Sample records for flip angle rf

  1. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.

    2013-09-01

    In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.

  2. Slice profile effects in 2D slice-selective MRI of hyperpolarized nuclei.

    PubMed

    Deppe, Martin H; Teh, Kevin; Parra-Robles, Juan; Lee, Kuan J; Wild, Jim M

    2010-02-01

    This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse. A method to reduce this unwanted effect is demonstrated, based on dynamic scaling of the slice selection gradient. SSFP sequences with small to moderate flip angles (<40 degrees ) are also shown to preserve the slice profile better than the most commonly used SPGR sequence with constant flip angle (SPGR-CFA). For higher flip angles, the slice profile in SSFP evolves in a manner similar to SPGR-CFA, with depletion of polarization in the center of the slice. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.

    PubMed

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-09-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.

  4. Rapid Radiofrequency Field Mapping In Vivo Using Single-Shot STEAM MRI

    PubMed Central

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-01-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60° and 100° instead of 90°, inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T2-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods. Magn Reson Med 60:739–743, 2008. © 2008 Wiley-Liss, Inc. PMID:18727090

  5. Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design.

    PubMed

    Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Uğurbil, Kâmil; van de Moortele, Pierre-François

    2014-05-01

    Ultrahigh magnetic fields of 7 T or higher have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast-enhanced magnetic resonance angiography techniques. Compared with lower field strength, however, the required radiofrequency (RF) power is increased at 7 T and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous.In this work, we addressed the contrast heterogeneity in multislab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3-dimensional tailored RF pulses ("spokes") with a 16-channel parallel transmission system and a 16-channel transceiver head coil. We investigated in simulations and in vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2-, and 3-spoke parallel transmit RF pulses and compared the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices, and the RF pulse for each slab was designed on the basis of 3 calibration slices located at the bottom/middle/top of each slab, respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects, we quantified the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigated the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared with the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Although the total RF power is maintained at the same level than that in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitations, with the highest energy for 1 channel being a factor of 2.4 (1 spoke) and 2.2 (2 spokes) higher than that in CP mode. In vivo experiments demonstrated the necessity for including ΔB0 spatial variations during 2-spoke RF pulse design, particularly in areas with strong local susceptibility variations such as the lower frontal lobe. Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as that in CP mode. These results suggest that expanding parallel transmit methods, including the use of multidimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging.

  6. Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-01-01

    Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement in flip angle homogeneity particularly impacted the junction between adjacent TOF slabs, where significant residual artifacts observed with 1-spoke excitation could be efficiently mitigated using a 2-spoke excitation with same RF power and same average flip angle. Even though the total RF power is maintained at the same level than in CP mode excitation, the energy distribution is fairly heterogeneous through the 16 transmit channels for 1- and 2-spoke excitation, with the highest energy for one channel being a factor of 2.4 (1-spoke) and 2.2 (2-spoke) higher than in CP mode. In vivo experiments demonstrate the necessity of including ΔB0 spatial variations during 2-spoke RF pulse design, in particular in areas with strong local susceptibility variations such as the lower frontal lobe. Conclusion Significant improvement in excitation fidelity leading to improved TOF contrast, particularly in the brain periphery, as well as smooth slab transitions can be achieved with 2-spoke excitation while maintaining the same excitation energy as in CP mode. These results suggest that expanding parallel transmit methods, including the use of multi-dimensional spatially selective excitation, will also be very beneficial for other techniques, such as perfusion imaging. PMID:24598439

  7. Effects of RF profile on precision of quantitative T2 mapping using dual-echo steady-state acquisition.

    PubMed

    Wu, Pei-Hsin; Cheng, Cheng-Chieh; Wu, Ming-Long; Chao, Tzu-Cheng; Chung, Hsiao-Wen; Huang, Teng-Yi

    2014-01-01

    The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction. © 2013.

  8. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation.

    PubMed

    Helms, Gunther; Dathe, Henning; Dechent, Peter

    2008-03-01

    From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. (c) 2008 Wiley-Liss, Inc.

  9. Hexagonal gradient scheme with RF spoiling improves spoiling performance for high-flip-angle fast gradient echo imaging.

    PubMed

    Hess, Aaron T; Robson, Matthew D

    2017-03-01

    To present a framework in which time-varying gradients are applied with RF spoiling to reduce unwanted signal, particularly at high flip angles. A time-varying gradient spoiler scheme compatible with RF spoiling is defined, in which spoiler gradients cycle through the vertices of a hexagon, which we call hexagonal spoiling. The method is compared with a traditional constant spoiling gradient both in the transition to and in the steady state. Extended phase graph (EPG) simulations, phantom acquisitions, and in vivo images were used to assess the method. Simulations, phantom and in vivo experiments showed that unwanted signal was markedly reduced by employing hexagonal spoiling, both in the transition to and in the steady state. For adipose tissue at 1.5 Tesla, the unwanted signal in the steady state with a 60 ° flip angle was reduced from 22% with constant spoiling to 2% with hexagonal spoiling. A time-varying gradient spoiler scheme that works with RF spoiling, called "hexagonal spoiling," has been presented and found to offer improved spoiling over the traditional constant spoiling gradient. Magn Reson Med 77:1231-1237, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  10. 2D radially compensating excitation pulse in combination with an internal transceiver antenna for 3D MRI of the rectum at 7 T.

    PubMed

    van Kalleveen, I M L; Kroeze, H; Sbrizzi, A; Boer, V O; Reerink, O; Philippens, M E P; van de Berg, C A T; Luijten, P R; Klomp, D W J

    2016-07-01

    The high precession frequency in ultrahigh field MRI coincides with reduced RF penetration, increased RF power deposition and consequently can lead to reduced scan efficiency. However, the shorter wavelength enables the use of efficient antennas rather than loop coils. In fact, ultrathin monopole antennas have been demonstrated at 7 T, which fit in natural cavities like the rectum in the human body. As the RF field generated by the antenna provides an extremely nonuniform B1 field, the use of conventional RF pulses will lead to severe image distortions and highly nonuniform contrast. However, using the two predominant dimensions (orthogonal to the antenna), 2D RF pulses can be designed that counteract the nonuniform B1 into uniform flip angles. In this study the authors investigate the use of an ultrathin antenna not only for reception, but also for transmission in 7 T MRI of the rectum. The 2D radially compensating excitation (2D RACE) pulse was designed in matlab. SAR calculations between the 2D RACE pulse and an adiabatic RF pulse (BIR-4) have been obtained, to visualize the gain in decreasing the SAR when using the 2D RACE pulse instead of an adiabatic RF pulse. The authors used the 7 T whole body MR system in combination with an internally placed monopole antenna used for transceiving and obtained 3D gradient echo images with a conventional sinc pulse and with the 2D RACE pulse. For extra clarity, they also reconstructed an image where the receive field of the antenna was removed. Comparing the results of the SAR simulations of the 2D RACE pulse with a BIR-4 pulse shows that for low flip angles (θ < 41°) the SAR can be decreased with a factor of 4.8 or even more, when using the 2D RACE pulse. Relative to a conventional sinc excitation, the 2D RACE pulse achieves more uniform flip angle distributions than a BIR-4 pulse with a smaller SAR increase (16 × versus 64 ×). The authors have shown that the 2D RACE pulse provides more homogeneous flip angles for gradient echo sequences when compared to a conventional sinc pulse albeit at increased SAR. However, when compared to adiabatic RF pulses, as shown by simulations, the SAR of the 2D RACE pulse can be an order of magnitude less. Phantom and in vivo human rectum images are obtained to demonstrate that the 2D RACE pulse can provide a uniform excitation while transmitting with a single ultrathin endorectal antenna at 7 T. The combination of thin rectal antennas with efficient uniform transmit can open up new possibilities in high resolution imaging of rectal cancer.

  11. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    PubMed

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  12. Extended phase graphs with anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.

  13. Optimization of parameter values for complex pulse sequences by simulated annealing: application to 3D MP-RAGE imaging of the brain.

    PubMed

    Epstein, F H; Mugler, J P; Brookeman, J R

    1994-02-01

    A number of pulse sequence techniques, including magnetization-prepared gradient echo (MP-GRE), segmented GRE, and hybrid RARE, employ a relatively large number of variable pulse sequence parameters and acquire the image data during a transient signal evolution. These sequences have recently been proposed and/or used for clinical applications in the brain, spine, liver, and coronary arteries. Thus, the need for a method of deriving optimal pulse sequence parameter values for this class of sequences now exists. Due to the complexity of these sequences, conventional optimization approaches, such as applying differential calculus to signal difference equations, are inadequate. We have developed a general framework for adapting the simulated annealing algorithm to pulse sequence parameter value optimization, and applied this framework to the specific case of optimizing the white matter-gray matter signal difference for a T1-weighted variable flip angle 3D MP-RAGE sequence. Using our algorithm, the values of 35 sequence parameters, including the magnetization-preparation RF pulse flip angle and delay time, 32 flip angles in the variable flip angle gradient-echo acquisition sequence, and the magnetization recovery time, were derived. Optimized 3D MP-RAGE achieved up to a 130% increase in white matter-gray matter signal difference compared with optimized 3D RF-spoiled FLASH with the same total acquisition time. The simulated annealing approach was effective at deriving optimal parameter values for a specific 3D MP-RAGE imaging objective, and may be useful for other imaging objectives and sequences in this general class.

  14. Simple method for RF pulse measurement using gradient reversal.

    PubMed

    Landes, Vanessa L; Nayak, Krishna S

    2018-05-01

    To develop and evaluate a simple method for measuring the envelope of small-tip radiofrequency (RF) excitation waveforms in MRI, without extra hardware or synchronization. Gradient reversal approach to evaluate RF (GRATER) involves RF excitation with a constant gradient and reversal of that gradient during signal reception to acquire the time-reversed version of an RF envelope. An outer-volume suppression prepulse is used optionally to preselect a uniform volume. GRATER was evaluated in phantom and in vivo experiments. It was compared with the programmed waveform and the traditional pick-up coil method. In uniform phantom experiments, pick-up coil, GRATER, and outer-volume suppression + GRATER matched the programmed waveforms to less than 2.1%, less than 6.1%, and less than 2.4% normalized root mean square error, respectively, for real RF pulses with flip angle less than or equal to 30°, time-bandwidth product 2 to 8, and two to five excitation bands. For flip angles greater than 30°, GRATER measurement error increased as predicted by Bloch simulation. Fat-water phantom and in vivo experiments with outer-volume suppression + GRATER demonstrated less than 6.4% normalized root mean square error. The GRATER sequence measures small-tip RF envelopes without extra hardware or synchronization in just over two times the RF duration. The sequence may be useful in prescan calibration and for measurement and precompensation of RF amplifier nonlinearity. Magn Reson Med 79:2642-2651, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Extended phase graphs with anisotropic diffusion.

    PubMed

    Weigel, M; Schwenk, S; Kiselev, V G; Scheffler, K; Hennig, J

    2010-08-01

    The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Multiband Spectral-Spatial RF Excitation for Hyperpolarized [2-13C]Dihydroxyacetone 13C-MR Metabolism Studies

    PubMed Central

    Marco-Rius, Irene; Cao, Peng; von Morze, Cornelius; Merrit, Matthew; Moreno, Karlos X; Chang, Gene-Yuan; Ohliger, Michael A.; Pearce, David; Kurhanewicz, John; Larson, Peder E. Z.; Vigneron, Daniel B.

    2016-01-01

    Purpose To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized [2-13C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (~4.6 KHz at 3T). A novel multiband RF excitation pulse was designed for independent flip angle control over 5-6 spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. Methods Specialized multi-band SPSP RF pulses were designed, tested and applied to investigate hyperpolarized [2-13C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13C-MRS and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. Results The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was 2-5 times more [2-13C]phosphoenolpyruvate and about 19 times more [2-13C]glycerol 3-phosphate in the liver than in the kidney. Conclusion A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13C]dihydroxyacetone metabolism in rat liver and kidney. PMID:27017966

  17. Evaluation of the dependence of CEST-EPI measurement on repetition time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity

    NASA Astrophysics Data System (ADS)

    Zhe Sun, Phillip; Lu, Jie; Wu, Yin; Xiao, Gang; Wu, Renhua

    2013-09-01

    Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast mechanism that can detect dilute CEST agents and microenvironmental properties, with a host of promising applications. Experimental measurement of the CEST effect is complex, and depends on not only CEST agent concentration and exchange rate, but also experimental parameters such as RF irradiation amplitude and scheme. Although echo planar imaging (EPI) has been increasingly used for CEST MRI, the relationship between CEST effect and repetition time (TR), RF irradiation duty cycle (DC) and EPI flip angle (α) has not been fully evaluated and optimized to enhance CEST MRI sensitivity. In addition, our study evaluated gradient echo CEST-EPI by quantifying the CEST effect and its signal-to-noise ratio per unit time (SNRput) as functions of TR, DC and α. We found that CEST effect increased with TR and DC but decreased with α. Importantly, we found that SNRput peaked at intermediate TRs of about twice the T1 and α, at approximately 75°, and increased with RF DC. The simulation results were validated using a dual-pH creatine-gel CEST phantom. In summary, our study provides a useful framework for optimizing CEST MRI experiments.

  18. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    PubMed

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a reliable, compact, flexible, and relatively safe marker for clinical use.

  19. Design of universal parallel-transmit refocusing kT -point pulses and application to 3D T2 -weighted imaging at 7T.

    PubMed

    Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas

    2018-07-01

    T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Closed-form expressions for flip angle variation that maximize total signal in T1-weighted rapid gradient echo MRI.

