Sample records for flight test evaluation

  1. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    Detailed documentation for each flight of the Omega Flight Evaluation study is presented, including flight test description sheets and actual flight data plots. Computer programs used for data processing and flight planning are explained and the data formats utilized by the Custom Interface Unit are summarized.

  2. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  3. Evaluating the dynamic response of in-flight thrust calculation techniques during throttle transients

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1994-01-01

    New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.

  4. A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms

    NASA Technical Reports Server (NTRS)

    Mason, M. G.

    1975-01-01

    A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

  5. Final Environmental Assessment for Low-Level Flight Testing, Evaluation, and Training, Edwards Air Force Base

    DTIC Science & Technology

    2005-05-01

    4. TITLE AND SUBTITLE Final Environmental Assessment for Low-Level Flight Testing, Evaluation, and Training, Edwards Air Force Base 5a. CONTRACT...NAME(S) AND ADDRESS(ES) Air Force Flight Test Center,Environmental Management Directorate,Edwards AFB,CA,93524 8. PERFORMING ORGANIZATION REPORT...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The U.S. Air Force Flight Test

  6. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  7. Engineering evaluation of 24 channel multispectral scanner. [from flight tests

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.

    1973-01-01

    The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.

  8. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  9. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  10. An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas

    1996-01-01

    The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.

  11. Flight test evaluation of the Stanford University/United Airlines differential GPS Category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Ncnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) 3 precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT 3 precision approach and landing applications. A United Airlines Boeing 737-300 (N304UA) was equipped with DGPS receiving equipment and additional computing capability provided by Stanford University. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and autolandings; 90 touch and go, and 10 terminating with a full stop. Two types of accuracy requirements were evaluated: 1) Total system error, based on the Required Navigation Performance (RNP), and 2) Navigation sensor error, based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and autolandings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and autolandings shows that the Stanford University/United Airlines system met the requirements for a successful approach and autolanding 98 out of 100 approaches and autolandings, based on the total system error requirements as specified in the FAA CAT 3 Level 2 Flight Test Plan.

  12. Flight test evaluation of the E-systems Differential GPS category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Mcnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.

  13. Ares I-X Flight Data Evaluation: Executive Overview

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Waits, David A.; Lewis, Donny L.; Richards, James S.; Coates, R. H., Jr.; Cruit, Wendy D.; Bolte, Elizabeth J.; Bangham, Michal E.; Askins, Bruce R.; Trausch, Ann N.

    2011-01-01

    NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files.

  14. Flight test of the X-29A at high angle of attack: Flight dynamics and controls

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.

    1995-01-01

    The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.

  15. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  16. Development and evaluation of an airplane electronic display format aligned with the inertial velocity vector

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.

    1986-01-01

    The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.

  17. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  18. Space Shuttle Orbiter Approach and Landing Test Evaluation Report. Captive-Active Flight Test Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.

  19. Traveler Phase 1A Joint Review

    NASA Technical Reports Server (NTRS)

    St. John, Clint; Scofield, Jan; Skoog, Mark; Flock, Alex; Williams, Ethan; Guirguis, Luke; Loudon, Kevin; Sutherland, Jeffrey; Lehmann, Richard; Garland, Michael; hide

    2017-01-01

    The briefing contains the preliminary findings and suggestions for improvement of methods used in development and evaluation of a multi monitor runtime assurance architecture for autonomous flight vehicles. Initial system design, implementation, verification, and flight testing has been conducted. As of yet detailed data review is incomplete, and flight testing has been limited to initial monitor force fights. Detailed monitor flight evaluations have yet to be performed.

  20. UAS in the NAS Flight Test Series 4 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, Jim

    2016-01-01

    Flight Test Series 4 (FT4) provides the researchers with an opportunity to expand on the data collected during the first flight tests. Following Flight Test Series 3, additional scripted encounters with different aircraft performance and sensors will be conducted. FT4 is presently planned for Spring of 2016 to ensure collection of data to support the validation of the final RTCA Phase 1 DAA (Detect and Avoid) Minimum Operational Performance Standards (MOPS). There are three research objectives associated with this goal: Evaluate the performance of the DAA system against cooperative and non-cooperative aircraft encounters Evaluate UAS (Unmanned Aircraft Systems) pilot performance in response to DAA maneuver guidance and alerting with live intruder encounters Evaluate TCAS/DAA (Traffic Alert and Collision Avoidance System/Detect and Avoid) interoperability. This flight test series will focus on only the Scripted Encounters configuration, supporting the collection of data to validate the interoperability of DAA and collision avoidance algorithms.

  1. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  2. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  3. Actuated forebody strake controls for the F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.; Trilling, Todd W.

    1993-01-01

    A series of ground-based studies have been conducted to develop actuated forebody strake controls for flight test evaluations using the NASA F-18 High-Alpha Research Vehicle. The actuated forebody strake concept has been designed to provide increased levels of yaw control at high angles of attack where conventional rudders become ineffective. Results are presented from tests conducted with the flight-test strake design, including static and dynamic wind-tunnel tests, transonic wind-tunnel tests, full-scale wind-tunnel tests, pressure surveys, and flow visualization tests. Results from these studies show that a pair of conformal actuated forebody strakes applied to the F-18 HARV can provide a powerful and precise yaw control device at high angles of attack. The preparations for flight testing are described, including the fabrication of flight hardware and the development of aircraft flight control laws. The primary objectives of the flight tests are to provide flight validation of the groundbased studies and to evaluate the use of this type of control to enhance fighter aircraft maneuverability.

  4. Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao

    2018-01-01

    To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.

  5. Analysis of an Artificial Tailplane Icing Flight Test of a High-Wing, Twin-Engine Aircraft

    NASA Astrophysics Data System (ADS)

    Shaikh, Shehzad M.

    The US Air Force Flight Test Center (AFFTC) conducted a civilian, Federal Aviation Administration (FAA) sponsored, evaluation of tailplane icing of a twin-turboprop business transport at Edwards Air Force Base. The flight test was conducted to evaluate ice shape growth and extent of ice on the tailplane for specific weather conditions of Liquid Water Content (LWC), droplet size, and ambient temperature. This work analyzes the flight test data comparing the drag for various tailplane icing conditions with respect to a flight test verified calibrated aircraft model. Although less than a third of the test aircraft was involved in the icing environment, the results of this analysis shows a significant increase in the aircraft drag with respect to the LWC, droplet size, and ambient temperature.

  6. A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.

    2009-01-01

    NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.

  7. Requirements for Flight Testing Automated Terminal Service

    DOT National Transportation Integrated Search

    1977-05-01

    This report describes requirements for the flight tests of the baseline Automated Terminals Service (ATS) system. The overall objective of the flight test program is to evaluate the feasibility of the ATS concept. Within this objective there are two ...

  8. A Data System for a Rapid Evaluation Class of Subscale Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Quach, Cuong C.; Vazquez, Sixto L.; Hill, Boyd L.

    2011-01-01

    A low cost, rapid evaluation, test aircraft is used to develop and test airframe damage diagnosis algorithms at Langley Research Center as part of NASA's Aviation Safety Program. The remotely operated subscale aircraft is instrumented with sensors to monitor structural response during flight. Data is collected for good and compromised airframe configurations to develop data driven models for diagnosing airframe state. This paper describes the data acquisition system (DAS) of the rapid evaluation test aircraft. A PC/104 form factor DAS was developed to allow use of Matlab, Simulink simulation code in Langley's existing subscale aircraft flight test infrastructure. The small scale of the test aircraft permitted laboratory testing of the actual flight article under controlled conditions. The low cost and modularity of the DAS permitted adaptation to various flight experiment requirements.

  9. Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.

  10. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  11. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  12. Flight-Test Evaluation of Flutter-Prediction Methods

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Brenner, Marty

    2003-01-01

    The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter. Several methods have been developed with the goal of predicting flutter speeds to improve the efficiency of flight testing. These methods include (1) data-based methods, in which one relies entirely on information obtained from the flight tests and (2) model-based approaches, in which one relies on a combination of flight data and theoretical models. The data-driven methods include one based on extrapolation of damping trends, one that involves an envelope function, one that involves the Zimmerman-Weissenburger flutter margin, and one that involves a discrete-time auto-regressive model. An example of a model-based approach is that of the flutterometer. These methods have all been shown to be theoretically valid and have been demonstrated on simple test cases; however, until now, they have not been thoroughly evaluated in flight tests. An experimental apparatus called the Aerostructures Test Wing (ATW) was developed to test these prediction methods.

  13. External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.

    2014-01-01

    NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.

  14. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  15. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph A.; Iannicca, Dennis C.; Shalkhauser, Kurt A.; Kachmar, Brian A.

    2014-01-01

    NASA Glenn Research Center conducted a series of flight tests for the purpose of evaluating air-to-ground communications links for future unmanned aircraft systems (UAS). The primary objective of the test effort was to evaluate the transition of the aircraft communications from one ground station to the next, and to monitor data flow during the "hand-off" event. To facilitate the testing, ground stations were installed at locations in Cleveland, Ohio and Albany, Ohio that each provides line-of-sight radio communications with an overflying aircraft. This report describes results from the flight tests including flight parameters, received signal strength measurements, data latency times, and performance observations for the air-to-ground channel.

  16. Residual Stress Measurements After Proof and Flight: ETP-0403

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  17. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  18. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  19. Comparative evaluation of Space Transportation System (STS)-3 flight and acoustic test random vibration response of the OSS-1 payload

    NASA Technical Reports Server (NTRS)

    On, F. J.

    1983-01-01

    A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.

  20. Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    NASA Technical Reports Server (NTRS)

    Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.

    1983-01-01

    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.

  1. Flight test summary of modified fuel systems

    NASA Technical Reports Server (NTRS)

    Barrett, B. G.

    1976-01-01

    Two different aircraft designs, each with two modified fuel control systems, were evaluated. Each aircraft was evaluated in a given series of defined ground and flight conditions while quantitative and qualitative observations were made. During this program, some ten flights were completed, and a total of about 13 hours of engine run time was accumulated by the two airplanes. The results of these evaluations with emphasis on the operational and safety aspects were analyzed. Ground tests of the engine alone were not able to predict acceptable limiting lean mixture settings for the flight envelopes of the Cessna Models 150 and T337.

  2. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  3. Ariane flight testing

    NASA Astrophysics Data System (ADS)

    Vedrenne, M.

    1983-11-01

    The object of this paper is to present the way in which the flight development tests of the Ariane launch vehicle have enabled the definition to be frozen and its qualification to be demonstrated before the beginning of the operational phase. A first part is devoted to the in-flight measurement facilities, the acquisition and evaluation systems, and to the organization of the in-flight results evaluation. The following part consists of the comparison between ground predictions and flight results for the main parameters as classified by system (stages, trajectory, propulsion, flight mechanics, auto pilot and guidance). The corrective actions required are then identified and the corresponding results shown.

  4. Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Dorr, D. W.; Moralez, E., III; Merrick, V. K.

    1994-01-01

    Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.

  5. 5-inch-size liquid crystal flat panel display evaluation test by flight simulator

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroyasu; Watanabe, Akira; Wakairo, Kaoru; Udagawa, Tomoyuki; Kurihara, Yoichiro

    An evaluation test is conducted on the function, performance, and display format of a 5x5 inch flat panel display (FPD) in a flight simulator. The FPD utilizes a color liquid crystal panel that is compact and lightweight and has excellent visibility. The simulator evaluation test is carried out in sequence with the conventional takeoff and landing to altitude, and then conversion to STOL procedures for flight path and subsequent approach and landing. It is shown that the liquid crystal display could be employed as a satisfactory indicator for aircraft instrumentation.

  6. UAS in the NAS Flight Test Series 3 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2015-01-01

    The UAS Integration in the NAS Project is conducting a series of flight tests to acheive the following objectives: 1.) Validate results previously collected during project simulations with live data 2.) Evaluate TCAS IISS interoperability 3.) Test fully integrated system in a relevant live test environment 4.) Inform final DAA and C2 MOPS 5.) Reduce risk for Flight Test Series 4.

  7. KC-135 Winglet Program Review

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a joint NASA/USAF program to develop flight test winglets on a KC-135 aircraft are reviewed. The winglet development from concept through wind tunnel and flight tests is discussed. Predicted, wind tunnel, and flight test results are compared for the performance, loads and flutter characteristics of the winglets. The flight test winglets had a variable winglet cant and incidence angle capability which enabled a limited evaluation of the effects of these geometry changes.

  8. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  9. Systems Engineering Management Plan NASA Traffic Aware Planner Integration Into P-180 Airborne Test-Bed

    NASA Technical Reports Server (NTRS)

    Maris, John

    2015-01-01

    NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).

  10. Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture

    NASA Technical Reports Server (NTRS)

    Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.

    2003-01-01

    This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.

  11. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...

  12. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...

  13. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...

  14. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... data evaluate the accuracy of the prognostic weather map used for flight planning and apply this... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Test Requirements for Flight Navigator... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Pt. 63, App. A Appendix A...

  15. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  16. The chocolate-colored expanse of Rogers Dry Lake frames the sleek lines of the Boeing / NASA X-48B subscale demonstrator during a test flight at Edwards AFB

    NASA Image and Video Library

    2007-08-14

    Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.

  17. Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program

    NASA Technical Reports Server (NTRS)

    Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

    1989-01-01

    Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

  18. Evaluation of Candidate Millimeter Wave Sensors for Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Alexander, Neal T.; Hudson, Brian H.; Echard, Jim D.

    1994-01-01

    The goal of the Synthetic Vision Technology Demonstration Program was to demonstrate and document the capabilities of current technologies to achieve safe aircraft landing, take off, and ground operation in very low visibility conditions. Two of the major thrusts of the program were (1) sensor evaluation in measured weather conditions on a tower overlooking an unused airfield and (2) flight testing of sensor and pilot performance via a prototype system. The presentation first briefly addresses the overall technology thrusts and goals of the program and provides a summary of MMW sensor tower-test and flight-test data collection efforts. Data analysis and calibration procedures for both the tower tests and flight tests are presented. The remainder of the presentation addresses the MMW sensor flight-test evaluation results, including the processing approach for determination of various performance metrics (e.g., contrast, sharpness, and variability). The variation of the very important contrast metric in adverse weather conditions is described. Design trade-off considerations for Synthetic Vision MMW sensors are presented.

  19. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  20. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  1. In-flight speech intelligibility evaluation of a service member with sensorineural hearing loss: case report.

    PubMed

    Casto, Kristen L; Cho, Timothy H

    2012-09-01

    This case report describes the in-flight speech intelligibility evaluation of an aircraft crewmember with pure tone audiometric thresholds that exceed the U.S. Army's flight standards. Results of in-flight speech intelligibility testing highlight the inability to predict functional auditory abilities from pure tone audiometry and underscore the importance of conducting validated functional hearing evaluations to determine aviation fitness-for-duty.

  2. ARC-2007-ACD07-0073-126

    NASA Image and Video Library

    2007-08-07

    LCROSS flight hardware in clean room at Ames N-240. EEL personnel fabricating testing components with Jerry Wang of Ames, Engineering Evaluation labLCROSS flight hardware in clean room at Ames N-240. EEL personnel fabricating testing components with Jerry Wang of Ames, Engineering Evaluation lab

  3. A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.

    2011-01-01

    Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.

  4. Performance Evaluation of Speech Recognition Systems as a Next-Generation Pilot-Vehicle Interface Technology

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Bailey, Randall E.

    2016-01-01

    During the flight trials known as Gulfstream-V Synthetic Vision Systems Integrated Technology Evaluation (GV-SITE), a Speech Recognition System (SRS) was used by the evaluation pilots. The SRS system was intended to be an intuitive interface for display control (rather than knobs, buttons, etc.). This paper describes the performance of the current "state of the art" Speech Recognition System (SRS). The commercially available technology was evaluated as an application for possible inclusion in commercial aircraft flight decks as a crew-to-vehicle interface. Specifically, the technology is to be used as an interface from aircrew to the onboard displays, controls, and flight management tasks. A flight test of a SRS as well as a laboratory test was conducted.

  5. AGARD Flight Test Techniques Series. Volume 12. The Principles of Flight Test Assessment of Flight-Safety-Critical Systems in Helicopters (Les Principes de l’Evaluation, dans le Cadre des Essais en Vol, des Systemes Indispensables a la Securite de Vol des Helicopteres)

    DTIC Science & Technology

    1994-08-01

    AGARD-AG-300 Vol. 12 04 ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE AUG 0195 AGARDograph 300...AGARD Flight Test Techniques Series Volume 12 on The Principles of Flight Test Assessment of Flight-Safety-Critical Systems in Helicopters (Les...and Availability on Back Cover AGARD-AG-300 Vol. 12 ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE

  6. Apollo experience report: Communications system flight evaluation and verification

    NASA Technical Reports Server (NTRS)

    Travis, D.; Royston, C. L., Jr.

    1972-01-01

    Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.

  7. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  8. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    NASA Technical Reports Server (NTRS)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  9. 14 CFR 142.55 - Training center evaluator requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... corrective action; and (4) If evaluating in qualified and approved flight training equipment must satisfactorily pass a written test and annual proficiency check in a flight simulator or aircraft in which the... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment...

  10. 14 CFR 142.55 - Training center evaluator requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corrective action; and (4) If evaluating in qualified and approved flight training equipment must satisfactorily pass a written test and annual proficiency check in a flight simulator or aircraft in which the... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment...

  11. 14 CFR 142.55 - Training center evaluator requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... corrective action; and (4) If evaluating in qualified and approved flight training equipment must satisfactorily pass a written test and annual proficiency check in a flight simulator or aircraft in which the... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment...

  12. 14 CFR 142.55 - Training center evaluator requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... corrective action; and (4) If evaluating in qualified and approved flight training equipment must satisfactorily pass a written test and annual proficiency check in a flight simulator or aircraft in which the... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment...

  13. 14 CFR 142.55 - Training center evaluator requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... corrective action; and (4) If evaluating in qualified and approved flight training equipment must satisfactorily pass a written test and annual proficiency check in a flight simulator or aircraft in which the... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment...

  14. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  15. UAS Integration in the NAS Project: Flight Test 3 Data Analysis of JADEM-Autoresolver Detect and Avoid System

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Wu, Minghong G.; Santiago, Confesor

    2016-01-01

    The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS Integration in the NAS, aims to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The UAS Integration in the NAS Project conducted a flight test activity, referred to as Flight Test 3 (FT3), involving several Detect-and-Avoid (DAA) research prototype systems between June 15, 2015 and August 12, 2015 at the Armstrong Flight Research Center (AFRC). This report documents the flight testing and analysis results for the NASA Ames-developed JADEM-Autoresolver DAA system, referred to as 'Autoresolver' herein. Four flight test days (June 17, 18, 22, and July 22) were dedicated to Autoresolver testing. The objectives of this test were as follows: 1. Validate CPA prediction accuracy and detect-and-avoid (DAA, formerly known as self-separation) alerting logic in realistic flight conditions. 2. Validate DAA trajectory model including maneuvers. 3. Evaluate TCAS/DAA interoperability. 4. Inform final Minimum Operating Performance Standards (MOPS). Flight test scenarios were designed to collect data to directly address the objectives 1-3. Objective 4, inform final MOPS, was a general objective applicable to the UAS in the NAS project as a whole, of which flight test is a subset. This report presents analysis results completed in support of the UAS in the NAS project FT3 data review conducted on October 20, 2015. Due to time constraints and, to a lesser extent, TCAS data collection issues, objective 3 was not evaluated in this analysis.

  16. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  17. NASA Countermeasures Evaluation and Validation Project

    NASA Technical Reports Server (NTRS)

    Lundquist, Charlie M.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To support its ISS and exploration class mission objectives, NASA has developed a Countermeasure Evaluation and Validation Project (CEVP). The goal of this project is to evaluate and validate the optimal complement of countermeasures required to maintain astronaut health, safety, and functional ability during and after short- and long-duration space flight missions. The CEVP is the final element of the process in which ideas and concepts emerging from basic research evolve into operational countermeasures. The CEVP is accomplishing these objectives by conducting operational/clinical research to evaluate and validate countermeasures to mitigate these maladaptive responses. Evaluation is accomplished by testing in space flight analog facilities, and validation is accomplished by space flight testing. Both will utilize a standardized complement of integrated physiological and psychological tests, termed the Integrated Testing Regimen (ITR) to examine candidate countermeasure efficacy and intersystem effects. The CEVP emphasis is currently placed on validating the initial complement of ISS countermeasures targeting bone, muscle, and aerobic fitness; followed by countermeasures for neurological, psychological, immunological, nutrition and metabolism, and radiation risks associated with space flight. This presentation will review the processes, plans, and procedures that will enable CEVP to play a vital role in transitioning promising research results into operational countermeasures necessary to maintain crew health and performance during long duration space flight.

  18. AGARD Flight Test Techniques Series. Volume 8. Flight Testing under Extreme Environmental Conditions

    DTIC Science & Technology

    1988-01-01

    gravity control system operation. The overall objective of fuel system tests is to determine whether the system functions properly at all conditions both... gravity . 3.3.4 Hydraulic System The functional adequacy of the hydraulic system should be evaluated by monitoring operating system temperatures and...mechanical or gravity function of the crew ladder should be evaluated. The ladder should be exposed to freasing rain and icing to evaluate the non

  19. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  20. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  1. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  2. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  3. 14 CFR 142.65 - Limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used during line operational simulation for evaluation and line-oriented flight training only to...) When flight testing, flight checking, or line operational simulation is being conducted, the...

  4. Flight-test evaluation of civil helicopter terminal approach operations using differential GPS

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Hegarty, D. M.

    1989-01-01

    A civil code differential Global Positioning System (DGPS) has been developed and flight-tested by the NASA Ames Research Center. The system was used to evaluate the performance of the DGPS for support of helicopter terminal approach operations. The airborne component of the DGPS was installed in a NASA helicopter. The ground-reference component was installed in a mobile van and equipped with a real-time VHF telemetry data link to transmit correction information to the aircraft system. An extensive series of tests was conducted to evaluate the performance of the system for several different configurations of the airborne navigation filter. This paper will describe the systems, the results of the flight tests, and the results of the posttest analysis.

  5. Engineering evaluation of SSME dynamic data from engine tests and SSV flights

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An engineering evaluation of dynamic data from SSME hot firing tests and SSV flights is summarized. The basic objective of the study is to provide analyses of vibration, strain and dynamic pressure measurements in support of MSFC performance and reliability improvement programs. A brief description of the SSME test program is given and a typical test evaluation cycle reviewed. Data banks generated to characterize SSME component dynamic characteristics are described and statistical analyses performed on these data base measurements are discussed. Analytical models applied to define the dynamic behavior of SSME components (such as turbopump bearing elements and the flight accelerometer safety cut-off system) are also summarized. Appendices are included to illustrate some typical tasks performed under this study.

  6. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

  7. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  8. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  9. Airworthiness and Flight Characteristics Test (A&FC) of the CH-47D helicopter

    DTIC Science & Technology

    1984-02-01

    Development Specification which were evaluated during this test. The Advanced Flight Control System heading select capability and the pressure refueling...determine compliance with the CH-47D Prime Item Development Specification (PIDS). 2. This Directorate agrees with the report conclusions and...Evaluations (PAE) (refs 1 and 2. app A), climatic laboratory tests (ref 3), and icing tests (ref 4). The US Army Aviation Research and Development

  10. Expanded study of feasibility of measuring in-flight 747/JT9D loads, performance, clearance, and thermal data

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.; Martin, R. L.

