  17. Robust energy-absorbing compensators for the ACTEX II test article

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.; Nye, Ted

    1995-05-01

    The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.

  18. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker monitors the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  19. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers monitor the progress as a crane lowers the Orion heat shield from Exploration Flight Test-1 onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  20. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane is attached to the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  1. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  2. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, workers help prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  3. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a worker helps prepare the Orion heat shield from Exploration Flight Test-1 for unloading off its transporter. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  4. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  5. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on a transporter and ready for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  6. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being loaded onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  7. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, a crane lowers the Orion heat shield from Exploration Flight Test-1 onto a transporter for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  8. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    The Orion heat shield from Exploration Flight Test-1, secured on a transporter, departs the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  9. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    Inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is being prepared for its move to the Vehicle Assembly Building (VAB). The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  10. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  11. NASA's Space Launch System: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  12. NASA's SPACE LAUNCH SYSTEM: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.

  13. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  14. Robotic Lunar Landers For Science And Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  15. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  16. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  17. SLS Engine Section Test Article Loaded on Barge Pegasus at NASA's Michoud Assembly Facility

    NASA Image and Video Library

    2017-04-27

    A NASA move team loaded the engine section structural qualification test article for the Space Launch System into the barge Pegasus docked in the harbor at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from Building 103, Michoud’s 43-acre rocket factory, to the barge where it was loaded for a river trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The barge Pegasus will travel 1,240 miles by river to Marshall and endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  18. Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh

    2007-01-01

    Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The time between manufacture and burst was 28 and 22 years. Visual inspection, shearography, heat soak thermography and borescope inspection were performed on vessel S/N 011 and all but shearography was performed on S/N 014 before they were tested and details of this work can be found in a companion paper titled, "Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments." The vessels were instrumented so that measurements could be made to aid in the understanding of vessel response. Measurements made on the test articles included girth, boss displacement, internal volume, multiple point strain, full field strain, eddy current, acoustic emission (AE) pressure and temperature. The test article before and during burst is shown with the pattern used for digital image correlation full field strain measurement blurring as the vessel fails.

  19. Phase 1 Space Fission Propulsion System Testing and Development Progress

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)

    2001-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.

  20. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1977-12-01

    The solid rocket booster (SRB) structural test article is being installed in the Solid Rocket Booster Test Facility for the structural and load verification test at the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  2. KSC-2013-2357

    NASA Image and Video Library

    2013-05-15

    EDWARDS, Calif. – ED13-0142-01: With its wings and tail structure removed and shrouded in plastic wrap for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its approach-and-landing flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida

  3. KSC-2013-2358

    NASA Image and Video Library

    2013-05-15

    EDWARDS, Calif. – ED13-0142-03: Shrouded in plastic wrap with its wings and tail structure removed for ground transport, Sierra Nevada Corporation, or SNC, Space Systems' Dream Chaser engineering test article is hauled across the bed of Rogers Dry Lake in front of the control tower at Edwards Air Force Base, Calif., to NASA's Dryden Flight Research Center. The Dream Chaser will begin its flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida

  4. Testing the Shuttle heat-protection armor

    NASA Technical Reports Server (NTRS)

    Strouhal, G.; Tillian, D. J.

    1976-01-01

    The article deals with the thermal protection system (TPS) designed to keep Space Shuttle structures at 350 F ratings over a wide range of temperatures encountered in orbit, but also during prelaunch, launch, deorbit and re-entry, landing and turnaround. The structure, function, fabrication, and bonding of various types of reusable surface insulation and composite materials are described. Test programs are developed for insulation, seals, and adhesion bonds; leak tests and acoustic fatigue tests are mentioned. Test facilities include arc jets, radiant heaters, furnaces, and heated tunnels. The certification tests to demonstrate TPS reusability, structural integrity, thermal performance, and endurance will include full-scale assembly tests and initial orbital flight tests.

  5. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  6. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  7. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1964-11-01

    This image shows the Saturn V S-IC-T stage (S-IC static test article) fuel tank being attached to the thrust structure in the vehicle assembly building at the Marshall Space Flight Center (MSFC). The S-IC stage utilized five F-1 engines that used liquid oxygen and kerosene as propellant and provided a combined thrust of 7,500,000 pounds.

  9. Boeing B-29 Superfortress at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1947-05-21

    The NACA’s Lewis Flight Propulsion Laboratory used a Boeing B-29 Superfortress as a testbed for ramjet investigations in the late 1940s. NACA Lewis conducted a wide variety of studies on ramjets to determine basic operational data necessary to design missiles. This information included the relationship between combustion chamber and inlet pressure and temperature, velocity of the fuel-air ratio to the ignition characteristics, and combustion efficiency. Although wind tunnel and test stand studies were important first steps in determining these factors, actual flight tests were required. Lewis engineers modified the B-29 so that the ramjet could be stored in the bomb bay. Once the aircraft reached the desired altitude and speed the ramjet was suspended 52 inches below the bomb bay. The ramjet’s angle-of-attack could be independently adjusted, and a periscope permitted a view of the test article from inside the aircraft. Measurements were taken in free-stream conditions between 5,000 and 30,000 feet. The test flights, which began in April 1947, were flown at speeds up to Mach 0.51 and altitudes of 5,000 to 30,000 feet. The researchers first determined that 14,000 feet was the maximum altitude at which the engine could be ignited by spark. Flares were used to start the engine at altitudes up to 30,000 feet. Overall the ramjet operated well at all speeds and altitudes. Significant changes in fuel flow were successful at lower altitudes, but produced combustion blowout above 20,000 feet.

  10. Abort Flight Test Project Overview

    NASA Technical Reports Server (NTRS)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  11. Indoor test for thermal performance evaluation of Lenox-Honeywell solar collector. [conducted using Marshall Space Flight Center Solar Simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  12. Thermal (Silicon Diode) Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    Marshall Space Flight Center's X-ray Calibration Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  13. Development of an inflatable radiator system. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1976-01-01

    Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.

  14. Thermal (Silicon Diode) Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Wright, Ernest; Kegley, Jeff

    2008-01-01

    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  15. Underway Recovery Test 6 (URT-6) - Day 5 Activities

    NASA Image and Video Library

    2018-01-21

    Teams from the U.S. Navy’s Explosive Ordnance Disposal Mobile Unit 3, the Special Boat Unit, the USS Anchorage and the USS New Orleans work together to connect tending lines to the Orion test article off the coast of San Diego. Kennedy Space Center’s NASA Recovery Team works with the U.S. Navy to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  16. Development of a biowaste resistojet propulsion system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The equipment, exclusive of thrustors, required to demonstrate the feasibility of a resistojet propulsion system for space station attitude control application using representative simulated crew biowaste propellants and available resistojet thrustors in the ground simulation tests is discussed. The overall objective of the program was to provide a biowaste resistojet prototype propellant management and control system sufficiently similar to the flight article to permit concept feasibility and system demonstration testing of interface compatibility, operational characteristics, and system flexibility.

  17. Design and Analysis of the Aperture Shield Assembly for a Space Solar Receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Trinh, Tuan; Westelaken, William; Krystkowiak, Christopher; Avanessian, Vahe; Kerslake, Thomas W.

    1997-01-01

    A joint U.S./Russia program has been conducted to design, develop, fabricate, launch, and operate the world's first space solar dynamic power system on the Russian Space Station Mir. The goal of the program was to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station (ISS). The major components of the system include a solar receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a solar concentrator, a radiator, a thermal control system, and a Space Shuttle carrier. Unfortunately, the mission was demanifested from the ISS Phase 1 Space Shuttle Program in 1996. However, NASA Lewis is proposing to use the fabricated flight hardware as part of an all-American flight demonstration on the ISS in 2002. The present paper concerns the design and analysis of the solar receiver aperture shield assembly. The aperture shield assembly comprises the front face of the cylindrical receiver and is located at the focal plane of the solar concentrator. The aperture shield assembly is a critical component that protects the solar receiver structure from highly concentrated solar fluxes during concentrator off-pointing events. A full-size aperture shield assembly was fabricated. This unit was essentially identical to the flight configuration, with the exception of materials substitution. In addition, a thermal shock test aperture shield assembly was fabricated. This test article utilized the flight materials and was used for high-flux testing in the solar simulator test rig at NASA Lewis. This testing is described in a companion paper.

  18. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  19. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  20. Robotic Lunar Landers for Science and Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. Robotic Lunar Lander design and development will have significant feed-forward to other missions to the Moon and, indeed, to other airless bodies such as Mercury, asteroids, and Europa, to which similar science and exploration objectives are applicable.

  1. Does hyperthermia constrain flight duration in a short-distance migrant?

    PubMed Central

    Guillemette, Magella; Larochelle, Jacques; Polymeropoulos, Elias T.; Granbois, Jean-Marc; Butler, Patrick J.; Pelletier, David; Frappell, Peter B.; Portugal, Steven J.

    2016-01-01

    While some migratory birds perform non-stop flights of over 11 000 km, many species only spend around 15% of the day in flight during migration, posing a question as to why flight times for many species are so short. Here, we test the idea that hyperthermia might constrain flight duration (FD) in a short-distance migrant using remote biologging technology to measure heart rate, hydrostatic pressure and body temperature in 19 migrating eider ducks (Somateria mollissima), a short-distance migrant. Our results reveal a stop-and-go migration strategy where migratory flights were frequent (14 flights day−1) and short (15.7 min), together with the fact that body temperature increases by 1°C, on average, during such flights, which equates to a rate of heat storage index (HSI) of 4°C h−1. Furthermore, we could not find any evidence that short flights were limited by heart rate, together with the fact that the numerous stops could not be explained by the need to feed, as the frequency of dives and the time spent feeding were comparatively small during the migratory period. We thus conclude that hyperthermia appears to be the predominant determinant of the observed migration strategy, and suggest that such a physiological limitation to FD may also occur in other species. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528776

  2. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  3. Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna

    NASA Image and Video Library

    2017-04-27

    Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, a crane lifts the Orion heat shield from Exploration Flight Test-1 up off its transporter. It will be lowered onto foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  4. Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2

    NASA Image and Video Library

    2017-04-26

    A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.