    PubMed

    Drobnitzky, Matthias; Klose, Uwe

    2017-03-01

    Magnetization-prepared rapid gradient-echo (MPRAGE) sequences are commonly employed for T1-weighted structural brain imaging. Following a contrast preparation radiofrequency (RF) pulse, the data acquisition proceeds under nonequilibrium conditions of the relaxing longitudinal magnetization. Variation of the flip angle can be used to maximize total available signal. Simulated annealing or greedy algorithms have so far been published to numerically solve this problem, with signal-to-noise ratios optimized for clinical imaging scenarios by adhering to a predefined shape of the signal evolution. We propose an unconstrained optimization of the MPRAGE experiment that employs techniques from resource allocation theory. A new dynamic programming solution is introduced that yields closed-form expressions for optimal flip angle variation. Flip angle series are proposed that maximize total transverse magnetization (Mxy) for a range of physiologic T1 values. A 3D MPRAGE sequence is modified to allow for a controlled variation of the excitation angle. Experiments employing a T1 contrast phantom are performed at 3T. 1D acquisitions without phase encoding permit measurement of the temporal development of Mxy. Image mean signal and standard deviation for reference flip angle trains are compared in 2D measurements. Signal profiles at sharp phantom edges are acquired to access image blurring related to nonuniform Mxy development. A novel closed-form expression for flip angle variation is found that constitutes the optimal policy to reach maximum total signal. It numerically equals previously published results of other authors when evaluated under their simplifying assumptions. Longitudinal magnetization (Mz) is exhaustively used without causing abrupt changes in the measured MR signal, which is a prerequisite for artifact free images. Phantom experiments at 3T verify the expected benefit for total accumulated k-space signal when compared with published flip angle series. Describing the MR signal collection in MPRAGE sequences as a Bellman problem is a new concept. By means of recursively solving a series of overlapping subproblems, this leads to an elegant solution for the problem of maximizing total available MR signal in k-space. A closed-form expression for flip angle variation avoids the complexity of numerical optimization and eases access to controlled variation in an attempt to identify potential clinical applications. © 2017 American Association of Physicists in Medicine.

  1. Measurement and characterization of RF nonuniformity over the heart at 3T using body coil transmission.

    PubMed

    Sung, Kyunghyun; Nayak, Krishna S

    2008-03-01

    To measure and characterize variations in the transmitted radio frequency (RF) (B1+) field in cardiac magnetic resonance imaging (MRI) at 3 Tesla. Knowledge of the B1+ field is necessary for the calibration of pulse sequences, image-based quantitation, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) optimization. A variation of the saturated double-angle method for cardiac B1+ mapping is described. A total of eight healthy volunteers and two cardiac patients were scanned using six parallel short-axis slices spanning the left ventricle (LV). B1+ profiles were analyzed to determine the amount of variation and dominant patterns of variation across the LV. A total of five to 10 measurements were obtained in each volunteer to determine an upper bound of measurement repeatability. The amount of flip angle variation was found to be 23% to 48% over the LV in mid-short-axis slices and 32% to 63% over the entire LV volume. The standard deviation (SD) of multiple flip angle measurements was <1.4 degrees over the LV in all subjects, indicating excellent repeatability of the proposed measurement method. The pattern of in-plane flip angle variation was found to be primarily unidirectional across the LV, with a residual variation of < or =3% in all subjects. The in-plane B1+ variation over the LV at 3T with body-coil transmission is on the order of 32% to 63% and is predominantly unidirectional in short-axis slices. Reproducible B1+ measurements over the whole heart can be obtained in a single breathhold of 16 heartbeats.

  2. Qualitative analysis by online nuclear magnetic resonance using Carr-Purcell-Meiboom-Gill sequence with low refocusing flip angles.

    PubMed

    de Andrade, Fabiana Diuk; Netto, Antonio Marchi; Colnago, Luiz Alberto

    2011-03-15

    The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently, CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3π/4 (CPMG(135)), π/2 (CPMG(90)) and π/4 (CPMG(45)) were compared with conventional CPMG with refocusing π pulses. For a homogeneous field, with linewidth equal to Δυ=15 Hz, the refocusing flip angles can be as low as π/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field, Δυ=100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r=0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with π/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Correcting for strong eddy current induced B0 modulation enables two-spoke RF pulse design with parallel transmission: demonstration at 9.4T in the human brain.

    PubMed

    Wu, Xiaoping; Adriany, Gregor; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2013-01-01

    Successful implementation of homogeneous slice-selective RF excitation in the human brain at 9.4T using 16-channel parallel transmission (pTX) is demonstrated. A novel three-step pulse design method incorporating fast real-time measurement of eddy current induced B0 variations as well as correction of resulting phase errors during excitation is described. To demonstrate the utility of the proposed method, phantom and in-vivo experiments targeting a uniform excitation in an axial slice were conducted using two-spoke pTX pulses. Even with the pre-emphasis activated, eddy current induced B0 variations with peak-to-peak values greater than 4 kHz were observed on our system during the rapid switches of slice selective gradients. This large B0 variation, when not corrected, resulted in drastically degraded excitation fidelity with the coefficient of variation (CV) of the flip angle calculated for the region of interest being large (~ 12% in the phantom and ~ 35% in the brain). By comparison, excitation fidelity was effectively restored, and satisfactory flip angle uniformity was achieved when using the proposed method, with the CV value reduced to ~ 3% in the phantom and ~ 8% in the brain. Additionally, experimental results were in good agreement with the numerical predictions obtained from Bloch simulations. Slice-selective flip angle homogenization in the human brain at 9.4T using 16-channel 3D spoke pTX pulses is achievable despite of large eddy current induced excitation phase errors; correcting for the latter was critical in this success.

  4. Correcting for Strong Eddy Current Induced B0 Modulation Enables Two-Spoke RF Pulse Design with Parallel Transmission: Demonstration at 9.4T in the Human Brain

    PubMed Central

    Wu, Xiaoping; Adriany, Gregor; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2013-01-01

    Successful implementation of homogeneous slice-selective RF excitation in the human brain at 9.4T using 16-channel parallel transmission (pTX) is demonstrated. A novel three-step pulse design method incorporating fast real-time measurement of eddy current induced B0 variations as well as correction of resulting phase errors during excitation is described. To demonstrate the utility of the proposed method, phantom and in-vivo experiments targeting a uniform excitation in an axial slice were conducted using two-spoke pTX pulses. Even with the pre-emphasis activated, eddy current induced B0 variations with peak-to-peak values greater than 4 kHz were observed on our system during the rapid switches of slice selective gradients. This large B0 variation, when not corrected, resulted in drastically degraded excitation fidelity with the coefficient of variation (CV) of the flip angle calculated for the region of interest being large (∼12% in the phantom and ∼35% in the brain). By comparison, excitation fidelity was effectively restored, and satisfactory flip angle uniformity was achieved when using the proposed method, with the CV value reduced to ∼3% in the phantom and ∼8% in the brain. Additionally, experimental results were in good agreement with the numerical predictions obtained from Bloch simulations. Slice-selective flip angle homogenization in the human brain at 9.4T using 16-channel 3D spoke pTX pulses is achievable despite of large eddy current induced excitation phase errors; correcting for the latter was critical in this success. PMID:24205098

  5. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T.

    PubMed

    Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2010-07-01

    Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.

  6. RF slice profile effects in magnetic resonance fingerprinting.

    PubMed

    Hong, Taehwa; Han, Dongyeob; Kim, Min-Oh; Kim, Dong-Hyun

    2017-09-01

    The radio frequency (RF) slice profile effects on T1 and T2 estimation in magnetic resonance fingerprinting (MRF) are investigated with respect to time-bandwidth product (TBW), flip angle (FA) level and field inhomogeneities. Signal evolutions are generated incorporating the non-ideal slice selective excitation process using Bloch simulation and matched to the original dictionary with and without the non-ideal slice profile taken into account. For validation, phantom and in vivo experiments are performed at 3T. Both simulations and experiments results show that T1 and T2 error from non-ideal slice profile increases with increasing FA level, off-resonance, and low TBW values. Therefore, RF slice profile effects should be compensated for accurate determination of the MR parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fat fraction bias correction using T1 estimates and flip angle mapping.

    PubMed

    Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A

    2014-01-01

    To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.

  8. Effects of RF pulse profile and intra-voxel phase dispersion on MR fingerprinting with balanced SSFP readout.

    PubMed

    Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael

    2017-09-01

    To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Signal-domain optimization metrics for MPRAGE RF pulse design in parallel transmission at 7 tesla.

    PubMed

    Gras, V; Vignaud, A; Mauconduit, F; Luong, M; Amadon, A; Le Bihan, D; Boulant, N

    2016-11-01

    Standard radiofrequency pulse design strategies focus on minimizing the deviation of the flip angle from a target value, which is sufficient but not necessary for signal homogeneity. An alternative approach, based directly on the signal, here is proposed for the MPRAGE sequence, and is developed in the parallel transmission framework with the use of the k T -points parametrization. The flip angle-homogenizing and the proposed methods were investigated numerically under explicit power and specific absorption rate constraints and tested experimentally in vivo on a 7 T parallel transmission system enabling real time local specific absorption rate monitoring. Radiofrequency pulse performance was assessed by a careful analysis of the signal and contrast between white and gray matter. Despite a slight reduction of the flip angle uniformity, an improved signal and contrast homogeneity with a significant reduction of the specific absorption rate was achieved with the proposed metric in comparison with standard pulse designs. The proposed joint optimization of the inversion and excitation pulses enables significant reduction of the specific absorption rate in the MPRAGE sequence while preserving image quality. The work reported thus unveils a possible direction to increase the potential of ultra-high field MRI and parallel transmission. Magn Reson Med 76:1431-1442, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  10. Flip-chip assembly and reliability using gold/tin solder bumps

    NASA Astrophysics Data System (ADS)

    Oppermann, Hermann; Hutter, Matthias; Klein, Matthias; Reichl, Herbert

    2004-09-01

    Au/Sn solder bumps are commonly used for flip chip assembly of optoelectronic and RF devices. They allow a fluxless assembly which is required to avoid contamination at optical interfaces. Flip chip assembly experiments were carried out using as plated Au/Sn bumps without prior bump reflow. An RF and reliability test vehicles comprise a GaAs chip which was flip chip soldered on a silicon substrate. Temperature cycling tests with and without underfiller were performed and the results are presented. The different failure modes for underfilled and non-underfilled samples were discussed and compared. Additional reliability tests were performed with flip chip bonding by gold thermocompression for comparison. The test results and the failure modes are discussed in detail.

  11. Spin-Flipping Polarized Deuterons At COSY

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Krisch, A. D.; Morozov, V. S.; Raymond, R. S.; Wong, V. K.; Bechstedt, U.; Gebel, R.; Lehrach, A.; Lorenz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Eversheim, D.; Hinterberger, F.; Rohdjess, H.; Ulbrich, K.; Scobel, W.

    2004-02-01

    We recently stored a 1.85 GeV/c vertically polarized deuteron beam in the COSY Ring in Jülich; we then spin-flipped it by ramping a new air-core rf dipole's frequency through an rf-induced spin resonance to manipulate the polarization direction of the deuteron beam. We first experimentally determined the resonance's frequency and set the dipole's rf voltage to its maximum; then we varied its frequency ramp time and frequency range. We used the EDDA detector to measure the vector and tensor polarization asymmetries. We have not yet extracted the deuteron's tensor polarization spin-flip parameters from the measured data, since our short run did not provide adequate tensor analyzing-power data at 1.85 GeV/c. However, with a 100 Hz frequency ramp and our longest ramp time of 400 s, the deuterons' vector polarization spin-flip efficiency was 48±1%.

  12. Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging

    NASA Astrophysics Data System (ADS)

    Arena, Francesca; Irrera, Pietro; Consolino, Lorena; Colombo Serra, Sonia; Zaiss, Moritz; Longo, Dario Livio

    2018-02-01

    Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4.

  13. Comparison of centric and reverse-centric trajectories for highly accelerated three-dimensional saturation recovery cardiac perfusion imaging.

    PubMed

    Wang, Haonan; Bangerter, Neal K; Park, Daniel J; Adluru, Ganesh; Kholmovski, Eugene G; Xu, Jian; DiBella, Edward

    2015-10-01

    Highly undersampled three-dimensional (3D) saturation-recovery sequences are affected by k-space trajectory since the magnetization does not reach steady state during the acquisition and the slab excitation profile yields different flip angles in different slices. This study compares centric and reverse-centric 3D cardiac perfusion imaging. An undersampled (98 phase encodes) 3D ECG-gated saturation-recovery sequence that alternates centric and reverse-centric acquisitions each time frame was used to image phantoms and in vivo subjects. Flip angle variation across the slices was measured, and contrast with each trajectory was analyzed via Bloch simulation. Significant variations in flip angle were observed across slices, leading to larger signal variation across slices for the centric acquisition. In simulation, severe transient artifacts were observed when using the centric trajectory with higher flip angles, placing practical limits on the maximum flip angle used. The reverse-centric trajectory provided less contrast, but was more robust to flip angle variations. Both of the k-space trajectories can provide reasonable image quality. The centric trajectory can have higher CNR, but is more sensitive to flip angle variation. The reverse-centric trajectory is more robust to flip angle variation. © 2014 Wiley Periodicals, Inc.

  14. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  15. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    PubMed

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  16. Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization.