    1980-01-01

    The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.

  11. X-48B Flight Test Progress Overview

    NASA Technical Reports Server (NTRS)

    Risch, Timoth K.; Cosentino, Gary B.; Regan, Christopher D.; Kisska, Michael; Princen, Norman

    2009-01-01

    The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations.

  12. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    A low cost flight research program was conducted to evaluate the performance of differential Omega navigation in a general aviation aircraft. The flight program consisted of two distinct parts corresponding to the two major objectives of the study. The Wallops Flight Program was conducted to obtain Omega signal and phase data in the Wallops Flight Center vicinity to provide preliminary technical information and experience in preparation for a comprehensive NASA/FAA flight test program of an experimental differential Omega system. The Northeast Corridor Flight Program was conducted to examine Omega operational suitability and performance on low altitude area navigation (RNAV) routes for city-center to city-center VTOL commercial operations in the Boston-New York-Washington corridor. The development, execution and conclusions of the flight research program are discribed. The results of the study provide both quantitative and qualitative data on the Omega Navigation System under actual operating conditions.

  13. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  14. Flight Deck Interval Management Flight Test Final Report

    NASA Technical Reports Server (NTRS)

    Tulder, Paul V.

    2017-01-01

    This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.

  15. Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles

    2008-01-01

    NASA is maturing test and evaluation plans leading to flight readiness of the Ares I crew launch vehicle. Key development, qualification, and verification tests are planned . Upper stage engine sea-level and altitude testing. First stage development and qualification motors. Upper stage structural and thermal development and qualification test articles. Main Propulsion Test Article (MPTA). Upper stage green run testing. Integrated Vehicle Ground Vibration Testing (IVGVT). Aerodynamic characterization testing. Test and evaluation supports initial validation flights (Ares I-Y and Orion 1) and design certification.

  16. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 1

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. This is Volume 1, an Executive Summary. Volume 2 contains Appendices A (Aerothermal Comparisons) and B (Flight Derived h sub 1/h sub u vs. M sub inf. Plots), and Volume 3 contains Appendix C (Comparison of Interference Factors among OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  17. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. Volume 2 contains Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub 1/h sub u vs. M sub inf. Plots). This is Volume 3, containing Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  18. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. This is volume 2, containing Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub i/h sub u vs. M sub inf. Plots). Volume 3 contains Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  19. Centaur Standard Shroud (CSS) static limit load structural tests

    NASA Technical Reports Server (NTRS)

    Eastwood, C.

    1975-01-01

    The structural capabilities of the jettisonable metal shroud were tested and the interaction of the shroud with the Centaur stage was evaluated. A flight-configured shroud and the assemblies of the associated Centaur stage were tested for applied axial and shear loads to flight limit values. The tests included various thermal, pressure, and load conditions to verify localized strength capabilities, to evaluate subsystem performance, and to determine the aging effect on insulation system properties. The tests series verified the strength capabilities of the shroud and of all associated flight assembles. Shroud deflections were shown to remain within allowable limits so long as load sharing members were connected between the shroud and the Centaur stage.

  20. A Methodology for Flight-Time Identification of Helicopter-Slung Load Frequency Response Characteristics Using CIFER

    NASA Technical Reports Server (NTRS)

    Sahai, Ranjana; Pierce, Larry; Cicolani, Luigi; Tischler, Mark

    1998-01-01

    Helicopter slung load operations are common in both military and civil contexts. The slung load adds load rigid body modes, sling stretching, and load aerodynamics to the system dynamics, which can degrade system stability and handling qualities, and reduce the operating envelope of the combined system below that of the helicopter alone. Further, the effects of the load on system dynamics vary significantly among the large range of loads, slings, and flight conditions that a utility helicopter will encounter in its operating life. In this context, military helicopters and loads are often qualified for slung load operations via flight tests which can be time consuming and expensive. One way to reduce the cost and time required to carry out these tests and generate quantitative data more readily is to provide an efficient method for analysis during the flight, so that numerous test points can be evaluated in a single flight test, with evaluations performed in near real time following each test point and prior to clearing the aircraft to the next point. Methodology for this was implemented at Ames and demonstrated in slung load flight tests in 1997 and was improved for additional flight tests in 1999. The parameters of interest for the slung load tests are aircraft handling qualities parameters (bandwidth and phase delay), stability margins (gain and phase margin), and load pendulum roots (damping and natural frequency). A procedure for the identification of these parameters from frequency sweep data was defined using the CIFER software package. CIFER is a comprehensive interactive package of utilities for frequency domain analysis previously developed at Ames for aeronautical flight test applications. It has been widely used in the US on a variety of aircraft, including some primitive flight time analysis applications.

  1. Flight evaluation of an engine static pressure noseprobe in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Foote, C. H.; Jaekel, R. F.

    1981-01-01

    The flight testing of an inlet static pressure probe and instrumented inlet case produced results consistent with sea-level and altitude stand testing. The F-15 flight test verified the basic relationship of total to static pressure ratio versus corrected airflow and automatic distortion downmatch with the engine pressure ratio control mode. Additionally, the backup control inlet case statics demonstrated sufficient accuracy for backup control fuel flow scheduling, and the station 6 manifolded production probe was in agreement with the flight test station 6 tota pressure probes.

  2. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  3. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  4. Ares I-X Flight Evaluation Tasks in Support of Ares I Development

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Coates, Ralph H., III; Cruit, Wendy D.; Ramsey, Matthew N.

    2010-01-01

    NASA s Constellation Program successfully launched the Ares I-X Flight Test Vehicle on October 28, 2009. The Ares I-X flight was a development flight test that offered a unique opportunity for early engineering data to impact the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office established a set of 33 flight evaluation tasks to correlate fight results with prospective design assumptions and models. Included within these tasks were direct comparisons of flight data with pre-flight predictions and post-flight assessments utilizing models and modeling techniques being applied to design and develop Ares I. A discussion of the similarities and differences in those comparisons and the need for discipline-level model updates based upon those comparisons form the substance of this paper. The benefits of development flight testing were made evident by implementing these tasks that used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. The areas in which partial validation from the flight test was most significant included flight control system algorithms to predict liftoff clearance, ascent, and stage separation; structural models from rollout to separation; thermal models that have been updated based on these data; pyroshock attenuation; and the ability to predict complex flow fields during time-varying conditions including plume interactions.

  5. Development and flight test evaluation of a pitch stability augmentation system for a relaxed stability L-1011

    NASA Technical Reports Server (NTRS)

    Rising, J. J.

    1982-01-01

    The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.

  6. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2016-01-01

    Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.

  7. Dietary Effects on Cognition and Pilots' Flight Performance.

    PubMed

    Lindseth, Glenda N; Lindseth, Paul D; Jensen, Warren C; Petros, Thomas V; Helland, Brian D; Fossum, Debra L

    2011-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg's mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer ( p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets.

  8. Ares I-X Separation and Reentry Trajectory Analyses

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Starr, Brett R.

    2011-01-01

    The Ares I-X Flight Test Vehicle was launched on October 28, 2009 and was the first and only test flight of NASA s two-stage Ares I launch vehicle design. The launch was successful and the flight test met all of its primary and secondary objectives. This paper discusses the stage separation and reentry trajectory analysis that was performed in support of the Ares I-X test flight. Pre-flight analyses were conducted to assess the risk of stage recontact during separation, to evaluate the first stage flight dynamics during reentry, and to define the range safety impact ellipses of both stages. The results of these pre-flight analyses were compared with available flight data. On-board video taken during flight showed that the flight test vehicle successfully separated without any recontact. Reconstructed trajectory data also showed that first stage flight dynamics were well characterized by pre-flight Monte Carlo results. In addition, comparisons with flight data indicated that the complex interference aerodynamic models employed in the reentry simulation were effective in capturing the flight dynamics during separation. Finally, the splash-down locations of both stages were well within predicted impact ellipses.

  9. Unmanned Aerial Vehicle Flight Test Approval Process and Its Implications: A Methodological Approach to Capture and Evaluate Hidden Costs and Value in the Overall Process

    DTIC Science & Technology

    2012-03-22

    world’s first powered and controlled flying machine. Numerous flight designs and tests were done by scientists, engineers, and flight enthusiasts...conceptual flight and preliminary designs before they could control the craft with three-axis control and the correct airfoil design . These pioneers...analysis support. Although wind tunnel testing can provide data to predict and develop control surface designs , few SUAV operators opt to utilize wind

  10. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  11. Shuttle program: OFT ascent/descent ancillary data requirements document

    NASA Technical Reports Server (NTRS)

    Bond, A. C., Jr.; Knoedler, J.

    1980-01-01

    Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of the orbital flight test (OFT) flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. The A/D ancillary data support for OFT mission evaluation activities is confined to providing postflight position, velocity, attitude, and associated navigation and attitude derived parameters for the Orbiter over particular flight phases and time intervals.

  12. SSI-ARC Flight Test 3 Data Review

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Wu, Minghong G.

    2015-01-01

    The "Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS)" Project conducted flight test program, referred to as Flight Test 3, at Armstrong Flight Research Center from June - August 2015. Four flight test days were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as Autoresolver. The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Resulting flight test data and analysis results will be used to evaluate the DAA system performance (e.g., trajectory prediction accuracy, threat detection) and to add fidelity to simulation models used to inform Minimum Operating Performance Standards (MOPS) for integrating UAS into routine NAS operations.

  13. A Concept for the HIFiRE 8 Flight Test

    NASA Astrophysics Data System (ADS)

    Alesi, H.; Paull, A.; Smart, M.; Bowcutt, K. G.

    2015-09-01

    HIFiRE 8 is a hypersonic flight test experiment scheduled for launch in late 2018 from the Woomera Test Center in Australia. This project aims to develop a Flight Test Vehicle that will, for the first time, complete 30 seconds of scramjet powered hypersonic flight at a Mach Number of 7.0. The engine used for this flight will be a rectangular to elliptic shape transition scramjet. It will be fuelled with gaseous hydrogen. The flight test engine configuration will be derived using scientific and engineering evaluation in the UQ shock tunnel T4 and other potential ground-based facilities. This paper presents current plans for the HIFiRE 8 trajectory, mission events, airframe and engine designs and also includes descriptions of critical subsystems and associated modelling, simulation and analysis activities.

  14. Human factors evaluation of TSO-C129A GPS receivers

    DOT National Transportation Integrated Search

    1998-10-22

    This report documents an evaluation of the usability of TSO-C129a-certified Global Positioning System (GPS) receivers. Bench and flight tests were conducted on six GPS receivers. The evaluations covered 23 flight tasks. Both subjective and objective ...

  15. Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.

    1993-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.

  16. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  17. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  18. Shuttle payload vibroacoustic test plan evaluation

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloff, H. R.; Young, J. P.; Keegan, W. B.

    1977-01-01

    Statistical decision theory is used to evaluate seven alternate vibro-acoustic test plans for Space Shuttle payloads; test plans include component, subassembly and payload testing and combinations of component and assembly testing. The optimum test levels and the expected cost are determined for each test plan. By including all of the direct cost associated with each test plan and the probabilistic costs due to ground test and flight failures, the test plans which minimize project cost are determined. The lowest cost approach eliminates component testing and maintains flight vibration reliability by performing subassembly tests at a relatively high acoustic level.

  19. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  20. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  1. Preparations for flight research to evaluate actuated forebody strakes on the F-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.

    1994-01-01

    As part of the NASA High-Angle-of-Attack Technology Program (HATP), flight tests are currently being conducted with a multi-axis thrust vectoring system applied to the NASA F-18 High Alpha Research Vehicle (HARV). A follow-on series of flight tests with the NASA F-18 HARV will be focusing on the application of actuated forebody strake controls. These controls are designed to provide increased levels of yaw control at high angles of attack where conventional aerodynamic controls become ineffective. The series of flight tests are collectively referred to as the Actuated Nose Strakes for Enhanced Rolling (ANSER) Flight Experiment. The development of actuated forebody strake controls for the F-18 HARV is discussed and a summary of the ground tests conducted in support of the flight experiment is provided. A summary of the preparations for the flight tests is also provided.

  2. Flight Test Evaluation and Analysis of an Optical IR PWI System

    DOT National Transportation Integrated Search

    1972-06-01

    This report documents the flight test results of the optical : infrared (IR) Pilot Warning Instrument (PWI) system conducted by the : Transportation Systems Center as part of an FAA/NASA PWI development : program. The test program is described and th...

  3. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  4. Test and evaluation of a multifunction keyboard and a dedicated keyboard for control of a flight management computer

    NASA Technical Reports Server (NTRS)

    Crane, J. M.; Boucek, G. P., Jr.; Smith, W. D.

    1986-01-01

    A flight management computer (FMC) control display unit (CDU) test was conducted to compare two types of input devices: a fixed legend (dedicated) keyboard and a programmable legend (multifunction) keyboard. The task used for comparison was operation of the flight management computer for the Boeing 737-300. The same tasks were performed by twelve pilots on the FMC control display unit configured with a programmable legend keyboard and with the currently used B737-300 dedicated keyboard. Flight simulator work activity levels and input task complexity were varied during each pilot session. Half of the points tested were previously familiar with the B737-300 dedicated keyboard CDU and half had no prior experience with it. The data collected included simulator flight parameters, keystroke time and sequences, and pilot questionnaire responses. A timeline analysis was also used for evaluation of the two keyboard concepts.

  5. Operation Of The X-29A Digital Flight-Control System

    NASA Technical Reports Server (NTRS)

    Chacon, Vince; Mcbride, David

    1990-01-01

    Report reviews program of testing and evaluation of digital flight-control system for X-29A airplane, with emphasis on operation during tests. Topics include design of system, special electronic testing equipment designed to aid in daily operations, and aspects of testing, including detection of faults.

  6. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1975-01-01

    The flight service experience of 108 graphite-epoxy spoilers on 737 transport aircraft, and related ground-based environmental exposure of graphite-epoxy material specimens were evaluated. Four spoilers were installed on each of 27 aircraft for a 5-year study. As of February 28, 1975, a total of 294,280 spoiler flight-hours and 460,686 spoiler landings were accumulated. Based on visual, ultrasonic, and destructive testing, no moisture migration into the honeycomb core and no core corrosion has occurred. Tests of removed spoilers and of ground-based exposure specimens after the first year of service indicate no significant changes in composite strength.

  7. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  8. Flight selection at United Airlines

    NASA Technical Reports Server (NTRS)

    Traub, W.

    1980-01-01

    Airline pilot selection proceedures are discussed including psychogical and personality tests, psychomotor performance requirements, and flight skills evaluation. Necessary attitude and personality traits are described and an outline of computer selection, testing, and training techniques is given.

  9. Manual flying of curved precision approaches to landing with electromechanical instrumentation. A piloted simulation study

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1993-01-01

    A piloted simulation study was conducted to examine the requirements for using electromechanical flight instrumentation to provide situation information and flight guidance for manually controlled flight along curved precision approach paths to a landing. Six pilots were used as test subjects. The data from these tests indicated that flight director guidance is required for the manually controlled flight of a jet transport airplane on curved approach paths. Acceptable path tracking performance was attained with each of the three situation information algorithms tested. Approach paths with both multiple sequential turns and short final path segments were evaluated. Pilot comments indicated that all the approach paths tested could be used in normal airline operations.

  10. In-flight evaluation of an optical head motion tracker III

    NASA Astrophysics Data System (ADS)

    Tawada, Kazuho; Okamoto, Masakazu

    2011-06-01

    We have presented a new approach for Optical HMT (Head Motion Tracker) past years [1]-[4]. In existing Magnetic HMT, it is inevitable to conduct pre-mapping in order to obtain sufficient accuracy because of magnetic field's distortion caused by metallic material around HMT, such as cockpit and helmet. Optical HMT is commonly known as mapping-free tracker; however, it has some disadvantages on accuracy, stability against sunlight conditions, in terms of comparison with Magnetic HMT. We had succeeded to develop new HMT system, which can overcome particular disadvantages by integration with two area cameras, optical markers, image processing techniques and inertial sensors with simple algorithm in laboratory level environment (2008). We have also reported some experimental results conducted in flight test, which proved good accuracy even in the sunlight condition (2009). We have also reported some experimental results conducted in flight test, which proved good performance even in the night flight (2010). Shimadzu Corp. and JAXA (Japan Aerospace Exploration Agency) are conducting joint research named SAVERH (Situation Awareness and Visual Enhancer for Rescue Helicopter) [2]-[4] that aims at inventing method of presenting suitable information to the pilot to support search and rescue missions by helicopters. The HMT system has been evaluated through a series of flight evaluation in SAVERH and demonstrated the operation concept. In this report, we show result of the final evaluation of the HMD system through 12 flights including night flight. Also, those evaluation was done by integrated HMT system that was newly developed for the tests in this year.

  11. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  12. Mission definition study for Stanford relativity satellite. Volume 2: Engineering flight test program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The need is examined for orbital flight tests of gyroscope, dewar, and other components, in order to reduce the technical and financial risk in performing the relativity experiment. A program is described that would generate engineering data to permit prediction of final performance. Two flight tests are recommended. The first flight would test a dewar smaller than that required for the final flight, but of size and form sufficient to allow extrapolation to the final design. The second flight would use the same dewar design to carry a set of three gyroscopes, which would be evaluated for spinup and drift characteristics for a period of a month or more. A proportional gas control system using boiloff helium gas from the dewar, and having the ability to prevent sloshing of liquid helium, would also be tested.

  13. Dietary Effects on Cognition and Pilots’ Flight Performance

    PubMed Central

    Lindseth, Glenda N.; Lindseth, Paul D.; Jensen, Warren C.; Petros, Thomas V.; Helland, Brian D.; Fossum, Debra L.

    2017-01-01

    The purpose of this study was to investigate the effects of diet on cognition and flight performance of 45 pilots. Based on a theory of self-care, this clinical study used a repeated-measure, counterbalanced crossover design. Pilots were randomly rotated through 4-day high-carbohydrate, high-protein, high-fat, and control diets. Cognitive flight performance was evaluated using a GAT-2 full-motion flight simulator. The Sternberg short-term memory test and Vandenberg’s mental rotation test were used to validate cognitive flight test results. Pilots consuming a high-protein diet had significantly poorer (p < .05) overall flight performance scores than pilots consuming high-fat and high-carbohydrate diets. PMID:29353985

  14. Real-time data display for AFTI/F-16 flight testing

    NASA Technical Reports Server (NTRS)

    Harney, P. F.

    1982-01-01

    Advanced fighter technologies to improve air to air and air to surface weapon delivery and survivability is demonstrated. Real time monitoring of aircraft operation during flight testing is necessary not only for safety considerations but also for preliminary evaluation of flight test results. The complexity of the AFTI/F-16 aircraft requires an extensive capability to accomplish real time data goals; that capability and the resultant product are described.

  15. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two control law design techniques are compared and the performance of the resulting controllers evaluated. The design requirement is for a flight test trajectory controller (FTTC) capable of closed-loop, outer-loop control of an F-15 aircraft performing high-quality research flight test maneuvers. The maneuver modeling, linearization, and design methodologies utilized in this research, are detailed. The results of applying these FTTCs to a nonlinear F-15 simulation are presented.

  16. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  17. Flight Test Evaluation of the ATD-1 Interval Management Application

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.; Roper, Roy D.; Abbott, Terence S.; Levitt, Ian; Scharl, Julien

    2017-01-01

    Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.

  18. Evaluation of various thrust calculation techniques on an F404 engine

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.

    1990-01-01

    In support of performance testing of the X-29A aircraft at the NASA-Ames, various thrust calculation techniques were developed and evaluated for use on the F404-GE-400 engine. The engine was thrust calibrated at NASA-Lewis. Results from these tests were used to correct the manufacturer's in-flight thrust program to more accurately calculate thrust for the specific test engine. Data from these tests were also used to develop an independent, simplified thrust calculation technique for real-time thrust calculation. Comparisons were also made to thrust values predicted by the engine specification model. Results indicate uninstalled gross thrust accuracies on the order of 1 to 4 percent for the various in-flight thrust methods. The various thrust calculations are described and their usage, uncertainty, and measured accuracies are explained. In addition, the advantages of a real-time thrust algorithm for flight test use and the importance of an accurate thrust calculation to the aircraft performance analysis are described. Finally, actual data obtained from flight test are presented.

  19. Digital electronic engine control F-15 overview

    NASA Technical Reports Server (NTRS)

    Kock, B.

    1984-01-01

    A flight test evaluation of the digital elctronic engine control (DEEC) system was conducted. An overview of the flight program is presented. The roles of the participating parties, the system, and the flight program objectives are described. The test program approach is discussed, and the engine performance benefits are summarized. A description of the follow-on programs is included.

  20. Functional Fitness Testing Results Following Long-Duration ISS Missions.

    PubMed

    Laughlin, Mitzi S; Guilliams, Mark E; Nieschwitz, Bruce A; Hoellen, David

    2015-12-01

    Long-duration spaceflight missions lead to the loss of muscle strength and endurance. Significant reduction in muscle function can be hazardous when returning from spaceflight. To document these losses, NASA developed medical requirements that include measures of functional strength and endurance. Results from this Functional Fitness Test (FFT) battery are also used to evaluate the effectiveness of in-flight exercise countermeasures. The purpose of this paper is to document results from the FFT and correlate this information with performance of in-flight exercise on board the International Space Station. The FFT evaluates muscular strength and endurance, flexibility, and agility and includes the following eight measures: sit and reach, cone agility, push-ups, pull-ups, sliding crunches, bench press, leg press, and hand grip dynamometry. Pre- to postflight functional fitness measurements were analyzed using dependent t-tests and correlation analyses were used to evaluate the relationship between functional fitness measurements and in-flight exercise workouts. Significant differences were noted post space flight with the sit and reach, cone agility, leg press, and hand grip measurements while other test scores were not significantly altered. The relationships between functional fitness and in-flight exercise measurements showed minimal to moderate correlations for most in-flight exercise training variables. The change in FFT results can be partially explained by in-flight exercise performance. Although there are losses documented in the FFT results, it is important to realize that the crewmembers are successfully performing activities of daily living and are considered functional for normal activities upon return to Earth.

  1. Torque Tension Testing of Fasteners used for NASA Flight Hardware Applications

    NASA Technical Reports Server (NTRS)

    Hemminger, Edgar G.; Posey, Alan J.; Dube, Michael J.

    2014-01-01

    The effect of various lubricants and other compounds on fastener torque-tension relationships is evaluated. Testing was performed using a unique test apparatus developed by Posey at the NASA Goddard Space Flight Center. A description of the test methodology, including associated data collection and analysis will be presented. Test results for 300 series CRES and A286 heat resistant fasteners, torqued into various types of inserts will be presented. The primary objective of this testing was to obtain torque-tension data for use on NASA flight projects.

  2. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  3. Saturn Apollo Program

    NASA Image and Video Library

    1967-11-09

    This photograph shows an early moment of the first test flight of the Saturn V vehicle for the Apollo 4 mission, photographed by a ground tracking camera, on the morning of November 9, 1967. This mission was the first launch of the Saturn V launch vehicle. Objectives of the unmarned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield.

  4. Flight Testing Surfaces Engineered for Mitigating Insect Adhesion on a Falcon HU-25C

    NASA Technical Reports Server (NTRS)

    Shanahan, Michelle; Wohl, Chris J.; Smith, Joseph G., Jr.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Penner, Ronald K.