  5. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1977-02-01

    This photograph shows an inside view of a liquid hydrogen tank for the Space Shuttle external tank (ET) Main Propulsion Test Article (MPTA). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  7. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  8. Assessment of Fencing on the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Alunni, Antonella I.; Gokcen, Tahir

    2016-01-01

    This paper presents recession measurements of arc-jet test articles that simulate an ablator with gap filler and were exposed to various heating profiles. Results were used to derive empirically-based differential recession models used for the baseline sizing of the Orion block heatshield architecture. The profile test conditions represent different local flight environments associated with different regions of the heatshield. Recession measurements were collected during and after arc-jet tests, and the results were used to observe the heating profiles’ effect on differential recession. Arc-jet tests were conducted at the Aerodynamic Heating Facility at NASA Ames Research Center.

  9. UTOFIA: an underwater time-of-flight image acquisition system

    NASA Astrophysics Data System (ADS)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  10. Orion FSW V and V and Kedalion Engineering Lab Insight

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.

    2010-01-01

    NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.

  11. JPL control/structure interaction test bed real-time control computer architecture

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1989-01-01

    The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.

  12. First Generation Least Expensive Approach to Fission (FiGLEAF) Testing Results

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail. Pat; Ring, Peter; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. The paper describes the SAFE test series, which includes test article descriptions, test results and conclusions, and future test plans.

  13. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  14. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  15. KSC-2013-2361

    NASA Image and Video Library

    2013-05-15

    EDWARDS, Calif. – ED13-0142-11: The truck and trailer that transported the Dream Chaser engineering test article from Sierra Nevada Corporation, or SNC, Space Systems facility in Louisville, Colo., arrives on the aircraft ramp at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif., early in the morning. Based on NASA's HL-20 lifting body design, the Dream Chaser will begin its approach-and-landing flight test program in collaboration with NASA's Commercial Crew Program this summer. SNC is one of three companies working with NASA's Commercial Crew Program, or CCP, during the agency's Commercial Crew Integrated Capability, or CCiCap, initiative, which is intended to lead to the availability of commercial human spaceflight services for government and commercial customers. To learn more about CCP and its industry partners, visit www.nasa.gov/commercialcrew. Image credit: NASA/Tom Tschida

  16. An automated environment for multiple spacecraft engineering subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Hioe, K.; Lai, J.; Imlay, E.; Schwuttke, U.; Hsu, E.; Mikes, S.

    1990-01-01

    Flight operations at the Jet Propulsion Laboratory (JPL) are now performed by teams of specialists, each team dedicated to a particular spacecraft. Certain members of each team are responsible for monitoring the performances of their respective spacecraft subsystems. Ground operations, which are very complex, are manual, labor-intensive, slow, and tedious, and therefore costly and inefficient. The challenge of the new decade is to operate a large number of spacecraft simultaneously while sharing limited human and computer resources, without compromising overall reliability. The Engineering Analysis Subsystem Environment (EASE) is an architecture that enables fewer controllers to monitor and control spacecraft engineering subsystems. A prototype of EASE has been installed in the JPL Space Flight Operations Facility for on-line testing. This article describes the underlying concept, development, testing, and benefits of the EASE prototype.

  17. Orbital construction support equipment - Manned remote work station

    NASA Technical Reports Server (NTRS)

    Nassiff, S. H.

    1978-01-01

    The Manned Remote Work Station (MRWS) is a versatile piece of orbital construction support equipment which can support in-space construction in various modes of operation. Proposed near-term Space Shuttle mission support and future large orbiting systems support, along with the various construction modes of MRWS operation, are discussed. Preliminary flight subsystems requirements and configuration design are presented. Integration of the MRWS development test article with the JSC Mockup and Integration Facility, including ground-test objectives and techniques for zero-g simulations, is also presented.

  18. Technical details in the structural development of Rohrbach seaplanes

    NASA Technical Reports Server (NTRS)

    Mathias, Gotthold; Holzapfel, Adolf

    1929-01-01

    The recent trial flights and acceptance tests of the Rohrbach "Romar," the largest seaplane in the world, have yielded results fully confirming the principles followed in its development. Its take-off weight of 19,000 kg, its beating the world record for raising the greatest useful load to 2000 m by almost 2500 kg and its remarkable showing in the seaworthiness tests are the results of intelligent researches, the guiding principles of which are briefly set forth in this article.

  19. Does hyperthermia constrain flight duration in a short-distance migrant?

    PubMed

    Guillemette, Magella; Woakes, Anthony J; Larochelle, Jacques; Polymeropoulos, Elias T; Granbois, Jean-Marc; Butler, Patrick J; Pelletier, David; Frappell, Peter B; Portugal, Steven J

    2016-09-26

    While some migratory birds perform non-stop flights of over 11 000 km, many species only spend around 15% of the day in flight during migration, posing a question as to why flight times for many species are so short. Here, we test the idea that hyperthermia might constrain flight duration (FD) in a short-distance migrant using remote biologging technology to measure heart rate, hydrostatic pressure and body temperature in 19 migrating eider ducks (Somateria mollissima), a short-distance migrant. Our results reveal a stop-and-go migration strategy where migratory flights were frequent (14 flights day(-1)) and short (15.7 min), together with the fact that body temperature increases by 1°C, on average, during such flights, which equates to a rate of heat storage index (HSI) of 4°C h(-1) Furthermore, we could not find any evidence that short flights were limited by heart rate, together with the fact that the numerous stops could not be explained by the need to feed, as the frequency of dives and the time spent feeding were comparatively small during the migratory period. We thus conclude that hyperthermia appears to be the predominant determinant of the observed migration strategy, and suggest that such a physiological limitation to FD may also occur in other species.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  20. Systems tunnel linear shaped charge lightning strike

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the systems tunnel linear shaped charge (LSC) was performed at the Thiokol Lightning Test Complex in Wendover, Utah, on 23 Jun. 1989. The test article consisted of a 160-in. section of the LSC enclosed within a section of the systems tunnel. The systems tunnel was bonded to a section of a solid rocket motor case. All test article components were full scale. The systems tunnel cover of the test article was subjected to three discharges (each discharge was over a different grounding strap) from the high-current generator. The LSC did not detonate. All three grounding straps debonded and violently struck the LSC through the openings in the systems tunnel floor plates. The LSC copper surface was discolored around the areas of grounding strap impact, and arcing occurred at the LSC clamps and LSC ends. This test verified that the present flight configuration of the redesigned solid rocket motor systems tunnel, when subjected to simulated lightning strikes with peak current levels within 71 percent of the worst-case lightning strike condition of NSTS-07636, is adequate to prevent LSC ignition. It is therefore recommended that the design remain unchanged.

  1. Society of Flight Test Engineers, Annual Symposium, 21st, Garden Grove, CA, Aug. 6-10, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The present conference on flight testing encompasses avionics, flight-testing programs, technologies for flight-test predictions and measurements, testing tools, analysis methods, targeting techniques, and flightline testing. Specific issues addressed include flight testing of a digital terrain-following system, a digital Doppler rate-of-descent indicator, a high-technology testbed, a low-altitude air-refueling flight-test program, techniques for in-flight frequency-response testing for helicopters, limit-cycle oscillation and flight-flutter testing, and the research flight test of a scaled unmanned air vehicle. Also addressed are AV-8B V/STOL performance analysis, incorporating pilot-response time in failure-case testing, the development of pitot static flightline testing, targeting techniques for ground-based hover testing, a low-profilemore » microsensor for aerodynamic pressure measurement, and the use of a variable-capacitance accelerometer for flight-test measurements.« less

  2. KSC-2014-2375

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians are preparing the mockup of the ogive hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  3. KSC-2014-2363

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attach the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, onto the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  4. KSC-2014-2376

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians are preparing the mockup of the ogive hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  5. KSC-2014-2377

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians installed the mockup of the ogive hatch using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  6. Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.

    2010-01-01

    This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.

  7. Pegasus delivers SLS engine section

    NASA Image and Video Library

    2017-03-03

    NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.

  8. Pegasus delivers SLS engine section

    NASA Image and Video Library

    2017-05-18

    NASA engineers install test hardware for the agency's new heavy lift rocket, the Space Launch System, into a newly constructed 50-foot structural test stand at NASA's Marshall Space Flight Center. In the stand, hydraulic cylinders will be electronically controlled to push, pull, twist and bend the test article with millions of pounds of force. Engineers will record and analyze over 3,000 channels of data for each test case to verify the capabilities of the engine section and validate that the design and analysis models accurately predict the amount of loads the core stage can withstand during launch and ascent. The engine section, recently delivered via NASA's barge Pegasus from NASA's Michoud Assembly Facility, is the first of four core stage structural test articles scheduled to be delivered to Marshall for testing. The engine section, located at the bottom of SLS's massive core stage, will house the rocket's four RS-25 engines and be an attachment point for the two solid rocket boosters.

  9. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.

  10. Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2015-01-01

    NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..

  11. 77 FR 9628 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy's Mission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ..., and post-test monitoring for both sonar events. No stranded or injured marine mammals or sea turtles.... The monitoring included two re-test flights; two flights during the test; and one post-test flight... two pre-test flights; one flight during the test; and one post-test flight. Focal follow behavioral...