    PubMed

    Quick, Harald H; Zenge, Michael O; Kuehl, Hilmar; Kaiser, Gernot; Aker, Stephanie; Massing, Sandra; Bosk, Silke; Ladd, Mark E

    2005-02-01

    Active instrument visualization strategies for interventional MR angiography (MRA) require vascular instruments to be equipped with some type of radiofrequency (RF) coil or dipole RF antenna for MR signal detection. Such visualization strategies traditionally necessitate a connection to the scanner with either coaxial cable or laser fibers. In order to eliminate any wire connection, RF resonators that inductively couple their signal to MR surface coils were implemented into catheters to enable wireless active instrument visualization. Instrument background to contrast-to-noise ratio was systematically investigated as a function of the excitation flip angle. Signal coupling between the catheter RF coil and surface RF coils was evaluated qualitatively and quantitatively as a function of the catheter position and orientation with regard to the static magnetic field B0 and to the surface coils. In vivo evaluation of the instruments was performed in interventional MRA procedures on five pigs under MR guidance. Cartesian and projection reconstruction TrueFISP imaging enabled simultaneous visualization of the instruments and vascular morphology in real time. The implementation of RF resonators enabled robust visualization of the catheter curvature to the very tip. Additionally, the active visualization strategy does not require any wire connection to the scanner and thus does not hamper the interventionalist during the course of an intervention.

  17. Design and Application of Combined 8-Channel Transmit and 10-Channel Receive Arrays and Radiofrequency Shimming for 7-T Shoulder Magnetic Resonance Imaging

    PubMed Central

    Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.

    2014-01-01

    Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112

  18. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed Central

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  19. Effect of increasing the flip angle during the hepatocyte phase of gadobenate dimeglumine-enhanced 1.5T MRI in cirrhotic patients with hepatocellular carcinoma.

    PubMed

    Lee, Eun Jung; Kim, Dae Jung; Cho, Eun-Suk; Kim, Kyoung Ah

    2016-03-01

    To evaluate the effects of increasing the flip angle during the hepatocyte phase of gadobenate dimeglumine-enhanced magnetic resonance imaging (MRI) in cirrhotic patients with hepatocellular carcinoma (HCC). Sixty-three patients with liver cirrhosis underwent gadobenate dimeglumine-enhanced 1.5T MRI with 90-minute delayed hepatocyte phase with flip angles of 10°, 20°, 30°, consecutively. Relative enhancement and signal-to-noise ratio (SNR) of liver parenchyma at hepatocyte phase according to flip angle were calculated. The liver-to-lesion (low signal intensity HCCs, n = 63; ≥1 cm) and contrast-to-noise ratio (CNR) at the hepatocyte phase according to flip angle were calculated. Two radiologists independently assessed the presence of HCCs using a 5-point scale, and detection sensitivity of HCCs was calculated according to flip angle. The relative enhancement of hepatic parenchyma differed significantly according to flip angle (10°, mean relative enhancement = 0.69 ± 0.46; 20°, mean relative enhancement = 0.63 ± 0.47; 30°, mean relative enhancement = 0.49 ± 0.45; P = 0.043). The SNR of hepatic parenchyma was significantly different according to flip angle (10°, mean SNR = 26.2 ± 5.6; 20°, mean SNR = 25.3 ± 5.7; 30°, mean SNR = 22.8 ± 6.1; P = 0.004). The CNR of lesion was not significantly different according to flip angle (10°, mean CNR = 7.5 ± 6.6; 20°, mean CNR = 10.2 ± 6.9; 30°, mean CNR = 10.1 ± 7.1; P = 0.051). The sensitivities with 10° and 20° for HCCs were significantly higher than those with 30° for one reader (P < 0.05). In patients with cirrhosis, hepatocyte phase gadobenate dimeglumine-enhanced 1.5T MRI with 20° flip angle should be recommended rather than 10° and 30° flip angle. © 2015 Wiley Periodicals, Inc.

  20. Fundamental Study of Three-dimensional Fast Spin-echo Imaging with Spoiled Equilibrium Pulse.

    PubMed

    Ogawa, Masashi; Kaji, Naoto; Tsuchihashi, Toshio

    2017-01-01

    Three-dimensional fast spin-echo (3D FSE) imaging with variable refocusing flip angle has been recently applied to pre- or post-enhanced T 1 -weighted imaging. To reduce the acquisition time, this sequence requires higher echo train length (ETL), which potentially causes decreased T 1 contrast. Spoiled equilibrium (SpE) pulse consists of a resonant +90° radiofrequency (RF) pulse and is applied at the end of the echo train. This +90° RF pulse brings residual transverse magnetization to the negative longitudinal axis, which makes it possible to increase T 1 contrast. The purpose of our present study was to examine factors that influence the effect of spoiled equilibrium pulse and the relationship between T 1 contrast improvement and imaging parameters and to understand the characteristics of spoiled equilibrium pulse. Phantom studies were conducted using an magnetic resonance imaging (MRI) phantom made of polyvinyl alcohol gel. To evaluate the effect of spoiled equilibrium pulse with changes in repetition time (TR), ETL, and refocusing flip angle, we measured the signal-to-noise ratio and contrast-to-noise ratio (CNR). The effect of spoiled equilibrium pulse was evaluated by calculating the enhancement rate of CNR. The factors that influence the effect of spoiled equilibrium pulse are TR, ETL, and relaxation time of tissues. Spoiled equilibrium pulse is effective with increasing TR and decreasing ETL. The shorter the T 1 value, the better the spoiled equilibrium pulse functions. However, for tissues in which the T 1 value is long (>600 ms), at a TR of 600 ms, improvement in T 1 contrast by applying spoiled equilibrium pulse cannot be expected.

  1. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles.

    PubMed

    Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R

    2018-04-22

    To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Inter-Slice Blood Flow and Magnetization Transfer Effects as A New Simultaneous Imaging Strategy.

    PubMed

    Han, Paul Kyu; Barker, Jeffrey W; Kim, Ki Hwan; Choi, Seung Hong; Bae, Kyongtae Ty; Park, Sung-Hong

    2015-01-01

    The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases.

  3. Effects of B1 inhomogeneity correction for three-dimensional variable flip angle T1 measurements in hip dGEMRIC at 3 T and 1.5 T.

    PubMed

    Siversson, Carl; Chan, Jenny; Tiderius, Carl-Johan; Mamisch, Tallal Charles; Jellus, Vladimir; Svensson, Jonas; Kim, Young-Jo

    2012-06-01

    Delayed gadolinium-enhanced MRI of cartilage is a technique for studying the development of osteoarthritis using quantitative T(1) measurements. Three-dimensional variable flip angle is a promising method for performing such measurements rapidly, by using two successive spoiled gradient echo sequences with different excitation pulse flip angles. However, the three-dimensional variable flip angle method is very sensitive to inhomogeneities in the transmitted B(1) field in vivo. In this study, a method for correcting for such inhomogeneities, using an additional B(1) mapping spin-echo sequence, was evaluated. Phantom studies concluded that three-dimensional variable flip angle with B(1) correction calculates accurate T(1) values also in areas with high B(1) deviation. Retrospective analysis of in vivo hip delayed gadolinium-enhanced MRI of cartilage data from 40 subjects showed the difference between three-dimensional variable flip angle with and without B(1) correction to be generally two to three times higher at 3 T than at 1.5 T. In conclusion, the B(1) variations should always be taken into account, both at 1.5 T and at 3 T. Copyright © 2011 Wiley-Liss, Inc.

  4. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  5. Gradient-Modulated SWIFT

    PubMed Central

    Zhang, Jinjin; Idiyatullin, Djaudat; Corum, Curtis A.; Kobayashi, Naoharu; Garwood, Michael

    2017-01-01

    Purpose Methods designed to image fast-relaxing spins, such as sweep imaging with Fourier transformation (SWIFT), often utilize high excitation bandwidth and duty cycle, and in some applications the optimal flip angle cannot be used without exceeding safe specific absorption rate (SAR) levels. The aim is to reduce SAR and increase the flexibility of SWIFT by applying time-varying gradient-modulation (GM). The modified sequence is called GM-SWIFT. Theory and Methods The method known as gradient-modulated offset independent adiabaticity was used to modulate the radiofrequency (RF) pulse and gradients. An expanded correlation algorithm was developed for GM-SWIFT to correct the phase and scale effects. Simulations and phantom and in vivo human experiments were performed to verify the correlation algorithm and to evaluate imaging performance. Results GM-SWIFT reduces SAR, RF amplitude, and acquisition time by up to 90%, 70%, and 45%, respectively, while maintaining image quality. The choice of GM parameter influences the lower limit of short T2* sensitivity, which can be exploited to suppress unwanted image haze from unresolvable ultrashort T2* signals originating from plastic materials in the coil housing and fixatives. Conclusions GM-SWIFT reduces peak and total RF power requirements and provides additional flexibility for optimizing SAR, RF amplitude, scan time, and image quality. PMID:25800547

  6. Extended RF shimming: Sequence‐level parallel transmission optimization applied to steady‐state free precession MRI of the heart

    PubMed Central

    Price, Anthony N.; Padormo, Francesco; Hajnal, Joseph V.; Malik, Shaihan J.

    2017-01-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 +) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a ‘sequence‐level’ optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady‐state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight‐channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single‐channel operation, a mean‐squared‐error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. PMID:28195684

  7. B1 field-insensitive transformers for RF-safe transmission lines.

    PubMed

    Krafft, Axel; Müller, Sven; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael

    2006-11-01

    Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30 K/3.5 K for an unsegmented/segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.

  8. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart.

    PubMed

    Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J

    2017-06-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  9. Comparative analysis of human gait while wearing thong-style flip-flops versus sneakers.

    PubMed

    Shroyer, Justin F; Weimar, Wendi H

    2010-01-01

    Flip-flops are becoming a common footwear option. Casual observation has indicated that individuals wear flip-flops beyond their structural limit and have a different gait while wearing flip-flops versus shoes. This alteration in gait may cause the anecdotal foot and lower-limb discomfort associated with wearing flip-flops. To investigate the effect of sneakers versus thong-style flip-flops on gait kinematics and kinetics, 56 individuals (37 women and 19 men) were randomly assigned to a footwear order (flip-flops or sneakers first) and were asked to wear the assigned footwear on the day before and the day of testing. On each testing day, participants were videotaped as they walked at a self-selected pace across a force platform. A 2 (sex) x 2 (footwear) repeated-measures analysis of variance (P = .05) was used for statistical analysis. Significant interaction effects of footwear and sex were found for maximal anterior force, attack angle, and ankle angle during the swing phase. Footwear significantly affected stride length, ankle angle at the beginning of double support and during the swing phase, maximal braking impulse, and stance time. Flip-flops resulted in a shorter stride, a larger ankle angle at the beginning of double support and during the swing phase, a smaller braking impulse, and a shorter stance time compared with sneakers. The effects of footwear on gait kinetics and kinematics is extensive, but there is limited research on the effect of thong-style flip-flops on gait. These results suggest that flip-flops have an effect on several kinetic and kinematic variables compared with sneakers.

  10. Radiofrequency pulse design using nonlinear gradient magnetic fields.

    PubMed

    Kopanoglu, Emre; Constable, R Todd

    2015-09-01

    An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.

  11. Flip-angle profile of slice-selective excitation and the measurement of the MR longitudinal relaxation time with steady-state magnetization

    NASA Astrophysics Data System (ADS)

    Hsu, Jung-Jiin

    2015-08-01

    In MRI, the flip angle (FA) of slice-selective excitation is not uniform across the slice-thickness dimension. This work investigates the effect of the non-uniform FA profile on the accuracy of a commonly-used method for the measurement, in which the T1 value, i.e., the longitudinal relaxation time, is determined from the steady-state signals of an equally-spaced RF pulse train. By using the numerical solutions of the Bloch equation, it is shown that, because of the non-uniform FA profile, the outcome of the T1 measurement depends significantly on T1 of the specimen and on the FA and the inter-pulse spacing τ of the pulse train. A new method to restore the accuracy of the T1 measurement is described. Different from the existing approaches, the new method also removes the FA profile effect for the measurement of the FA, which is normally a part of the T1 measurement. In addition, the new method does not involve theoretical modeling, approximation, or modification to the underlying principle of the T1 measurement. An imaging experiment is performed, which shows that the new method can remove the FA-, the τ-, and the T1-dependence and produce T1 measurements in excellent agreement with the ones obtained from a gold standard method (the inversion-recovery method).

  12. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    PubMed

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  13. Mobile Atmospheric Pollutant Mapping System (MAPMS)

    DTIC Science & Technology

    1989-12-01

    SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO: DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314 UNCLASSIFIED...22 7. Flip-Flop Array ..... ............ .. 22 8. RF Switches and RF Power Splitter . 22 9. RFI Shielding ......... ............. 2? 10. Transient...Boxcar Averager ...... ............ .. 24 5. Spectrum Analyzer .... ........... .. 26 6. Laser Power Meters .... ........... ... 26 M. COMPUTER

  14. Fourier decomposition pulmonary MRI using a variable flip angle balanced steady-state free precession technique.

    PubMed

    Corteville, D M R; Kjïrstad, Å; Henzler, T; Zöllner, F G; Schad, L R

    2015-05-01

    Fourier decomposition (FD) is a noninvasive method for assessing ventilation and perfusion-related information in the lungs. However, the technique has a low signal-to-noise ratio (SNR) in the lung parenchyma. We present an approach to increase the SNR in both morphological and functional images. The data used to create functional FD images are usually acquired using a standard balanced steady-state free precession (bSSFP) sequence. In the standard sequence, the possible range of the flip angle is restricted due to specific absorption rate (SAR) limitations. Thus, using a variable flip angle approach as an optimization is possible. This was validated using measurements from a phantom and six healthy volunteers. The SNR in both the morphological and functional FD images was increased by 32%, while the SAR restrictions were kept unchanged. Furthermore, due to the higher SNR, the effective resolution of the functional images was increased visibly. The variable flip angle approach did not introduce any new transient artifacts, and blurring artifacts were minimized. Both a gain in SNR and an effective resolution gain in functional lung images can be obtained using the FD method in conjunction with a variable flip angle optimized bSSFP sequence. © 2014 Wiley Periodicals, Inc.