    2015-01-01

    Insect residue contamination on aircraft wings can decrease fuel efficiency in aircraft designed for natural laminar flow. Insect residues can cause a premature transition to turbulent flow, increasing fuel burn and making the aircraft less environmentally friendly. Surfaces, designed to minimize insect residue adhesion, were evaluated through flight testing on a Falcon HU-25C aircraft flown along the coast of Virginia and North Carolina. The surfaces were affixed to the wing leading edge and the aircraft remained at altitudes lower than 1000 feet throughout the flight to assure high insect density. The number of strikes on the engineered surfaces was compared to, and found to be lower than, untreated aluminum control surfaces flown concurrently. Optical profilometry was used to determine insect residue height and areal coverage. Differences in results between flight and laboratory tests suggest the importance of testing in realistic use environments to evaluate the effectiveness of engineered surface designs.

  5. Flight and ground tests of a very low density elastomeric ablative material

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.; Chapman, A. J., III

    1972-01-01

    A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.

  6. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  7. Flight evaluation of a pneumatic system for unsteady pressure measurements using conventional sensors

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Gilyard, Glenn B.

    1989-01-01

    A flight experiment was conducted to evaluate a pressure measurement system which uses pneumatic tubing and remotely located electronically scanned pressure transducer modules for in-flight unsteady aerodynamic studies. A parametric study of tubing length and diameter on the attenuation and lag of the measured signals was conducted. The hardware was found to operate satisfactorily at rates of up to 500 samples/sec per port in flight. The signal attenuation and lag due to tubing were shown to increase with tubing length, decrease with tubing diameter, and increase with altitude over the ranges tested. Measurable signal levels were obtained for even the longest tubing length tested, 4 ft, at frequencies up to 100 Hz. This instrumentation system approach provides a practical means of conducting detailed unsteady pressure surveys in flight.

  8. Space Shuttle Orbiter Approach and Landing Test: Final Evaluation Report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.

  9. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  10. NASA to Test In-Flight Folding Spanwise Adaptive Wing to Enhance Aircraft Efficiency

    NASA Image and Video Library

    2014-10-21

    The objectives of testing on PTERA include the development of tools and vetting of system integration, evaluation of vehicle control law, and analysis of SAW airworthiness to examine benefits to in-flight efficiency.

  11. A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.

    2000-01-01

    Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.

  12. A pilot rating scale for evaluating failure transients in electronic flight control systems

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  13. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  14. Design, construction, test and field support of a containerless payload package for rocket flight. [electromagnetic heating and confinement

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The performance of a device for electromagnetically heating and positioning containerless melts during space processing was evaluated during a 360 second 0-g suborbital sounding rocket flight. Components of the electromagnetic containerless processing package (ECPP), its operation, and interface with the rocket are described along with flight and qualification tests results.

  15. Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation

    NASA Technical Reports Server (NTRS)

    Zwerneman, W. D.; Eller, B. G.

    1994-01-01

    For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.

  16. The development of an augmentor wing jet STOL research aircraft (modified C-8A). Volume 2: Analysis of contractor's flight test

    NASA Technical Reports Server (NTRS)

    Skavdahl, H.; Patterson, D. H.

    1972-01-01

    The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.

  17. Reverse Engineering Crosswind Limits - A New Flight Test Technique?

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.

    2013-01-01

    During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.

  18. The NASA Hyper-X Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry

    1997-01-01

    This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.

  19. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  20. Evaluation of the Shuttle GN&C during powered ascent flight phase. [Guidance Navigation and Control equipment system design and flight tests

    NASA Technical Reports Server (NTRS)

    Olson, L.; Sunkel, J. W.

    1982-01-01

    An overview of the ascent trajectory and GN&C (guidance, navigation, and control) system design is followed by a summary of flight test results for the ascent phase of STS-1. The most notable variance from nominal pre-flight predictions was the lofted trajectory observed in first stage due to an unanticipated shift in pitch aerodynamic characteristics from those predicted by wind tunnel tests. The GN&C systems performed as expected on STS-1 throughout powered flight. Following a discussion of the software constants changed for Flight 2 to provide adequate performance margin, a summary of test results from STS-2 and STS-3 is presented. Vehicle trajectory response and GN&C system behavior were very similar to STS-1. Ascent aerodynamic characteristics extracted from the first two test flights were included in the data base used to design the first stage steering and pitch trim profiles for STS-3.

  1. Design and Flight Evaluation of a New Force-Based Flow Angle Probe

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, Michael Jacob

    2006-01-01

    A novel force-based flow angle probe was designed and flight tested on the NASA F-15B Research Testbed aircraft at NASA Dryden Flight Research Center. The prototype flow angle probe is a small, aerodynamic fin that has no moving parts. Forces on the prototype flow angle probe are measured with strain gages and correlated with the local flow angle. The flow angle probe may provide greater simplicity, greater robustness, and better access to flow measurements in confined areas relative to conventional moving vane-type flow angle probes. Flight test data were obtained at subsonic, transonic, and supersonic Mach numbers to a maximum of Mach 1.70. Flight conditions included takeoff, landing, straight and level flight, flight at higher aircraft angles of attack, and flight at elevated g-loadings. Flight test maneuvers included angle-of-attack and angle-of-sideslip sweeps. The flow angle probe-derived flow angles are compared with those obtained with a conventional moving vane probe. The flight tests validated the feasibility of a force-based flow angle measurement system.

  2. Hyper-X: Flight Validation of Hypersonic Airbreathing Technology

    NASA Technical Reports Server (NTRS)

    Rausch, Vincent L.; McClinton, Charles R.; Crawford, J. Larry

    1997-01-01

    This paper provides an overview of NASA's focused hypersonic technology program, i.e. the Hyper-X program. This program is designed to move hypersonic, air breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. This paper presents some history leading to the flight test program, research objectives, approach, schedule and status. Substantial experimental data base and concept validation have been completed. The program is concentrating on Mach 7 vehicle development, verification and validation in preparation for wind tunnel testing in 1998 and flight testing in 1999. It is also concentrating on finalization of the Mach 5 and 10 vehicle designs. Detailed evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a data base for validation of design methods once flight test data are available.

  3. Flight-Test Validation and Flying Qualities Evaluation of a Rotorcraft UAV Flight Control System

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Tuschler, Mark B.; Kanade, Takeo

    2000-01-01

    This paper presents a process of design and flight-test validation and flying qualities evaluation of a flight control system for a rotorcraft-based unmanned aerial vehicle (RUAV). The keystone of this process is an accurate flight-dynamic model of the aircraft, derived by using system identification modeling. The model captures the most relevant dynamic features of our unmanned rotorcraft, and explicitly accounts for the presence of a stabilizer bar. Using the identified model we were able to determine the performance margins of our original control system and identify limiting factors. The performance limitations were addressed and the attitude control system was 0ptimize.d for different three performance levels: slow, medium, fast. The optimized control laws will be implemented in our RUAV. We will first determine the validity of our control design approach by flight test validating our optimized controllers. Subsequently, we will fly a series of maneuvers with the three optimized controllers to determine the level of flying qualities that can be attained. The outcome enable us to draw important conclusions on the flying qualities requirements for small-scale RUAVs.

  4. Optical ablation/temperature gage (COTA)

    NASA Astrophysics Data System (ADS)

    Cassaing, J.; Balageas, D.

    ONERA has ground and flight tested for heat-shield recession a novel technique, different from current radiation and acoustic measurement methods. It uses a combined ablation/temperature gage that views the radiation optically from a cavity embedded within the heat shield. Flight measurements, both of temperature and of passage of the ablation front, are compared with data generated by a predictive numerical code. The ablation and heat diffusion into the instrumented ablator can be simulated numerically to evaluate accurately the errors due to the presence of the gage. This technology was established in 1978 and finally adopted after ground tests in arc heater facilities. After four years of flight evaluations, it is possible to evaluate and criticize the sensor reliability.

  5. Workload Influence on Fatigue Related Psychological and Physiological Performance Changes of Aviators

    PubMed Central

    Liu, Xi-Wen; Bian, Ka; Wen, Zhi-Hong; Li, Xiao-Jing; Zhang, Zuo-Ming; Hu, Wen-Dong

    2014-01-01

    Objective We evaluated a variety of non-invasive physiological technologies and a series of test approaches for examination of aviator performances under conditions of mental workload in order to provide a standard real-time test for physiological and psychological pilot fatigue assessments. Methods Twenty-one male aviators were selected for a simulated flight in a hypobaric cabin with artificial altitude conditions of 2400 meter above sea level. The simulated flight lasted for 1.5 h, and was repeated for two times with an intervening 0.5 h rest period outside the hypobaric cabin. Subjective criteria (a fatigue assessment instrument [FAI]) and objective criteria (a standing-position balance test as well as a critical flicker fusion frequency (CFF) test) were used for fatigue evaluations. Results No significant change was observed in the FAI scores before and after the simulated flight, indicating that there was no subjective fatigue feeling among the participants. However, significant differences were observed in the standing-position balance and CFF tests among the subjects, suggesting that psychophysiological indexes can reflect mental changes caused by workload to a certain extent. The CFF test was the simplest and clearly indicated the occurrence of workload influences on pilot performances after a simulated flight. Conclusions Results showed that the CFF test was the easiest way to detect workload caused mental changes after a simulated flight in a hypobaric cabin and reflected the psychophysiological state of aviators. We suggest that this test might be used as an effective routine method for evaluating the workload influences on mental conditions of aviators. PMID:24505277

  6. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  7. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  8. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  9. ATLS-stowage and deployment testing of medical supplies and pharmaceuticals

    NASA Technical Reports Server (NTRS)

    Gosbee, John; Benz, Darren; Lloyd, Charles W.; Bueker, Richard; Orsak, Debra

    1991-01-01

    The objective is to evaluate stowage and deployment methods for the Health Maintenance Facility (HMF) during microgravity. The specific objectives of this experiment are: (1) to evaluate the stowage and deployment mechanisms for the medical supplies; and (2) to evaluate the procedures for performing medical scenarios. To accomplish these objectives, the HMF test mini-racks will contain medical equipment mounted in the racks; and self-contained drawers with various mechanisms for stowing and deploying items. The medical supplies and pharmaceuticals will be destowed, handled, and restowed. The in-flight test procedures and other aspects of the KC-135 parabolic flight test to simulate weightlessness are presented.

  10. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  11. Development of Enhanced Avionics Flight Hardware Selection Process

    NASA Technical Reports Server (NTRS)

    Smith, K.; Watson, G. L.

    2003-01-01

    The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

  12. Static Wind-Tunnel and Radio-Controlled Flight Test Investigation of a Remotely Piloted Vehicle Having a Delta Wing Planform

    NASA Technical Reports Server (NTRS)

    Yip, Long P.; Fratello, David J.; Robelen, David B.; Makowiec, George M.

    1990-01-01

    At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.

  13. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1977-01-01

    The flight service experience of 110 graphite epoxy spoilers on 737 transport aircraft was reviewed as well as ground based environmental exposure of graphite epoxy material specimens for the period from April 1976 through April 1977. Several spoilers were installed on each of 27 aircraft representing seven major airlines operating throughout the world. A flight service evaluation program of at least 5 years is under way. As of April 30, 1977, a total of 766,938 spoiler flight hours and 1,168,090 spoiler landings were accumulated by the fleet. Based on visual ultrasonic, and destructive testing, there was no evidence of moisture migration into the honeycomb core and no core corrosion. Tests of removed spoilers and of ground based exposure specimens after the third year of service continue to indicate modest changes in composite strength properties.

  14. Radio astronomy Explorer-B in-flight mission control system development effort

    NASA Technical Reports Server (NTRS)

    Lutsky, D. A.; Bjorkman, W. S.; Uphoff, C.

    1973-01-01

    A description is given of the development for the Mission Analysis Evaluation and Space Trajectory Operations (MAESTRO) program to be used for the in-flight decision making process during the translunar and lunar orbit adjustment phases of the flight of the Radio Astronomy Explorer-B. THe program serves two functions: performance and evaluation of preflight mission analysis, and in-flight support for the midcourse and lunar insertion command decisions that must be made by the flight director. The topics discussed include: analysis of program and midcourse guidance capabilities; methods for on-line control; printed displays of the MAESTRO program; and in-flight operational logistics and testing.

  15. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  16. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  17. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  18. Flight and Integrated Vehicle Testing: Laying the Groundwork for the Next Generation of Space Exploration Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Cockrell, C. E.

    2009-01-01

    Integrated vehicle testing will be critical to ensuring proper vehicle integration of the Ares I crew launch vehicle and Ares V cargo launch vehicle. The Ares Projects, based at Marshall Space Flight Center in Alabama, created the Flight and Integrated Test Office (FITO) as a separate team to ensure that testing is an integral part of the vehicle development process. As its name indicates, FITO is responsible for managing flight testing for the Ares vehicles. FITO personnel are well on the way toward assembling and flying the first flight test vehicle of Ares I, the Ares I-X. This suborbital development flight will evaluate the performance of Ares I from liftoff to first stage separation, testing flight control algorithms, vehicle roll control, separation and recovery systems, and ground operations. Ares I-X is now scheduled to fly in summer 2009. The follow-on flight, Ares I-Y, will test a full five-segment first stage booster and will include cryogenic propellants in the upper stage, an upper stage engine simulator, and an active launch abort system. The following flight, Orion 1, will be the first flight of an active upper stage and upper stage engine, as well as the first uncrewed flight of an Orion spacecraft into orbit. The Ares Projects are using an incremental buildup of flight capabilities prior to the first operational crewed flight of Ares I and the Orion crew exploration vehicle in 2015. In addition to flight testing, the FITO team will be responsible for conducting hardware, software, and ground vibration tests of the integrated launch vehicle. These efforts will include verifying hardware, software, and ground handling interfaces. Through flight and integrated testing, the Ares Projects will identify and mitigate risks early as the United States prepares to take its next giant leaps to the Moon and beyond.

  19. Laser data transfer flight experiment definition

    NASA Technical Reports Server (NTRS)

    Merritt, J. R.

    1975-01-01

    A set of laser communication flight experiments to be performed between a relay satellite, ground terminals, and space shuttles were synthesized and evaluated. Results include a definition of the space terminals, NASA ground terminals, test methods, and test schedules required to perform the experiments.

  20. Configuration management issues and objectives for a real-time research flight test support facility

    NASA Technical Reports Server (NTRS)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  1. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  2. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2007-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  3. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  4. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    PubMed

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  5. Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bridges, P. G.; Cross, E. J., Jr.; Boatwright, D. W.

    1977-01-01

    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system.

  6. Flight testing techniques for the evaluation of light aircraft stability derivatives: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summery, D. C.; Johnson, W. D.

    1972-01-01

    Techniques quoted in the literature for the extraction of stability derivative information from flight test records are reviewed. A recent technique developed at NASA's Langley Research Center was regarded as the most productive yet developed. Results of tests of the sensitivity of this procedure to various types of data noise and to the accuracy of the estimated values of the derivatives are reported. Computer programs for providing these initial estimates are given. The literature review also includes a discussion of flight test measuring techniques, instrumentation, and piloting techniques.

  7. Vibroacoustic test plan evaluation: Parameter variation study

    NASA Technical Reports Server (NTRS)

    Stahle, C. V.; Gongloef, H. R.

    1976-01-01

    Statistical decision models are shown to provide a viable method of evaluating the cost effectiveness of alternate vibroacoustic test plans and the associated test levels. The methodology developed provides a major step toward the development of a realistic tool to quantitatively tailor test programs to specific payloads. Testing is considered at the no test, component, subassembly, or system level of assembly. Component redundancy and partial loss of flight data are considered. Most and probabilistic costs are considered, and incipient failures resulting from ground tests are treated. Optimums defining both component and assembly test levels are indicated for the modified test plans considered. modeling simplifications must be considered in interpreting the results relative to a particular payload. New parameters introduced were a no test option, flight by flight failure probabilities, and a cost to design components for higher vibration requirements. Parameters varied were the shuttle payload bay internal acoustic environment, the STS launch cost, the component retest/repair cost, and the amount of redundancy in the housekeeping section of the payload reliability model.

  8. Analysis of Wallops Flight Test Data Through an Automated COTS System

    NASA Technical Reports Server (NTRS)

    Blackstock, Dexter Lee; Theobalds, Andre B.

    2005-01-01

    During the summer of 2004 NASA Langley Research Center flight tested a Synthetic Vision System (SVS) at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL). The SVS included a Runway Incursion Prevention System (RIPS) to improve pilot situational awareness while operating near and on the airport surface. The flight tests consisted of air and ground operations to evaluate and validate the performance of the system. This paper describes the flight test and emphasizes how positioning data was collected, post processed and analyzed through the use of a COTS-derived software system. The system that was developed to analyze the data was constructed within the MATLAB(TM) environment. The software was modified to read the data, perform several if-then scenarios and produce the relevant graphs, figures and tables.

  9. X-56A MUTT: Aeroservoelastic Modeling

    NASA Technical Reports Server (NTRS)

    Ouellette, Jeffrey A.

    2015-01-01

    For the NASA X-56a Program, Armstrong Flight Research Center has been developing a set of linear states space models that integrate the flight dynamics and structural dynamics. These high order models are needed for the control design, control evaluation, and test input design. The current focus has been on developing stiff wing models to validate the current modeling approach. The extension of the modeling approach to the flexible wings requires only a change in the structural model. Individual subsystems models (actuators, inertial properties, etc.) have been validated by component level ground tests. Closed loop simulation of maneuvers designed to validate the flight dynamics of these models correlates very well flight test data. The open loop structural dynamics are also shown to correlate well to the flight test data.

  10. Free Enterprise: Contributions of the Approach and Landing Test (ALT) Program to the Development of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2006-01-01

    The space shuttle orbiter was the first spacecraft designed with the aerodynamic characteristics and in-atmosphere handling qualities of a conventional airplane. In order to evaluate the orbiter's flight control systems and subsonic handling characteristics, a series of flight tests were undertaken at NASA Dryden Flight Research Center in 1977. A modified Boeing 747 Shuttle Carrier Aircraft carried the Enterprise, a prototype orbiter, during eight captive tests to determine how well the two vehicles flew together and to test some of the orbiter s systems. The free-flight phase of the ALT program allowed shuttle pilots to explore the orbiter's low-speed flight and landing characteristics. The Enterprise provided realistic, in-flight simulations of how subsequent space shuttles would be flown at the end of an orbital mission. The fifth free flight, with the Enterprise landing on a concrete runway for the first time, revealed a problem with the space shuttle flight control system that made it susceptible to pilot-induced oscillation, a potentially dangerous control problem. Further research using various aircraft, particularly NASA Dryden's F-8 Digital-Fly-By-Wire testbed, led to correction of the problem before the first Orbital Test Flight.

  11. The evaluation of the OSGLR algorithm for restructurable controls

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.

    1986-01-01

    The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.

  12. Analysis of flight test transition and turbulent heating data. Part 1: Boundary layer transition results

    NASA Technical Reports Server (NTRS)

    Martellucci, A.; Maguire, B. L.; Neff, R. S.

    1972-01-01

    The objective of the study was to provide a detailed post flight evaluation of ballistic vehicle flight test boundary layer transition data. A total of fifty-five vehicles were selected for analysis. These vehicles were chosen from a data sampling of roughly two hundred flights and the criteria for vehicle selection is delineated herein. The results of the analysis indicate that frustum transition of re-entry vehicles appears to be nose tip dominated. Frustum related parameters and materials apparently have a second order effect on transition. This implies that local viscous parameters on the frustum should not correlate flight test transition data, and in fact they do not. Specific parameters relative to the nose tip have been identified as the apparent dominant factors that characterize the transition phenomena and a correlation of flight test data is presented.

  13. Flight test evaluation of a method to determine the level flight performance propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.

    1976-01-01

    A procedure is developed for deriving the level flight drag and propulsive efficiency of propeller-driven aircraft. This is a method in which the overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag. The aircraft is flown in unaccelerated, straight and level flight, and thus includes the effects of the propeller drag and slipstream. Propeller efficiency and airplane drag are computed on the basis of data obtained during flight test and do not rely on the analytical calculations of inadequate theory.

  14. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  15. Development Of Maneuvering Autopilot For Flight Tests

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1992-01-01

    Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.

  16. Flight test and evaluation of Omega navigation for general aviation

    NASA Technical Reports Server (NTRS)

    Hwoschinsky, P. V.

    1975-01-01

    A seventy hour flight test program was performed to determine the suitability and accuracy of a low cost Omega navigation receiver in a general aviation aircraft. An analysis was made of signal availability in two widely separated geographic areas. Comparison is made of the results of these flights with other navigation systems. Conclusions drawn from the test experience indicate that developmental system improvement is necessary before a competent fail safe or fail soft area navigation system is offered to general aviation.

  17. Flight Test Comparison Between Enhanced Vision (FLIR) and Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.

    2005-01-01

    Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA s Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance. A flight test evaluation was conducted in the summer of 2004 by NASA Langley Research Center under NASA s Aviation Safety and Security, Synthetic Vision System - Commercial and Business program. A Gulfstream G-V aircraft, modified and operated under NASA contract by the Gulfstream Aerospace Corporation, was flown over a 3-week period at the Reno/Tahoe International Airport and an additional 3-week period at the NASA Wallops Flight Facility to evaluate integrated Synthetic Vision System concepts. Flight testing was conducted to evaluate the performance, usability, and acceptance of an integrated synthetic vision concept which included advanced Synthetic Vision display concepts for a transport aircraft flight deck, a Runway Incursion Prevention System, an Enhanced Vision Systems (EVS), and real-time Database Integrity Monitoring Equipment. This paper focuses on comparing qualitative and subjective results between EVS and SVS display concepts.

  18. Fuel Subsystems Flight Test Handbook

    DTIC Science & Technology

    1981-12-01

    described in Flight and Maintenance Manuals and as it exists in hardware form. These versions may differ significantly in the development phase of a new ...Canter (AFFPTC), Edwards AFB, California. The work was done under the authority of the Study Plan for Development of a Handbook for Aircraft Fuel...10 Position of AFFTC in the Development and 10 Evaluation Process Agencies Involved 11 Multi-Purpose Flight Tests 11 FUEL SYSTEM FUNCTIONS AND

  19. Free-Flight Investigation of Radio Controlled Models with Parawings

    NASA Technical Reports Server (NTRS)

    Hewes, Donald E.

    1961-01-01

    A free-flight investigation of two radio-controlled models with parawings, a glider configuration and an airplane (powered) configuration, was made to evaluate the performance, stability, and methods of controlling parawing vehicles. The flight tests showed that the models were stable and could be controlled either by shifting the center of gravity or by using conventional elevator and rudder control surfaces. Static wind-tunnel force-test data were also obtained.

  20. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  1. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  2. Development, design, and flight test evaluation of a continuous descent approach procedure for nighttime operation at Louisville International Airport.

    DOT National Transportation Integrated Search

    2006-01-09

    The design and flight test of a Continuous Descent Approach (CDA) : procedure for regular nighttime operation at Louisville : International Airport are described in this report. Results of : the analyses of aircraft and FMS performance indicate that ...

  3. Technical Evaluation Report

    DTIC Science & Technology

    2006-10-01

    measuring unit and the control computer have been flight tested using both a small UAV and the PRP-560 “ Ranger ” patrol and rescue hovercraft, which...version based on the G9- Galaxy ram air parachute. Recently, in an effort to further extend the system’s payload capacity, developmental flight tests

  4. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  5. JT9D engine diagnostics. Task 2: Feasibility study of measuring in-service flight loads. [747 aircraft performance

    NASA Technical Reports Server (NTRS)

    Kafka, P. G.; Skibo, M. A.; White, J. L.