  12. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  13. The Comparison Of In-Flight Pitot Static Calibration Method By Using Radio Altimeter As Reference with GPS and Tower Fly By Methods On CN235-100 MPA

    NASA Astrophysics Data System (ADS)

    Derajat; Hariowibowo, Hindawan

    2018-04-01

    The new proposed In-Flight Pitot Static Calibration Method has been carried out during Development and Qualification of CN235-100 MPA (Military Patrol Aircraft). This method is expected to reduce flight hours, less human resources required, no additional special equipment, simple analysis calculation and finally by using this method it is expected to automatically minimized operational cost. At The Indonesian Aerospace (IAe) Flight Test Center Division, the development and updating of new flight test technique and data analysis method as specially for flight physics test subject are still continued to be developed as long as it safety for flight and give additional value for the industrial side. More than 30 years, Flight Test Data Engineers at The Flight Test center Division work together with the Air Crew (Test Pilots, Co-Pilots, and Flight Test Engineers) to execute the flight test activity with standard procedure for both the existance or development test techniques and test data analysis. In this paper the approximation of mathematical model, data reduction and flight test technique of The In-Flight Pitot Static Calibration by using Radio Altimeter as reference will be described and the test results had been compared with another methods ie. By using Global Position System (GPS) and the traditional method (Tower Fly By Method) which were used previously during this Flight Test Program (Ref. [10]). The flight test data case are using CN235-100 MPA flight test data during development and Qualification Flight Test Program at Cazaux Airport, France, in June-November 2009 (Ref. [2]).

  14. B-52B-008/DTV (Drop Test Vehicle) configuration 1 (with and without fins) flight test results - captive flight and drop test missions

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The B-52B-008 drop test consisted of one takeoff roll to 60 KCAS, two captive flights to accomplish limited safety of flight flutter and structural demonstration testing, and seven drop test flights. Of the seven drop test missions, one flight was aborted due to the failure of the hook mechanism to release the drop test vehicle (DTV); but the other six flights successfully dropped the DTV.

  15. Space Launch System, Core Stage, Structural Test Design and Implementation

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and methodology for supporting the SLS Core Stage STA test stands and related STE. The paper will address key requirements, system development activities and project challenges. Additionally, the interrelationships as well as interdependencies within the SLS project will be discussed.

  16. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  17. Testing and Validation of the Dynamic Inertia Measurement Method

    NASA Technical Reports Server (NTRS)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions.

  18. Feasibility Study for Low Drag Acoustic Liners Final Report

    NASA Technical Reports Server (NTRS)

    Riedel, Brian; Wu, Jackie

    2017-01-01

    This report documents the design and structural analysis as a final deliverable for the Phase 1 contract activity. Also included is a community noise test plan, which is a key deliverable for Phase 2. Finally, a high-level estimate (Phase 3 deliverable) is provided for the work statement of Phases 2-4, which covers the build of two inlet test articles, planning and execution of a flight test with the test inlets, as well as data analysis and final documentation. The two test inlets will be compared to the production baseline inlet configuration. There is also a plan to test one of the inlets "hardwalled" using speed tape or some other similar tape to block the acoustic perforations.

  19. In-Space Structural Validation Plan for a Stretched-Lens Solar Array Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woods-Vedeler, Jessica A.; Jones, Thomas W.

    2001-01-01

    This paper summarizes in-space structural validation plans for a proposed Space Shuttle-based flight experiment. The test article is an innovative, lightweight solar array concept that uses pop-up, refractive stretched-lens concentrators to achieve a power/mass density of at least 175 W/kg, which is more than three times greater than current capabilities. The flight experiment will validate this new technology to retire the risk associated with its first use in space. The experiment includes structural diagnostic instrumentation to measure the deployment dynamics, static shape, and modes of vibration of the 8-meter-long solar array and several of its lenses. These data will be obtained by photogrammetry using the Shuttle payload-bay video cameras and miniature video cameras on the array. Six accelerometers are also included in the experiment to measure base excitations and small-amplitude tip motions.

  20. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  1. Testing the time-of-flight model for flagellar length sensing.

    PubMed

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    NASA Technical Reports Server (NTRS)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  3. Finite Element Analysis and Test Correlation of a 10-Meter Inflation-Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Michii, Yuki; Lichodziejewski, David; Derbes, Billy; Mann. Troy O.; Slade, Kara N.; Wang, John T.

    2005-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA's future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from vibration tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1978-11-01

    The structural test article to be used in the solid rocket booster (SRB) structural and load verification tests is being assembled in a high bay building of the Marshall Space Flight Center (MSFC). The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment.

  5. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.

    2005-02-01

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 °C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.

  6. Lockheed laminar-flow control systems development and applications

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1987-01-01

    Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.

  7. Exhaust-gas measurements from NASAs HYMETS arc jet.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Paul Albert

    Arc-jet wind tunnels produce conditions simulating high-altitude hypersonic flight such as occurs upon entry of space craft into planetary atmospheres. They have traditionally been used to study flight in Earth's atmosphere, which consists mostly of nitrogen and oxygen. NASA is presently using arc jets to study entry into Mars' atmosphere, which consists of carbon dioxide and nitrogen. In both cases, a wide variety of chemical reactions take place among the gas constituents and with test articles placed in the flow. In support of those studies, we made measurements using a residual gas analyzer (RGA) that sampled the exhaust stream ofmore » a NASA arc jet. The experiments were conducted at the HYMETS arc jet (Hypersonic Materials Environmental Test System) located at the NASA Langley Research Center, Hampton, VA. This report describes our RGA measurements, which are intended to be used for model validation in combination with similar measurements on other systems.« less

  8. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  9. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  10. Composite Overwrapped Pressure Vessels (COPV): Flight Rationale for the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kezirian, Michael T.; Johnson, Kevin L.; Phoenix, Stuart L.

    2011-01-01

    Each Orbiter Vehicle (Space Shuttle Program) contains up to 24 Kevlar49/Epoxy Composite Overwrapped Pressure Vessels (COPV) for storage of pressurized gases. In the wake of the Columbia accident and the ensuing Return To Flight (RTF) activities, Orbiter engineers reexamined COPV flight certification. The original COPV design calculations were updated to include recently declassified Kevlar COPV test data from Lawrence Livermore National Laboratory (LLNL) and to incorporate changes in how the Space Shuttle was operated as opposed to orinigially envisioned. 2005 estimates for the probability of a catastrophic failure over the life of the program (from STS-1 through STS-107) were one-in-five. To address this unacceptable risk, the Orbiter Project Office (OPO) initiated a comprehensive investigation to understand and mitigate this risk. First, the team considered and eventually deemed unfeasible procuring and replacing all existing flight COPVs. OPO replaced the two vessels with the highest risk with existing flight spare units. Second, OPO instituted operational improvements in ground procedures to signficiantly reduce risk, without adversely affecting Shuttle capability. Third, OPO developed a comprehensive model to quantify the likelihood of occurrance. A fully-instrumented burst test (recording a lower burst pressure than expected) on a flight-certified vessel provided critical understanding of the behavior of Orbiter COPVs. A more accurate model was based on a newly-compiled comprehensive database of Kevlar data from LLNL and elsewhere. Considering hardware changes, operational improvements and reliability model refinements, the mean reliability was determined to be 0.998 for the remainder of the Shuttle Program (from 2007, for STS- 118 thru STS-135). Since limited hardware resources precluded full model validation through multiple tests, additional model confidence was sought through the first-ever Accelerated Stress Rupture Test (ASRT) of a flown flight article. A Bayesian statistical approach was developed to interpret possible test results. Since the lifetime observed in the ASRT exceeded initial estimates by one to two orders of magnitude, the Space Shuttle Program deemed there was significant conservatism in the model and accepted continued operation with existing flight hardware. Given the variability in tank-to-tank original prooftest response, a non-destructive evaluation (NDE) technique utilizing Raman Spectroscopy was developed to directly measure COPV residual stress state. Preliminary results showed that patterns of low fiber elastic strains over the outside vessel surface, together with measured permanent volume growth during proof, could be directly correlated to increased fiber stress ratios on the inside fibers adjacent to the liner, and thus reduced reliability.

  11. Structural Analysis of an Inflation-Deployed Solar Sail With Experimental Validation

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Michii, Yuki; Lichodziejewski, David; Derbes, Billy; Mann, Troy O.

    2005-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from structural dynamics tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.

  12. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  13. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  14. Damage tolerance certification of a fighter horizontal stabilizer

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Yen; Tsai, Ming-Yang; Chen, Jong-Sheng; Ong, Ching-Long

    1995-05-01

    A review of the program for the damage tolerance certification test of a composite horizontal stabilizer (HS) of a fighter is presented. The object of this program is to certify that the fatigue life and damage tolerance strength of a damaged composite horizontal stabilizer meets the design requirements. According to the specification for damage tolerance certification, a test article should be subjected to two design lifetimes of flight-by-flight load spectra simulating the in-service fatigue loading condition for the aircraft. However, considering the effect of environmental change on the composite structure, one additional lifetime test was performed. In addition, to evaluate the possibilities for extending the service life of the structure, one more lifetime test was carried out with the spectrum increased by a factor of 1.4. To assess the feasibility and reliability of repair technology on a composite structure, two damaged areas were repaired after two lifetimes of damage tolerance test. On completion of four lifetimes of the damage tolerance test, the static residual strength was measured to check whether structural strength after repair met the requirements. Stiffness and static strength of the composite HS with and without damage were evaluated and compared.