  15. T1 mapping with the variable flip angle technique: A simple correction for insufficient spoiling of transverse magnetization.

    PubMed

    Baudrexel, Simon; Nöth, Ulrike; Schüre, Jan-Rüdiger; Deichmann, Ralf

    2018-06-01

    The variable flip angle method derives T 1 maps from radiofrequency-spoiled gradient-echo data sets, acquired with different flip angles α. Because the method assumes validity of the Ernst equation, insufficient spoiling of transverse magnetization yields errors in T 1 estimation, depending on the chosen radiofrequency-spoiling phase increment (Δϕ). This paper presents a versatile correction method that uses modified flip angles α' to restore the validity of the Ernst equation. Spoiled gradient-echo signals were simulated for three commonly used phase increments Δϕ (50°/117°/150°), different values of α, repetition time (TR), T 1 , and a T 2 of 85 ms. For each parameter combination, α' (for which the Ernst equation yielded the same signal) and a correction factor C Δϕ (α, TR, T 1 ) = α'/α were determined. C Δϕ was found to be independent of T 1 and fitted as polynomial C Δϕ (α, TR), allowing to calculate α' for any protocol using this Δϕ. The accuracy of the correction method for T 2 values deviating from 85 ms was also determined. The method was tested in vitro and in vivo for variable flip angle scans with different acquisition parameters. The technique considerably improved the accuracy of variable flip angle-based T 1 maps in vitro and in vivo. The proposed method allows for a simple correction of insufficient spoiling in gradient-echo data. The required polynomial parameters are supplied for three common Δϕ. Magn Reson Med 79:3082-3092, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. RF HEATING OF MRI-ASSISTED CATHETER STEERING COILS FOR INTERVENTIONAL MRI

    PubMed Central

    Settecase, Fabio; Hetts, Steven W.; Martin, Alastair J.; Roberts, Timothy P. L.; Bernhardt, Anthony F.; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L.; Kucharzyk, Walter; Wilson, Mark W.

    2010-01-01

    RATIONALE AND OBJECTIVES To assess magnetic resonance imaging (MRI) radiofrequency (RF) related heating of conductive wire coils used in magnetically steerable endovascular catheters. MATERIALS AND METHODS A 3-axis microcoil was fabricated onto a 1.8 Fr catheter tip. In vitro testing was performed in a 1.5 T MRI system using an agarose gel filled vessel phantom, a transmit/receive body RF coil and a steady state free precession (SSFP) pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from magnet isocenter and varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with SSFP pulse sequence on and off, and under physiologic flow and zero flow conditions. RESULTS In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from magnet isocenter. For a single axis microcoil, maximal temperature increases were 0.73-1.91°C in air and 0.45-0.55°C in saline. In vivo, delayed contrast enhanced MRI revealed no evidence of vascular injury and histopathological sections from the common carotid arteries confirmed the lack of vascular damage. CONCLUSIONS Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. PMID:21075019

  17. Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groitl, F., E-mail: felix.groitl@psi.ch; Quintero-Castro, D. L.; Habicht, K.

    2015-02-15

    We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due tomore » the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.« less

  18. Multishot EPI-SSFP in the Heart

    PubMed Central

    Herzka, Daniel A.; Kellman, Peter; Aletras, Anthony H.; Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. PMID:11948726

  19. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua

    2017-12-01

    A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.

  20. Correction for the T1 Effect Incorporating Flip Angle Estimated by Kalman Filter in Cardiac-Gated Functional MRI

    PubMed Central

    Shin, Jaemin; Ahn, Sinyeob; Hu, Xiaoping

    2015-01-01

    Purpose To develop an improved and generalized technique for correcting T1-related signal fluctuations (T1 effect) in cardiac-gated functional magnetie resonance imaging (fMRI) data with flip angle estimation. Theory and Methods Spatial maps of flip angle and T1 are jointly estimated from cardiac-gated time series using a Kalman filter. These maps are subsequently used for removing the T1 effect in the presence of B1 inhomogeneity. The new technique was compared with a prior technique that uses T1 only while assuming a homogeneous flip angle of 90°. The robustness of the new technique is demonstrated with simulated and experimental data. Results Simulation results revealed that the new method led to increased temporal signal-to-noise ratio across a large range of flip angles, T1s, and stimulus onset asynchrony means compared to the T1 only approach. With the experimental data, the new approach resulted in higher average gray matter temporal signal-to-noise ratio of seven subjects (84 vs. 48). The new approach also led to a higher statistical score of activation in the lateral geniculate nucleus (P < 0.002). Conclusion The new technique is able to remove the T1 effect robustly and is a promising tool for improving the ability to map activation in fMRI, especially in subcortical regions. PMID:23390029

  1. Cardiac imaging at 7 Tesla: Single- and two-spoke radiofrequency pulse design with 16-channel parallel excitation.

    PubMed

    Schmitter, Sebastian; DelaBarre, Lance; Wu, Xiaoping; Greiser, Andreas; Wang, Dingxin; Auerbach, Edward J; Vaughan, J Thomas; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2013-11-01

    Higher signal to noise ratio (SNR) and improved contrast have been demonstrated at ultra-high magnetic fields (≥7 Tesla [T]) in multiple targets, often with multi-channel transmit methods to address the deleterious impact on tissue contrast due to spatial variations in B1 (+) profiles. When imaging the heart at 7T, however, respiratory and cardiac motion, as well as B0 inhomogeneity, greatly increase the methodological challenge. In this study we compare two-spoke parallel transmit (pTX) RF pulses with static B1 (+) shimming in cardiac imaging at 7T. Using a 16-channel pTX system, slice-selective two-spoke pTX pulses and static B1 (+) shimming were applied in cardiac CINE imaging. B1 (+) and B0 mapping required modified cardiac triggered sequences. Excitation homogeneity and RF energy were compared in different imaging orientations. Two-spoke pulses provide higher excitation homogeneity than B1 (+) shimming, especially in the more challenging posterior region of the heart. The peak value of channel-wise RF energy was reduced, allowing for a higher flip angle, hence increased tissue contrast. Image quality with two-spoke excitation proved to be stable throughout the entire cardiac cycle. Two-spoke pTX excitation has been successfully demonstrated in the human heart at 7T, with improved image quality and reduced RF pulse energy when compared with B1 (+) shimming. Copyright © 2013 Wiley Periodicals, Inc.

  2. Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 Tesla.

    PubMed

    Schmitter, Sebastian; Wu, Xiaoping; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2015-11-01

    Two-spoke parallel transmission (pTX) radiofrequency (RF) pulses have been demonstrated in cardiac MRI at 7T. However, current pulse designs rely on a single set of B1(+)/B0 maps that may not be valid for subsequent scans acquired at another phase of the respiration cycle because of organ displacement. Such mismatches may yield severe excitation profile degradation. B1(+)/B0 maps were obtained, using 16 transmit channels at 7T, at three breath-hold positions: exhale, half-inhale, and inhale. Standard and robust RF pulses were designed using maps obtained at exhale only, and at multiple respiratory positions, respectively. Excitation patterns were analyzed for all positions using Bloch simulations. Flip-angle homogeneity was compared in vivo in cardiac CINE acquisitions. Standard one- and two-spoke pTX RF pulses are sensitive to breath-hold position, primarily due to B1(+) alterations, with high dependency on excitation trajectory for two spokes. In vivo excitation inhomogeneity varied from nRMSE = 8.2% (exhale) up to 32.5% (inhale) with the standard design; much more stable results were obtained with the robust design with nRMSE = 9.1% (exhale) and 10.6% (inhale). A new pTX RF pulse design robust against respiration induced variations of B1(+)/B0 maps is demonstrated and is expected to have a positive impact on cardiac MRI in breath-hold, free-breathing, and real-time acquisitions. © 2014 Wiley Periodicals, Inc.

  3. Muscle fat fraction in neuromuscular disorders: dual-echo dual-flip-angle spoiled gradient-recalled MR imaging technique for quantification--a feasibility study.

    PubMed

    Gaeta, Michele; Scribano, Emanuele; Mileto, Achille; Mazziotti, Silvio; Rodolico, Carmelo; Toscano, Antonio; Settineri, Nicola; Ascenti, Giorgio; Blandino, Alfredo

    2011-05-01

    To prospectively evaluate the muscle fat fraction (MFF) measured with dual-echo dual-flip-angle spoiled gradient-recalled acquisition in the steady state (SPGR) magnetic resonance (MR) imaging technique by using muscle biopsy as the reference standard. After ethics approval, written informed consent from all patients was obtained. Twenty-seven consecutive patients, evaluated at the Neuromuscular Disorders Center with a possible diagnosis of neuromuscular disorder, were prospectively studied with MR imaging of the lower extremities to quantify muscle fatty infiltration by means of MFF calculation. Spin-density- and T1-weighted fast SPGR in-phase and opposed-phase dual-echo sequences were performed, respectively, with 20° and 80° flip angles. Round regions of interest were drawn by consensus on selected MR sections corresponding to anticipated biopsy sites. These were marked on the patient's skin with a pen by using the infrared spider light of the system, and subsequent muscle biopsy was performed. MR images with regions of interest were stored on a secondary console where the MFF calculation was performed by another radiologist blinded to the biopsy results. MFFs calculated with dual-echo dual-flip-angle SPGR MR imaging and biopsy were compared by using a paired t test, Pearson correlation coefficient, and Bland-Altman plots. P value of < .05 was considered to indicate a statistically significant difference. The mean MFFs obtained with dual-echo dual-flip-angle SPGR MR imaging and biopsy were 20.3% (range, 1.7%-45.1%) and 20.6% (range, 3%-46.1%), respectively. The mean difference, standard deviation of the difference, and t value were -0.3, 1.3, and -1.3 (P > .2), respectively. The Pearson correlation coefficient was 0.995; with the Bland-Altman method, all data points were within the ± 2 SDs limits of agreement. The results show that dual-echo dual-flip-angle SPGR MR imaging technique provides reliable calculation of MFF, consistent with biopsy measurements. RSNA, 2011

  4. Partially-overlapped viewing zone based integral imaging system with super wide viewing angle.

    PubMed

    Xiong, Zhao-Long; Wang, Qiong-Hua; Li, Shu-Li; Deng, Huan; Ji, Chao-Chao

    2014-09-22

    In this paper, we analyze the relationship between viewer and viewing zones of integral imaging (II) system and present a partially-overlapped viewing zone (POVZ) based integral imaging system with a super wide viewing angle. In the proposed system, the viewing angle can be wider than the viewing angle of the conventional tracking based II system. In addition, the POVZ can eliminate the flipping and time delay of the 3D scene as well. The proposed II system has a super wide viewing angle of 120° without flipping effect about twice as wide as the conventional one.

  5. Spin Manipulating Vector and Tensor Polarized Deuterons Stored in COSY

    NASA Astrophysics Data System (ADS)

    Morozov, Vassili; Krisch, Alan; Leonova, Maria; Raymond, Richard; Sivers, Dennis; Wong, Victor; Yonehara, Katsuya; Bechstedt, Ulf; Gebel, Ralf; Lehrach, Andreas; Lorentz, Bernd; Maier, Rudolf; Schnase, Alexander; Stockhorst, Hans; Eversheim, Dieter; Hinterberger, Frank; Rohdjess, Heiko; Ulbrich, Kay

    2004-05-01

    We recently studied spin flipping and spin manipulation of a simultaneously vector and tensor polarized deuteron beam stored in the COSY Cooler Synchrotron at 1.85 GeV/c. Using the EDDA detector we calibrated vector and tensor analyzing powers, which were earlier unknown at this energy; thus, we were able to obtain the absolute values for both the vector and tensor polarizations. We manipulated the deuteron's polarization using a new water-cooled ferrite rf dipole, by adiabatically sweeping its frequency through an rf-induced spin resonance. We first experimentally determined the resonance's frequency and then varied the dipole's frequency range and frequency ramp time. This allowed us to maximize the vector polarization spin-flip efficiency to about 97 ± 1%. We also studied the interesting tensor polarization manipulation in considerable detail.

  6. MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system.

    PubMed

    Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I

    2018-05-01

    Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.

  7. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    PubMed

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Multishot EPI-SSFP in the heart.

    PubMed

    Herzka, Daniel A; Kellman, Peter; Aletras, Anthony H; Guttman, Michael A; McVeigh, Elliot R

    2002-04-01

    Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio (SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR). The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a larger flip angle without increasing the SAR above the FDA-approved limits. Copyright 2002 Wiley-Liss, Inc.

  9. Human auditory system response to pulsed radiofrequency energy in RF coils for magnetic resonance at 2.4 to 170 MHz.

    PubMed

    Röschmann, P

    1991-10-01

    The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.

  10. Spin manipulating vector & tensor polarized deuterons stored in COSY

    NASA Astrophysics Data System (ADS)

    Morozov, V. S.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yonehara, K.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Schnase, A.; Stockhorst, H.; Eversheim, D.; Hinterberger, F.; Rohdjess, H.; Ulbrich, K.