    1977-01-01

    The feasibility of measuring JT9D propulsion system flight inertia loads on a 747 airplane is studied. Flight loads background is discussed including the current status of 747/JT9D loads knowledge. An instrumentation and test plan is formulated for an airline-owned in-service airplane and the Boeing-owned RA001 test airplane. Technical and cost comparisons are made between these two options. An overall technical feasibility evaluation is made and a cost summary presented. Conclusions and recommendations are presented in regard to using existing inertia loads data versus conducting a flight test to measure inertia loads.

  6. The 1985 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Morrow, G. (Editor)

    1986-01-01

    The subjects covered include: advanced energy storage, lithium cell technology, nickel-cadmium design evaluation and component testing, simulated orbital cycling and flight experience, and nickel-hydrogen technology.

  7. Electrical Subsystems Flight Test Handbook

    DTIC Science & Technology

    1984-01-01

    distribution of this handbook to the public at large, or by DDC to the National Technical Information Service (NTIS). At NTIS, it will be available to...Abnormal Mode 58 Emergency Mode 61 Instrumentation 62 Test Information Sheets 62 Integration with Flight Test Program 62 DATA MEASUREMENT, ANALYS IS...AND EVALUATION 65 REFERENCES 73 -APPENDIX A - EXAMPLE OF TEST INFORMATION SHEET 75 APPENDIX B - EXAMPLE OF TEST PLAN SAFETY REVIEW 85 APPENDIX C

  8. Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.

    2006-01-01

    A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.

  9. Rehabilitation After International Space Station Flights

    NASA Technical Reports Server (NTRS)

    Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.

    2003-01-01

    Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.

  10. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  11. The X-43A Flush Airdata Sensing System Flight Test Results

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Pahle, Joseph W.; Davis, Mark; White, John Terry

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has flight-tested a flush airdata sensing (FADS) system on the Hyper-X Research Vehicle (X-43A) at hypersonic speeds during the course of two successful flights. For this series of tests, the FADS system was calibrated to operate between Mach 3 and Mach 8, and flight test data was collected between Mach 1 and Mach 10. The FADS system acquired pressure data from surface-mounted ports and generated a real-time angle-of-attack (alpha) estimate on board the X-43A. The collected data were primarily intended to evaluate the FADS system performance, and the estimated alpha was used by the flight control algorithms on the X-43A for only a portion of the first successful flight. This paper provides an overview of the FADS system and alpha estimation algorithms, presents the in-flight alpha estimation algorithm performance, and provides comparisons to wind tunnel results and theory. Results indicate that the FADS system adequately estimated the alpha of the vehicle during the hypersonic portions of the two flights.

  12. Liftoff and Time Equivalent Duration Data Evaluation of Exploration Flight Test 1 Orion Multi-Purpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Houston, Janice

    2016-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. There arises the question about time equivalent (Teq) duration of the liftoff phase and similarity to other launch vehicles. Vibroacoustic engineers require the fatigue-weighted time duration values for qualification testing inputs. In order to determine the Teq for the Space Launch System, NASA's newest launch vehicle, the external microphone data from the Exploration Flight Test 1 (EFT-1) flight of the Orion Multi-Purpose Crew Vehicle (MPCV) was evaluated. During that evaluation, a trend was observed in the data and the origin of that trend is discussed in this paper. Finally, the Teq values for the EFT-1 Orion MPCV are presented.

  13. The effects of pilot stress factors on handling quality assessments during US/German helicopter agility flight tests

    NASA Technical Reports Server (NTRS)

    Pausder, H. J.; Gerdes, R. M.

    1982-01-01

    Flight tests were conducted with two helicopters to study and evaluate the effects of helicopter characteristics and pilot and task demands on performance in nap-of-the-Earth flight. Different, low-level slalom courses were set up and were flown by three pilots with different levels of flight experience. A pilot rating questionnaire was used to obtain redundant information and to gain more insight into factors that influence pilot ratings. The flight test setups and procedures are described, and the pilot ratings are summarized and interpreted in close connection with the analyzed test data. Pilot stress is discussed. The influence of demands on the pilot, of the helicopter characteristics, and of other stress factors are outlined with particular emphasis on how these factors affect handling-qualities assessment.

  14. Comprehensive Test and Evaluation of the Dalmo Victor TCAS (Traffic Alert and Collision Avoidance System) II Industry Prototype.

    DTIC Science & Technology

    1986-02-01

    to JFK Airport in New York to test TCAS in medium density. 13. July 13, 12:15:38-14:18:30. This was a dress rehersal for the first mission of the...LW L I oW a I-- A4 0 ar ea ea a CL Ca I- I a 08 C4 ma a m * q WI WI N - B-8 FLIGHT SUMMARY MISSION 070783A. Destination: JFK Airport , NY Flight Date... JFK Airport , NY Flight Date: July 7, 1983 Mission Type: Typical operation, JFK-ACY Purpose: Medium density tracking evaluation Departure: JFK 12:51:00

  15. Flight service evaluation of composite components on Bell 206L and Sikorsky S-76 helicopters

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1983-01-01

    Progress on two programs to evaluate composite structural components in flight service on commercial helicopters is described. Thirty-six ship sets of composite components that include the litter door, baggage door, forward fairing, and vertical fin were installed on Bell Model 206L helicopters that are operating in widely different climatic areas. Four horizontal stabilizers and ten tail rotor spars that are production components on the S-76 helicopter were tested after prescribed periods of service to determine the effects of the operating environment on their performance. Concurrent with the flight evaluation, specimens from materials used to fabricate the components were exposed in ground racks and tested at specified intervals to determine the effects of outdoor environments. Results achieved from 14,000 hours of accumulated service on the 206L components, tests on a S-76 horizontal stabilizer after 1600 hours of service, tests on a S-76 tail rotor spar after 2300 hours service, and two years of ground based exposure of material coupons are reported.

  16. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  17. Fabrication and evaluation of brazed titanium-clad borsic/aluminum skin-stringer panels

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Mcwithey, R. R.

    1980-01-01

    A successful brazing process was developed and evaluated for fabricating full-scale titanium-clad Borsic/aluminum skin-stringer panels. A panel design was developed consisting of a hybrid composite skin reinforced with capped honeycomb-core stringers. Six panels were fabricated for inclusion in the program which included laboratory testing of panels at ambient temperatures and 533 K (500 F) and flight service evaluation on the NASA Mach 3 YF-12 airplane. All panels tested met or exceeded stringent design requirements and no deleterious effects on panel properties were detected followng flight service evaluation on the YF-12 airplane.

  18. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  19. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  20. Integrated Test and Evaluation (ITE) Flight Test Series 4

    NASA Technical Reports Server (NTRS)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  1. Flight-test evaluation of two electronic display formats for approach to landing under instrument conditions

    NASA Technical Reports Server (NTRS)

    Morello, S. A.; Knox, C. E.; Steinmetz, G. G.

    1977-01-01

    The results of a flight evaluation of two electronic display formats for the approach to landing under instrument conditions are presented. The evaluation was conducted for a base-line electronic display format and for the same format with runway symbology and track information added. The evaluation was conducted during 3 deg, manual straight-in approaches with and without initial localizer offsets. Flight path tracking performance data and pilot subjective comments were examined with regard to the pilot's ability to capture and maintain localizer and glide slope by using both display formats.

  2. Flight Control Laws for NASA's Hyper-X Research Vehicle

    NASA Technical Reports Server (NTRS)

    Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.

    1999-01-01

    The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.

  3. Flight Test Evaluation of a Nonlinear Hub Spring on a UH-1H Helicopter.

    DTIC Science & Technology

    1981-04-01

    APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT This report documents the engineering analysis, development , arnd flight test of a non- linger hub...order to develop a design criteria to ensure that mast loads can be sustained during in-flight flapping stop contact. In addition, a comparison of the...LIST OF ILLUSTRATIONS Figure Page 1 Rotor blade-element aerodynamic coefficients used in ARHF01 .................................. 18 2 Rotor model on

  4. Flight Test of a Propulsion-Based Emergency Control System on the MD-11 Airplane with Emphasis on the Lateral Axis

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.

    1996-01-01

    A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.

  5. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  6. The Influence of Flight Planning and Camera Orientation in UAVs Photogrammetry. a Test in the Area of Rocca San Silvestro (li), Tuscany

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Lingua, A.; Maschio, P.; Teppati Losè, L.

    2017-02-01

    The purpose of this paper is to discuss how much the phases of flight planning and the setting of the camera orientation can affect a UAVs photogrammetric survey. The test site chosen for these evaluations was the Rocca of San Silvestro, a medieval monumental castle near Livorno, Tuscany (Italy). During the fieldwork, different sets of data have been acquired using different parameters for the camera orientation and for the set up of flight plans. Acquisition with both nadiral and oblique orientation of the camera have been performed, as well as flights with different direction of the flight lines (related with the shape of the object of the survey). The different datasets were then processed in several blocks using Pix4D software and the results of the processing were analysed and compared. Our aim was to evaluate how much the parameters described above can affect the generation of the final products of the survey, in particular the product chosen for this evaluation was the point cloud.

  7. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft equipped with wing spoilers

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1984-01-01

    As part of a comprehensive flight-test investigation of short takeoff and landing (STOL) operating systems for the terminal systems for the terminal area, an automatic landing system has been developed and evaluated for a light wing-loading turboprop-powered aircraft. An advanced digital avionics system performed display, navigation, guidance, and control functions for the test aircraft. Control signals were generated in order to command powered actuators for all conventional controls and for a set of symmetrically driven wing spoilers. This report describes effects of the spoiler control on longitudinal autoland (automatic landing) performance. Flight-test results, with and without spoiler control, are presented and compared with available (basically, conventional takeoff and landing) performance criteria. These comparisons are augmented by results from a comprehensive simulation of the controlled aircraft that included representations of the microwave landing system navigation errors that were encountered in flight as well as expected variations in atmospheric turbulence and wind shear. Flight-test results show that the addition of spoiler control improves the touchdown performance of the automatic landing system. Spoilers improve longitudinal touchdown and landing pitch-attitude performance, particularly in tailwind conditions. Furthermore, simulation results indicate that performance would probably be satisfactory for a wider range of atmospheric disturbances than those encountered in flight. Flight results also indicate that the addition of spoiler control during the final approach does not result in any measurable change in glidepath track performance, and results in a very small deterioration in airspeed tracking. This difference contrasts with simulations results, which indicate some improvement in glidepath tracking and no appreciable change in airspeed tracking. The modeling problem in the simulation that contributed to this discrepancy with flight was not resolved.

  8. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  9. How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.

  10. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  11. Traveling-wave tube reliability estimates, life tests, and space flight experience

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Speck, C. E.

    1977-01-01

    Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.

  12. Flight Tests of the Wilford XOZ-1 Sea Gyroplane

    NASA Technical Reports Server (NTRS)

    Gustafson, Frederic B.

    1941-01-01

    During August 1939 a series of flight tests was made at Langley Field on the Wilford sea gyroplane, designated by the Navy as the XOZ-1. These tests were intended to permit rough evaluation of the stability and control characteristics of the machine, with particular reference to possible improvements in rigging which might be made in future machines with fixed wing and nonarticulated feathering control rotor, and to provide data on the bending and feathering motions of the rotor blades. The tests made in 1939 proved inadequate, chiefly because the machine as flown did not have sufficient propeller thrust to give it an appreciable speed range in steady flight. Further tests were therefore made in August 1940 after overhauling the engine and substituting a metal propeller for the wooded one first used. The range of speeds covered in steady flight was markedly extended. Steady-flight runs only were made in this series, since it was felt that takeoffs and landings had been covered sufficiently in the previous tests.

  13. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.

  14. Manned Versus Unmanned Risk and Complexity Considerations for Future Midsized X-Planes

    NASA Technical Reports Server (NTRS)

    Lechniak, Jason A.; Melton, John E.

    2017-01-01

    The objective of this work was to identify and estimate complexity and risks associated with the development and testing of new low-cost medium-scale X-plane aircraft primarily focused on air transport operations. Piloting modes that were evaluated for this task were manned, remotely piloted, and unmanned flight research programs. This analysis was conducted early in the data collection period for X-plane concept vehicles before preliminary designs were complete. Over 50 different aircraft and system topics were used to evaluate the three piloting control modes. Expert group evaluations from a diverse set of pilots, engineers, and other experts at Aeronautics Research Mission Directorate centers within the National Aeronautics and Space Administration provided qualitative reasoning on the many issues surrounding the decisions regarding piloting modes. The group evaluations were numerically rated to evaluate each topic quantitatively and were used to provide independent criteria for vehicle complexity and risk. An Edwards Air Force Base instruction document was identified that emerged as a source of the effects found in our qualitative and quantitative data. The study showed that a manned aircraft was the best choice to align with test activities for transport aircraft flight research from a low-complexity and low-risk perspective. The study concluded that a manned aircraft option would minimize the risk and complexity to improve flight-test efficiency and bound the cost of the flight-test portion of the program. Several key findings and discriminators between the three modes are discussed in detail.

  15. Evaluation of Pinholes in Unbacked Metal Film Filters to be Used in Rocket- and Satellite-Borne XUV Spectroheliographs.

    PubMed

    Hunter, W R; Purcell, J D; Steele, G N

    1973-08-01

    Extreme ultraviolet (XUV) spectroheliographs require thin metal film filters that transmit the XUV radiation and eliminate scattered visible and near-uv radiation that would fog the photographic film on which the XUV images are recorded. Pinholes in the filters cause local fogging of the film during exposures in flight. It will be shown that the best way for preflight evaluation of pinhole effects is by using the filter in the flight instrument and photographing the sun from the earth's surface. An alternative method that appears to be as good, and is more convenient. is to test the filters in a simulated flight instrument. The results of evaluations using both the flight instrument and a simulated flight instrument will be shown.

  16. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  17. Pre-flight sensorimotor adaptation protocols for suborbital flight.

    PubMed

    Shelhamer, Mark; Beaton, Kara

    2012-01-01

    Commercial suborbital flights, which include 3-5 minutes of 0 g between hyper-g launch and landing phases, will present suborbital passengers with a challenging sensorimotor experience. Based on the results of neurovestibular research in parabolic and orbital flight, and the anticipated wide range of fitness and experience levels of suborbital passengers, neurovestibular disturbances are likely to be problematic in this environment. Pre-flight adaptation protocols might alleviate some of these issues. Therefore, we describe a set of sensorimotor tests to evaluate passengers before suborbital flight, including assessment of the angular vestibulo-ocular reflex (VOR), ocular skew and disconjugate torsion, subjective visual vertical, and roll vection. Performance on these tests can be examined for correlations with in-flight experience, such as motion sickness, disorientation, and visual disturbances, based on questionnaires and cabin video recordings. Through an understanding of sensorimotor adaptation to parabolic and orbital flight, obtained from many previous studies, we can then suggest appropriate pre-flight adaptation procedures.

  18. Development of a flight software testing methodology

    NASA Technical Reports Server (NTRS)

    Mccluskey, E. J.; Andrews, D. M.

    1985-01-01

    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.

  19. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  20. A rule-based system for real-time analysis of control systems

    NASA Astrophysics Data System (ADS)

    Larson, Richard R.; Millard, D. Edward

    1992-10-01

    An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.

  1. A rule-based system for real-time analysis of control systems

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Millard, D. Edward

    1992-01-01

    An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.

  2. The effects of pilot stress factors on handling quality assessments during US/German helicopter agility flight tests

    NASA Technical Reports Server (NTRS)

    Pausder, H.-J.; Gerdes, R. M.

    1982-01-01

    Flight tests were conducted with two helicopters to study and evaluate the effects of helicopter characteristics and pilot and task demands on performance in nap-of-the-earth flight. Different, low-level slalom courses were set up and were flown by three pilots with different levels of flight experience. A pilot rating questionnaire was used to obtain redundant information and to gain more insight into factors that influence pilot ratings. The flight test setups and procedures are described, and the pilot ratings are summarized and interpreted in close connection with the analyzed test data. Pilot stress is discussed. The influence of demands on the pilot, of the helicopter characteristics, and of other stress factors are outlined with particular emphasis on how these factors affect handling-qualities assessment. Previously announced in STAR as N83-13114

  3. VSTOL Systems Research Aircraft (VSRA) Harrier

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's Ames Research Center has developed and is testing a new integrated flight and propulsion control system that will help pilots land aircraft in adverse weather conditions and in small confined ares (such as, on a small ship or flight deck). The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems research Aircraft (VSRA), which is a modified version of the U.S. Marine Corps's AV-8B Harrier jet fighter, which can take off and land vertically. The new automated flight control system features both head-up and panel-mounted computer displays and also automatically integrates control of the aircraft's thrust and thrust vector control, thereby reducing the pilot's workload and help stabilize the aircraft for landing. Visiting pilots will be encouraged to test the new system and provide formal evaluation flights data and feedback. An actual flight test and the display panel of control system are shown in this video.

  4. Results of the Stable Microgravity Vibration Isolation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean

    1996-01-01

    This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.

  5. Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine

    NASA Technical Reports Server (NTRS)

    Walsh, K. R.; Burcham, F. W.

    1984-01-01

    The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur.

  6. Surface evaluation of UV-degraded contamination

    NASA Technical Reports Server (NTRS)

    Connatser, Robert; Hadaway, James B.

    1992-01-01

    Three different areas of work were accomplished under this contract: (1) contamination testing and evaluation; (2) UV irradiation testing; and (3) surface evaluation testing. Contamination testing was generally performed in the In-Situ Contamination Effects Facility at Marshall Space Flight Center (MSFC). UV irradiation testing was also performed primarily at MSFC, utilizing facilities there. Finally, the surface evaluation was done at facilities at UAH Center for Applied Optics.

  7. Minor surgery in microgravity

    NASA Technical Reports Server (NTRS)

    Billica, Roger; Krupa, Debra T.; Stonestreet, Robert; Kizzee, Victor D.

    1991-01-01

    The purpose is to investigate and demonstrate equipment and techniques proposed for minor surgery on Space Station Freedom (SSF). The objectives are: (1) to test and evaluate methods of surgical instrument packaging and deployment; (2) to test and evaluate methods of surgical site preparation and draping; (3) to evaluate techniques of sterile procedure and maintaining sterile field; (4) to evaluate methods of trash management during medical/surgical procedures; and (4) to gain experience in techniques for performing surgery in microgravity. A KC-135 parabolic flight test was performed on March 30, 1990 with the goal of investigating and demonstrating surgical equipment and techniques under consideration for use on SSF. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola.

  8. Test and evaluation of the HIDEC engine uptrim algorithm

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  9. LANDSAT-1 and LANDSAT-2 flight evaluation report, 23 July - 23 October 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The LANDSAT-1 spacecraft was launched from the Western Test Range on 23 July 1972, at 18:08:06.508Z. The launch and orbital injection phase of the space flight was nominal, and deployment of the spacecraft followed predictions. Performance evaluation of the spacecraft is presented.

  10. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  11. Flight-testing and frequency-domain analysis for rotorcraft handling qualities

    NASA Technical Reports Server (NTRS)

    Ham, Johnnie A.; Gardner, Charles K.; Tischler, Mark B.

    1995-01-01

    A demonstration of frequency-domain flight-testing techniques and analysis was performed on a U.S. Army OH-58D helicopter in support of the OH-58D Airworthiness and Flight Characteristics Evaluation and of the Army's development and ongoing review of Aeronautical Design Standard 33C, Handling Qualities Requirements for Military Rotorcraft. Hover and forward flight (60 kn) tests were conducted in 1 flight hour by Army experimental test pilots. Further processing of the hover data generated a complete database of velocity, angular-rate, and acceleration-frequency responses to control inputs. A joint effort was then undertaken by the Airworthiness Qualification Test Dirtectorate and the U.S. Army Aeroflightdynamics Directorate to derive handling-quality information from the frequency-domain database using a variety of approaches. This report documents numerous results that have been obtained from the simple frequency-domain tests; in many areas, these results provide more insight into the aircraft dynmamics that affect handling qualities than do traditional flight tests. The handling-quality results include ADS-33C bandwidth and phase-delay calculations, vibration spectral determinations, transfer-function models to examine single-axis results, and a six-degree-of-freedom fully coupled state-space model. The ability of this model to accurately predict responses was verified using data from pulse inputs. This report also documents the frequency-sweep flight-test technique and data analysis used to support the tests.

  12. ETP-0492, Measured Residual Stresses in CYL S/N 53 Fretted Area

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L.

    1998-01-01

    This test report presents the results of a residual stress survey of the inner clevis leg of lightweight cylinder SIN 053 as described by ETP-0492. The intent of this testing was to evaluate the residual stresses that occur in and around the inner clevis leg at the capture feature contact zone during a normal flight cycle. Lightweight case cylinder segment IU50717, S/N L053 from Flight STS-27 exhibited fretting around the contact zone of the inner clevis leg and the capture feature of the field joint. Post flight inspection revealed several large fitting pits on the inside of the inner clevis leg. This cylinder was assigned for both residual stress and metallurgical evaluation. This report is concerned only with the residual so= evaluations. The effects of glass bead cleaning and fi=ing were evaluated using the x-ray diffraction method.

  13. Flight service evaluation of composite helicopter components

    NASA Technical Reports Server (NTRS)

    Mardoian, George H.; Ezzo, Maureen B.

    1994-01-01

    This paper presents the results of a NASA funded contract and Sikorsky research and development programs to evaluate structural composite components in flight service on Sikorsky Model S-76 helicopters. Selected components were removed and tested at prescribed intervals over a nine year time frame. Four horizontal stabilizers and thirteen tail rotor spars were returned from commercial service in West Palm Beach, Florida and in the Gulf Coast region of Louisiana to determine the long term effects of operations in hot and humid climates on component performance. Concurrent with the flight component evaluation, panels of materials used in their fabrication were exposed to the environment in ground racks. Selected panels were tested annually to determine the effects of exposure on physical and mechanical properties. The results of 55,741 component flight hours and 911 months of field exposure are reported and compared with initial Federal Aviation Administration (FAA) certification data. The findings of this program have provided increased confidence in the long term durability of advanced composite materials used in helicopter structural applications.

  14. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  15. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  16. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  17. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  18. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  19. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  20. Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  1. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  2. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  3. The Apollo 16 microbial response to space environment experiment

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1975-01-01

    The effect was evaluated of a particular space flight on the survival rate of nine different species. Although a reasonable variety of organisms (viruses, yeasts, filamentous fungi, bacteria, and an invertebrate) were tested under several different conditions, no statistically valid differences could be detected in the survival of flight samples when compared to corresponding ground-based controls. In general, these evaluations were based on multiple observations of from ten to thirty replicates of up to one million cells each. While the results conflict with those of certain other space flight investigations, it is observed that the conditions of a particular space flight cannot be exactly duplicated, and therefore results from different flights are not directly comparable.

  4. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  5. A Representative Shuttle Environmental Control System

    NASA Technical Reports Server (NTRS)

    Brose, H. F.; Stanley, M. D.; Leblanc, J. C.

    1977-01-01

    The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.

  6. Investigation of a nozzle instability on an F100 engine equipped with a digital electronic engine control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Zeller, J. R.

    1984-01-01

    An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.

  7. Evaluation of the Linear Aerospike SR-71 Experiment (LASRE) Oxygen Sensor

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Corpening, Griffin P.; Jarvis, Michele; Chiles, Harry R.

    1999-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test.