  15. KSC-2014-3943

    NASA Image and Video Library

    2014-09-15

    SAN DIEGO, Calif. – Helicopter Sea Combat Squadron 8, or HSC 8, prepare two H60-S helicopters for flight on the deck of the USS Anchorage during the first day of Orion Underway Recovery Test 3. The helicopters will be used during recovery of the Orion boilerplate test article. NASA, Lockheed Martin and U.S. Navy personnel are conducting recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  16. Development of satellite borne nickel hydrogen battery experiment equipment for ETS-6

    NASA Astrophysics Data System (ADS)

    Kuwashima, Saburou; Kamimori, Norimitsu; Kusawake, Hiroaki; Takahashi, Kazumichi

    1992-08-01

    An overview of the support rendered for the Engineering Test Satellite-6 (ETS-6) system integration test and protoflight test by the ETS-6 borne experimental nickel hydrogen battery development part is presented. Articles in the ETS-6 specifications and procedures related to the experimental battery were prepared or supported in preparation because of the battery's special characteristics such as its automatic control dependency on the bus voltage, thermal sensitivity equivalent to that of other batteries and so forth. System tests were witnessed and the acquired data were evaluated. Charging characteristics from 0 V were verified at trickle charging rate, using a flight scale model of Nickel Hydrogen (Ni-H2) Battery (NHB) after long term storage and an engineering model of the Ni-H2 Battery Controller (NHC). Requests for approval were submitted to the related self governing bodies in accordance with the Explosives Control Law when NHB's were charged and discharged. Installation and calibration data acquisition of the inner pressure sensors for the Ni-H2 battery cells for the flight model NHB were conducted and the battery assembly was started.

  17. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  18. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  19. NASA/MSFC ground experiment for large space structure control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Seltzer, S. M.; Tollison, D. K.

    1984-01-01

    Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS.

  20. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    NASA Technical Reports Server (NTRS)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  1. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  2. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  3. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  4. Flight Test of GL-1 Glider Half Scale Prototype

    NASA Astrophysics Data System (ADS)

    Fikri Zulkarnain, Muhammad; Fazlur Rahman, Muhammad; Luthfi Imam Nurhakim, Muhammad; Arifianto, Ony; Mulyanto, Taufiq

    2018-04-01

    GL-1 is a single-seat mid-performance glider, designed to be Indonesian National Glider. The Glider have been developing since 2014. The development produced a half scale prototype called BL-1, which had accomplished static test in 2016, then followed by first flight test at April 20th 2017, and second flight test at May 21st 2017. The purpose of the flight test was to obtain familiarization of the aircraft, aerodynamics characteristics and flow visualization, with data from flight recorded in FDR. The flight test resulted in two flights with total length of 21 minutes. The data from FDR and flight test documents extracted to analyze the characteristics and behavior of the aircraft during flight test. The aerodynamics characteristic was close to analytical results. The control was good; however, the effectiveness of control surface may need to be further analyzed. The result of the flight test will be used as a reference for further improvements and may need further testing.

  5. View of the INSAT/PAM-D being deployed

    NASA Image and Video Library

    1983-08-30

    STS008-49-1724 (31 Aug 1983) --- The Indian National Satellite (INSAT) is about to clear the vertical stabilizer of the Earth-orbiting Space Shuttle Challenger and on its way to a higher orbit. The STS-8 mission's Payload Flight Test Article (PFTA) displays the U.S. flag in the middle of the cargo bay, as the Canadian built Remote Manipulator System (RMS) appears to be waiting for its busy agenda of activity with the barbell-shaped test device. This 70mm frame was exposed by a crewmember using a handheld Hasselblad inside Challenger's cabin.

  6. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  7. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  8. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  9. International Space Station Lithium-Ion Main Battery Thermal Runaway Propagation Test

    NASA Technical Reports Server (NTRS)

    Dalton, Penni J.; North, Tim

    2017-01-01

    In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the aging Ni-H2 batteries on the primary Electric Power System (EPS). After the Boeing 787 Li-Ion battery fires, the NASA Engineering and Safety Center (NESC) Power Technical Discipline Team was tasked by ISS to investigate the possibility of Thermal Runaway Propagation (TRP) in all Li-Ion batteries used on the ISS. As part of that investigation, NESC funded a TRP test of an ISS EPS non-flight Li-Ion battery. The test was performed at NASA White Sands Test Facility in October 2016. This paper will discuss the work leading up to the test, the design of the test article, and the test results.

  10. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  11. Experimental Assessment of the Reciprocating Feed System

    NASA Technical Reports Server (NTRS)

    Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.

    2006-01-01

    The primary goal of this project was to design, construct, and test a full scale, high pressure simulated propellant feed system test bed that could evaluate the ability of the Reciprocating Feed System (RFS) to provide essentially constant flow rates and pressures to a rocket engine. The two key issues addressed were the effects of the transition of the drain cycle from tank to tank and the benefits of other hardware such as accumulators to provide a constant pressure flow rate out of the RFS. The test bed provided 500 psi flow at rates of the order of those required for engines in the 20,000 lbf thrust class (e.g., 20 to 40 lb/sec). A control system was developed in conjunction with the test article and automated system operation was achieved. Pre-test planning and acceptance activities such as a documented procedure and hazard analysis were conducted and the operation of the test article was approved by, and conducted in coordination with, appropriate NASA Marshall Space Flight Center personnel under a Space Act Agreement. Tests demonstrated successful control of flow rates and pressures.

  12. Prototyping and implementing flight qualifiable semicustom CMOS P-well bulk integrated circuits in the JPL environment

    NASA Technical Reports Server (NTRS)

    Olson, E. M.

    1986-01-01

    Presently, there are many difficulties associated with implementing application specific custom or semi-custom (standard cell based) integrated circuits (ICs) into JPL flight projects. One of the primary difficulties is developing prototype semi-custom integrated circuits for use and evaluation in engineering prototype flight hardware. The prototype semi-custom ICs must be extremely cost-effective and yet still representative of flight qualifiable versions of the design. A second difficulty is encountered in the transport of the design from engineering prototype quality to flight quality. Normally, flight quality integrated circuits have stringent quality standards, must be radiation resistant and should consume minimal power. It is often not necessary or cost effective, however, to impose such stringent quality standards on engineering models developed for systems analysis in controlled lab environments. This article presents work originally initiated for ground based applications that also addresses these two problems. Furthermore, this article suggests a method that has been shown successful in prototyping flight quality semi-custom ICs through the Metal Oxide Semiconductor Implementation Service (MOSIS) program run by the University of Southern California's Information Sciences Institute. The method has been used successfully to design and fabricate through the MOSIS three different semi-custom prototype CMOS p-well chips. The three designs make use of the work presented and were designed consistent with design techniques and structures that are flight qualifiable, allowing one hour transfer of the design from engineering model status to flight qualifiable foundry-ready status through methods outlined in this article.

  13. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Flight test plan. 437.25 Section 437.25... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Flight Test Plan § 437.25 Flight test plan. An applicant must— (a) Describe any flight test program, including estimated...

  14. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Flight test plan. 437.25 Section 437.25... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Flight Test Plan § 437.25 Flight test plan. An applicant must— (a) Describe any flight test program, including estimated...

  15. 14 CFR 437.25 - Flight test plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Flight test plan. 437.25 Section 437.25... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Requirements to Obtain an Experimental Permit Flight Test Plan § 437.25 Flight test plan. An applicant must— (a) Describe any flight test program, including estimated...

  16. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh temperature will be predicted using the correlated analytical thermal model since direct measurements from in-situ flight thermal sensors are not possible.

  17. KSC-2014-2365

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attach the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, onto the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  18. KSC-2014-2367

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  19. KSC-2014-2370

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. The inner hatch has been removed. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  20. KSC-2014-2368

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  1. KSC-2014-2364

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attached the GIZMO to remove the outer ogive panel hatch on the Orion crew module simulator. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  2. KSC-2014-2366

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians practice lining up the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, on the ogive panel mockup hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  3. KSC-2014-2369

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. A technician on an access platform and diving board removes the mockup of the crew module hatch. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  4. KSC-2014-2372

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. Technicians are preparing the mockup of the crew module inner hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  5. KSC-2014-2373

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. Technicians are preparing the mockup of the crew module inner hatch for installation using the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  6. KSC-2014-2374

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform has been added leading up to the mockup of the crew module. Technicians used the GIZMO, a pneumatically-balanced manipulator that will be used for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, to install the mockup of the crew module inner hatch. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  7. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  8. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  9. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    NASA Technical Reports Server (NTRS)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was upgraded. Two new cranes will help move test articles at the test stand and at the Redstone Arsenal railhead where first stage segments will be received in 2011. The Hydrodynamic Support systems (HDSs) used for Saturn and Shuttle have been disassembled and evaluated for use during IVGVT. Analyses indicate that the 45-year-old HDSs can be refurbished to support the Ares I IVGVT. An alternate concept for a pneumatic suspension system is also being explored. A decision on which suspension system configuration to use for IVGVT will be made in 2010. In the next three years, the team will complete the updates to TS 4550, upgrade the test and data collection equipment, and finalize the configurations of the test articles to be used in the IVGVT. With NASA's GVT capabilities reestablished, the FITO team will be well positioned to perform similar work on Ares V, the largest exploration launch vehicle NASA has ever built. The GVT effort continues NASA's 50-year commitment to using testing and data analysis for safer, more reliable launch vehicles.

  10. Coupled Facility/Payload Vibration Modeling Improvements

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.; Kaiser, Michael

    2015-01-01

    A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.

  11. Relocation of the Cryo-Test Facility to NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Sisco, Jimmy D.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The Environmental Test Facility (ETF), located at NASA-Marshall Space Flight Center, Huntsville, Alabama, has provided thermal vacuum testing for several major programs since the 1960's. The ETF consists of over 13 thermal vacuum chambers sized and configured to handle the majority of test payloads. Testing is performed around the clock with multiple tests being conducted simultaneously. Chamber selection to achieve the best match with test articles and juggling program schedules, at times, can be a challenge. The ETF's Sunspot chamber has had tests scheduled and operated back-to-back for several years and provides the majority of schedule conflicts. Future test programs have been identified which surpass the current Sunspot availability. This paper describes a very low cost alternate to reduce schedule conflicts by utilizing government excess equipment

  12. Space Shuttle Orbiter Approach and Landing Test Evaluation Report. Captive-Active Flight Test Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.