    2006-04-01

    We recently studied the spin manipulation of a simultaneously vector and tensor polarized deuteron beam stored at 1.85 GeV/c in the COSY Cooler Synchrotron. Using the EDDA detector, we first calibrated the vector and tensor analyzing powers, which were earlier unmeasured at 1.85 GeV/c; this allowed us to measure the absolute values of both the vector and tensor polarizations. Then we manipulated the deuteron's polarization by sweeping the frequency of a ferrite rf dipole through an rf-induced spin resonance. We first experimentally determined the resonance's frequency and then varied the rf dipole's frequency sweep range δf and frequency ramp time δt to maximize the spin-flip efficiency. We then obtained a measured vector spin-flip efficiency of 98.5 ± 0.3% [1]. We also studied, in detail, the behavior of the tensor polarization during spin manipulation; these new data may allow a better understanding of the interesting quantum behavior of spin-1 bosons. This research was supported by the German BMBF Science Ministry. [1] V.S. Morozov et al., Phys. Rev. ST Accel. Beams 8, 061001 (2005).

  11. Boosting sensitivity and suppressing artifacts via multi-acquisition in direct polarization NMR experiments with small flip-angle pulses.

    PubMed

    Fu, Riqiang; Hernández-Maldonado, Arturo J

    2018-05-24

    A small flip-angle pulse direct polarization is the simplest method commonly used to quantify various compositions in many materials applications. This method sacrifices the sensitivity per scan in exchange for rapid repeating of data acquisition for signal accumulation. In addition, the resulting spectrum often encounters artifacts from background signals from probe components and/or from acoustic rings leading to a distorted baseline, especially in low-γ nuclei and wideline NMR. In this work, a multi-acquisition scheme is proposed to boost the sensitivity per scan and at the same time effectively suppress these artifacts. Here, an adiabatic inversion pulse is first applied in order to bring the magnetization from the +z to -z axis and then a small flip-angle pulse excitation is used before the data acquisition. Right after the first acquisition, the adiabatic inversion pulse is applied again to flip the magnetization back to the +z axis. The second data acquisition takes place after another small flip-angle pulse excitation. The difference between the two consecutive acquisitions cancels out any artifacts, while the wanted signals are accumulated. This acquisition process can be repeated many times before going into next scan. Therefore, by acquiring the signals multiple times in a single scan the sensitivity is improved. A mixture sample of flufenamic acid and 3,5-difluorobenzoic acid and a titanium silicate sample have been used to demonstrate the advantages of this newly proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI.

    PubMed

    Settecase, Fabio; Hetts, Steven W; Martin, Alastair J; Roberts, Timothy P L; Bernhardt, Anthony F; Evans, Lee; Malba, Vincent; Saeed, Maythem; Arenson, Ronald L; Kucharzyk, Walter; Wilson, Mark W

    2011-03-01

    The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped microcatheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35°C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73°C to 1.91°C in air and 0.45°C to 0.55°C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RF heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  13. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.

    PubMed

    Zhang, Xiuli; Paquette, Max R; Zhang, Songning

    2013-11-06

    Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear.

  14. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  15. Analysis of the Precision of Variable Flip Angle T1 Mapping with Emphasis on the Noise Propagated from RF Transmit Field Maps.

    PubMed

    Lee, Yoojin; Callaghan, Martina F; Nagy, Zoltan

    2017-01-01

    In magnetic resonance imaging, precise measurements of longitudinal relaxation time ( T 1 ) is crucial to acquire useful information that is applicable to numerous clinical and neuroscience applications. In this work, we investigated the precision of T 1 relaxation time as measured using the variable flip angle method with emphasis on the noise propagated from radiofrequency transmit field ([Formula: see text]) measurements. The analytical solution for T 1 precision was derived by standard error propagation methods incorporating the noise from the three input sources: two spoiled gradient echo (SPGR) images and a [Formula: see text] map. Repeated in vivo experiments were performed to estimate the total variance in T 1 maps and we compared these experimentally obtained values with the theoretical predictions to validate the established theoretical framework. Both the analytical and experimental results showed that variance in the [Formula: see text] map propagated comparable noise levels into the T 1 maps as either of the two SPGR images. Improving precision of the [Formula: see text] measurements significantly reduced the variance in the estimated T 1 map. The variance estimated from the repeatedly measured in vivo T 1 maps agreed well with the theoretically-calculated variance in T 1 estimates, thus validating the analytical framework for realistic in vivo experiments. We concluded that for T 1 mapping experiments, the error propagated from the [Formula: see text] map must be considered. Optimizing the SPGR signals while neglecting to improve the precision of the [Formula: see text] map may result in grossly overestimating the precision of the estimated T 1 values.

  16. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes

    PubMed Central

    2013-01-01

    Background Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Methods Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. Results A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. Conclusions The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear. PMID:24196492

  17. Spin Resonances for Stored Deuteron Beams in COSY. Vector Polarization. Tracking with Spink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luccio,A.; Lehrach, A.

    2008-04-01

    Results of measurements of vector and tensor polarization of a deuteron beam in the storage ring COSY have been published by the SPIN{at}COSY collaboration. In this experiment a RF Dipole was used that produced spin flip. The strength of the RFD-induced depolarizing resonance was calculated from the amount of spin flipping and the results shown in the figures of the cited paper. In this note we present the simulation of the experimental data (vector polarization) with the spin tracking code Spink.

  18. MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system

    NASA Astrophysics Data System (ADS)

    Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2018-05-01

    Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.

  19. RF upset susceptibilities of CMOS and low power Schottky D-type flip-flops

    NASA Astrophysics Data System (ADS)

    Kenneally, Daniel J.; Koellen, Daniel S.; Epshtein, Stan

    A description is given of measurements of RF upset levels on two D-type flip-flops, the CD4013B and 54ALS74A, which are functionally identical but fabricated from different technologies: CMOS and low-power Schottky. Continuous-wave electromagnetic interference (CW EMI) from 1 MHz to 200 MHz was coupled into the clock, data, and collector bias, Vcc, ports of each device type while test vectors were used to verify normal operation and subsequent upsets. Both the CMOS and the Schottky devices show decreasing RF susceptibility with increasing frequencies from 1 to 200 MHz. The CMOS device roll-off is almost 18 dB/decade as compared to about 12 dB/decade for the Schottky device. The differences in the Vcc ports' susceptibilities are also apparent. The CMOS device's upset levels decrease steeply with increasing frequency at approximate roll-offs of 60 dB/decade up to 5 MHz and 15 dB/decade from 5 to 100 MHz. Over the same bands, the Schottky device susceptibility at the Vcc port remains strikingly constant at a 6-dBm upset level. Measurements on the clock and data ports seem to suggest that: (1) the CMOS device is `RF harder' than the Schottky device by 3 to 18 dB at least above the 5 to 10 MHz range and out to 100 MHz; and (2) below that range, the Schottky device may be `RF harder' by 3 to 6 dB, but there are not enough measurement data to confirm this performance below 5 MHz.

  20. [Flipping moxibustion of Hui medicine combined with western medication for rheumatoid arthritis with cold dampness bi syndrome].

    PubMed

    Wang, Shunji; Ye, Gaxi; Zhang, Yu; Guan, Shuting; Liu, Xiufen; Ren, Wenjing

    2017-10-12

    To compare the effects of flipping moxibustion of Hui medicine combined with western medication and simple western medication for rheumatoid arthritis with cold dampness bi syndrome. Eighty patients were randomly assigned into an observation group and a control group, 40 cases in each group. Oral methotrexate (1 time a week) and sulfasalazine (twice a day except the day for methotrexate) were used in the two groups. Patients in the observation group were treated with flipping moxibustion of Hui medicine, twice a week. The main acupoints were Shenshu (BL 23), Guanyuan (CV 4), Zusanli (ST 36), Yinlingquan (SP 9), and the matching acupoints were in the meridians related to the disease location. All the treatment was given for continuous 4 weeks. The TCM symptom score, visual analogue scale (VAS) score, blood sedimentation (ESR), rheumatoid factor (RF) and C-reactive protein (CRP) were observed before and after treatment. The effect was evaluated. The total effect rate in the observation group was 95.0% (38/40), which was better than 77.5% (31/40) in the control group ( P <0.05). After treatment, the VAS score, TCM symptom score, RF, ESR, CRP levels decreased in the two groups (all P <0.05), with better effects in the observation group (all P <0.05). The adverse reactions in the observation group were lower than those in the control group. Flipping moxibustion of Hui medicine combined with western medication for rheumatoid arthritis with cold dampness bi syndrome are better than simple western medication, which are safer and more effective.

  1. Toggling Bistable Atoms via Mechanical Switching of Bond Angle

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A.; Kantorovich, Lev; Moriarty, Philip

    2011-04-01

    We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom—an important consideration for future atomic scale fabrication strategies.

  2. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  3. Flip-chip light emitting diode with resonant optical microcavity

    DOEpatents

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, T.C.; Ortendahl, D.A.; Hylton, N.M.

    For magnetic resonance imaging (MRI) of the head a TR of about 2.0 seconds has been found to give excellent sensitivity to desease. If a flip angle less than 90/sup 0/ is used for initial excitation, it is possible to maintain sensitivity to disease while reducing TR and thus total imaging time. Simulations based on data from patients with representative pathology show that image contrast is preserved. By acquiring sequences at TR = 0.5 seconds with two different flip angles it is possible to calculate T1 with good accuracy, thus allowing calculated images at arbitrary TR to be produced.

  5. RF sheaths for arbitrary B field angles

    NASA Astrophysics Data System (ADS)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  6. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  7. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  8. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    PubMed

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  9. FLASH proton density imaging for improved surface coil intensity correction in quantitative and semi-quantitative SSFP perfusion cardiovascular magnetic resonance.

    PubMed

    Nielles-Vallespin, Sonia; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew E

    2015-02-17

    A low excitation flip angle (α < 10°) steady-state free precession (SSFP) proton-density (PD) reference scan is often used to estimate the B1-field inhomogeneity for surface coil intensity correction (SCIC) of the saturation-recovery (SR) prepared high flip angle (α = 40-50°) SSFP myocardial perfusion images. The different SSFP off-resonance response for these two flip angles might lead to suboptimal SCIC when there is a spatial variation in the background B0-field. The low flip angle SSFP-PD frames are more prone to parallel imaging banding artifacts in the presence of off-resonance. The use of FLASH-PD frames would eliminate both the banding artifacts and the uneven frequency response in the presence of off-resonance in the surface coil inhomogeneity estimate and improve homogeneity of semi-quantitative and quantitative perfusion measurements. B0-field maps, SSFP and FLASH-PD frames were acquired in 10 healthy volunteers to analyze the SSFP off-resonance response. Furthermore, perfusion scans preceded by both FLASH and SSFP-PD frames from 10 patients with no myocardial infarction were analyzed semi-quantitatively and quantitatively (rest n = 10 and stress n = 1). Intra-subject myocardial blood flow (MBF) coefficient of variation (CoV) over the whole left ventricle (LV), as well as intra-subject peak contrast (CE) and upslope (SLP) standard deviation (SD) over 6 LV sectors were investigated. In the 6 out of 10 cases where artifacts were apparent in the LV ROI of the SSFP-PD images, all three variability metrics were statistically significantly lower when using the FLASH-PD frames as input for the SCIC (CoVMBF-FLASH = 0.3 ± 0.1, CoVMBF-SSFP = 0.4 ± 0.1, p = 0.03; SDCE-FLASH = 10 ± 2, SDCE-SSFP = 32 ± 7, p = 0.01; SDSLP-FLASH = 0.02 ± 0.01, SDSLP-SSFP = 0.06 ± 0.02, p = 0.03). Example rest and stress data sets from the patient pool demonstrate that the low flip angle SSFP protocol can exhibit severe ghosting artifacts originating from off-resonance banding artifacts at the edges of the field of view that parallel imaging is not able to unfold. These artifacts lead to errors in the quantitative perfusion maps and the semi-quantitative perfusion indexes, such as false positives. It is shown that this can be avoided by using FLASH-PD frames as input for the SCIC. FLASH-PD images are recommended as input for SCIC of SSFP perfusion images instead of low flip angle SSFP-PD images.

  10. Multi-slice Fractional Ventilation Imaging in Large Animals with Hyperpolarized Gas MRI

    PubMed Central

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Xin, Yi; Profka, Harrilla; Rajaei, Jennia; Kadlecek, Stephen; Ishii, Masaru; Rizi, Rahim R.

    2012-01-01

    Noninvasive assessment of regional lung ventilation is of critical importance in quantifying the severity of disease and evaluating response to therapy in many pulmonary diseases. This work presents for the first time the implementation of a hyperpolarized (HP) gas MRI technique for measuring whole-lung regional fractional ventilation (r) in Yorkshire pigs (n = 5) through the use of a gas mixing and delivery device in supine position. The proposed technique utilizes a series of back-to-back HP gas breaths with images acquired during short end-inspiratory breath-holds. In order to decouple the RF pulse decay effect from ventilatory signal build-up in the airways, regional distribution of flip angle (α) was estimated in the imaged slices by acquiring a series of back-to-back images with no inter-scan time delay during a breath-hold at the tail-end of the ventilation sequence. Analysis was performed to assess the multi-slice ventilation model sensitivity to noise, oxygen and number of flip angle images. The optimal α value was determined based on minimizing the error in r estimation; αopt = 5–6° for the set of acquisition parameters in pigs. The mean r values for the group of pigs were 0.27±0.09, 0.35±0.06, 0.40±0.04 for ventral, middle and dorsal slices, respectively, (excluding conductive airways r > 0.9). A positive gravitational (ventral-dorsal) ventilation gradient effect was present in all animals. The trachea and major conductive airways showed a uniform near-unity r value, with progressively smaller values corresponding to smaller diameter airways, and ultimately leading to lung parenchyma. Results demonstrate the feasibility of measurements of fractional ventilation in large species, and provides a platform to address technical challenges associated with long breathing time scales through the optimization of acquisition parameters in species with a pulmonary physiology very similar to that of human beings. PMID:22290603

  11. Wireless Medical Devices for MRI-Guided Interventions

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Madhav

    Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation. Quantitative performance metrics are successfully predicted and the role of simulation in geometric optimization is demonstrated. In a pig study, we demonstrate navigation of a catheter, with tip-tracking and high-resolution intravascular imaging, through the vasculature into the heart, followed by contextual visualization. A potentially significant application is in MRI-guided cardiac ablation procedures.