  8. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  9. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  10. Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Brown, Aaron

    2016-01-01

    The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.

  11. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael

    2015-01-01

    Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.

  12. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  13. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1976-01-01

    The flight-service experience of 110 graphite-epoxy spoilers on 737 transport aircraft and related ground-based environmental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on each of 27 aircraft representing seven major airlines operating throughout the world. Based on visual, ultrasonic, and destructive testing, there is no evidence of moisture migration into the honeycomb core and no core corrosion. Tests of removed spoilers and of ground-based exposure specimens after the second year of service indicate modest changes in composite strength.

  14. CV-990 LSRA

    NASA Image and Video Library

    1989-03-06

    NASA 710, a Convair 990 transport aircraft formerly used for medium altitude atmospheric research, cruises over the Mojave Desert near NASA's Dryden Flight Research Center, Edwards, California. The flight was a final speed calibration run prior to the start of extensive modifications that turned the aircraft into a landing systems research aircraft to test and evaluate brakes and landing gear systems on space shuttles and also conventional aircraft. Research flights with the aircraft began in April of 1993. Testing of shuttle components lasted into fiscal year 1995.

  15. Flight Test Comparison of Synthetic Vision Display Concepts at Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.

    2003-01-01

    Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.

  16. Missile airframe simulation testbed: MANPADS (MAST-M) for test and evaluation of aircraft survivability equipment

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Richard; Bunt, Leslie; Robinson, Joe

    2011-06-01

    A number of techniques have been utilized to evaluate the performance of Aircraft Survivability Equipment (ASE) against threat Man-Portable Air Defense Systems (MANPADS). These techniques include flying actual threat MANPADS against stationary ASE with simulated aircraft signatures, testing installed ASE systems against simulated threat signatures, and laboratory hardware-in-the-loop (HWIL) testing with simulated aircraft and simulated missile signatures. All of these tests lack the realism of evaluating installed ASE against in-flight MANPADS on a terminal homing intercept path toward the actual ASE equipped aircraft. This limitation is due primarily to the current inability to perform non-destructive MANPADS/Aircraft flight testing. The U.S. Army Aviation and Missile Research and Development and Engineering Center (AMRDEC) is working to overcome this limitation with the development of a recoverable surrogate MANPADS missile system capable of engaging aircraft equipped with ASE while guaranteeing collision avoidance with the test aircraft. Under its Missile Airframe Simulation Testbed - MANPADS (MAST-M) program, the AMRDEC is developing a surrogate missile system which will utilize actual threat MANPADS seeker/guidance sections to control the flight of a surrogate missile which will perform a collision avoidance and recovery maneuver prior to intercept to insure non-destructive test and evaluation of the ASE and reuse of the MANPADS seeker/guidance section. The remainder of this paper provides an overview of this development program and intended use.

  17. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  18. Venipuncture and intravenous infusion access during zero-gravity flight

    NASA Technical Reports Server (NTRS)

    Krupa, Debra T.; Gosbee, John; Billica, Roger; Bechtle, Perry; Creager, Gerald J.; Boyce, Joey B.

    1991-01-01

    The purpose of this experiment is to establish the difficulty associated with securing an intravenous (IV) catheter in place in microgravity flight and the techniques applicable in training the Crew Medical Officer (CMO) for Space Station Freedom, as well as aiding in the selection of appropriate hardware and supplies for the Health Maintenance Facility (HMF). The objectives are the following: (1) to determine the difficulties associated with venipuncture in a microgravity environment; (2) to evaluate the various methods of securing an IV catheter and attached tubing for infusion with regard to the unique environment; (3) to evaluate the various materials available for securing an intravenous catheter in place; and (4) to evaluate the fluid therapy administration system when functioning in a complete system. The inflight test procedures and other aspects of the KC-135 parabolic flight test to simulate microgravity are presented.

  19. BMDO materials testing in the EOIM-3 experiment

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Liang, Ranty H.

    1995-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a testbed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground-based exposure evaluation was conducted using the Fast Atom Sample Tester (FAST) atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 flight materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 20) atoms/sq cm. The ground-based exposure fluence of 2.0 - 2.5 x 10(exp 20) atoms/sq cm permits direct comparison with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground-based exposure are summarized here. A more detailed correlation study is presented in the JPL Publication 93-31 entitled 'Flight-and Ground-Test Correlation Study of BMDO SDS Materials: Phase 1 Report'. In general, the majority of the materials survived the AO environment with their performance tolerances maintained for the duration of the exposure. Optical materials, baffles, and coatings performed extremely well as did most of the thermal coatings and tribological materials. A few of the candidate radiator, threat shielding, and structural materials showed significant degradation. Many of the coatings designed to protect against AO erosion of sensitive materials performed this function well.

  20. Mission Suitability Testing of an Aircraft Simulator. Technical Report No. 75-12.

    ERIC Educational Resources Information Center

    Caro, Paul W.; And Others

    The report describes a study conducted to evaluate Device 2B24, which simulates the UH-1 helicopter and an instrument flight environment, and to determine its suitability for cost-effectively accomplishing the instrument phase of Army rotary wing flight training and facilitating UH-1 helicopter transition training, aviator proficiency evaluation,…

  1. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is presented. The propulsion and navigation system models are used to evaluate flight-testing methods for evaluating fixed-wing sUAS performance. A brief airframe analysis is presented to provide a foundation for assessing the efficacy of the flight-test methods. The flight-testing presented in this work is focused on validating the aircraft drag polar, zero-lift drag coefficient, and span efficiency factor. Three methods are detailed and evaluated for estimating these design parameters. Specific focus is placed on the influence of propulsion and navigation system uncertainty on the resulting performance data. Performance estimates are used in conjunction with the propulsion model to estimate the impact sensor and measurement uncertainty on the endurance and range of a fixed-wing sUAS. Endurance and range results for a simplistic power available model are compared to the Reynolds-dependent model presented in this work. Additional parameter sensitivity analysis related to state estimation uncertainties encountered in flight-testing are presented. Results from these analyses indicate that the sub-system models introduced in this work are of first-order importance, on the order of 5-10% change in range and endurance, in assessing the performance of a fixed-wing sUAS.

  2. UAS-NAS Flight Test Series 3: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and complexity of the previous tests and technical simulations, resulting in research findings that support the development of regulations governing the access of UAS into the NAS. The integrated events started with two initial flight test used to develop and test early integrations and components of the test environment. Test subjects and a relevant test environment were brought in for the integrated HITL (or IHITL) conducted in 2014. The IHITL collected data to evaluate the effectiveness of DAA Well Clear (DWC) algorithms and the acceptability of UAS concepts integrated into the NAS. The first integrated flight test (and the subject of this report) followed the IHITL by replacing the simulation components with live aircraft. The project finishes the integrated events with a final flight test to be conducted in 2016 that provides the researchers with an opportunity to collect DWC and Collision Avoidance (CA) interoperability data during flight encounters.

  3. NASA Launches Parachute Test Platform from Wallops

    NASA Image and Video Library

    2017-10-04

    NASA tested a parachute platform during the flight of a Terrier-Black Brant IX suborbital sounding rocket on Oct. 4, from the agency’s Wallops Flight Facility in Virginia. The rocket carried the Advanced Supersonic Parachute Inflation Research Experiment (ASPIRE) from NASA’s Jet Propulsion Laboratory in Pasadena, Calif. The mission will evaluate the performance of the ASPIRE payload, which is designed to test parachute systems in a low-density, supersonic environment.

  4. PTERA - Modular Aircraft Flight Test

    NASA Image and Video Library

    2016-01-13

    Aerospace testing can be costly and time consuming but a new modular, subscale remotely piloted aircraft offers NASA researchers more affordable options for developing a wide range of cutting edge aviation and space technologies. The Prototype-Technology Evaluation and Research Aircraft (PTERA), developed by Area-I, Inc., of Kennesaw, Georgia, is an extremely versatile and high quality, yet inexpensive, flying laboratory bridging the gap between wind tunnels and crewed flight testing.

  5. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  6. Designing and testing a tool for evaluating electronic flight bags

    DOT National Transportation Integrated Search

    2004-09-29

    The Federal Aviation Administration (FAA), system designers, and customers all recognize that Electronic Flight Bags (EFBs) are sophisticated devices whose use could affect pilot performance. As a result, human factors issues have received considerab...

  7. Long Duration Exposure Facility (LDEF) low temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1993-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.

  8. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  9. Flight testing and frequency domain analysis for rotorcraft handling qualities characteristics

    NASA Technical Reports Server (NTRS)

    Ham, Johnnie A.; Gardner, Charles K.; Tischler, Mark B.

    1993-01-01

    A demonstration of frequency domain flight testing techniques and analyses was performed on a U.S. Army OH-58D helicopter in support of the OH-58D Airworthiness and Flight Characteristics Evaluation and the Army's development and ongoing review of Aeronautical Design Standard 33C, Handling Qualities Requirements for Military Rotorcraft. Hover and forward flight (60 knots) tests were conducted in 1 flight hour by Army experimental test pilots. Further processing of the hover data generated a complete database of velocity, angular rate, and acceleration frequency responses to control inputs. A joint effort was then undertaken by the Airworthiness Qualification Test Directorate (AQTD) and the U.S. Army Aeroflightdynamics Directorate (AFDD) to derive handling qualities information from the frequency response database. A significant amount of information could be extracted from the frequency domain database using a variety of approaches. This report documents numerous results that have been obtained from the simple frequency domain tests; in many areas, these results provide more insight into the aircraft dynamics that affect handling qualities than to traditional flight tests. The handling qualities results include ADS-33C bandwidth and phase delay calculations, vibration spectral determinations, transfer function models to examine single axis results, and a six degree of freedom fully coupled state space model. The ability of this model to accurately predict aircraft responses was verified using data from pulse inputs. This report also documents the frequency-sweep flight test technique and data analysis used to support the tests.

  10. Role of premission testing in the National Missile Defense system

    NASA Astrophysics Data System (ADS)

    Tillman, Janice V.; Atkinson, Beverly

    2001-09-01

    The purpose of the National Missile Defense (NMD) system is to provide detection, discrimination, engagement, interception, and negation of ballistic missile attacks targeted at the United States (U.S.), including Alaska and Hawaii. This capability is achieved through the integration of weapons, sensors, and a battle management, command, control and communications (BMC3) system. The NMD mission includes surveillance, warning, cueing, and engagement of threat objects prior to potential impact on U.S. targets. The NMD Acquisition Strategy encompasses an integrated test program using Integrated Ground Tests (IGTs), Integrated Flight Tests (IFTs), Risk Reduction Flights (RRFs), Pre Mission Tests (PMTs), Command and Control (C2) Simulations, and other Specialty Tests. The IGTs utilize software-in-the-loop/hardware-in-the-loop (SWIL / HWIL) and digital simulations. The IFTs are conducted with targets launched from Vandenberg Air Force Base (VAFB) and interceptors launched from Kwajalein Missile Range (KMR). The RRFs evaluate NMD BMC3 and NMD sensor functional performance and integration by leveraging planned Peacekeeper and Minuteman III operational test flights and other opportunities without employing the NMD interceptor. The PMTs are nondestructive System-level tests representing the use of NMD Element Test Assets in their IFT configuration and are conducted to reduce risks in achieving the IFT objectives. Specifically, PMTs are used to reduce integration, interface, and performance risks associated with Flight Tests to ensure that as much as possible, the System is tested without expending a target or an interceptor. This paper examines several critical test planning and analysis functions as they relate to the NMD Integrated Flight Test program and, in particular, to Pre-Mission Testing. Topics to be discussed include: - Flight-test program planning; - Pre-Test Integration activities; and - Test Execution, Analysis, and Post-Flight Reconstruction.

  11. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  12. Prototype Common Bus Spacecraft: Hover Test Implementation and Results. Revision, Feb. 26, 2009

    NASA Technical Reports Server (NTRS)

    Hine, Butler Preston; Turner, Mark; Marshall, William S.

    2009-01-01

    In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle.

  13. AZ-2000-IECW and StaMet Black Kapton Options for Solar Probe Plus MAG Sensor MLI Kevlar/Polyimide Shells

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2017-01-01

    AZ-2000-IECW white paint and StaMet black Kapton have been evaluated for the Kevlar/polyimide shells that enclose the Solar Probe Plus Magnetometer (MAG) sensors and multilayer insulation. Flight qualification testing on AZ-2000-IECW painted Kevlar/polyimide laminate was completed at Goddard Space Flight Center. This paint potentially meets all the requirements. However, it has no flight heritage. StaMet is hotter in the sun, and is specular. The results of the MAG thermal balance test show StaMet meets the thermal requirement and heater power budget. The mission prefers to fly StaMet after evaluating the risks of AZ-2000-IECW flaking and glint from StaMet to the Star Trackers.

  14. Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight

    NASA Technical Reports Server (NTRS)

    Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.

    1991-01-01

    The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.

  15. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  16. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    NASA Technical Reports Server (NTRS)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  17. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  18. The extension of the thermal-vacuum test optimization program to multiple flights

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Byrd, J.

    1981-01-01

    The thermal vacuum test optimization model developed to provide an approach to the optimization of a test program based on prediction of flight performance with a single flight option in mind is extended to consider reflight as in space shuttle missions. The concept of 'utility', developed under the name of 'availability', is used to follow performance through the various options encountered when the capabilities of reflight and retrievability of space shuttle are available. Also, a 'lost value' model is modified to produce a measure of the probability of a mission's success, achieving a desired utility using a minimal cost test strategy. The resulting matrix of probabilities and their associated costs provides a means for project management to evaluate various test and reflight strategies.

  19. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  20. Selected Performance Measurements of the F-15 Active Axisymmetric Thrust-vectoring Nozzle

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Sims, Robert L.

    1998-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  1. Selected Performance Measurements of the F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Sims, Robert L.

    1999-01-01

    Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

  2. Evaluation of the Malcolm horizon in a moving-base flight simulator

    NASA Technical Reports Server (NTRS)

    Gillingham, K. K.

    1984-01-01

    The efficacy of the Malcolm Horizon (MH) in a controlled, simulated, instrument flight environment was examined. Eight flight parameters were used to compare performance under experimental and control conditions. The parameters studied were pitch attitude, roll attitude, turn rate, airspeed, vertical velocity, heading, altitude, and course deviation. Testing of a commercial realization of the MH concept in a flight simulator revealed strengths and weaknesses of the currently available MH hardware.

  3. Study of the Light Utility Helicopter (LUH) Acquisition Program as a Model for Defense Acquisition of Nondevelopmental Items

    DTIC Science & Technology

    2014-12-01

    Local Economic Impact of UH-72A Manufacture ................42  viii e.  EADS’ (Now Airbus Group’s) Suppliers and Subcontractors...Headquarters, Department of the Army IFR instrument flight rules IOTE initial operational test and evaluation IR infrared KO contracting officer kt...instrument flight rules ( IFR ) and visual flight rules (VFR) capabilities, thereby allowing flight at night and under low visibility weather

  4. Development of a Heterogeneous sUAS High-Accuracy Positional Flight Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Grosveld, Ferdinand W.

    2016-01-01

    Recently, a heterogeneous FDAS, consisting of a diverse range of instruments was developed to support acoustic flight research programs at NASA Langley Research Center. In addition to a conventional GPS to measure latitude, longitude and altitude, the FDAS also utilizes a small, light-weight, low-cost DGPS system to obtain centimeter accuracy to measure the distance traveled by sound from a sUAS vehicle to a microphone on the ground. Acoustic flight testing using the FDAS installed on several different sUAS platforms has been conducted in support of the NASA CAS DELIVER and ERA ITD projects (Reference 1). The first FDAS prototype was assembled and implemented in the acoustic/flight measurement system in December 2014 to support DELIVER acoustic flight tests. Evaluation of the system performance and results from the data analyses were used to further test, develop and enhance the FDAS over a six-month period to support acoustic flight research for the ERA.

  5. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  6. Evaluating Trauma Sonography for Operational Use in the Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Andrew W.; Jones, Jeffrey A.; Sargsyan, Ashot; Hamilton, Douglas; Melton, Shannon; Beck, George; Nicolaou, Savvas; Campbell, Mark; Dulchavsky, Scott

    2007-01-01

    Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use.

  7. ARC-1958-A-23928

    NASA Image and Video Library

    1958-05-21

    NACA Photographer Thrust reverser on F-94C-1 (AF50-956 NACA 156) Starfire (l to R) Air Force Major E. Sommerich; Ames Engineer Seth Anderson, Lt. Col. Tavasti; and Ames Chief test pilot George Cooper discussing phases of flight evaluation tests. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 91

  8. 2018 NDIA 33rd Annual National Test and Evaluation Conference

    DTIC Science & Technology

    2018-05-17

    Breach IOC Delayed RDT&E Overrun MS B IOC First Flight CDR Wind Tunnel Campaign Flight Test Campaign $ Peak Burn Rate Occurs Around FF Wind Tunnel...Connectivity Team – Tier 2 network support, network characterization and analysis, walk-the- wire trouble resolution, assistance with new site Connection...File Transfer Protocol (SFTP) Server. The Test and Training Enabling Architecture (TENA) is used for over the wire simulation protocol via the DISGW

  9. Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy; Bosworth, John T.

    2007-01-01

    This viewgraph presentation is an overview of the Launch Abort System (LAS) for the Constellation Program. The purpose of the paper is to review the planned tests for the LAS. The program will evaluate the performance of the crew escape functions of the Launch Abort System (LAS) specifically: the ability of the LAS to separate from the crew module, to gather flight test data for future design and implementation and to reduce system development risks.

  10. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  11. STS-1 mission contamination evaluation approach

    NASA Technical Reports Server (NTRS)

    Jacobs, S.; Ehlers, H.; Miller, E. R.

    1980-01-01

    The space transportation system 1 mission will be the first opportunity to assess the induced environment of the orbiter payload bay region. Two tools were developed to aid in this assessment. The shuttle payload contamination evaluation computer program was developed to provide an analytical tool for prediction of the induced molecular contamination environment of the space shuttle orbiter during its onorbit operations. An induced environment contamination monitor was constructed and tested to measure the space shuttle orbiter contamination environment inside the payload bay during ascent and descent and inside and outside the payload bay during the onorbit phase. Measurements are to be performed during the four orbital flight test series. Measurements planned for the first flight are described and predicted environmental data are discussed. The results indicate that the expected data are within the measurement range of the induced environment contamination monitor instruments evaluated, and therefore it is expected that useful contamination environmental data will be available after the first flight.

  12. Evaluation of the usefulness of various simulation technology options for TERPS enhancement

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Sorensen, J. A.

    1986-01-01

    Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as microwave landing systems (MLS) and the Global Positioning System (GPS) open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2 to 5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5 to 10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined.

  13. Runway Incursion Prevention System Testing at the Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2005-01-01

    A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.

  14. Lay out, test verification and in orbit performance of HELIOS a temperature control system

    NASA Technical Reports Server (NTRS)

    Brungs, W.

    1975-01-01

    HELIOS temperature control system is described. The main design features and the impact of interactions between experiment, spacecraft system, and temperature control system requirements on the design are discussed. The major limitations of the thermal design regarding a closer sun approach are given and related to test experience and performance data obtained in orbit. Finally the validity of the test results achieved with prototype and flight spacecraft is evaluated by comparison between test data, orbit temperature predictions and flight data.

  15. Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    NASA Technical Reports Server (NTRS)

    Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.

  16. Flammability, Offgassing, and Compatibility Requirements and Test Procedures. Interim NASA Technical Standard

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.

  17. Predicting the language proficiency of Chinese student pilots within American airspace: Single-task versus dual-task English-language assessment

    NASA Astrophysics Data System (ADS)

    Noble, Clifford Elliott, II

    2002-09-01

    The problem. The purpose of this study was to investigate the ability of three single-task instruments---(a) the Test of English as a Foreign Language, (b) the Aviation Test of Spoken English, and (c) the Single Manual-Tracking Test---and three dual-task instruments---(a) the Concurrent Manual-Tracking and Communication Test, (b) the Certified Flight Instructor's Test, and (c) the Simulation-Based English Test---to predict the language performance of 10 Chinese student pilots speaking English as a second language when operating single-engine and multiengine aircraft within American airspace. Method. This research implemented a correlational design to investigate the ability of the six described instruments to predict the mean score of the criterion evaluation, which was the Examiner's Test. This test assessed the oral communication skill of student pilots on the flight portion of the terminal checkride in the Piper Cadet, Piper Seminole, and Beechcraft King Air airplanes. Results. Data from the Single Manual-Tracking Test, as well as the Concurrent Manual-Tracking and Communication Test, were discarded due to performance ceiling effects. Hypothesis 1, which stated that the average correlation between the mean scores of the dual-task evaluations and that of the Examiner's Test would predict the mean score of the criterion evaluation with a greater degree of accuracy than that of single-task evaluations, was not supported. Hypothesis 2, which stated that the correlation between the mean scores of the participants on the Simulation-Based English Test and the Examiner's Test would predict the mean score of the criterion evaluation with a greater degree of accuracy than that of all single- and dual-task evaluations, was also not supported. The findings suggest that single- and dual-task assessments administered after initial flight training are equivalent predictors of language performance when piloting single-engine and multiengine aircraft.

  18. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  19. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  20. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  1. Shuttle waste management system design improvements and flight evaluation

    NASA Technical Reports Server (NTRS)

    Winkler, H. Eugene; Goodman, Jerry R.; Murray, Robert W.; Mcintosh, Mathew E.

    1986-01-01

    The Space Shuttle waste management system has undergone a variety of design changes to improve performance and man-machine interface. These design improvements have resulted in more reliable operation and hygienic usage. Design enhancements include individual urinals, increased urine collection airflows, increased solids storage capacity, easier access to personal hygiene items, and additional wet trash stowage. The development and flight evaluation of these improvements are described herein. The Space Shuttle Orbiter has proved to be an invaluable test bed for development and in-flight evaluation of life support and habitability concepts which involve transport or separation of solids, liquids, and gases in a zero-g environment.

  2. Excitations for Rapidly Estimating Flight-Control Parameters

    NASA Technical Reports Server (NTRS)

    Moes, Tim; Smith, Mark; Morelli, Gene

    2006-01-01

    A flight test on an F-15 airplane was performed to evaluate the utility of prescribed simultaneous independent surface excitations (PreSISE) for real-time estimation of flight-control parameters, including stability and control derivatives. The ability to extract these derivatives in nearly real time is needed to support flight demonstration of intelligent flight-control system (IFCS) concepts under development at NASA, in academia, and in industry. Traditionally, flight maneuvers have been designed and executed to obtain estimates of stability and control derivatives by use of a post-flight analysis technique. For an IFCS, it is required to be able to modify control laws in real time for an aircraft that has been damaged in flight (because of combat, weather, or a system failure). The flight test included PreSISE maneuvers, during which all desired control surfaces are excited simultaneously, but at different frequencies, resulting in aircraft motions about all coordinate axes. The objectives of the test were to obtain data for post-flight analysis and to perform the analysis to determine: 1) The accuracy of derivatives estimated by use of PreSISE, 2) The required durations of PreSISE inputs, and 3) The minimum required magnitudes of PreSISE inputs. The PreSISE inputs in the flight test consisted of stacked sine-wave excitations at various frequencies, including symmetric and differential excitations of canard and stabilator control surfaces and excitations of aileron and rudder control surfaces of a highly modified F-15 airplane. Small, medium, and large excitations were tested in 15-second maneuvers at subsonic, transonic, and supersonic speeds. Typical excitations are shown in Figure 1. Flight-test data were analyzed by use of pEst, which is an industry-standard output-error technique developed by Dryden Flight Research Center. Data were also analyzed by use of Fourier-transform regression (FTR), which was developed for onboard, real-time estimation of the derivatives.