  13. Air-to-air radar flight testing

    NASA Astrophysics Data System (ADS)

    Scott, Randall E.

    1988-06-01

    This volume in the AGARD Flight Test Techniques Series describes flight test techniques, flight test instrumentation, ground simulation, data reduction and analysis methods used to determine the performance characteristics of a modern air-to-air (a/a) radar system. Following a general coverage of specification requirements, test plans, support requirements, development and operational testing, and management information systems, the report goes into more detailed flight test techniques covering a/a radar capabilities of: detection, manual acquisition, automatic acquisition, tracking a single target, and detection and tracking of multiple targets. There follows a section on additional flight test considerations such as electromagnetic compatibility, electronic countermeasures, displays and controls, degraded and backup modes, radome effects, environmental considerations, and use of testbeds. Other sections cover ground simulation, flight test instrumentation, and data reduction and analysis. The final sections deal with reporting and a discussion of considerations for the future and how they may affect radar flight testing.

  14. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  15. Techniques for Embedding Instrumentation in Pressure Vessel Test Articles

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael

    2006-01-01

    Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.

  16. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  17. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  18. Conduct and Results of YF-16 RPRV Stall/Spin Drop Model Tests

    DTIC Science & Technology

    1977-04-01

    Bomb Recovery System Tests Iron Bird Recovery System Tests Captive Flights Typical Flight Operations Flight Planning and Pilot Training...helicopter tow qualification test, one model tow qualification test, three Iron Bird parachute recovery system verification tests, three captive tests...Corresponding Full-Scale YF-16 Altitude -Reference 1: Woodcock , Robert J., Some Notes on Free-Flight Model Seal- ing, AFFDL-TM-73-123-FCC, Air Force Flight

  19. Rapid Development of Orion Structural Test Systems

    NASA Astrophysics Data System (ADS)

    Baker, Dave

    2012-07-01

    NASA is currently validating the Orion spacecraft design for human space flight. Three systems developed by G Systems using hardware and software from National Instruments play an important role in the testing of the new Multi- purpose crew vehicle (MPCV). A custom pressurization and venting system enables engineers to apply pressure inside the test article for measuring strain. A custom data acquisition system synchronizes over 1,800 channels of analog data. This data, along with multiple video and audio streams and calculated data, can be viewed, saved, and replayed in real-time on multiple client stations. This paper presents design features and how the system works together in a distributed fashion.

  20. Underway Recovery Test 6 (URT-6) - Day 2 Activites

    NASA Image and Video Library

    2018-01-18

    As part of Underway Recovery Test 6, the Orion test article is pulled in by a winch line at the rear of the USS Anchorage’s well deck that brings the capsule into the ship, along with four manned LLAMAs (Line Load Attenuation Mechanism Assembly) that control the capsule’s side-to-side movement and a tending line attached to a rigid hull inflatable boat for controlling Orion’s movement behind the ship. The testing with Kennedy Space Center's NASA Recovery Team and the U.S. Navy will provide important data that is being used to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean.

  1. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  2. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  3. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  4. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches that have increased decision velocity and reduced associated costs. This paper will summarize recent SLS Program accomplishments, as well as the challenges and opportunities ahead for the most powerful and capable launch vehicle in history.

  5. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  6. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    NASA Technical Reports Server (NTRS)

    Hughes, William; Fogt, Vince; Le Plenier, Cyprien; Duval, Francois; Durand, Jean-Francois; Staab, Lucas D.; Hozman, Aron; Mcnelis, Anne; Bittinger, Samantha; Thirkettle, Anthony; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  7. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    NASA Technical Reports Server (NTRS)

    Hughes, William; Le Plenier, Cyprien; Duval, Francois; Staab, Lucas; Hozman, Aron; Thirkettle, Anthony; Fogt, Vincent; Durand, Jean-Francois; McNelis, Anne; Bittinger, Samantha; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishing/verifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  8. ACAS-Xu Initial Self-Separation Flight Tests

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Baca, Gabe

    2015-01-01

    The purpose of this flight test report is to document and report the details of the ACAS Xu (Airborne Collision Avoidance System For Unmanned Aircraft) / Self-Separation flight test series performed at Edwards AFB from November to December of 2014. Included in this document are details about participating aircraft, aircrew, mission crew, system configurations, flight data, flight execution, flight summary, test results, and lessons learned.

  9. Qualification Motor no. 8 (QM-8), volume 1

    NASA Technical Reports Server (NTRS)

    Garecht, D. M.

    1989-01-01

    All inspection and instrumentation data indicate that the QM-8 static test firing conducted 20 January 1989 was successful. Ambient temperature at T-0 was 28 F. With two flights successfully accomplished, this final test in the redesigned solid rocket motor (RSRM) program certified that the design meets motor performance requirements under extreme cold conditions. This test was a prerequisite to the third flight. The entire test article was cold conditioned at 20 to 25 F for approximately 31 days to assure a maximum propellant mean bulk temperature (PMBT) of 40 F, making it the lowest PMBT in the history of the program. This extreme condition also presented the opportunity to certify critical components at low temperatures. Certification of field joint and igniter heaters, adhesive bondline integrity, flex bearing performance, flight instrumentation performance, RSRM seal performance, and LSC and nozzle plug performance was accomplished. Prior to motor ignition, the field joints were maintained between 75 to 130 F, the igniter-to-case joint was maintained between 75 to 123 F, and the case-to-nozzle joint was maintained between 75 to 120 F. QM-8 was tested with induced side loads to simulate the strut loads experienced during ignition and maximum aerodynamic loading conditions. The ability of the safe and arm device to change position from safe-to-arm and arm-to-safe was certified. Ballistics performance was certified at the lower limits. Values were within specification requirements. Nozzle performance was nominal with typical erosion. The use of Fiberite carbon-cloth phenolic was certified. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.

  10. Optical studies in the holographic ground station

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.

  11. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  12. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  13. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  14. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  15. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  16. Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane

    NASA Technical Reports Server (NTRS)

    Gera, Joseph; Bosworth, John T.

    1987-01-01

    Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.

  17. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  18. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  19. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    PubMed

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2017-08-01

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.

  20. Determination of UAV pre-flight Checklist for flight test purpose using qualitative failure analysis

    NASA Astrophysics Data System (ADS)

    Hendarko; Indriyanto, T.; Syardianto; Maulana, F. A.

    2018-05-01

    Safety aspects are of paramount importance in flight, especially in flight test phase. Before performing any flight tests of either manned or unmanned aircraft, one should include pre-flight checklists as a required safety document in the flight test plan. This paper reports on the development of a new approach for determination of pre-flight checklists for UAV flight test based on aircraft’s failure analysis. The Lapan’s LSA (Light Surveillance Aircraft) is used as a study case, assuming this aircraft has been transformed into the unmanned version. Failure analysis is performed on LSA using fault tree analysis (FTA) method. Analysis is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. Pre-flight checklist of the UAV is then constructed based on the basic causes obtained from failure analysis.

  1. Jets over Labrador and Quebec: noise effects on human health.

    PubMed Central

    Rosenberg, J

    1991-01-01

    OBJECTIVE: To determine whether the noise from low-level flights over Labrador and Quebec is harmful to human health. DATA SOURCE AND SELECTION: Search of MEDLINE for articles on the effect of noise, particularly impulse noise associated with low-level flights, and a search of the references from identified articles. DATA SYNTHESIS: The noise levels from low-level flights could affect hearing acuity. However, the more important consequences appear to be stress-mediated physiologic effects, especially cardiovascular ones, and psychologic distress, particularly in children. Subjective perception of control over the noise has been found to mitigate some physiologic effects. CONCLUSION: There is sufficient evidence to show that the noise from low-level flights is harmful to human health. PMID:2007238

  2. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  3. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  4. Preparing to Test for Deep Space

    NASA Image and Video Library

    2015-07-15

    A structural steel section is lifted into place atop the B-2 Test Stand at NASA’s Stennis Space Center as part of modification work to prepare for testing the core stage of NASA’s new Space Launch System. The section is part of the Main Propulsion Test Article (MPTA) framework, which will support the SLS core stage for testing. The existing framework was installed on the stand in the late 1970s to test the shuttle MPTA. However, that framework had to be repositioned and modified to accommodate the larger SLS stage. About 1 million pounds of structural steel has been added, extending the framework about 100 feet higher and providing a new look to the Stennis skyline. Stennis will test the actual flight core stage for the first uncrewed SLS mission, Exploration Mission-1.

  5. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  6. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  7. Pegasus air-launched space booster flight test program

    NASA Astrophysics Data System (ADS)

    Elias, Antonio L.; Knutson, Martin A.

    1995-03-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  8. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowingmore » hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.« less

  9. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  10. The NASA super pressure balloon - A path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2009-07-01

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  11. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  12. Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights

    NASA Astrophysics Data System (ADS)

    Aydogdu, Ibrahim

    2017-03-01

    In this article, a new version of a biogeography-based optimization algorithm with Levy flight distribution (LFBBO) is introduced and used for the optimum design of reinforced concrete cantilever retaining walls under seismic loading. The cost of the wall is taken as an objective function, which is minimized under the constraints implemented by the American Concrete Institute (ACI 318-05) design code and geometric limitations. The influence of peak ground acceleration (PGA) on optimal cost is also investigated. The solution of the problem is attained by the LFBBO algorithm, which is developed by adding Levy flight distribution to the mutation part of the biogeography-based optimization (BBO) algorithm. Five design examples, of which two are used in literature studies, are optimized in the study. The results are compared to test the performance of the LFBBO and BBO algorithms, to determine the influence of the seismic load and PGA on the optimal cost of the wall.