  12. Investigation of rf power absorption in the plasma of helicon ion source.

    PubMed

    Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V

    2008-02-01

    The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.

  13. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  14. Band selective small flip angle COSY: a simple experiment for the analyses of 1H NMR spectra of small chiral molecules.

    PubMed

    Prabhu, Uday Ramesh; Suryaprakash, N

    2008-12-01

    The NMR spectroscopic discrimination of enantiomers in the chiral liquid crystalline solvent is more often carried out using (2)H detection in its natural abundance. The employment of (1)H detection for such a purpose is severely hampered due to significant loss of resolution in addition to indistinguishable overlap of the spectra from the two enantiomers. This study demonstrates that the band selected small flip angle homonuclear correlation experiment is a simple and robust technique that provides unambiguous discrimination, very high spectral resolution, reduced multiplicity of transitions, relative signs of the couplings and enormous saving of instrument time.

  15. New method to monitor RF safety in MRI-guided interventions based on RF induced image artefacts.

    PubMed

    van den Bosch, Michiel R; Moerland, Marinus A; Lagendijk, Jan J W; Bartels, Lambertus W; van den Berg, Cornelis A T

    2010-02-01

    Serious tissue heating may occur at the tips of elongated metallic structures used in MRI-guided interventions, such as vascular guidewires, catheters, biopsy needles, and brachytherapy needles. This heating is due to resonating electromagnetic radiofrequency (RF) waves along the structure. Since it is hard to predict the exact length at which resonance occurs under in vivo conditions, there is a need for methods to monitor this resonance behavior. In this study, the authors propose a method based on the RF induced image artefacts and demonstrate its applicability in two phantom experiments. The authors developed an analytical model that describes the RF induced image artefacts as a function of the induced current in an elongated metallic structure placed parallel to the static magnetic field. It describes the total RF field as a sum of the RF fields produced by the transmit coil of the MR scanner and by the elongated metallic structure. Several spoiled gradient echo images with different nominal flip angle settings were acquired to map the B1+ field, which is a quantitative measure for the RF distortion around the structure. From this map, the current was extracted by fitting the analytical model. To investigate the sensitivity of our method we performed two phantom experiments with different setup parameters: One that mimics a brachytherapy needle insertion and one that resembles a guidewire intervention. In the first experiment, a short needle was placed centrally in the MR bore to ensure that the induced currents would be small. In the second experiment, a longer wire was placed in an off-center position to mimic a worst case scenario for the patient. In both experiments, a Luxtron (Santa Clara, CA) fiberoptic temperature sensor was positioned at the structure tip to record the temperature. In the first experiment, no significant temperature increases were measured, while the RF image artefacts and the induced currents in the needle increased with the applied insertion depth. The maximum induced current in the needle was 44 mA. Furthermore, a standing wave pattern became clearly visible for larger insertion depths. In the second experiment, significant temperature increases up to 2.4 degrees C in 1 min were recorded during the image acquisitions. The maximum current value was 1.4 A. In both experiments, a proper estimation of the current in the metallic structure could be made using our analytical model. The authors have developed a method to quantitatively determine the induced current in an elongated metallic structure from its RF distortion. This creates a powerful and sensitive method to investigate the resonant behavior of RF waves along elongated metallic structures used for MRI-guided interventions, for example, to monitor the RF safety or to inspect the influence of coating on the resonance length. Principally, it can be applied under in vivo conditions and for noncylindrical metallic structures such as hip implants by taking their geometry into account.

  16. Further exploration of MRI techniques for liver T1rho quantification.

    PubMed

    Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J

    2013-12-01

    With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained. Liver T1rho values obtained by sequence 1 (NSA =2) and sequence 2 (NSA =2) showed similar values, i.e., 43.1±2.1 ms (range: 38.6-48.0 ms, n=40 scans) vs. 43.5±2.5 ms (range: 39.0-47.7 ms, 
n=12 scans, P=0.74) respectively. For the six volunteers scanned with both sequences in one session, the intraclass correlation coefficient (ICC) was 0.939. Overall, the success rate of obtaining satisfactory images per acquisition was slightly over 50% for both sequence 1 and sequence 2. Satisfactory images can usually be obtained by asking the volunteer subjects to better hold their breath. However, sequence 2 did not increase the scan success rate. For the nine subjects scanned by sequence 2 with both NSA =2 and NSA =1 during one session, the ICC was 0.274, demonstrated poor agreement. T1rho measurement by ROI method and histogram had an ICC of 0.901 (P>0.05), demonstrated very good agreement. We conclude that by including 135° flip angle before and after the spin-locking RF pulse, the rate of artifacts occurring did not decrease. On the other hand, sequence 1 and sequence 2 measured similar T1rho value in healthy liver. While reducing the breath-holding duration significantly, NSA =1 did not offer satisfactory signal-to-noise ratio. Histogram measurement can be adopted for future studies.

  17. Faraday-cup-type lost fast ion detector on Heliotron J.

    PubMed

    Yamamoto, S; Ogawa, K; Isobe, M; Darrow, D S; Kobayashi, S; Nagasaki, K; Okada, H; Minami, T; Kado, S; Ohshima, S; Weir, G M; Nakamura, Y; Konoshima, S; Kemmochi, N; Ohtani, Y; Mizuuchi, T

    2016-11-01

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90 ∘ -140 ∘ , especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, S., E-mail: yamamoto.satoshi.6n@kyoto-u.ac.jp; Kobayashi, S.; Nagasaki, K.

    A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7–42.5 keV (proton) and pitch angle of 90{sup ∘}–140{sup ∘}, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas.

  19. Breast MRI at 7 Tesla with a bilateral coil and robust fat suppression.

    PubMed

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2014-03-01

    To develop a bilateral coil and fat suppressed T1-weighted sequence for 7 Tesla (T) breast MRI. A dual-solenoid coil and three-dimensional (3D) T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed. T1w FS image quality was characterized through image uniformity and fat-water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7T SNR advantage. Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat-water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. 7T T1w FS bilateral breast imaging is feasible with a custom radiofrequency (RF) coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. Copyright © 2013 Wiley Periodicals, Inc.

  20. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI.

    PubMed

    Helms, Gunther; Dathe, Henning; Kallenberg, Kai; Dechent, Peter

    2008-12-01

    An empirical equation for the magnetization transfer (MT) FLASH signal is derived by analogy to dual-excitation FLASH, introducing a novel semiquantitative parameter for MT, the percentage saturation imposed by one MT pulse during TR. This parameter is obtained by a linear transformation of the inverse signal, using two reference experiments of proton density and T(1) weighting. The influence of sequence parameters on the MT saturation was studied. An 8.5-min protocol for brain imaging at 3 T was based on nonselective sagittal 3D-FLASH at 1.25 mm isotropic resolution using partial acquisition techniques (TR/TE/alpha = 25ms/4.9ms/5 degrees or 11ms/4.9ms/15 degrees for the T(1) reference). A 12.8 ms Gaussian MT pulse was applied 2.2 kHz off-resonance with 540 degrees flip angle. The MT saturation maps showed an excellent contrast in the brain due to clearly separated distributions for white and gray matter and cerebrospinal fluid. Within the limits of the approximation (excitation <15 degrees , TR/T(1) less sign 1) the MT term depends mainly on TR, the energy and offset of the MT pulse, but hardly on excitation and T(1) relaxation. It is inherently compensated for inhomogeneities of receive and transmit RF fields. The MT saturation appeared to be a sensitive parameter to depict MS lesions and alterations of normal-appearing white matter. (c) 2008 Wiley-Liss, Inc.

  1. Breast MRI at 7 Tesla with a Bilateral Coil and Robust Fat Suppression

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2013-01-01

    Purpose To develop a bilateral coil and optimized fat suppressed T1-weighted sequence for 7T breast MRI. Materials and Methods A dual-solenoid coil and 3D T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed for 7T. T1w FS image quality was characterized through image uniformity and fat/water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7 T SNR advantage. Results Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T T1w FS image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat/water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. Conclusion 7T T1w FS bilateral breast imaging is feasible with a custom RF coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. PMID:24123517

  2. Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting.

    PubMed

    Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A

    2017-11-01

    The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. The impact of dual-source parallel radiofrequency transmission with patient-adaptive shimming on the cardiac magnetic resonance in children at 3.0 T.

    PubMed

    Wang, Haipeng; Qiu, Liyun; Wang, Guangbin; Gao, Fei; Jia, Haipeng; Zhao, Junyu; Chen, Weibo; Wang, Cuiyan; Zhao, Bin

    2017-06-01

    The cardiac magnetic resonance (CMR) of children at 3.0 T presents a unique set of technical challenges because of their small cardiac anatomical structures, fast heart rates, and the limited ability to keep motionless and hold breathe, which could cause problems associated with field inhomogeneity and degrade the image quality. The aim of our study was to evaluate the effect of dual-source parallel radiofrequency (RF) transmission on the B1 homogeneity and image quality in children with CMR at 3.0 T. The study was approved by the institutional ethics committee and written informed consent was obtained. A total of 30 free-breathing children and 30 breath-hold children performed CMR examinations with dual-source and single-source RF transmission. The B1 homogeneity, contrast ratio (CR) of cine images, and off-resonance artifacts in cine images between dual-source and single-source RF transmission were assessed in free-breathing and breath-hold groups, respectively. In both free-breathing and breath-hold groups, higher mean percentage of flip angle (free-breathing group: 104.2 ± 4.6 vs 95.5 ± 6.3, P < .001; breath-hold group: 101.5 ± 5.1 vs 92.5 ± 6.3, P < .001) and lower coefficient of variation (free-breathing group: 0.06 ± 0.02 vs 0.09 ± 0.03, P < .001; breath-hold group: 0.07 ± 0.03 vs 0.10 ± 0.04, P = .005) were found with dual-source than with single-source RF transmission. Both the CRs in the horizontal long axis (HLA) and short axis of cine images with dual-source RF transmission was improved (P < .05 for all). The scores of off-resonance artifacts in the HLA with dual-source RF transmission were higher in both free-breathing and breath-hold groups (P < .05 for all), with substantial interreader agreement (kappa values from 0.68 to 0.74). Compared with conventional single-source, dual-source parallel RF transmission could significantly improve the B1 homogeneity and image quality for CMR in children at 3.0 T. This technology could be taken into account in CMR for children with cardiac diseases.

  4. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudino, N., E-mail: natalia.gudino@nih.gov; Sonmez, M.; Nielles-Vallespin, S.

    2015-01-15

    Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, amore » minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating reduction of the guidewire were successfully performed in vivo with the proposed hardware and phase control. Conclusions: Phantom and in vivo data demonstrated that additional degrees of freedom in a parallel transmission system can be used to control RF induced heating in long conductors. A novel constrained optimization approach to reduce device heating was also presented that can be run in just few seconds and therefore could be added to an iMRI protocol to improve RF safety.« less

  5. Estimating B1+ in the breast at 7 T using a generic template.

    PubMed

    van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J

    2018-05-01

    Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  6. Estimating B 1 + in the breast at 7 T using a generic template

    PubMed Central

    Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.

    2018-01-01

    Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887

  7. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    NASA Astrophysics Data System (ADS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  8. Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver

    PubMed Central

    Brand, Jonathan F.; Furenlid, Lars R.; Altbach, Maria I.; Galons, Jean-Philippe; Bhattacharyya, Achyut; Sharma, Puneet; Bhattacharyya, Tulshi; Bilgin, Ali; Martin, Diego R.

    2016-01-01

    Abstract. Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination; however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed human ex vivo liver samples as phantoms that mimic the textural contrast of in vivo Gd-MRI. We have developed a local texture analysis that is applied to phantom images, and the results are used to train model observers to detect HF. The performance of the observer is assessed with the area-under-the-receiver–operator-characteristic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen as optimal for the task of detecting HF. PMID:27446971

  9. "FLIPSY"—A New Solvent-Suppression Sequence for Nonexchanging Solutes Offering Improved Integral Accuracy Relative to 1D NOESY

    NASA Astrophysics Data System (ADS)

    Neuhaus, David; Ismail, Ismail M.; Chung, Chun-Wa

    A new method of solvent suppression is described, based on presaturation in combination with volume selection; the name "FLIPSY" is proposed for this sequence. A low-flip-angle pulse is used for excitation, immediately followed by two 180° pulses, each of which is independently phase cycled through Exorcycle. The phase-cycled inversion pulses achieve volume selection in a way similar to the widely used 1D NOESY sequence, thereby largely eliminating any residual "hump" signal from the solvent. The two 180° pulses combine to produce a net 360° rotation for zmagnetization and either a 180° or a 360° rotation for transverse magnetization, depending on the step in the phase cycle. This allows the overall flip angle of the sequence to be controlled by adjusting the length of the initial excitation pulse. It is demonstrated that this property allows one to choose freely a suitable compromise between signal strength and integral accuracy when using FLIPSY, just as when using single-pulse excitation. Such a choice cannot be made when using 1D NOESY, since the effective flip angle in that experiment is always 90°. The application of FLIPSY to recording LC-NMR spectra is demonstrated.