  3. Flight-Test Evaluation of the Longitudinal Stability and Control Characteristics of 0.5-Scale Models of the Fairchild Lark Pilotless-Aircraft Configuration: Standard Configuration with Wing Flaps Deflected 60 Degrees and Model having Tail in Line with Wings, TED No. NACA 2387

    NASA Technical Reports Server (NTRS)

    Stone, David G.

    1947-01-01

    Flight tests were conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallop Island, Va., to determine the longitudinal control and stability characteristics of 0.5-scale models of the Fairchild Lark pilotless aircraft with the tail in line with the wings a d with the horizontal wing flaps deflected 60 deg. The data were obtained by the use of a telemeter and by radar tracking.

  4. Skylab thruster attitude control system

    NASA Technical Reports Server (NTRS)

    Wilmer, G. E., Jr.

    1974-01-01

    Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.

  5. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1982-01-01

    A flight service report was prepared which covers the flight service experience of 111 graphite epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite epoxy material specimens. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Tests of removed spoilers after the seventh year of service continue to indicate modest changes in composite strength properties. Two spoilers were tested, one with 6 and one with 7 years of service, and both had residual strengths that fall within the original static strength scatter band. Both these units had typical service included discrepancies when tested. Based on visual, ultrasonic, and destructive inspection there continues to be no evidence of moisture migration into the honeycomb core and no core corrosion in the deployed units.

  6. Design and Evaluation of a New Boundary-Layer Rake for Flight Testing

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Oates, David L.; Gonsalez, Jose C.

    2000-01-01

    A new boundary-layer rake has been designed and built for flight testing on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture. A feature unique to this rake is its curved body, which allows pitot tubes to be more densely clustered in the near-wall region than conventional rakes allow. This curved rake design has a complex three-dimensional shape that requires innovative solid-modeling and machining techniques. Finite-element stress analysis of the new design shows high factors of safety. The rake has passed a ground test in which random vibration measuring 12 g rms was applied for 20 min in each of the three normal directions. Aerodynamic evaluation of the rake has been conducted in the NASA Glenn Research Center 8 x 6 Supersonic Wind Tunnel at Mach 0-2. The pitot pressures from the new rake agree with conventional rake data over the range of Mach numbers tested. The boundary-layer profiles computed from the rake data have been shown to have the standard logarithmic-law profile. Skin friction values computed from the rake data using the Clauser plot method agree with the Preston tube results and the van Driest II compressible skin friction correlation to approximately +/-5 percent.

  7. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  8. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  9. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  10. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  11. Rotary-wing flight test methods used for the evaluation of night vision devices

    NASA Astrophysics Data System (ADS)

    Haworth, Loran A.; Blanken, Christopher J.; Szoboszlay, Zoltan P.

    2001-08-01

    The U.S. Army Aviation mission includes flying helicopters at low altitude, at night, and in adverse weather. Night Vision Devices (NVDs) are used to supplement the pilot's visual cues for night flying. As the military requirement to conduct night helicopter operations has increased, the impact of helicopter flight operations with NVD technology in the Degraded Visual Environment (DVE) became increasingly important to quantify. Aeronautical Design Standard-33 (ADS- 33) was introduced to update rotorcraft handling qualities requirements and to quantify the impact of the NVDs in the DVE. As reported in this paper, flight test methodology in ADS-33 has been used by the handling qualities community to measure the impact of NVDs on task performance in the DVE. This paper provides the background and rationale behind the development of ADS-33 flight test methodology for handling qualities in the DVE, as well as the test methodology developed for human factor assessment of NVDs in the DVE. Lessons learned, shortcomings and recommendations for NVD flight test methodology are provided in this paper.

  12. Descent advisor preliminary field test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.

  13. 14 CFR 61.213 - Eligibility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Ground Instructors § 61.213...) Student evaluation and testing; (iv) Course development; (v) Lesson planning; and (vi) Classroom training...) Holds a ground instructor certificate or flight instructor certificate issued under this part; (2) Holds...

  14. 14 CFR 61.213 - Eligibility requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Ground Instructors § 61.213...) Student evaluation and testing; (iv) Course development; (v) Lesson planning; and (vi) Classroom training...) Holds a ground instructor certificate or flight instructor certificate issued under this part; (2) Holds...

  15. 14 CFR 61.213 - Eligibility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Ground Instructors § 61.213...) Student evaluation and testing; (iv) Course development; (v) Lesson planning; and (vi) Classroom training...) Holds a ground instructor certificate or flight instructor certificate issued under this part; (2) Holds...

  16. Flight tests of the 4D flight guidance display

    NASA Astrophysics Data System (ADS)

    Below, Christian; von Viebahn, Harro; Purpus, Matthias

    1997-06-01

    A perspective primary flight and a navigation display format were evaluated in a flying testbed. The flight tests comprised ILS- and standard approaches as well as low level operations utilizing the depiction of a spatial channel, and demonstrations of the inherent ground proximity warning function. In the cockpit of the VFW614, the left seat was equipped with a sidestick and a flat panel display, which showed both the 4D-display an the Navigation Display format. Airline and airforce pilots flew several missions each. Although most of the pilots criticizes that a typical flight director commanding the aircraft's attitude was missing, they could follow the channel precisely. However, some airline pilots stated a lack of vertical guidance information during the final approach. Leaving and re- entering the channel could be easily accomplished form any direction. In summary pilots' assessment of the display concept yielded an overall improvement of SA. In particular it was stated that displays are an appropriate means to avoid CFIT accidents. With the fist prototypes of 3D- graphics generators designed for avionics available the flight evaluation will continue including feasibility demonstrations of high-performance graphics for civil and military aircraft applications.

  17. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  18. Flight set 360L003 instrumentation final test report, volume 9

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Post-flight instrumentation hardware and data evaluation for 360L003 is summarized. The 360L003 motors were equipped with Developmental Flight Instrumentation (DFI), Operational Flight Instrumentation (OFI), and Ground Environmental Instrumentation (GEI). The DFI was designed to measure strain, temperature, pressure, and vibration at various locations on the motor during flight. The DFI is used to validate engineering models in a flight environment. The OFI consists of six Operational Pressure Tranducers which monitor chamber pressure during flight. These pressure transducers are used in the SRB separation cue. GEI measures the motor case, igniter flange, and nozzle temperature prior to launch.

  19. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  20. Digital electronic engine control history

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1984-01-01

    Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.

  1. DC-10 winglet flight evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of a flight evaluation of winglets on a DC-10 Series 10 aircraft are presented. For sensitive areas of comparison, effects of winglets were determined back to back with and without winglets. Basic and reduced span winglet configurations were tested. After initial encounter with low speed buffet, a number of acceptable configurations were developed. For maximum drag reduction at both cruise and low speeds, lower winglets were required, having leading edge devices on upper and lower winglets for the latter regime. The cruise benefits were enhanced by adding outboard aileron droop to the reduced span winglet aircraft. Winglets had no significant impact on stall speeds, high speed buffet boundary, and stability and control characteristics. Flutter test results agreed with predictions and ground vibration data. Flight loads measurement also agreed with predictions.

  2. NASA Glenn Research Center Support of the ASRG Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2014-01-01

    A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.

  3. Feasibility Analysis and Prototyping of a Fast Autonomous Recon system

    DTIC Science & Technology

    2017-06-01

    Test and Evaluation Interim Contractor Support System Assessment OPERATIONAL USE AND SYSTEM SUPPORT System Operation in the User Environment...Sustaining Maintenance and Logistics Support Operational Testing System Modifications for Improvement Contractor Support System Assessment...helicopter but has the added benefit of high -speed flight similar to a fixed-wing aircraft. Figure 1 shows the two different flight modes of the V-22

  4. Centaur Standard Shroud (CSS) Heated Altitude Jettison Tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Altitude jettison tests, at a pressure of 20 torr (0.39 psia), were performed on the Centaur Standard Shroud (CSS) in a 100-foot diameter vacuum chamber. These jettison tests were part of a series of flight qualification tests which were performed on the new CSS system in preparation for the Helios and Viking missions. The first two tests subjected the CSS to a thermal cycle which simulated aerodynamic heating during ascent flight and the third test was performed at altitude pressure and in ambient temperature conditions. The purpose of the ambient temperature test was to provide base line data by which the separate machanical and thermal factors that influence jettison performance could be evaluated individually. The CSS was successfully jettisoned in each of the three tests. Also, thermal, stress, and structural deflection data were obtained which verified the analytical predictions of CSS response to flight environmental conditions and performance during jettison. In addition, much important information was obtained on critical CSS-to-payload clearance losses due to shell motions prior to and during jettison. The effectiveness of the separation system was successfully demonstrated at maximum flight temperatures.

  5. Evaluation Program for Secondary Spacecraft Cells: Initial Evaluation Tests of General Electric Company 6.0 Ampere Hour Nickel Cadmium Spacecraft Cells for the Dynamic Explorer Satellite Program

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    Evaluation tests of 10 nickel cadmium cells are described. Although pressures were greater than what normally was exhibited by General Electric cells in the past, it is recommended that these cells be placed on life test simulating the predicted Dynamic Explorer flight profiles.

  6. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.; Stoecklin, R. L.

    1980-01-01

    The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based enviromental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Over 1,188,367 spoiler flight hours and 1,786,837 spoiler landings were accumulated by this fleet. Tests of removed spoilers and ground-based exposure specimens after the fifth year of service indicate modest changes in composite strength properties. Two incidents of trailing edge delamination with subsequent core corrosion were observed. Based on visual, ultrasonic, and destructive testing, there has been no evidence of moisture migration into the honeycomb core and no core corrosion.

  7. F-8C digital CCV flight control laws

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  8. Test Vehicle Forebody Wake Effects on CPAS Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2017-01-01

    Parachute drag performance has been reconstructed for a large number of Capsule Parachute Assembly System (CPAS) flight tests. This allows for determining forebody wake effects indirectly through statistical means. When data are available in a "clean" wake, such as behind a slender test vehicle, the relative degradation in performance for other test vehicles can be computed as a Pressure Recovery Fraction (PRF). All four CPAS parachute types were evaluated: Forward Bay Cover Parachutes (FBCPs), Drogues, Pilots, and Mains. Many tests used the missile-shaped Parachute Compartment Drop Test Vehicle (PCDTV) to obtain data at high airspeeds. Other tests used the Orion "boilerplate" Parachute Test Vehicle (PTV) to evaluate parachute performance in a representative heatshield wake. Drag data from both vehicles are normalized to a "capsule" forebody equivalent for Orion simulations. A separate database of PCDTV-specific performance is maintained to accurately predict flight tests. Data are shared among analogous parachutes whenever possible to maximize statistical significance.

  9. EEG and ECG changes during simulator operation reflect mental workload and vigilance.

    PubMed

    Dussault, Caroline; Jouanin, Jean-Claude; Philippe, Matthieu; Guezennec, Charles-Yannick

    2005-04-01

    Performing mission tasks in a simulator influences many neurophysiological measures. Quantitative assessments of electroencephalography (EEG) and electrocardiography (ECG) have made it possible to develop indicators of mental workload and to estimate relative physiological responses to cognitive requirements. To evaluate the effects of mental workload without actual physical risk, we studied the cortical and cardiovascular changes that occurred during simulated flight. There were 12 pilots (8 novices and 4 experts) who simulated a flight composed of 10 sequences that induced several different mental workload levels. EEG was recorded at 12 electrode sites during rest and flight sequences; ECG activity was also recorded. Subjective tests were used to evaluate anxiety and vigilance levels. Theta band activity was lower during the two simulated flight rest sequences than during visual and instrument flight sequences at central, parietal, and occipital sites (p < 0.05). On the other hand, rest sequences resulted in higher beta (at the C4 site; p < 0.05) and gamma (at the central, parietal, and occipital sites; p < 0.05) power than active segments. The mean heart rate (HR) was not significantly different during any simulated flight sequence, but HR was lower for expert subjects than for novices. The subjective tests revealed no significant anxiety and high values for vigilance levels before and during flight. The different flight sequences performed on the simulator resulted in electrophysiological changes that expressed variations in mental workload. These results corroborate those found during study of real flights, particularly during sequences requiring the heaviest mental workload.

  10. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  11. Proof-of-Concept of a Networked Validation Environment for Distributed Air/Ground NextGen Concepts

    NASA Technical Reports Server (NTRS)

    Grisham, James; Larson, Natalie; Nelson, Justin; Reed, Joshua; Suggs, Marvin; Underwood, Matthew; Papelis, Yiannis; Ballin, Mark G.

    2013-01-01

    The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.

  12. Fuel conservation evaluation of US Army helicopters. Part 5. Ah-1S flight testing. Final report, 31 July-21 September 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, L.L.; Savage, R.T.; Vincent, R.L.

    1983-01-01

    The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the AH-1S (Prod) helicopter to provide data to determine the most fuel efficient operating conditions. Hot and cold weather test sites were used to extend the range of the advancing tip Mach number data to supplement existing AH-1S performance data. Preliminary analysis of non-dimensional data identifies the effects of compressibility on performance and shows a power penalty of as much as 6% at a high NR/theta. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficientmore » operating conditions.« less

  13. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  14. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  15. MATD Operational Phase: Experiences and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Messidoro, P.; Bader, M.; Brunner, O.; Cerrato, A.; Sembenini, G.

    2004-08-01

    The Model And Test Effectiveness Database (MATD) initiative is ending the first year of its operational phase. MATD represents a common repository of project data, Assembly Integration and Verification (AIV) data, on ground and flight anomalies data, of recent space projects, and offers, with the application of specific methodologies, the possibility to analyze the collected data in order to improve the test philosophies and the related standards. Basically the following type of results can be derived from the database: - Statistics on ground failures and flight anomalies - Feed-back from the flight anomalies to the Test Philosophies - Test Effectiveness evaluation at system and lower levels - Estimate of the index of effectiveness of a specific Model and Test Philosophy in comparison with the applicable standards - Simulation of different Test philosophies and related balancing of Risk/cost/schedule on the basis of MATD data The paper after a short presentation of the status of the MATD initiative, summarises the most recent lessons learned which are resulting from the data analysis and highlights how MATD is being utilized for the actual risk/cost/schedule/Test effectiveness evaluations of the past programmes so as for the prediction of the new space projects.

  16. The effects of expressivity and flight task on cockpit communication and resource management

    NASA Technical Reports Server (NTRS)

    Jensen, R. S.

    1986-01-01

    The results of an investigation to develop a methodology for evaluating crew communication behavior on the flight deck and a flight simulator experiment to test the effects of crew member expressivity, as measured by the Personal Attributes Questionnarie, and flight task on crew communication and flight performance are discussed. A methodology for coding and assessing flight crew communication behavior as well as a model for predicting that behavior is advanced. Although not enough crews were found to provide valid statistical tests, the results of the study tend to indicate that crews in which the captain has high expressivity perform better than those whose captain is low in expressivity. There appears to be a strong interaction between captains and first officers along the level of command dimension of communication. The PAQ appears to identify those pilots who offer disagreements and inititate new subjects for discussion.

  17. HFL-10 lifting body flight control system characteristics and operational experience

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Sitterle, G. J.

    1974-01-01

    A flight evaluation was made of the mechanical hydraulic flight control system and the electrohydraulic stability augmentation system installed in the HL-10 lifting body research vehicle. Flight tests performed in the speed range from landing to a Mach number of 1.86 and the altitude range from 697 meters (2300 feet) to 27,550 meters (90,300 feet) were supplemented by ground tests to identify and correct structural resonance and limit-cycle problems. Severe limit-cycle and control sensitivity problems were encountered during the first flight. Stability augmentation system structural resonance electronic filters were modified to correct the limit-cycle problem. Several changes were made to control stick gearing to solve the control sensitivity problem. Satisfactory controllability was achieved by using a nonlinear system. A limit-cycle problem due to hydraulic fluid contamination was encountered during the first powered flight, but the problem did not recur after preflight operations were improved.

  18. 2007 Research and Engineering Annual Report

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data Rack; Intelligent Data Mining Capabilities as Applied to Integrated Vehicle Health Management; STARS Flight Demonstration No. 2 IP Data Formatter; Space-Based Telemetry and Range Safety (STARS) Flight Demonstration No. 2 Range User Flight Test Results; Aerodynamic Effects of the Quiet Spike(tm) on an F-15B Aircraft; F-15 Intelligent Flight Controls-Increased Destabilization Failure; F-15 Integrated Resilient Aircraft Control (IRAC) Improved Adaptive Controller; Aeroelastic Analysis of the Ikhana/Fire Pod System; Ikhana: Western States Fire Missions Utilizing the Ames Research Center Fire Sensor; Ikhana: Fiber-Optic Wing Shape Sensors; Ikhana: ARTS III; SOFIA Closed-Door Flutter Envelope Flight Testing; F-15B Quiet Spike(TM) Aeroservoelastic Flight Test Data Analysis; and UAVSAR Platform Precision Autopilot Flight Results.

  19. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  20. Ares I-X First Stage Separation Loads and Dynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John

    2011-01-01

    The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.

  1. Analysis of a Channeled Centerbody Supersonic Inlet for F-15B Flight Research

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.

    2010-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on the NASA F-15B airplane, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. The first experiment that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new approach to variable geometry for high-speed inlets, and 2) flight validation of channeled inlet performance prediction by complex computational fluid dynamics codes. The inlet itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in- let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range of flight conditions. This study is particularly concerned with the starting characteristics of the inlet. Computational fluid dynamics studies were shown to align well with analytical predictions, showing the inlet to remain unstarted as designed at the primary test point of Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure loss, are assessed using the flight test geometry.

  2. Thrust imbalance of the Space Shuttle solid rocket motors

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Sforzini, R. H.; Shackelford, B. W., Jr.

    1981-01-01

    The Monte Carlo statistical analysis of thrust imbalance is applied to both the Titan IIIC and the Space Shuttle solid rocket motors (SRMs) firing in parallel, and results are compared with those obtained from the Space Shuttle program. The test results are examined in three phases: (1) pairs of SRMs selected from static tests of the four developmental motors (DMs 1 through 4); (2) pairs of SRMs selected from static tests of the three quality assurance motors (QMs 1 through 3); (3) SRMs on the first flight test vehicle (STS-1A and STS-1B). The simplified internal ballistic model utilized for computing thrust from head-end pressure measurements on flight tests is shown to agree closely with measured thrust data. Inaccuracies in thrust imbalance evaluation are explained by possible flight test instrumentation errors.

  3. Test and Evaluation of an Image-Matching Navigation System for a UAS Operating in a GPS-Denied Environment

    DTIC Science & Technology

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS TEST AND EVALUATION OF AN IMAGE-MATCHING NAVIGATION SYSTEM FOR A UAS OPERATING IN A GPS-DENIED...INTENTIONALLY LEFT BLANK ii Approved for public release. Distribution is unlimited. TEST AND EVALUATION OF AN IMAGE-MATCHING NAVIGATION SYSTEM FOR A UAS... Evaluation Setup and Procedures 39 4.1 Test Equipment and Data Collection Procedures . . . . . . . . . . . . 39 4.2 Actual Flight Data Collection

  4. Comparative Flow Path Analysis and Design Assessment of an Axisymmetric Hydrogen Fueled Scramjet Flight Test Engine at a Mach Number of 6.5

    NASA Technical Reports Server (NTRS)

    McClinton, C.; Rondakov, A.; Semenov, V.; Kopehenov, V.

    1991-01-01

    NASA has contracted with the Central Institute of Aviation Motors CIAM to perform a flight test and ground test and provide a scramjet engine for ground test in the United States. The objective of this contract is to obtain ground to flight correlation for a supersonic combustion ramjet (scramjet) engine operating point at a Mach number of 6.5. This paper presents results from a flow path performance and thermal evaluation performed on the design proposed by the CIAM. This study shows that the engine will perform in the scramjet mode for stoichiometric operation at a flight Mach number of 6.5. Thermal assessment of the structure indicates that the combustor cooling liner will provide adequate cooling for a Mach number of 6.5 test condition and that optional material proposed by CIAM for the cowl leading-edge design are required to allow operation with or without a type IV shock-shock interaction.

  5. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  6. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1992-01-01

    A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.

  7. SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig)

    NASA Image and Video Library

    2017-06-11

    SHIIVER (Structural Heat Intercept Insulation Vibration Evaluation Rig) is a cryogenic test tank developed to evaluate heat intercept concepts. It arrived at Marshall Space Flight Center on August 10, 2017. The tank will receive heat sensors and spray-on foam insulation before making its way to Plum Brook station for further insulation and testing.

  8. Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1

    NASA Technical Reports Server (NTRS)

    Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.

    1986-01-01

    The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.

  9. A program to evaluate a control system based on feedback of aerodynamic pressure differentials, part 1

    NASA Technical Reports Server (NTRS)

    Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.

    1981-01-01

    The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.

  10. Ares I-X Malfunction Turn Range Safety Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, J. R.

    2011-01-01

    Ares I-X was the designation given to the flight test version of the Ares I rocket which was developed by NASA (also known as the Crew Launch Vehicle (CLV) component of the Constellation Program). The Ares I-X flight test vehicle achieved a successful flight test on October 28, 2009, from Pad LC-39B at Kennedy Space Center, Florida (KSC). As part of the flight plan approval for the test vehicle, a range safety malfunction turn analysis was performed to support the risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could have caused the vehicle trajectory to deviate from its normal flight path. The effects of these failures were evaluated with an Ares I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version II (POST2) simulation tool. The Ares I-X simulation analysis provided output files containing vehicle trajectory state information. These were used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at KSC, and to develop the vehicle destruct criteria used by the flight test range safety officer in the event of a flight test anomaly of the vehicle. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study.

  11. Synthesis of active controls for flutter suppression on a flight research wing

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  12. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  13. Operational overview of the NASA GTE/CITE 3 airborne instrument intercomparisons for sulfur dioxide, hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, and carbon disulfide

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.; Davis, Douglas D.; Gregory, Gerald L.; Mcneal, Robert J.; Bendura, Richard J.; Drewry, Joseph W.; Barrick, John D.; Kirchhoff, Volker W. J. H.; Motta, Adauto G.; Navarro, Roger L.

    1993-01-01

    This paper reports the overall experimental design and gives a brief overview of results from the third airborne Chemical Instrumentation Test and Evaluation (CITE 3) mission conducted as part of the National Aeronautics and Space Administration's Global Tropospheric Experiment. The primary objective of CITE 3 was to evaluate the capability of instrumentation for airborne measurements of ambient concentrations of SO2, H2S, CS, dimethyl sulfide, and carbonyl sulfide. Ancillary measurements augmented the intercomparison data in order to address the secondary objective of CITE 3 which was to address specific issues related to the budget and photochemistry of tropospheric sulfur species. The CITE 3 mission was conducted on NASA's Wallops Flight Center Electra aircraft and included a ground-based intercomparison of sulfur standards and intercomparison/sulfur science flights conducted from the NASA Wallops Flight Facility, Wallops Island, Virginia, followed by flights from Natal, Brazil. Including the transit flights, CITE 3 included 16 flights encompassing approximately 96 flight hours.

  14. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  15. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species

    PubMed Central

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R.; Posteraro, Patrizia; Perlin, David S.; Posteraro, Brunella

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility. PMID:22535984

  16. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species.