  13. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  14. The chocolate-colored expanse of Rogers Dry Lake frames the sleek lines of the Boeing / NASA X-48B subscale demonstrator during a test flight at Edwards AFB

    NASA Image and Video Library

    2007-08-14

    Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.

  15. Skylab

    NASA Image and Video Library

    1972-05-01

    Technicians at NASA’s Marshall Space Flight Center check the wiring on a mechanical test article of the Apollo Telescope Mount (ATM) solar array. Four such arrays were joined in a cross to provide electric power for the ATM in Earth orbit. The deployment mechanism for extending the wing to the fully open position had just been tested when this photograph was taken. The array was suspended from beams riding on air bearings to closely simulate the weightless conditions under which it would be deployed in space. The wings are folded against the sides of the ATM for launch and are deployed by a scissors mechanism in Earth’s orbit.

  16. Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.

  17. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  18. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  19. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  20. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  1. Liquid Oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.

    1993-01-01

    Marshall Space Flight Center (MSFC) and industry contractors have undertaken activities to develop a simplified liquid oxygen (LO2) propellant conditioning concept for future expendable launch vehicles. The objective of these activities is to reduce operations costs and timelines and to improve safety of these vehicles. The approach followed has been to identify novel concepts through system level studies and demonstrate the feasibility of these concepts through small-scale and full-scale testing. Testing will also provide data for design guidelines and validation of analytical models. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and helium (He) bubbling. This investigation is being done under a Joint Institutional Research and Development (JIRAD) program currently in effect between MSFC and General Dynamics Space Systems (GDSS). A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from a LO2 turbopump, will be tested at the Cold Flow Facility at MSFC's West Test Area. Liquid nitrogen (LN2), which has similar properties to LO2, will be used in place of LO2 for safety and budget reasons. Work to date includes design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test article. The tests for all propellant conditioning concepts will be conducted in the summer of 1993, with the final report completed by October, 1993.

  2. Development of load spectra for Airbus A330/A340 full scale fatigue tests

    NASA Technical Reports Server (NTRS)

    Schmidt, H.-J.; Nielsen, Thomas

    1994-01-01

    For substantiation of the recently certified medium range Airbus A330 and long range A340 the full scale fatigue tests are in progress. The airframe structures of both aircraft types are tested by one set of A340 specimens. The development of the fatigue test spectra for the two major test specimens which are the center fuselage and wing test and the rear fuselage test is described. The applied test load spectra allow a realistic simulation of flight, ground and pressurization loads and the finalization of the tests within the pre-defined test period. The paper contains details about the 1 g and incremental flight and ground loads and the establishment of the flight-by-flight test program, i.e., the definition of flight types, distribution of loads within the flights and randomization of flight types in repeated blocks. Special attention is given to procedures applied for acceleration of the tests, e.g. omission of lower spectrum loads and a general increase of all loads by ten percent.

  3. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  4. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    NASA Astrophysics Data System (ADS)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  5. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    NASA Technical Reports Server (NTRS)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  6. Space shuttle development Motor No. 9 (DM-9), volume 1

    NASA Technical Reports Server (NTRS)

    Garecht, Diane M.

    1990-01-01

    The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.

  7. [Clinical and hygienic aspects of occupational neurosensory deafness in civil aviation flight personnel].

    PubMed

    Kruglikova, N V; Romeiko, V L; Bekeneva, T I; Kharitonova, O I

    2015-01-01

    The article covers implementation of regulatory and legal concepts in prevention of risk caused by hazardous effects of noise in civil aviation flight personnel. The authors analyzed case histories of civil aviation flight personnel patients examined in occupational diseases clinic, with first diagnosed occupational neurosensory deafness.

  8. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  9. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  10. Ares I-X Separation and Reentry Trajectory Analyses

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Starr, Brett R.

    2011-01-01

    The Ares I-X Flight Test Vehicle was launched on October 28, 2009 and was the first and only test flight of NASA s two-stage Ares I launch vehicle design. The launch was successful and the flight test met all of its primary and secondary objectives. This paper discusses the stage separation and reentry trajectory analysis that was performed in support of the Ares I-X test flight. Pre-flight analyses were conducted to assess the risk of stage recontact during separation, to evaluate the first stage flight dynamics during reentry, and to define the range safety impact ellipses of both stages. The results of these pre-flight analyses were compared with available flight data. On-board video taken during flight showed that the flight test vehicle successfully separated without any recontact. Reconstructed trajectory data also showed that first stage flight dynamics were well characterized by pre-flight Monte Carlo results. In addition, comparisons with flight data indicated that the complex interference aerodynamic models employed in the reentry simulation were effective in capturing the flight dynamics during separation. Finally, the splash-down locations of both stages were well within predicted impact ellipses.

  11. KSC-2013-3293

    NASA Image and Video Library

    2013-08-12

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, the Orion boilerplate test article is reflected in water on a U.S. Navy ship. The test article and support equipment for a stationary recovery test were transferred to the ship from a floating dock system. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2013-3321

    NASA Image and Video Library

    2013-08-13

    HAMPTON, Va. – At the Naval Station Norfolk near NASA’s Langley Research Center in Virginia, NASA and U.S. Navy personnel are conducting a stationary recovery test using the Orion boilerplate test article. The test article was transferred from a U.S. Navy ship into the water and tether lines have been attached. NASA and the U.S. Navy are conducting tests to prepare for recovery of the Orion crew module and forward bay cover on its return from a deep space mission. The stationary recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in a controlled environment before conducting a second recovery test next year in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

  13. A flight test facility design for examining digital information transfer

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  14. Launch Vehicle Demonstrator Using Shuttle Assets

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

  15. Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Morris, P. M.

    1985-01-01

    The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.

  16. Digital signal processing in the radio science stability analyzer

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1995-01-01

    The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.

  17. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  18. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  19. Research Opportunities in Nutrition and Metabolism in Space

    NASA Technical Reports Server (NTRS)

    Altman, Philip L. (Editor); Fisher, Kenneth D. (Editor)

    1986-01-01

    The objectives of the Life Sciences Research Office (LSRO) study on nutrient requirements for meeting metabolic needs in manned space flights are as follows: review extant knowledge on the subject; identify significant gaps in knowledge; formulate suggestions for possible research; and produce a documented report of the foregoing items that can be used for program planning. In accordance with NASA's request for this study, the report focuses on issues of nutrition and metabolism that relate primarily to the contemplated United States Space Station, secondarily to the Shuttle Program as an orbital test bed for operational studies, and incidentally to scenarios for future long-term space flights. Members of the LSRO ad hoc Working Group on Nutrition and Metabolism were provided with pertinent articles and summaries on the subject. At the meeting of the Working Group, presentations were made by NASA Headquarters program staff on past experiences relative to space-flight nutrition and metabolism, as well as scenarios for future flights. The discussions of the ad hoc Working Group focused on the following: (1) metabolic needs related to work and exercise; (2) nutrients required to meet such needs; (3) food types, management, and records; and (4) nutritional amelioration or prevention of space-related physiological and behavioral changes.

  20. Development of a simple, self-contained flight test data acquisition system

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Shane, D.; Roskam, J.; Rummer, D. I.

    1982-01-01

    The flight test system described combines state-of-the-art microprocessor technology and high accuracy instrumentation with parameter identification technology which minimize data and flight time requirements. The system was designed to avoid permanent modifications of the test airplane and allow quick installation. It is capable of longitudinal and lateral-directional stability and control derivative estimation. Details of this system, calibration and flight test procedures, and the results of the Cessna 172 flight test program are presented. The system proved easy to install, simple to operate, and capable of accurate estimation of stability and control parameters in the Cessna 172 flight tests.

  1. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  2. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  3. Malassezia species retrieved from skin with pityriasis versicolor, seborrheic dermatitis and skin free of lesions: a comparison of two sampling methods.

    PubMed

    Pedrosa, A F; Lisboa, C; Faria-Ramos, I; Silva, R M; Miranda, I M; Rodrigues, A G

    2018-03-05

    Malassezia are involved in the pathogenesis of different skin diseases including pityriasis versicolor (PV) and seborrheic dermatitis (SD), but these yeasts are also important inhabitants of the skin microbiome. Culture is not performed routinely, although it may be of value in doubtful cases to support the diagnosis; culture is crucial for identification tools such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Culture is also critical to assess the number of organisms and viability and, eventually, to perform antifungal susceptibility tests. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Hyper-X Engine Design and Ground Test Program

    NASA Technical Reports Server (NTRS)

    Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.

    1998-01-01

    The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.

  5. Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements

    NASA Technical Reports Server (NTRS)

    Bakalyar, John A.; Jutte, Christine

    2012-01-01

    Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.

  6. Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.

    2016-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.

  7. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  8. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  9. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  10. Executable assertions and flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    Executable assertions are used to test flight control software. The techniques used for testing flight software; however, are different from the techniques used to test other kinds of software. This is because of the redundant nature of flight software. An experimental setup for testing flight software using executable assertions is described. Techniques for writing and using executable assertions to test flight software are presented. The error detection capability of assertions is studied and many examples of assertions are given. The issues of placement and complexity of assertions and the language features to support efficient use of assertions are discussed.

  11. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  12. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  13. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Ruf, Edward G.; Witte, David W.; Andrews, Earl H., Jr.