  10. Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution.

    PubMed

    Hodel, Jérôme; Silvera, Jonathan; Bekaert, Olivier; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno; Decq, Philippe

    2011-02-01

    To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus.

  11. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  12. Dependence of NMR noise line shapes on tuning, matching, and transmission line properties

    PubMed Central

    Bendet-Taicher, Eli; Müller, Norbert; Jerschow, Alexej

    2014-01-01

    The tuning and matching conditions of rf circuits, as well as the properties of the transmission lines connecting these to the preamplifier, have direct consequences for NMR probe sensitivity and as for the optimum delivery of rf power to the sample. In addition, tuning/matching conditions influence radiation damping effects, which manifest themselves as fast signal flip-back and line broadening effects, and can lead to concentration-dependent frequency shifts. Previous studies have also shown that the appearance of spin-noise and absorbed circuit noise signals heavily depended on tuning settings. Consequently, all these phenomena are linked together. The mutual connections and interdependences of these effects are highlighted and reviewed here. PMID:25505374

  13. Coaxial cable stripping device facilitates RF cabling fabrication

    NASA Technical Reports Server (NTRS)

    Hughes, R. S.; Tobias, R. A.

    1967-01-01

    Coaxial cable stripping device assures clean, right angled shoulder for RF cable connector fabrication. This method requires minimal skill and creates a low voltage standing wave ratio and mechanical stability in the interconnecting RF Cables.

  14. "Cooking the sample": radiofrequency induced heating during solid-state NMR experiments.

    PubMed

    d'Espinose de Lacaillerie, Jean-Baptiste; Jarry, Benjamin; Pascui, Ovidiu; Reichert, Detlef

    2005-09-01

    Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time-temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as "microwave" heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.

  15. Hybrid integration of VCSELs onto a silicon photonic platform for biosensing application

    NASA Astrophysics Data System (ADS)

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Cardile, Paolo; Daly, Aidan; Carroll, Lee; O'Brien, Peter

    2017-02-01

    This paper presents a technology of hybrid integration vertical cavity surface emitting lasers (VCSELs) directly on silicon photonics chip. By controlling the reflow of the solder balls used for electrical and mechanical bonding, the VCSELs were bonded at 10 degree to achieve the optimum angle-of-incidence to the planar grating coupler through vision based flip-chip techniques. The 1 dB discrepancy between optical loss values of flip-chip passive assembly and active alignment confirmed that the general purpose of the flip-chip design concept is achieved. This hybrid approach of integrating a miniaturized light source on chip opens the possibly of highly compact sensor system, which enable future portable and wearable diagnostics devices.

  16. A molecular dynamics study of slow base flipping in DNA using conformational flooding.

    PubMed

    Bouvier, Benjamin; Grubmüller, Helmut

    2007-08-01

    Individual DNA bases are known to be able to flip out of the helical stack, providing enzymes with access to the genetic information otherwise hidden inside the helix. Consequently, base flipping is a necessary first step to many more complex biological processes such as DNA transcription or replication. Much remains unknown about this elementary step, despite a wealth of experimental and theoretical studies. From the theoretical point of view, the involved timescale of milliseconds or longer requires the use of enhanced sampling techniques. In contrast to previous theoretical studies employing umbrella sampling along a predefined flipping coordinate, this study attempts to induce flipping without prior knowledge of the pathway, using information from a molecular dynamics simulation of a B-DNA fragment and the conformational flooding method. The relevance to base flipping of the principal components of the simulation is assayed, and a combination of modes optimally related to the flipping of the base through either helical groove is derived for each of the two bases of the central guanine-cytosine basepair. By applying an artificial flooding potential along these collective coordinates, the flipping mechanism is accelerated to within the scope of molecular dynamics simulations. The associated free energy surface is found to feature local minima corresponding to partially flipped states, particularly relevant to flipping in isolated DNA; further transitions from these minima to the fully flipped conformation are accelerated by additional flooding potentials. The associated free energy profiles feature similar barrier heights for both bases and pathways; the flipped state beyond is a broad and rugged attraction basin, only a few kcal/mol higher in energy than the closed conformation. This result diverges from previous works but echoes some aspects of recent experimental findings, justifying the need for novel approaches to this difficult problem: this contribution represents a first step in this direction. Important structural factors involved in flipping, both local (sugar-phosphate backbone dihedral angles) and global (helical axis bend), are also identified.

  17. Comparison of three rf plasma impedance monitors on a high phase angle planar inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.

    1999-10-01

    Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.

  18. Three-dimensional quantitative T1 and T2 mapping of the carotid artery: Sequence design and in vivo feasibility.

    PubMed

    Coolen, Bram F; Poot, Dirk H J; Liem, Madieke I; Smits, Loek P; Gao, Shan; Kotek, Gyula; Klein, Stefan; Nederveen, Aart J

    2016-03-01

    A novel three-dimensional (3D) T1 and T2 mapping protocol for the carotid artery is presented. A 3D black-blood imaging sequence was adapted allowing carotid T1 and T2 mapping using multiple flip angles and echo time (TE) preparation times. B1 mapping was performed to correct for spatially varying deviations from the nominal flip angle. The protocol was optimized using simulations and phantom experiments. In vivo scans were performed on six healthy volunteers in two sessions, and in a patient with advanced atherosclerosis. Compensation for patient motion was achieved by 3D registration of the inter/intrasession scans. Subsequently, T1 and T2 maps were obtained by maximum likelihood estimation. Simulations and phantom experiments showed that the bias in T1 and T2 estimation was < 10% within the range of physiological values. In vivo T1 and T2 values for carotid vessel wall were 844 ± 96 and 39 ± 5 ms, with good repeatability across scans. Patient data revealed altered T1 and T2 values in regions of atherosclerotic plaque. The 3D T1 and T2 mapping of the carotid artery is feasible using variable flip angle and variable TE preparation acquisitions. We foresee application of this technique for plaque characterization and monitoring plaque progression in atherosclerotic patients. © 2015 Wiley Periodicals, Inc.

  19. Quantitative evaluation of dual-flip-angle T1 mapping on DCE-MRI kinetic parameter estimation in head and neck

    PubMed Central

    Chow, Steven Kwok Keung; Yeung, David Ka Wai; Ahuja, Anil T; King, Ann D

    2012-01-01

    Purpose To quantitatively evaluate the kinetic parameter estimation for head and neck (HN) dynamic contrast-enhanced (DCE) MRI with dual-flip-angle (DFA) T1 mapping. Materials and methods Clinical DCE-MRI datasets of 23 patients with HN tumors were included in this study. T1 maps were generated based on multiple-flip-angle (MFA) method and different DFA combinations. Tofts model parameter maps of kep, Ktrans and vp based on MFA and DFAs were calculated and compared. Fitted parameter by MFA and DFAs were quantitatively evaluated in primary tumor, salivary gland and muscle. Results T1 mapping deviations by DFAs produced remarkable kinetic parameter estimation deviations in head and neck tissues. In particular, the DFA of [2º, 7º] overestimated, while [7º, 12º] and [7º, 15º] underestimated Ktrans and vp, significantly (P<0.01). [2º, 15º] achieved the smallest but still statistically significant overestimation for Ktrans and vp in primary tumors, 32.1% and 16.2% respectively. kep fitting results by DFAs were relatively close to the MFA reference compared to Ktrans and vp. Conclusions T1 deviations induced by DFA could result in significant errors in kinetic parameter estimation, particularly Ktrans and vp, through Tofts model fitting. MFA method should be more reliable and robust for accurate quantitative pharmacokinetic analysis in head and neck. PMID:23289084

  20. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    PubMed

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T

    PubMed Central

    Kim, Kyoung-Nam; Han, Sang-Doc; Seo, Jeung-Hoon; Heo, Phil; Yoo, Dongkyeom; Im, Geun Ho; Lee, Jung Hee

    2017-01-01

    The birdcage (BC) coil is currently being utilized for uniform radiofrequency (RF) transmit/receive (Tx/Rx) or Tx-only configuration in many magnetic resonance (MR) imaging applications, but insufficient magnetic flux (|B1|) density and their non-uniform distribution still exists in high-field (HF) environments. We demonstrate that the asymmetric birdcage (ABC) transmit/receive (Tx/Rx) volume coil, which is a modified standard birdcage (SBC) coil with the end ring split into two halves, is suitable for improving the |B1| sensitivity in 7T small-animal MR imaging. Cylindrical SBC and ABC coils with 35 mm diameter were constructed and bench tested for mouse body MR imaging at 300 MHz using a 7T scanner. To assess the ABC coil performance, computational electromagnetic (EM) simulation and 7T MR experiment were performed by using a cylindrical phantom and in vivo mouse body and quantitatively compared with the SBC coil in terms of |B1| distribution, RF transmit (|B1+|) field, and signal-to-noise ratio (SNR). The bench measurements of the two BC coils are similar, yielding a quality value (Q-value) of 74.42 for the SBC coil and 77.06 for the ABC coil. The computational calculation results clearly show that the proposed ABC coil offers superior |B1| field and |B1+| field sensitivity in the central axial slice compared with the SBC coil. There was also high SNR and uniformly distributed flip angle (FA) under the loaded condition of mouse body in the 7T experiment. Although ABC geometry allows a further increase in the |B1| field and |B1+| field sensitivity in only the central axial slice, the geometrical modification of the SBC coil can make a high performance RF coil feasible in the central axial slice and also make target imaging possible in the diagonal direction. PMID:27725573

  2. Mis-estimation and bias of hyperpolarized apparent diffusion coefficient measurements due to slice profile effects.

    PubMed

    Gordon, Jeremy W; Milshteyn, Eugene; Marco-Rius, Irene; Ohliger, Michael; Vigneron, Daniel B; Larson, Peder E Z

    2017-09-01

    The purpose of this work was to explore the impact of slice profile effects on apparent diffusion coefficient (ADC) mapping of hyperpolarized (HP) substrates. Slice profile effects were simulated using a Gaussian radiofrequency (RF) pulse with a variety of flip angle schedules and b-value ordering schemes. A long T 1 water phantom was used to validate the simulation results, and ADC mapping of HP [ 13 C, 15 N 2 ]urea was performed on the murine liver to assess these effects in vivo. Slice profile effects result in excess signal after repeated RF pulses, causing bias in HP measurements. The largest error occurs for metabolites with small ADCs, resulting in up to 10-fold overestimation for metabolites that are in more-restricted environments. A mixed b-value scheme substantially reduces this bias, whereas scaling the slice-select gradient can mitigate it completely. In vivo, the liver ADC of hyperpolarized [ 13 C, 15 N 2 ]urea is nearly 70% lower (0.99 ± 0.22 vs 1.69 ± 0.21 × 10 -3 mm 2 /s) when slice-select gradient scaling is used. Slice profile effects can lead to bias in HP ADC measurements. A mixed b-value ordering scheme can reduce this bias compared to sequential b-value ordering. Slice-select gradient scaling can also correct for this deviation, minimizing bias and providing more-precise ADC measurements of HP substrates. Magn Reson Med 78:1087-1092, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Does flip-flop style footwear modify ankle biomechanics and foot loading patterns?

    PubMed

    Price, Carina; Andrejevas, Vaidas; Findlow, Andrew H; Graham-Smith, Philip; Jones, Richard

    2014-01-01

    Flip-flops are an item of footwear, which are rubber and loosely secured across the dorsal fore-foot. These are popular in warm climates; however are widely criticised for being detrimental to foot health and potentially modifying walking gait. Contemporary alternatives exist including FitFlop, which has a wider strap positioned closer to the ankle and a thicker, ergonomic, multi-density midsole. Therefore the current study investigated gait modifications when wearing flip-flop style footwear compared to barefoot walking. Additionally walking in a flip-flop was compared to that FitFlop alternative. Testing was undertaken on 40 participants (20 male and 20 female, mean ± 1 SD age 35.2 ± 10.2 years, B.M.I 24.8 ± 4.7 kg.m(-2)). Kinematic, kinetic and electromyographic gait parameters were collected while participants walked through a 3D capture volume over a force plate with the lower limbs defined using retro-reflective markers. Ankle angle in swing, frontal plane motion in stance and force loading rates at initial contact were compared. Statistical analysis utilised ANOVA to compare differences between experimental conditions. The flip-flop footwear conditions altered gait parameters when compared to barefoot. Maximum ankle dorsiflexion in swing was greater in the flip-flop (7.6 ± 2.6°, p = 0.004) and FitFlop (8.5 ± 3.4°, p < 0.001) than barefoot (6.7 ± 2.6°). Significantly higher tibialis anterior activation was measured in terminal swing in FitFlop (32.6%, p < 0.001) and flip-flop (31.2%, p < 0.001) compared to barefoot. A faster heel velocity toward the floor was evident in the FitFlop (-.326 ± .068 m.s(-1), p < 0.001) and flip-flop (-.342 ± .074 m.s(-1), p < 0.001) compared to barefoot (-.170 ± .065 m.s(-1)). The FitFlop reduced frontal plane ankle peak eversion during stance (-3.5 ± 2.2°) compared to walking in the flip-flop (-4.4 ± 1.9°, p = 0.008) and barefoot (-4.3 ± 2.1°, p = 0.032). The FitFlop more effectively attenuated impact compared to the flip-flop, reducing the maximal instantaneous loading rate by 19% (p < 0.001). Modifications to the sagittal plane ankle angle, frontal plane motion and characteristics of initial contact observed in barefoot walking occur in flip-flop footwear. The FitFlop may reduce risks traditionally associated with flip-flop footwear by reducing loading rate at heel strike and frontal plane motion at the ankle during stance.