    PubMed

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R; Posteraro, Patrizia; Perlin, David S; Sanguinetti, Maurizio; Posteraro, Brunella

    2012-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility.

  17. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface

    NASA Astrophysics Data System (ADS)

    Kaufman, Daniel S.; Gordon, Scott A.

    2012-07-01

    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  18. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  19. Long Duration Exposure Facility (LDEF) low-temperature Heat Pipe Experiment Package (HEPP) flight results

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1992-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.

  20. International Aviation (Selected Articles)

    DTIC Science & Technology

    1991-04-25

    Vibration and Flutter, by Guan Peifang, Zhong Dejun ....................................................... 21 CAAC Xian Administratio Bureau has Been... aErOEngines and main airborne equipments. For thirty years, it- ha ac pLied the national evaluation flight tests c ’ --. cre th-an- 10 types of aircraft and... aeroengines and evaluatio- fli.ght tests of Several hundreds of systems and products related L l insrumTents5, higlh al t itude e scape and’ fre control

  1. Aircraft Carrier Flight Deck Fire Fighting Tactics and Equipment Evaluation Tests

    DTIC Science & Technology

    1987-02-26

    pattern nozzles; 8. proper fire fighting techniques for possible titanium ignition in an F-14 crash (deleted later by direction of FLSC, being studied ...separately); 9. effect of full fire involvement of "ready for flight" aircraft (deleted later by direction of FLSC, being studied separately). The...to refine and identify specific hardware and tactical requirements generated from the studies conducted during the scoping tests; 3. concept

  2. Development and Testing of a Drogue Parachute System for X-37 ALTV/B-52H Separation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Jacobson, Steven R.; Jensen, Steven C.; Hennings, Elsa J.

    2004-01-01

    Multiple scenarios were identified in which the X-37 approach and landing test vehicle (ALTV) catastrophically recontacts the B-52H carrier aircraft after separation. The most cost-effective recontact risk mitigation is the prelaunch deployment of a drogue parachute that is released after the X-37 ALTV has safely cleared the B-52H. After release, a fully-inflated drogue parachute takes 30 min to reach ground and results in a large footprint that excessively restricts the days available for flight. To reduce the footprint, a passive collapse mechanism consisting of an elastic reefing line attached to the parachute skirt was developed. At flight loads the elastic is stretched, allowing full parachute inflation. After release, drag loads drop dramatically and the elastic line contracts, reducing the frontal drag area. A 50-percent drag reduction results in an approximately 75-percent ground footprint reduction. Eleven individual parachute designs were evaluated at flight load dynamic pressures in the High Velocity Airflow System (HIVAS) at the Naval Air Warfare Center (NAWC), China Lake, California. Various options for the elastic reefing system were also evaluated at HIVAS. Two best parachute designs were selected from HIVAS to be carried forward to flight test. Detailed HIVAS test results are presented in this report.

  3. Development and Testing of a Drogue Parachute System for X-37 ALTV/B-52H Separation

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Jacobson, Steven R.; Jensen, Steven C.; Hennings, Elsa J.

    2004-01-01

    Multiple scenarios were identified in which the X-37 approach and landing test vehicle (ALTV) catastrophically recontacts the B-52H carrier aircraft after separation. The most cost-effective recontact risk mitigation is the prelaunch deployment of a drogue parachute that is released after the X-37 ALTV has safely cleared the B-52H. After release, a fully-inflated drogue parachute takes 30 min to reach ground and results in a large footprint that excessively restricts the days available for flight. To reduce the footprint, a passive collapse mechanism consisting of an elastic reefing line attached to the parachute skirt was developed. At flight loads the elastic is stretched, allowing full parachute inflation. After release, drag loads drop dramatically and the elastic line contracts, reducing the frontal drag area. A 50 percent drag reduction results in an approximately 75 percent ground footprint reduction. Eleven individual parachute designs were evaluated at flight load dynamic pressures in the High Velocity Airflow System (HIVAS) at the Naval Air Warfare Center (NAWC), China Lake, California. Various options for the elastic reefing system were also evaluated at HIVAS. Two best parachute designs were selected from HIVAS to be carried forward to flight test. Detailed HIVAS test results are presented in this report.

  4. Flight Test Results of an Angle of Attack and Angle of Sideslip Calibration Method Using Output-Error Optimization

    NASA Technical Reports Server (NTRS)

    Siu, Marie-Michele; Martos, Borja; Foster, John V.

    2013-01-01

    As part of a joint partnership between the NASA Aviation Safety Program (AvSP) and the University of Tennessee Space Institute (UTSI), research on advanced air data calibration methods has been in progress. This research was initiated to expand a novel pitot-static calibration method that was developed to allow rapid in-flight calibration for the NASA Airborne Subscale Transport Aircraft Research (AirSTAR) facility. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. Subscale flight tests demonstrated small 2-s error bounds with significant reduction in test time compared to other methods. Recent UTSI full scale flight tests have shown airspeed calibrations with the same accuracy or better as the Federal Aviation Administration (FAA) accepted GPS 'four-leg' method in a smaller test area and in less time. The current research was motivated by the desire to extend this method for inflight calibration of angle of attack (AOA) and angle of sideslip (AOS) flow vanes. An instrumented Piper Saratoga research aircraft from the UTSI was used to collect the flight test data and evaluate flight test maneuvers. Results showed that the output-error approach produces good results for flow vane calibration. In addition, maneuvers for pitot-static and flow vane calibration can be integrated to enable simultaneous and efficient testing of each system.

  5. TRISTAR 1: Evaluation methods for testing head-up display (HUD) flight symbology

    NASA Technical Reports Server (NTRS)

    Newman, R. L.; Haworth, L. A.; Kessler, G. K.; Eksuzian, D. J.; Ercoline, W. R.; Evans, R. H.; Hughes, T. C.; Weinstein, L. F.

    1995-01-01

    The first in a series of piloted head-up display (HUD) flight symbology studies (TRISTAR) measuring pilot task performance was conducted at the NASA Ames Research Center by the Tri-Service Flight Symbology Working Group (FSWG). Sponsored by the U.S. Army Aeroflightdynamics Directorate, this study served as a focal point for the FSWG to examine HUD test methodology and flight symbology presentations. HUD climb-dive marker dynamics and climb-dive ladder presentations were examined as pilots performed air-to-air (A/A), air-to-ground (A/G), instrument landing system (ILS), and unusual attitude (UA) recover tasks. Symbolic presentations resembled pitch ladder variations used by the U.S. Air Force (USAF), U.S. Navy (USN), and Royal Air Force (RAF). The study was initiated by the FSWG to address HUD flight symbology deficiencies, standardization, issue identification, and test methodologies. It provided the mechanism by which the USAF, USN, RAF, and USA could integrate organizational ideas and reduce differences for comparisons. Specifically it examined flight symbology issues collectively identified by each organization and the use of objective and subjective text methodology and flight tasking proposed by the FSWG.

  6. HARV ANSER Flight Test Data Retrieval and Processing Procedures

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1997-01-01

    Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.

  7. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  8. Pre- and post-flight-test models versus measured skyship-500 control responses

    NASA Technical Reports Server (NTRS)

    Jex, Henry R.; Magdaleno, Raymond E.; Gelhausen, Paul; Tischler, Mark B.

    1987-01-01

    The dynamical equations-of-motion (EOM) for cruising airships require nonconventional terms to account for buoyancy and apparent-mass-effects, but systematic validation of these equations against flight data is not available. Using a candidate set of EOM, three comparisons are made with carefully-measured describing functions derived from frequency-sweep flight tests on the Skyship-500 airship. The first compares the pre-flight predictions to the data; the second compares the 'best-fit' equations to data at each of two airspeeds and the third compared the ability to extrapolate from one condition to another via airship-specific scaling laws. Two transient responses are also compared. The generally good results demonstrate that fairly simple, perturbation equation models are adequate for many types of flight-control analysis and flying quality evaluations of cruising airships.

  9. Development and applications of nondestructive evaluation at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1990-01-01

    A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.

  10. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  11. Air travel and chronic obstructive pulmonary disease: a new algorithm for pre-flight evaluation.

    PubMed

    Edvardsen, Anne; Akerø, Aina; Christensen, Carl C; Ryg, Morten; Skjønsberg, Ole H

    2012-11-01

    The reduced pressure in the aircraft cabin may cause significant hypoxaemia and respiratory distress in patients with chronic obstructive pulmonary disease (COPD). Simple and reliable methods for predicting the need for supplemental oxygen during air travel have been requested. To construct a pre-flight evaluation algorithm for patients with COPD. In this prospective, cross-sectional study of 100 patients with COPD referred to hypoxia-altitude simulation test (HAST), sea level pulse oximetry at rest (SpO(2 SL)) and exercise desaturation (SpO(2 6MWT)) were used to evaluate whether the patient is fit to fly without further assessment, needs further evaluation with HAST or should receive in-flight supplemental oxygen without further evaluation. HAST was used as the reference method. An algorithm was constructed using a combination of SpO(2 SL) and SpO(2 6MWT). Categories for SpO(2 SL) were >95%, 92-95% and <92%, the cut-off value for SpO(2 6MWT) was calculated as 84%. Arterial oxygen pressure (PaO(2 HAST)) <6.6 kPa was the criterion for recommending supplemental oxygen. This algorithm had a sensitivity of 100% and a specificity of 80% when tested prospectively on an independent sample of patients with COPD (n=50). Patients with SpO(2 SL) >95% combined with SpO(2 6MWT) ≥84% may travel by air without further assessment. In-flight supplemental oxygen is recommended if SpO(2 SL)=92-95% combined with SpO(2 6MWT) <84% or if SpO(2 SL) <92%. Otherwise, HAST should be performed. The presented algorithm is simple and appears to be a reliable tool for pre-flight evaluation of patients with COPD.

  12. Cost analysis of oxygen recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    The design and development of equipment for flight use in earth-orbital programs, when optimally approached cost effectively, proceed through the following logical progression: (1) bench testing of breadboard designs, (2) the fabrication and evaluation of prototype equipment, (3) redesign to meet flight-imposed requirements, and (4) qualification and testing of a flight-ready system. Each of these steps is intended to produce the basic design information necessary to progress to the next step. The cost of each step is normally substantially less than that of the following step. An evaluation of the cost elements involved in each of the steps and their impact on total program cost are presented. Cost analyses of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystem, Sabatier and Bosch, and two water electrolysis subsystems, the solid polymer electrolyte and the circulating KOH electrolyte are described.

  13. Preliminary flight test results of the F100 EMD engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.

  14. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  15. Aerial photography flight quality assessment with GPS/INS and DEM data

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao

    2018-01-01

    The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.

  16. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  17. B-1 AFT Nacelle Flow Visualization Study

    NASA Technical Reports Server (NTRS)

    Celniker, Robert

    1975-01-01

    A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.

  18. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  19. Coupled RANS/LES for SOFIA Cavity Acoustic Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen L.

    2010-01-01

    A fast but accurate approach is described for the determination of the aero-acoustic properties of a large cavity at subsonic flight speeds. This approach employs a detachededdy simulation model in the free-shear layer at the cavity opening and the surrounding boundary layer, but assumes inviscid flow in the cavity and in the far field. The reduced gridding requirements in the cavity, in particular, lead to dramatic improvements in the time required for the computation. Results of these computations are validated against wind-tunnel data. This approach will permit significantly more flight test points to be evaluated computationally in support of the Stratospheric Observatory For Infrared Astronomy flight-test program being carried out at NASA s Dryden Flight Research Center.

  20. Utilization of the graded universal testing system to increase the efficiency for assessing aerobic and anaerobic capacity

    NASA Technical Reports Server (NTRS)

    Rodgers, Sandra L.

    1992-01-01

    The in-flight exercise test performed by cosmonauts as part of the Russian Exercise Countermeasure Program is limited to 5 minutes due to communication restrictions. During a recent graded exercise test on a U.S. Shuttle flight, the test was terminated early due to an upcoming loss of signal (LOS) with the ground. This exercise test was a traditional test where the subject's exercise capacity dictates the length of the test. For example, one crew member may take 15 minutes to complete the test, while another may take 18 minutes. The traditional exercise test limits the flight schedulers to large blocks of space flight time in order to provide medical and research personnel information on the fitness capacity (maximal oxygen uptake: VO2max) of crew members during flight. A graded exercise test that would take a finite amount of time and a set preparation and recovery time would ease this problem by allowing flight schedulers to plan exercise tests in advance of LOS. The Graded Universal Testing System (GUTS) was designed to meet this goal. Fitness testing of astronauts before and after flight provides pertinent data on many variables. The Detailed Supplemental Objective (DSO608) protocol (6) is one of the graded exercise tests (GXT) currently used in astronaut testing before and after flight. Test times for this protocol have lasted from 11 to 18 minutes. Anaerobic capacity is an important variable that is currently not being evaluated before and after flight. Recent reports (1,2,5) from the literature have suggested that the oxygen deficit at supramaximal exercise is a measure of anaerobic capacity. We postulated that the oxygen deficit at maximal exercise would be an indication of anaerobic capacity. If this postulate can be accepted, then the efficiency of acquiring data from a graded exercise test would increase at least twofold. To examine this hypothesis anaerobic capacity was measured using a modified treadmill test (3,4) designed to exhaust the anaerobic systems in approximately 45 to 75 seconds. Lactate concentration in the blood was analyzed after all tests, since lactate is the end-product of anaerobic energy production. Therefore, the peak lactate response is an additional indication of anaerobic capacity. A preliminary comparison of the GUTS and the DSO608 suggests that the GUTS protocol would increase the efficiency of VO2max testing of astronauts before and after flight. Results for anaerobic capacity have not been tabulated.

  1. Fighter agility metrics, research, and test

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.

    1990-01-01

    Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A completed set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available. Simulation documentation and user instructions are provided in an appendix.

  2. Development of a Self-contained Heat Rejection Module (SHRM), phase 1

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The laboratory prototype test hardware and testing of the Self-Contained Heat Rejection Module are discussed. The purpose of the test was to provide operational and design experience for application to a flight prototype design. It also provided test evaluation of several of the actual components which were to be used in the flight prototype hardware. Several changes were made in the flight prototype design due to these tests including simpler line routing, relocation of remote operated valves to a position upstream of the expansion valves, and shock mounting of the compressor. The concept of heat rejection control by compressor speed reduction was verified and the liquid receiver, accumulator, remote control valves, oil separator and power source were demonstrated as acceptable. A procedure for mode changes between pumped fluid and vapor compression was developed.

  3. Flight simulator evaluation of a novel flight instrument display to minimize the risks of spatial disorientation.

    PubMed

    Braithwaite, M G; Durnford, S J; Groh, S L; Jones, H D; Higdon, A A; Estrada, A; Alvarez, E A

    1998-08-01

    Spatial disorientation (SD) in flight remains a major source of attrition. Many SD accidents would occur regardless of the instrument display in use, since the aircrew are simply not looking at the instruments. However, there are a number of accidents which might be amenable to improved instrument displays. In an attempt to improve maintenance and reattainment of correct orientation with a reduced cognitive workload, a novel instrument display has been developed. This paper describes an assessment of the display in a UH-60 helicopter flight simulator. This study tested the hypothesis that during instrument flight and recovery from unusual attitudes, the novel display permits a more accurate maintenance and reestablishment of flight parameters than the standard flight instruments. There were 16 male aviators who flew a simulated instrument flight profile and recovery from unusual attitudes using both the standard flight instruments and the novel display. The two display formats were tested both with and without a secondary task. When compared with the standard instruments, both control of flight parameters and recovery from unusual attitudes were significantly improved when using the novel display. Analysis of the secondary task scores showed that cognitive workload was reduced when using the novel display compared with the standard instruments. Results from all aspects of the assessment indicated benefits of the new display. Future testing should be carried out during real flight, and the display should be further developed to be used in a head-up or helmet-mounted device.

  4. Descent Advisor Preliminary Field Test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.

  5. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  6. EC95-43057-8

    NASA Image and Video Library

    1995-03-24

    Outlined with gold stripes are the hinged nose strakes, modifications made to NASA's F-18 HARV (High Alpha Research Vehicle) at the Dryden Flight Research Center, Edwards, California. Actuated Nose Strakes for Enhanced Rolling (ANSER) were installed to fly the third and final phase in the HARV flight test project. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Early wind tunnel tests indicated that the strakes would be as effective in yaw control at high angles of attack as rudders are at lower angles. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.

  7. Evaluation of acoustic testing techniques for spacecraft systems

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.

    1971-01-01

    External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.

  8. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).

  9. 14 CFR 142.49 - Training center instructor and evaluator privileges and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Flight Training Equipment Requirements § 142.49 Training center instructor and evaluator... each curriculum for which that instructor is qualified. (2) Testing and checking for which that instructor is qualified. (3) Instruction, testing, and checking intended to satisfy the requirements of any...

  10. 14 CFR 142.49 - Training center instructor and evaluator privileges and limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Flight Training Equipment Requirements § 142.49 Training center instructor and evaluator... each curriculum for which that instructor is qualified. (2) Testing and checking for which that instructor is qualified. (3) Instruction, testing, and checking intended to satisfy the requirements of any...

  11. 14 CFR 142.49 - Training center instructor and evaluator privileges and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Flight Training Equipment Requirements § 142.49 Training center instructor and evaluator... each curriculum for which that instructor is qualified. (2) Testing and checking for which that instructor is qualified. (3) Instruction, testing, and checking intended to satisfy the requirements of any...

  12. 14 CFR 142.49 - Training center instructor and evaluator privileges and limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Flight Training Equipment Requirements § 142.49 Training center instructor and evaluator... each curriculum for which that instructor is qualified. (2) Testing and checking for which that instructor is qualified. (3) Instruction, testing, and checking intended to satisfy the requirements of any...

  13. 14 CFR 142.49 - Training center instructor and evaluator privileges and limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Flight Training Equipment Requirements § 142.49 Training center instructor and evaluator... each curriculum for which that instructor is qualified. (2) Testing and checking for which that instructor is qualified. (3) Instruction, testing, and checking intended to satisfy the requirements of any...

  14. Microbial Monitoring of Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2012-01-01

    The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.

  15. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  16. Fuel conservation evaluation of US (United States) Army helicopters. Part 4. OH-58C flight testing. Final report 22 Sep 20-Nov 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belte, D.; Stratton, M.V.

    1982-08-01

    The United States Army Aviation Engineering Flight Activity conducted level flight performance tests of the OH-58C helicopter at Edwards AFB, California from 22 September to 20 November 1981, and at St. Paul, Minnesota, from 12 January to 9 February 1982. Nondimensional methods were used to identify effects of compressibility and blade stall on performance, and increased referred rotor speeds were used to supplement the range of currently available level flight data. Maximum differences in nondimensional power required attributed to compressibility effects varied from 6.5 to 11%. However, high actual rotor speed at a given condition can result in less powermore » required than at low rotor speed even with the compressibility penalty. The power required characteristics determined by these tests can be combined with engine performance to determine the most fuel efficient operating conditions.« less

  17. Damage accumulation in titanium matrix composites under generic hypersonic vehicle flight simulation and sustained loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.S.; Mirdamadi, M.; Bakuckas, J.G. Jr.

    1996-12-31

    Titanium matrix composites (TMC), such as Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6), are being evaluated for use in hypersonic vehicles and advanced gas turbine engines where high strength-to-weight and high stiffness-to-weight ratios at elevated temperatures are critical. Such applications expose the composite to mechanical fatigue loading as well as thermally induced cycles. The damage accumulation behavior of a [0/90]2s laminate made of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a simulated generic hypersonic flight profile, portions of the flight profile, and sustained loads was evaluated experimentally. Portions of the flight profile were used separately tomore » isolate combinations of load and time at temperature that influenced the fatigue behavior of the composite. Sustained load tests were also conducted and the results were compared with the fatigue results under the flight profile and its portions. The test results indicated that the fatigue strength of this materials system is considerably reduced by a combination of load and time at temperature.« less

  18. Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv

    2001-01-01

    Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.

  19. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    NASA Technical Reports Server (NTRS)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  20. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    NASA Technical Reports Server (NTRS)

    Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose

    1997-01-01

    Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.

  1. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  2. STS-41 Commander Richards uses DTO 1206 portable computer onboard OV-103

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Commander Richard N. Richards, at pilots station, uses Detailed Test Objective (DTO) Space Station Cursor Control Device Evaluation MACINTOSH portable computer on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Richards tests the roller ball cursor control device. Surrounding Richards are checklists, forward flight deck windows, his lightweight communications kit assembly headset, a beverage container (orange-mango drink), and the pilots seat back and headrest.

  3. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design

    NASA Technical Reports Server (NTRS)

    Harrison, Phil; LaVerde, Bruce; Teague, David

    2009-01-01

    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  4. Seeing the Invisible: Embedding Tests in Code That Cannot be Modified

    NASA Technical Reports Server (NTRS)

    O'Malley, Owen; Mansouri-Samani, Masoud; Mehlitz, Peter; Penix, John

    2005-01-01

    The difficulty of characterizing and observing valid software behavior during testing can be very difficult in flight systems. To address this issue, we evaluated several approaches to increasing test observability on the Shuttle Abort Flight Management (SAFM) system. To increase test observability, we added probes into the running system to evaluate the internal state and analyze test data. To minimize the impact of the instrumentation and reduce manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source code. We developed and elicited a spectrum of properties, from generic to application specific properties, to be monitored via the instrumentation. To evaluate additional approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test coverage, Valgrind for looking for memory usage errors, and libraries for finding non-normal floating point values. An in-house C++ source code scanning tool was also used to identify violations of SAFM coding standards, and other potentially problematic C++ constructs. Using these approaches with the existing test data sets, we were able to verify several important properties, confirm several problems and identify some previously unidentified issues.

  5. The design, development, and flight test results of the Boeing 737 aircraft antennas for the ICAO demonstration of the TRSB microwave landing system

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; White, W. E.; Gilreath, M. C.

    1976-01-01

    The Research Support Flight System, a modified Boeing 737, was used to evaluate the performance of several aircraft antennas and locations for the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS). These tests were conducted at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey on December 18, 1975. The flight tests measured the signal strength and all pertinent MLS data during a straight-in approach, a racetrack approach, and ICAO approach profiles using the independent antenna-receiver combinations simultaneously on the aircraft. Signal drop-outs were experienced during the various approaches but only a small percentage could be attributed to antenna pattern effects.

  6. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlson, Benjamin; LeBlanc, Bruce Philip.; Minster, David G

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in ordermore » to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.« less

  7. NASA. Marshall Space Flight Center Hydrostatic Bearing Activities

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.

    1991-01-01

    The basic approach for analyzing hydrostatic bearing flows at the Marshall Space Flight Center (MSFC) is briefly discussed. The Hydrostatic Bearing Team has responsibility for assessing and evaluating flow codes; evaluating friction, ignition, and galling effects; evaluating wear; and performing tests. The Office of Aerospace and Exploration Technology Turbomachinery Seals Tasks consist of tests and analysis. The MSFC in-house analyses utilize one-dimensional bulk-flow codes. Computational fluid dynamics (CFD) analysis is used to enhance understanding of bearing flow physics or to perform parametric analysis that are outside the bulk flow database. As long as the bulk flow codes are accurate enough for most needs, they will be utilized accordingly and will be supported by CFD analysis on an as-needed basis.

  8. Description of the microbial ecology evaluation device, flight equipment, and ground transporter

    NASA Technical Reports Server (NTRS)

    Chassay, C. E.; Taylor, G. R.