    2001-01-01

    Airframe-integrated scramjet engine testing has been completed at Mach 7 flight conditions in the NASA Langley 8-Foot High Temperature Tunnel as part of the NASA Hyper-X program. This test provided engine performance and operability data, as well as design and database verification, for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet data in flight. The Hyper-X Flight Engine, a duplicate Mach 7 X-43 scramjet engine, was mounted on an airframe structure that duplicated the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle trailing edge. This model was also tested to verify and validate the complete flight-like engine system. This paper describes the subsystems that were subjected to flight-like conditions and presents supporting data. The results from this test help to reduce risk for the Mach 7 flights of the X-43.

  14. Hubble Space Telescope nickel-hydrogen battery testing: An update

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-01-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  15. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  16. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  17. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  18. In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.

    2002-01-01

    Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.

  19. KSC-2014-2371

    NASA Image and Video Library

    2014-05-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a GIZMO demonstration test is being performed on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. An access platform and diving board have been added leading up to the mockup of the crew module hatch. The inner hatch has been removed The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper

  20. AGARD Flight Test Techniques Series. Volume 18. Flight Testing of Radio Navigation Systems. (Les Essais en Vol des Systemes de Radionavigation)

    DTIC Science & Technology

    2000-04-01

    18 Flight Testing of Radio Navigation Systems (les Essais en vol des systemes de radionavigation) This AGARDograph has been sponsored by the Systems...Techniques Series - Volume 18 Flight Testing of Radio Navigation Systems (les Essais en vol des syst~mes de radionavigation) Edited by H. Bothe H.J...Landing Test and Other Short-Range 19853 Applications by P. de Benquoe D’Agut, H. Rieheek and A. Pool 17. Analogue Signal Conditioning for Flight Test

  1. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    NASA Astrophysics Data System (ADS)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  2. Liquid Oxygen Propellant Densification Production and Performance Test Results With a Large-Scale Flight-Weight Propellant Tank for the X33 RLV

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Meyer, Michael L.

    2010-01-01

    This paper describes in-detail a test program that was initiated at the Glenn Research Center (GRC) involving the cryogenic densification of liquid oxygen (LO2). A large scale LO2 propellant densification system rated for 200 gpm and sized for the X-33 LO2 propellant tank, was designed, fabricated and tested at the GRC. Multiple objectives of the test program included validation of LO2 production unit hardware and characterization of densifier performance at design and transient conditions. First, performance data is presented for an initial series of LO2 densifier screening and check-out tests using densified liquid nitrogen. The second series of tests show performance data collected during LO2 densifier test operations with liquid oxygen as the densified product fluid. An overview of LO2 X-33 tanking operations and load tests with the 20,000 gallon Structural Test Article (STA) are described. Tank loading testing and the thermal stratification that occurs inside of a flight-weight launch vehicle propellant tank were investigated. These operations involved a closed-loop recirculation process of LO2 flow through the densifier and then back into the STA. Finally, in excess of 200,000 gallons of densified LO2 at 120 oR was produced with the propellant densification unit during the demonstration program, an achievement that s never been done before in the realm of large-scale cryogenic tests.

  3. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  4. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  5. Technical Bases to Aid in the Decision of Conducting Full Power Ground Nuclear Tests for Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-02-01

    The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.

  6. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  7. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  8. Ares I-X Flight Test Vehicle Similitude to the Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Smith, R. Marshall; Campbell, John R., Jr.; Taylor, Terry L.

    2008-01-01

    The Ares I-X Flight Test Vehicle is the first in a series of flight test vehicles that will take the Ares I Crew Launch Vehicle design from development to operational capability. The test flight is scheduled for April 2009, relatively early in the Ares I design process so that data obtained from the flight can impact the design of Ares I before its Critical Design Review. Because of the short time frame (relative to new launch vehicle development) before the Ares I-X flight, decisions about the flight test vehicle design had to be made in order to complete analysis and testing in time to manufacture the Ares I-X vehicle hardware elements. This paper describes the similarities and differences between the Ares I-X Flight Test Vehicle and the Ares I Crew Launch Vehicle. Areas of comparison include the outer mold line geometry, aerosciences, trajectory, structural modes, flight control architecture, separation sequence, and relevant element differences. Most of the outer mold line differences present between Ares I and Ares I-X are minor and will not have a significant effect on overall vehicle performance. The most significant impacts are related to the geometric differences in Orion Crew Exploration Vehicle at the forward end of the stack. These physical differences will cause differences in the flow physics in these areas. Even with these differences, the Ares I-X flight test is poised to meet all five primary objectives and six secondary objectives. Knowledge of what the Ares I-X flight test will provide in similitude to Ares I as well as what the test will not provide is important in the continued execution of the Ares I-X mission leading to its flight and the continued design and development of Ares I.

  9. Full Motion Flight Simulator in the Classroom

    ERIC Educational Resources Information Center

    Christensen, Brad

    2005-01-01

    Virtual flight can be very entertaining, and computer-based simulators can also be educational, if organized and used correctly. When Berea College decided to find a flight simulator suited to the school's educational goals, the faculty settled on an ANT-18 Link trainer. This article begins with a discussion of Link trainers' history, and then…

  10. Looking Up: Multimedia about Space and Flight.

    ERIC Educational Resources Information Center

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  11. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  12. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  13. Development Overview of the Revised NASA Ultra Long Duration Balloon

    NASA Technical Reports Server (NTRS)

    Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.

    2006-01-01

    The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  14. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  15. Machine on Trial

    DTIC Science & Technology

    2012-06-01

    executed a concerted effort to employ reliability standards and testing from the design phase through fielding. Reliability programs remain standard...performed flight test engineer duties on several developmental flight test programs and served as Chief Engineer for a flight test squadron. Major...Quant is an acquisition professional with over 250 flight test hours in various aircraft, including the F-16, Airborne Laser, and HH-60. She holds a

  16. Flight flutter testing of multi-jet aircraft

    NASA Technical Reports Server (NTRS)

    Bartley, J.

    1975-01-01

    Extensive flight flutter tests were conducted by BAC on B-52 and KC-135 prototype airplanes. The need for and importance of these flight flutter programs to Boeing airplane design are discussed. Basic concepts of flight flutter testing of multi-jet aircraft and analysis of the test data will be presented. Exciter equipment and instrumentation employed in these tests will be discussed.

  17. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  18. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  19. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  20. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  1. In-flight medical incapacitation and impairment of airline pilots.

    PubMed

    DeJohn, Charles A; Wolbrink, Alex M; Larcher, Julie G

    2006-10-01

    Medical incapacitation in the cockpit is rare, although it is a concern that has been the subject of several investigations over the years. With recent heightened interest in this problem, it seemed worthwhile to review all relevant scientific literature on the topic. Medline, PsychLit, the Aerospace Database, and other online databases were searched for studies of pilot in-flight medical incapacitation and impairment. The search revealed 13 articles during the years from 1968 to 2000. The studies represented several different approaches and were divided into five categories as follows: in-flight medical events, career termination, simulator data, questionnaires, and epidemiological analysis. The articles based on in-flight medical events showed that the leading causes of those episodes were myocardial infarctions, cardiac arrhythmias, and epileptic seizures. Few of the other types of studies used data from actual in-flight medical occurrences, instead relying on indirect measures such as career termination due to permanent medical grounding, loss of licensure insurance, or general epidemiological data to estimate the frequency of in-flight medical events. The reviewed studies provided only limited information on the frequency and categories of in-flight medical events and did not include incapacitation rates, making meaningful comparison between studies difficult. Future research needs to be based on actual in-flight medical events, and should be normalized to a useful denominator, such as flight time, to allow for meaningful comparison between studies.

  2. 14 CFR 21.37 - Flight test pilot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  3. 14 CFR 21.37 - Flight test pilot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  4. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the Administrator received a flight test...

  5. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the FAA received a flight test report...

  6. 14 CFR 21.37 - Flight test pilot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight test pilot. 21.37 Section 21.37... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.37 Flight test pilot. Each applicant for a normal... holding an appropriate pilot certificate to make the flight tests required by this part. [Doc. No. 5085...

  7. National remote computational flight research facility

    NASA Technical Reports Server (NTRS)

    Rediess, Herman A.

    1989-01-01

    The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.

  8. Isokinetic TWC Evaporator Probe: Development of the IKP2 and Performance Testing for the HAIC-HIWC Darwin 2014 and Cayenne-2015 Field Campaigns

    NASA Technical Reports Server (NTRS)

    Strapp, John W.; Lilie, Lyle E.; Ratvasky, Thomas P.; Davison, Craig R.; Dumont, Christopher J.

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics. The article tracks the testing and modifications of the IKP2 probe to ensure its readiness for three flight campaigns in 2014 and 2015. Comparisons are made between the IKP2 and the NASA Icing Research Tunnel reference values in liquid conditions, and to an exploratory technique estimating ice water content from a bulk ice capture cylinder method in glaciated conditions. These comparisons suggest that the initial target of 20 percent accuracy in TWC has been achieved and likely exceeded for tested TWC values in excess of about 0.5 gm (exp -3). Uncertainties in the ice water content reference method have been identified. Complications are introduced in the necessary subtraction of an independently measured background water vapour concentration, errors of which are small at the colder flight temperatures, but increase rapidly with increasing temperature, and ultimately limit the practical use of the instrument in a tropical convective atmosphere to conditions colder than about 0 degrees C. A companion article in this conference traces the accuracy of the components of the IKP2 to derive estimated system accuracy.

  9. Isokinetic TWC Evaporator Probe: Development of the IKP2 and Performance Testing for the HAIC-HIWC Darwin 2014 and Cayenne 2015 Field Campaigns

    NASA Technical Reports Server (NTRS)

    Strapp, J. Walter; Lilie, Lyle E.; Ratvasky, Thomas P.; Davison, Craig; Dumont, Chris

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics. The article tracks the testing and modifications of the IKP2 probe to ensure its readiness for three flight campaigns in 2014 and 2015. Comparisons are made between the IKP2 and the NASA Icing Research Tunnel reference values in liquid conditions, and to an exploratory technique estimating ice water content from a bulk ice capture cylinder method in glaciated conditions. These comparisons suggest that the initial target of 20% accuracy in TWC has been achieved and likely exceeded for tested TWC values in excess of about 0.5/cu gm. Uncertainties in the ice water content reference method have been identified. Complications are introduced in the necessary subtraction of an independently measured background water vapor concentration, errors of which are small at the colder flight temperatures, but increase rapidly with increasing temperature, and ultimately limit the practical use of the instrument in a tropical convective atmosphere to conditions colder than about 0 C. A companion article in this conference traces the accuracy of the components of the IKP2 to derive estimated system accuracy.

  10. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part B: Scan mirror assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.

  11. ISS Phase One Activities and Manufacturing in Russia, France and Italy

    NASA Image and Video Library

    1996-10-07

    Photographs documenting International Space Station (ISS) Phase One activities at the Russian Space Agency's (RSA) Gagarin Cosmonaut Training Center, Korolov Mission Control Center and Zvezda; and ISS and Soyuz manufacturing at RSA's Khrunichev Design Center and RSC Energiya in Moscow, Russia, the French Space Agency's (CNES) INTESPACE facility in Toulouse, France, and the Italian Space Agency's (ASI) Alenia Spazio facility in Torino, Italy. Photographs were taken by Johnson Space Center Imagery and Publications Office contractors travelling from October 7 to November 4, 1996. Includes: VIEWS FROM RSC ENERGIYA'S SPACE MUSEUM: Room with a Buran model and photographic displays (17372-374). Salyut Space Station mock-up (17376). Russian propulsion engines on display (17377-378). Russian spacecraft on display (17375, 17387-398). Graphic displays (17399-405). VIEWS FROM RSC ENERGIYA MANUFACTURING FACILITIES: Unidentified facility (17379). Mir 24 crew member Michael C. Foale, suited in a Soyuz pressure suit, ingresses the Soyuz TM-26 flight article at RSC Energiya for a fit check (17380-381). Closeups of Foale inside the Soyuz during the fit check (17382-383, 17466-467). Overhead views of RSC Energiya's Building 444 manufacturing floor where docking modules and Soyuz TM spacecraft are built (17495-498). Technicians on the Building 444 manufacturing floor assembling probe and drogue docking modules (17499-500, 17504). Technicians assembling Soyuz spacecraft (17437-439). Views of other Soyuz spacecraft (17440-441). Androgynous Peripheral Docking System (APDS) mock-up (17501-503). Closeups of a control panel, possibly for the APDS mock-up (17519-528). VIEWS FROM ZVEZDA, RSA CONTRACTOR FOR SUIT DESIGN AND SOYUZ SEAT LINERS: Mir 24 crew member Foale dons a "penguin" flight suit for a fit check (17454-456). Zvezda personnel adjust Foale's Soyuz seat and seat liner (17442). Closeup of Foale, suited in a Soyuz pressure suit, sitting on a chair (17444). Zvezda personnel strap pressure-suited Foale into his Soyuz seat (17443, 17445, 17450). Views of Foale in his Soyuz seat during a pressurized pressure suit fit check (17451-453). Views looking into a vacuum chamber where Foale, wearing pressure suit, is strapped into his Soyuz seat (17466-467). Views of Zvezda personnel working at the vacuum chamber control station during the vacuum chamber suit test (17468-471). VIEWS FROM KHRUNICHEV DESIGN CENTER: Views of a green ISS Functional Cargo Block (FGB) test article on the manufacturing floor (17529, 17532-536, 17540-544). Views of an ISS Service Module (SM) test article on the manufacturing floor (17530-531, 17537, 17539). Closeup of the SM test article docking sphere (17538). Views of the FGB flight article on the manufacturing floor during systems tests (17545-548, 17550-567). Views of technicians conducting the FGB systems tests (17549, 17557). VIEWS FROM GAGARIN COSMONAUT TRAINING CENTER: NASA astronauts work out in the cosmonaut gym at Gagarin: Closeup of ISS 2R Expedition Commander William Shepherd on a weight machine (17384). Shepherd and an unidentified man with back to camera work out with dumbbells (17386). Shepherd does pull-ups (17447). Closeup of Foale on an exercise machine (17385). Closeups of Foale exercising arms on a cycle ergometer and a weight machine (17415, 17448-449). Foale exercises on a Nordic Track (17416). Closeup of Mir 23 crew member Jerry Linenger exercising arms (17417). Wendy Lawrence exercises with dumbbells (17418). Closeup of Lawrence in a handstand position (17419). David Wolf works out on a leg press machine (17446). Views of the Mir Space Station mock-up at Gagarin: Interior views of the Mir Base Module mock-up looking toward the transfer compartment (17421-425). Mir Base Module living area mock-up (17420). Overall views of the Base Module mock-up central control station (17426-427, 17505). Closeups of switch panels on the central control station (17428-436, 17506-518). Other views from Gagarin: Personnel work at an unidentified test/trainer control station (17472-473). Linenger sits at a table next to an RSA trainer during a Mir 23 meeting (17475-476). Out-of-focus view of two subjects in the Soyuz trainer (17474). Foale examines a Mir Complex EVA Suit (Orlan) with RSA trainers during an EVA suit training class (17492-494). VIEWS FROM KOROLOV MISSION CONTROL CENTER: Various views of personnel working in the NASA Consulting Room and/or PAO Consulting Room at Korolov Mission Control Center (17457-463). VIEWS FROM INTESPACE: Exterior views of an ISS Mini Pressurized Logistics Module (MPLM) structural test article (STA) during testing at INTESPACE (17406-409, 17477, 17482-484). Technicians install hatch on the MPLM STA (17410-414). Interior views of the MPLM STA (17478-481). VIEWS FROM ALENIA SPAZIO: Closeups of MPLM flight article #1 side panels during milling and refining at Alenia Spazio (17485-488). Workers process MPLM parts at milling machines (17489-491).

  12. Small-scale fixed wing airplane software verification flight test

    NASA Astrophysics Data System (ADS)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  13. Space Shuttle stability and control test plan

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1982-01-01

    The development of a completely automatic flight test program to test different aspects of the Shuttle flight capability during reentries is described. Data from each flight to date has been employed to devise a sequence of maneuvers which will be keyboard-punched into the Orbiter control system by the astronauts during entry phases of flight. Details of the interaction and cooperation of the Orbiter elevons and bodyflap to provide the vehicle with latitudinal and longitudinal directional control and trim are outlined. Uncertainties predicted for the control of the Orbiter during wind tunnel testing prior to actual flights have been adjusted to actual flight data, leading to the identification of actual flight regimes which need further investigation. Maneuvers scheduled for flights 5-9 are reviewed.

  14. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  15. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  16. Predicting hypoxaemia during flights in children with cystic fibrosis

    PubMed Central

    Buchdahl, R; Babiker, A; Bush, A; Cramer, D

    2001-01-01

    BACKGROUND—We have previously suggested that it is possible to predict oxygen desaturation during flight in children with cystic fibrosis and chronic lung disease by non-invasive measurement of oxygen saturation following inhalation of 15% oxygen—the pre-flight hypoxic challenge. This study reports on the results of measurements over 5years.
METHODS—The study comprised a pre-flight hypoxic challenge measuring oxygen saturation by finger tip pulse oximetry (SpO2) during tidal breathing of 15% oxygen in nitrogen and spirometric testing 1 month before the flight followed by SpO2 measurements during intercontinental flights to and from holidays abroad with children in wake and sleep states.
RESULTS—Pre-flight tests were completed on 87 children with cystic fibrosis. Desaturation of <90% occurred in 10 children at some stage during the flight, three of whom received supplementary oxygen. Using a cut off SpO2 of 90%, the pre-flight hypoxic challenge correctly predicted desaturation in only two of these children. The sensitivity and specificity of the pre-flight hypoxic challenge were 20% and 99%, respectively, compared with 70% and 96% for spirometric tests (using a cut off for forced expiratory volume in 1 second (FEV1) of <50% predicted). Overall, pre-flight spirometric tests were a better predictor of desaturation during flight with the area under the Receiver Operating Characteristic (ROC) curve of 0.89 compared with 0.73 for the hypoxic challenge test.
CONCLUSIONS—In this group of subjects pre-flight spirometric testing was a better predictor of desaturation during flight than the pre-flight hypoxic challenge.

 PMID:11641514

  17. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    NASA Technical Reports Server (NTRS)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  18. An overview of the F-117A avionics flight test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silz, R.

    1992-02-01

    This paper is an overview of the history of the F-117A avionics flight test program. System design concepts and equipment selections are explored followed by a review of full scale development and full capability development testing. Flight testing the Weapon System Computational Subsystem upgrade and the Offensive Combat Improvement Program are reviewed. Current flight test programs and future system updates are highlighted.

  19. An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas

    1996-01-01

    The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.

  20. Investigation into Hybrid Rockets and Other Cost-Effective Propulsion System Options for Small Satellites

    DTIC Science & Technology

    1996-05-01

    8-7 COMPLETE TEXT OF THESIS ROCKET PROPULSION FUNDEMENTALS EXPERIMENTAL DATA (MICROSOFT EXCEL FILES) 4 ANALYSIS WORKSHEETS (MATHSOFT MATHCAD FILES...up and running. At ~413,000, this represents a very small investment considering it encompasses the entire program. Similar programs run at... investment would be -needed along with over two man-years of effort. However, this is for the first flight article. Subsequent flight articles of identical

Top