    1973-01-01

    Exposure of test systems in space required the fabrication of specialized hardware termed a Microbial Ecology Evaluation Device that had individual test chambers and a complex optical filter system. The characteristics of this device and the manner in which it was deployed in space are described.

  9. Hubble Space telescope thermal cycle test report for large solar array samples with BSFR cells (Sample numbers 703 and 704)

    NASA Technical Reports Server (NTRS)

    Alexander, D. W.

    1992-01-01

    The Hubble space telescope (HST) solar array was designed to meet specific output power requirements after 2 years in low-Earth orbit, and to remain operational for 5 years. The array, therefore, had to withstand 30,000 thermal cycles between approximately +100 and -100 C. The ability of the array to meet this requirement was evaluated by thermal cycle testing, in vacuum, two 128-cell solar cell modules that exactly duplicated the flight HST solar array design. Also, the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit was evaluated by performing a cold-roll test using one module.

  10. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  11. Flight service evaluation of composite components on the Bell helicopter model 206L, flight service report

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1984-01-01

    The flight service components for the Bell Model 206L JetRanger helicopter are examined. The components were placed in service in the Continental United States, Canada, and Alaska. The status of 34 sets of components is discussed. Approximately 27,500 flight hours were accumulated on the components as of 1 August 1983. Three sets of components and one-fifth of the exposure coupons were returned and tested. The results are given. The overall behavior of the components and associated problems are discussed.

  12. NASA Lewis F100 engine testing

    NASA Technical Reports Server (NTRS)

    Werner, R. A.; Willoh, R. G., Jr.; Abdelwahab, M.

    1984-01-01

    Two builds of an F100 engine model derivative (EMD) engine were evaluated for improvements in engine components and digital electronic engine control (DEEC) logic. Two DEEC flight logics were verified throughout the flight envelope in support of flight clearance for the F100 engine model derivative program (EMPD). A nozzle instability and a faster augmentor transient capability was investigated in support of the F-15 DEEC flight program. Off schedule coupled system mode fan flutter, DEEC nose-boom pressure correlation, DEEC station six pressure comparison, and a new fan inlet variable vane (CIVV) schedule are identified.

  13. Kidney Cell Electrophoresis

    NASA Technical Reports Server (NTRS)

    Todd, P.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated, ground support in the form of analytical cell electrophoresis and flow cytometry was provided and cells returned from space flight were analyzed. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. The protocol established and utilized is given.

  14. ARC-1969-A-16591

    NASA Image and Video Library

    1951-10-24

    Flight evaluation and comparison of a NACA submerged inlet and a scoop inlet on the North American YF-93A (AF48-317 NACA-139). The YF-93A's were the first aircraft to use flush NACA engine inlets. aircraft to use flush NACA engine inlets. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 and Memoirs of a Flight Test Engineer NASA SP-2001-4525

  15. Ares I-X Launch Vehicle Modal Test Overview

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Bartolotta, Paul A.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Parks, Russell A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, is scheduled for launch in 2009. Ares IX will use a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle is not practical within project constraints, modal tests for several configurations in the nominal integration flow were defined to calibrate the FEM. A traceability study by Aerospace Corporation was used to identify the critical modes for the tested configurations. Test configurations included two partial stacks and the full Ares I-X launch vehicle on the Mobile Launcher Platform. This paper provides an overview for companion papers in the Ares I-X Modal Test Session. The requirements flow down, pre-test analysis, constraints and overall test planning are described.

  16. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  17. Hardware Progress Made in the Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems

    NASA Astrophysics Data System (ADS)

    Van Dyke, Melissa; Martin, James

    2005-02-01

    The NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF), provides a facility to experimentally evaluate nuclear reactor related thermal hydraulic issues through the use of non-nuclear testing. This facility provides a cost effective method to evaluate concepts/designs and support mitigation of developmental risk. Electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004 which include the following. Initial evaluation of the Department of Energy Los Alamos National Laboratory 19 module stainless steel/sodium heat pipe reactor with integral gas heat exchanger was operated at up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37- pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to support future decisions regarding potential use of space nuclear systems for space exploration. All efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.

  18. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  19. Apollo experience report: Guidance and control systems. Mission control programmer for unmanned missions AS-202, Apollo 4, and Apollo 6

    NASA Technical Reports Server (NTRS)

    Holloway, G. F.

    1975-01-01

    An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.

  20. Design and Fabrication of a Tank-Applied Broad Area Cooling Shield Coupon

    NASA Technical Reports Server (NTRS)

    Wood, J. J.; Middlemas, M. R.

    2012-01-01

    The small-scale broad area cooling (BAC) shield test panel represents a section of the cryogenic propellant storage and transfer ground test article, a flight-like cryogenic propellant storage tank. The test panel design includes an aluminum tank shell, primer, spray-on foam insulation, multilayer insulation (MLI), and BAC shield hardware. This assembly was sized to accurately represent the character of the MLI/BAC shield system, be quickly and inexpensively assembled, and be tested in the Marshall Space Flight Center Acoustic Test Facility. Investigating the BAC shield response to a worst-case launch dynamic load was the key purpose for developing the test article and performing the test. A preliminary method for structurally supporting the BAC shield using low-conductivity standoffs was designed, manufactured, and evaluated as part of the test. The BAC tube-standoff interface and unsupported BAC tube lengths were key parameters for evaluation. No noticeable damage to any system hardware element was observed after acoustic testing.

  1. NASA’s Stennis Space Center Conducts RS-25 Engine Test

    NASA Image and Video Library

    2017-03-24

    On March 23, NASA conducted a test of an RS-25 engine at the agency’s Stennis Space Center in Bay St. Louis, Mississippi. Four RS-25’s will help power NASA’s Space Launch System (SLS) rocket to space. During this test, engineers evaluated the engine’s new controller or “brain”, which communicates with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on one of the four flight engines that will help power the first integrated flight of SLS and the Orion spacecraft.

  2. Fault detection and accommodation testing on an F100 engine in an F-15 airplane. [digital engine control system

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methods that can be used for digital engine control systems are presently subjected to a flight test program in the case of the F-15 fighter's F100 engine electronic controls, inducing selected faults and then evaluating the resulting digital engine control responses. In general, flight test results were found to compare well with both ground tests and predictions. It is noted that the inducement of dual-pressure failures was not feasible, since FDA logic was not designed to accommodate them.

  3. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  4. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  5. Shuttle OFT medical report: Summary of medical results from STS-1, STS-2, STS-3, and STS-4

    NASA Technical Reports Server (NTRS)

    Pool, S. L. (Editor); Johnson, P. C., Jr. (Editor); Mason, J. A. (Editor)

    1983-01-01

    The medical operations for the orbital test flights which includes a review of the health of the crews before, during, and immediately after the four shuttle orbital flights are reported. Health evaluation, health stabilization program, medical training, medical "kit" carried in flight, tests and countermeasures for space motion sickness, cardiovascular, biochemistry and endocrinology results, hematology and immunology analyses, medical microbiology, food and nutrition, potable water, Shuttle toxicology, radiological health, and cabin acoustical noise are reviewed. Information on environmental effects of Shuttle launch and landing, medical information management, and management, planning, and implementation of the medical program are included.

  6. NASA Synthetic Vision EGE Flight Test

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.

    2002-01-01

    NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.

  7. Pilot In-Trail Procedure Validation Simulation Study

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Murdoch, Jennifer L.; Chamberlain, James P.; Chartrand, Ryan; Jones, Kenneth M.

    2008-01-01

    A Human-In-The-Loop experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) to investigate the viability of the In-Trail Procedure (ITP) concept from a flight crew perspective, by placing participating airline pilots in a simulated oceanic flight environment. The test subject pilots used new onboard avionics equipment that provided improved information about nearby traffic and enabled them, when specific criteria were met, to request an ITP flight level change referencing one or two nearby aircraft that might otherwise block the flight level change. The subject pilots subjective assessments of ITP validity and acceptability were measured via questionnaires and discussions, and their objective performance in appropriately selecting, requesting, and performing ITP flight level changes was evaluated for each simulated flight scenario. Objective performance and subjective workload assessment data from the experiment s test conditions were analyzed for statistical and operational significance and are reported in the paper. Based on these results, suggestions are made to further improve the ITP.

  8. Simulation of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Dugan, D. C.

    1982-01-01

    The effective use of simulation from issuance of the request for proposal through conduct of a flight test program for the XV-15 Tilt Rotor Research Aircraft is discussed. From program inception, simulation complemented all phases of XV-15 development. The initial simulation evaluations during the source evaluation board proceedings contributed significantly to performance and stability and control evaluations. Eight subsequent simulation periods provided major contributions in the areas of control concepts; cockpit configuration; handling qualities; pilot workload; failure effects and recovery procedures; and flight boundary problems and recovery procedures. The fidelity of the simulation also made it a valuable pilot training aid, as well as a suitable tool for military and civil mission evaluations. Simulation also provided valuable design data for refinement of automatic flight control systems. Throughout the program, fidelity was a prime issue and resulted in unique data and methods for fidelity evaluation which are presented and discussed.

  9. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  10. Flight test results of riblets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Anderson, Bianca T.; Bertelrud, Arild

    1992-01-01

    A flight experiment to test and evaluate the skin friction drag characteristics of a riblet surface in turbulent flow at supersonic speeds was conducted at NASA Dryden. Riblets of groove sizes 0.0030 and 0.0013 in. were mounted on the F-104G flight test fixture. The test surfaces were surveyed with boundary layer rakes and pressure orifices to examine the boundary layer profiles and pressure distributions of the flow. Skin friction reductions caused by the riblet surface were reported based on measured differences of momentum thickness between the smooth and riblet surfaces obtained from the boundary layer data. Flight test results for the 0.0030 in. riblet show skin friction reductions of 4 to 8 % for Mach numbers ranging from 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million per unit foot. The results from the 0.0013 in. riblets show skin friction reductions of 4 to 15 % for Mach 1.2 to 1.4 and Reynolds numbers ranging from 3.6 to 6 million per unit foot.

  11. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  12. In-flight demonstration of a Real-Time Flush Airdata Sensing (RT-FADS) system

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Davis, Roy J.; Fife, John Michael

    1995-01-01

    A prototype real-time flush airdata sensing (RT-FADS) system has been developed and flight tested at the NASA Dryden Flight Research Center. This system uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters in real time using nonlinear regression. The algorithm is robust to sensor failures and noise in the measured pressures. The RT-FADS system has been calibrated using inertial trajectory measurements that were bootstrapped for atmospheric conditions using meteorological data. Mach numbers as high as 1.6 and angles of attack greater than 45 deg have been tested. The system performance has been evaluated by comparing the RT-FADS to the ship system airdata computer measurements to give a quantitative evaluation relative to an accepted measurement standard. Nominal agreements of approximately 0.003 in Mach number and 0.20 deg in angle of attack and angle of sideslip have been achieved.

  13. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  14. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Tran, Boi N.

    1992-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  15. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Astrophysics Data System (ADS)

    Simpson, Myles A.; Tran, Boi N.

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  16. Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.

  17. Design of Quiet Rotorcraft Approach Trajectories: Verification Phase

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    2010-01-01

    Flight testing that is planned for October 2010 will provide an opportunity to evaluate rotorcraft trajectory optimization techniques. The flight test will involve a fully instrumented MD-902 helicopter, which will be flown over an array of microphones. In this work, the helicopter approach trajectory is optimized via a multiobjective genetic algorithm to improve community noise, passenger comfort, and pilot acceptance. Previously developed optimization strategies are modified to accommodate new helicopter data and to increase pilot acceptance. This paper describes the MD-902 trajectory optimization plus general optimization strategies and modifications that are needed to reduce the uncertainty in noise predictions. The constraints that are imposed by the flight test conditions and characteristics of the MD-902 helicopter limit the testing possibilities. However, the insights that will be gained through this research will prove highly valuable.

  18. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  19. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  20. Post-Flight Evaluation of PICA and PICA-X - Comparisons of the Stardust SRC and Space-X Dragon 1 Forebody Heatshield Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.

    2013-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.

  1. Experimental quiet engine program

    NASA Technical Reports Server (NTRS)

    Cornell, W. G.

    1975-01-01

    Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.

  2. A flight test of laminar flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Wright, A. S., Jr.; Wagner, R. D.

    1983-01-01

    NASA's program for development of a laminar flow technology base for application to commercial transports has made significant progress since its inception in 1976. Current efforts are focused on development of practical reliable systems for the leading-edge region where the most difficult problems in applying laminar flow exist. Practical solutions to these problems will remove many concerns about the ultimate practicality of laminar flow. To address these issues, two contractors performed studies, conducted development tests, and designed and fabricated fully functional leading-edge test articles for installation on the NASA JetStar aircraft. Systems evaluation and performance testing will be conducted to thoroughly evaluate all system capabilities and characteristics. A simulated airline service flight test program will be performed to obtain the operational sensitivity, maintenance, and reliability data needed to establish that practical solutions exist for the difficult leading-edge area of a future commercial transport employing laminar flow control.

  3. Evaluation of the in-flight noise signature of a 32-chute suppressor nozzle: Acoustic data report. [outdoor static and 40 x 80 ft. wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Moore, M. T.; Doyle, V. L.

    1977-01-01

    Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests.

  4. Blended-Wing-Body Low-Speed Flight Dynamics: Summary of Ground Tests and Sample Results

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    2009-01-01

    A series of low-speed wind tunnel tests of a Blended-Wing-Body tri-jet configuration to evaluate the low-speed static and dynamic stability and control characteristics over the full envelope of angle of attack and sideslip are summarized. These data were collected for use in simulation studies of the edge-of-the-envelope and potential out-of-control flight characteristics. Some selected results with lessons learned are presented.

  5. ATD-1 Avionics Phase 2 Flight Test: Flight Test Operations and Saftey Report (FTOSR)

    NASA Technical Reports Server (NTRS)

    Boyle, Dan; Rein-Weston, Karl; Berckefeldt, Rick; Eggling, Helmuth; Stankiewicz, Craig; Silverman, George

    2017-01-01

    The Air Traffic Management Technology Demonstration-1 (ATD-1) is a major applied research and development activity of NASA's Airspace Operations and Safety Program (AOSP). The demonstration is the first of an envisioned series of Air Traffic Management (ATM) Technology Demonstration sub-projects that will demonstrate innovative NASA technologies that have attained a sufficient level of maturity to merit more in-depth research and evaluation at the system level in relevant environments.

  6. JUH-1H Pneumatic Boot Deicing System Flight Test Evaluation

    DTIC Science & Technology

    1983-05-01

    VRS) shown in figure 2, appendix D, were used to supplement pilot’s qualitative comments. Flight test data were recorded by hand and on magnetic tape...did not show significant reductions in deflation time and the auxiliary vent appeared to become clogged with what BFC called soapstone deposits... Soapstone is used during deicer pro- duction.) The second modification was applied to the inboard end of the deicers near blade station 51. The inboard

  7. KSC-2012-4042

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Karl Stolleis prepares an instrument package for testing as part of a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  8. KSC-2012-4043

    NASA Image and Video Library

    2012-07-24

    CAPE CANAVERAL, Fla. – Karl Stolleis prepares an instrument package for testing as part of a high-altitude balloon flight for the Rocket University program. The test flight was used to evaluate the stability of an instrumented capsule as it fell to Earth before its parachute opened. Rocket University is a program of courses, workshops, labs and projects offered to engineering and research pros of all stripes to keep their skills fresh and broaden their experiences. Photo credit: NASA/Jim Grossmann

  9. Apollo experience report: Very high frequency ranging system

    NASA Technical Reports Server (NTRS)

    Panter, W. C.; Shores, P. W.

    1972-01-01

    The history of the Apollo very-high-frequency ranging system development program is presented from the program-planning stage through the final-test and flight-evaluation stages. Block diagrams of the equipment are presented, and a description of the theory of operation is outlined. A sample of the distribution of errors measured in the aircraft-flight test program is included. The report is concluded with guidelines or recommendations for the management of development programs having the same general constraints.

  10. Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities

    NASA Technical Reports Server (NTRS)

    Pausder, Heinz-Juergen; Blanken, Chris L.

    1992-01-01

    Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hr of flight time during 10 days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.

  11. Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities

    NASA Technical Reports Server (NTRS)

    Pausder, Heinz-Juergen; Blanken, Chris L.

    1993-01-01

    Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.

  12. Position Measurement Standard Evaluation

    DOT National Transportation Integrated Search

    1975-02-01

    The objectives of the Position Measurement Standard Program were to collect navigation data from three DME receivers and a low-frequency GLOBAL Navigation system, and evaluate their relative performance against a reference radar. Flight test data dur...

  13. Development and flight test of a deployable precision landing system

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.; Murray, James E.; Neufeld, David C.; Reed, R. Dale

    1994-01-01

    A joint NASA Dryden Flight Research Facility and Johnson Space Center program was conducted to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of entry from space that included a precision landing. The feasibility of this system was studied using a flight model of a spacecraft in the generic shape of a flattened biconic that weighed approximately 150 lb and was flown under a commercially available, ram-air parachute. Key elements of the vehicle included the Global Positioning System guidance for navigation, flight control computer, ultrasonic sensing for terminal altitude, electronic compass, and onboard data recording. A flight test program was used to develop and refine the vehicle. This vehicle completed an autonomous flight from an altitude of 10,000 ft and a lateral offset of 1.7 miles that resulted in a precision flare and landing into the wind at a predetermined location. At times, the autonomous flight was conducted in the presence of winds approximately equal to vehicle airspeed. Several novel techniques for computing the winds postflight were evaluated. Future program objectives are also presented.

  14. Experience with Ada on the F-18 High Alpha Research Vehicle Flight Test Program

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael

    1992-01-01

    Considerable experience was acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft was highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written in Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada for flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.

  15. Experience with Ada on the F-18 High Alpha Research Vehicle flight test program

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael

    1994-01-01

    Considerable experience has been acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft has been highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.

  16. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  17. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1973-01-01

    The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.

  18. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  19. A manned maneuvering unit proximity operations planning and flight guidance display and control system

    NASA Technical Reports Server (NTRS)

    Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.

    1990-01-01

    This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display elements are being developed, including a 3DOF flight detector for attitude commanding, a different flight detector for translation commands, and a pictorial representation of velocity deviations.

  20. Flight Test Assessments of Pilot Workload, System Usability, and Situation Awareness of TASAR

    NASA Technical Reports Server (NTRS)

    Burke, Kelly A.; Haynes, Mark A.

    2016-01-01

    Traffic Aware Strategic Aircrew Requests (TASAR) is an onboard automation concept intended to identify trajectory optimizations, in terms of fuel and time saving objectives, clear of known traffic, weather, and airspace restrictions prior to the aircrew initiating a route-change request to Air Traffic Control (ATC). The software implementation of the TASAR concept is the Traffic Aware Planner (TAP). TASAR analysis and development is being executed by the NASA Langley Research Center's Crew Systems and Aviation Operations Branch (CSAOB) under the sponsorship of the Airspace Technology Demonstration (ATD) Project of the NASA Airspace Operations and Safety Program (AOSP). The TASAR Flight Trial-2 (FT-2) was conducted in June, 2015 out of the Newport News/Williamsburg International Airport. This flight trial was conducted using a Piaggio Avanti flight test aircraft and consisted of 12 Evaluation Flights with airline commercial pilots participating as the Evaluation Pilots, three destination airports in Atlanta and Jacksonville Air Route Traffic Control Centers, and one pair of flight plans associated with each destination airport. The primary goal of FT-2 was to reduce risk for upcoming operational trials with NASA partner airlines, Alaska Airlines and Virgin America. To accomplish this primary goal, six independent objectives were conducted during FT-2, however, this paper will report only the findings of Objective 5; the assessment of system usability, pilot perceived workload, and the degree of pilot acceptability of the TAP Human Machine Interface (HMI) during flight operations, via the administration of several subjective measures.

  1. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  2. Ares I-X Launch Abort System, Crew Module, and Upper Stage Simulator Vibroacoustic Flight Data Evaluation, Comparison to Predictions, and Recommendations for Adjustments to Prediction Methodology and Assumptions

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; Harrison, Phil

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the predicted and measured flight data. Future assessment will incorporate hybrid methods in VAOne analysis (i.e., boundary element methods, BEM and finite element methods, FEM). These hybrid methods will enable the ability to import NASTRAN models providing much more detailed modeling of the underlying beams and support structure of the ARES 1-X test vehicle. Measured acoustic data will be incorporated into these analyses to improve correlation for additional post flight analysis.

  3. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  4. Evaluation of anomalies observed on film from S-190A flight system calibration test

    NASA Technical Reports Server (NTRS)

    Bourque, P. F.; Perry, L.; Sauer, G. E.

    1975-01-01

    Due to a persistent problem of scratched film from testing of the Skylab S-190A system, a series of tests were designed to identify the cause of the film scratching. The procedures followed in this test for pretest handling and packaging of the film, the makeup of the rolls for processing, and the results of the processed film evaluation are reported.

  5. Demographic and psychological variables affecting test subject evaluations of ride quality

    NASA Technical Reports Server (NTRS)

    Duncan, N. C.; Conley, H. W.

    1975-01-01

    Ride-quality experiments similar in objectives, design, and procedure were conducted, one using the U.S. Air Force Total In-Flight Simulator and the other using the Langley Passenger Ride Quality Apparatus to provide the motion environments. Large samples (80 or more per experiment) of test subjects were recruited from the Tidewater Virginia area and asked to rate the comfort (on a 7-point scale) of random aircraft motion typical of that encountered during STOL flights. Test subject characteristics of age, sex, and previous flying history (number of previous airplane flights) were studied in a two by three by three factorial design. Correlations were computed between one dependent measure, the subject's mean comfort rating, and various demographic characteristics, attitudinal variables, and the scores on Spielberger's State-Trait Anxiety Inventory. An effect of sex was found in one of the studies. Males made higher (more uncomfortable) ratings of the ride than females. Age and number of previous flights were not significantly related to comfort ratings. No significant interactions between the variables of age, sex, or previous number of flights were observed.

  6. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  7. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1976-01-01

    The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight.

  8. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  9. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  10. Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).

  11. Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2012-01-01

    The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

  12. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  13. Performance Evaluation and Parameter Identification on DROID III

    NASA Technical Reports Server (NTRS)

    Plumb, Julianna J.

    2011-01-01

    The DROID III project consisted of two main parts. The former, performance evaluation, focused on the performance characteristics of the aircraft such as lift to drag ratio, thrust required for level flight, and rate of climb. The latter, parameter identification, focused on finding the aerodynamic coefficients for the aircraft using a system that creates a mathematical model to match the flight data of doublet maneuvers and the aircraft s response. Both portions of the project called for flight testing and that data is now available on account of this project. The conclusion of the project is that the performance evaluation data is well-within desired standards but could be improved with a thrust model, and that parameter identification is still in need of more data processing but seems to produce reasonable results thus far.

  14. Advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.

    1983-01-01

    A set of flight tests designed to evaluate the relative utility of candidate displays with advanced symbology for general aviation terminal area instrument flight rules operations are discussed. The symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a cathode ray tube (CRT) display along with the roll attitude, pitch attitude, localizer deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading, and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an instrument landing system capture and tracking task.

  15. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  16. Abort Flight Test Project Overview

    NASA Technical Reports Server (NTRS)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  17. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  18. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Tran, B. N.

    1991-08-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  19. NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.

    2001-01-01

    To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.

  20. Test and Verification Approach for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Strong, Edward

    2008-01-01

    This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.

Top