  4. Continuous angle steering of an optically- controlled phased array antenna based on differential true time delay constituted by micro-optical components.

    PubMed

    Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei

    2015-04-06

    We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

  5. DNP enhanced NMR with flip-back recovery

    NASA Astrophysics Data System (ADS)

    Björgvinsdóttir, Snædís; Walder, Brennan J.; Pinon, Arthur C.; Yarava, Jayasubba Reddy; Emsley, Lyndon

    2018-03-01

    DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, L-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.

  6. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence.

    PubMed

    Subashi, Ergys; Choudhury, Kingshuk R; Johnson, G Allan

    2014-03-01

    The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agent concentration in the range [0-1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO4 phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K(trans) with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T10). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%-70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K(trans) can be calculated. Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.

  7. The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses

    NASA Astrophysics Data System (ADS)

    Bottomley, P. A.; Ouwerkerk, R.

    A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (<90°) and a single sequence-repetition period, TR, is presented, The flip angles are chosen to optimize both the signal-to-noise ratio per unit time relative to the best possible Ernst-angle performance and the sensitivity with which a measurement of R can resolve differences in T1. A flip-angle pair at of around (60°, 15°) yields 70-79% of the maximum achievable Ernst-angle signal-to-noise ratio and a near-linear dependence of R on TR/ T1 with gradient of about 2:1 over the range 0.1 ≤ TR/ T1 ≤ 1. Errors in hip-angle and excitation-field ( B1) inhomogeneity result in roughly proportionate errors in the apparent T1. The method is best implemented with adiabatic low-angle pulses such as B1-independent rotation (BIR-4) or BIR-4 phase-cycled (BIRP) pulses, which permit measurements with surface coils. Experimental validation was obtained at 2 T by comparison of unlocalized inversion-recovery and dual-angle proton ( 1H) and phosphorus ( 31P) measurements from vials containing doped water with 0.04 ≤ T1 ≤ 2.8 s and from the metabolites in the calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low-concentration moieties, such as in 31P NMR in vivo, where study-time limitations are critical, and for rapid 1H T1 imaging.

  8. Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    PubMed Central

    Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization. PMID:24621588

  9. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    PubMed

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization.

  10. Radiofrequency fields in MAS solid state NMR probes

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.

  11. Counteracting radio frequency inhomogeneity in the human brain at 7 Tesla using strongly modulating pulses.

    PubMed

    Boulant, N; Mangin, J-F; Amadon, A

    2009-05-01

    We report flip angle and spoiled gradient echo measurements at 7 Tesla on human brains in three-dimensional imaging, using strongly modulating pulses to counteract the transmitted radiofrequency inhomogeneity problem. Compared with the standard square pulse results, three points of improvement are demonstrated, namely: (i) the removal of the bright center (typical at high fields when using a quadrature head coil), (ii) the substantial gain of signal in the regions of low B(1) intensity, and (iii) an increased 35% signal uniformity over the whole brain at the flip angle where maximum contrast between white and gray matter occurs. We also find by means of simulations that standard BIR-4 adiabatic pulses need several times more energy to reach a similar performance at the same field strength. (c) 2009 Wiley-Liss, Inc.

  12. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.

    PubMed

    Lee, Hyunyeol; Park, Jaeseok

    2013-07-01

    Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.

  13. Extended Monopole antenna Array with individual Shield (EMAS) coil: An improved monopole antenna design for brain imaging at 7 tesla MRI.

    PubMed

    Woo, Myung-Kyun; Hong, Suk-Min; Lee, Jongho; Kang, Chang-Ki; Park, Sung-Yeon; Son, Young-Don; Kim, Young-Bo; Cho, Zang-Hee

    2016-06-01

    To propose a new Extended Monopole antenna Array with individual Shields (EMAS) coil that improves the B1 field coverage and uniformity along the z-direction. To increase the spatial coverage of Monopole antenna Array (MA) coil, each monopole antenna was shielded and extended in length. Performance of this new coil, which is referred to as EMAS coil, was compared with the original MA coil and an Extended Monopole antenna Array coil with no shield (EMA). For comparison, flip angle, signal-to-noise ratio (SNR), and receive sensitivity maps were measured at multiple regions of interest (ROIs) in the brain. The EMAS coil demonstrated substantially larger flip angle and receive sensitivity than the MA and EMA coils in the inferior aspect of the brain. In the brainstem ROI, for example, the flip angle in the EMAS coil was increased by 45.5% (or 60.0%) and the receive sensitivity was increased by 26.9% (or 14.9%), resulting in an SNR gain of 84.8% (or 76.3%) when compared with the MA coil (or EMA). The EMAS coil provided 25.7% (or 24.4%) more uniform B1+ field distribution compared with the MA (or EMA) coil in sagittal. The EMAS coil successfully extended the imaging volume in lower part of the brain. Magn Reson Med 75:2566-2572, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    PubMed

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (P<0.05). The present results suggest that the neuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  15. ADRF experiments using near n.pi pulse strings. [Adiabatic Demagnetization due to Radio Frequency pulses

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Burum, D. P.; Elleman, D. D.

    1977-01-01

    Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.

  16. Sonomyography Analysis on Thickness of Skeletal Muscle During Dynamic Contraction Induced by Neuromuscular Electrical Stimulation: A Pilot Study.

    PubMed

    Qiu, Shuang; Feng, Jing; Xu, Jiapeng; Xu, Rui; Zhao, Xin; Zhou, Peng; Qi, Hongzhi; Zhang, Lixin; Ming, Dong

    2017-01-01

    Neuromuscular electrical stimulation (NMES) that stimulates skeletal muscles to induce contractions has been widely applied to restore functions of paralyzed muscles. However, the architectural changes of stimulated muscles induced by NMES are still not well understood. The present study applies sonomyography (SMG) to evaluate muscle architecture under NMES-induced and voluntary movements. The quadriceps muscles of seven healthy subjects were tested for eight cycles during an extension exercise of the knee joint with/without NMES, and SMG and the knee joint angle were recorded during the process of knee extension. A least squares support vector machine (LS-SVM) LS-SVM model was developed and trained using the data sets of six cycles collected under NMES, while the remaining data was used to test. Muscle thickness changes were extracted from ultrasound images and compared between NMES-induced and voluntary contractions, and LS-SVM was used to model a relationship between dynamical knee joint angles and SMG signals. Muscle thickness showed to be significantly correlated with joint angle in NMES-induced contractions, and a significant negative correlation was observed between Vastus intermedius (VI) thickness and rectus femoris (RF) thickness. In addition, there was a significant difference between voluntary and NMES-induced contractions . The LS-SVM model based on RF thickness and knee joint angle provided superior performance compared with the model based on VI thickness and knee joint angle or total thickness and knee joint angle. This suggests that a strong relation exists between the RF thickness and knee joint angle. These results provided direct evidence for the potential application of RF thickness in optimizing NMES system as well as measuring muscle state under NMES.

  17. The rectenna design on contact lens for wireless powering of the active intraocular pressure monitoring system.

    PubMed

    Cheng, H W; Jeng, B M; Chen, C Y; Huang, H Y; Chiou, J C; Luo, C H

    2013-01-01

    This paper proposed a wireless power harvesting system with micro-electro-mechanical-systems (MEMS) fabrication for noninvasive intraocular pressure (IOP) measurement on soft contact lens substructure. The power harvesting IC consists of a loop antenna, an impedance matching network and a rectifier. The proposed IC has been designed and fabricated by CMOS 0.18 um process that operates at the ISM band of 5.8 GHz. The antenna and the power harvesting IC would be bonded together by using flip chip bonding technologies without extra wire interference. The circuit utilized an impedance transformation circuit to boost the input RF signal that improves the circuit performance. The proposed design achieves an RF-to-DC conversion efficiency of 35% at 5.8 GHz.

  18. Wireless Orbiter Hang-Angle Inclinometer System

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  19. GUIDE FOR POLARIZED NEUTRONS

    DOEpatents

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  20. Structural features of Fab fragments of rheumatoid factor IgM-RF in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V., E-mail: vvo@ns.crys.ras.ru; Lapuk, V. A.; Shtykova, E. V.

    The structural features of the Fab fragments of monoclonal (Waldenstroem's disease) immunoglobulin M (IgM) and rheumatoid immunoglobulin M (IgM-RF) were studied by a complex of methods, including small-angle X-ray scattering (SAXS), electron spin resonance (ESR), and mass spectrometry (MS). The Fab-RF fragment was demonstrated to be much more flexible in the region of interdomain contacts, the molecular weights and the shapes of the Fab and Fab-RF macromolecules in solution being only slightly different. According to the ESR data, the rotational correlation time for a spin label introduced into the peptide sequence for Fab is twice as large as that formore » Fab-RF (21{+-}2 and 11{+-}1 ns, respectively), whereas the molecular weights of these fragments differ by only 0.5% (mass-spectrometric data), which correlates with the results of molecular-shape modeling by small-angle X-ray scattering. The conclusion about the higher flexibility of the Fab-RF fragment contributes to an understanding of the specificity of interactions between the rheumatoid factor and the antigens of the own organism.« less

  1. Radiofrequency fields in MAS solid state NMR probes.

    PubMed

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation.

    PubMed

    Laner, Monika; Horta, Bruno A C; Hünenberger, Philippe H

    2015-02-01

    The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    NASA Astrophysics Data System (ADS)

    Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.

    2012-08-01

    We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.

  4. Basic spin physics.

    PubMed

    Pipe, J G

    1999-11-01

    Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin density, M0, and by the T1, T2, and T2* time constants. Knowledge of these parameters allows one to calculate the resulting signal from a given tissue for a given MR imaging experiment.

  5. [Visualization of Anterolateral Ligament of the Knee Using 3D Reconstructed Variable Refocus Flip Angle-Turbo Spin Echo T2 Weighted Image].

    PubMed

    Yokosawa, Kenta; Sasaki, Kana; Muramatsu, Koichi; Ono, Tomoya; Izawa, Hiroyuki; Hachiya, Yudo

    2016-05-01

    Anterolateral ligament (ALL) is one of the lateral structures in the knee that contributes to the internal rotational stability of tibia. ALL has been referred to in some recent reports to re-emphasize its importance. We visualized the ALL on 3D-MRI in 32 knees of 27 healthy volunteers (23 male knees, 4 female knees; mean age: 37 years). 3D-MRIs were performed using 1.5-T scanner [T(2) weighted image (WI), SPACE: Sampling Perfection with Application optimized Contrast using different flip angle Evolutions] in the knee extended positions. The visualization rate of the ALL, the mean angle to the lateral collateral ligament (LCL), and the width and the thickness of the ALL at the joint level were investigated. The visualization rate was 100%. The mean angle to the LCL was 10.6 degrees. The mean width and the mean thickness of the ALL were 6.4 mm and 1.0 mm, respectively. The ALL is a very thin ligament with a somewhat oblique course between the lateral femoral epicondyle and the mid-third area of lateral tibial condyle. Therefore, the slice thickness and the slice angle can easily affect the ALL visualization. 3D-MRI enables acquiring thin-slice imaging data over a relatively short time, and arbitrary sections aligned with the course of the ALL can later be selected.

  6. An analysis of the uncertainty and bias in DCE-MRI measurements using the spoiled gradient-recalled echo pulse sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subashi, Ergys; Choudhury, Kingshuk R.; Johnson, G. Allan, E-mail: gjohnson@duke.edu

    2014-03-15

    Purpose: The pharmacokinetic parameters derived from dynamic contrast-enhanced (DCE) MRI have been used in more than 100 phase I trials and investigator led studies. A comparison of the absolute values of these quantities requires an estimation of their respective probability distribution function (PDF). The statistical variation of the DCE-MRI measurement is analyzed by considering the fundamental sources of error in the MR signal intensity acquired with the spoiled gradient-echo (SPGR) pulse sequence. Methods: The variance in the SPGR signal intensity arises from quadrature detection and excitation flip angle inconsistency. The noise power was measured in 11 phantoms of contrast agentmore » concentration in the range [0–1] mM (in steps of 0.1 mM) and in onein vivo acquisition of a tumor-bearing mouse. The distribution of the flip angle was determined in a uniform 10 mM CuSO{sub 4} phantom using the spin echo double angle method. The PDF of a wide range of T1 values measured with the varying flip angle (VFA) technique was estimated through numerical simulations of the SPGR equation. The resultant uncertainty in contrast agent concentration was incorporated in the most common model of tracer exchange kinetics and the PDF of the derived pharmacokinetic parameters was studied numerically. Results: The VFA method is an unbiased technique for measuringT1 only in the absence of bias in excitation flip angle. The time-dependent concentration of the contrast agent measured in vivo is within the theoretically predicted uncertainty. The uncertainty in measuring K{sup trans} with SPGR pulse sequences is of the same order, but always higher than, the uncertainty in measuring the pre-injection longitudinal relaxation time (T1{sub 0}). The lowest achievable bias/uncertainty in estimating this parameter is approximately 20%–70% higher than the bias/uncertainty in the measurement of the pre-injection T1 map. The fractional volume parameters derived from the extended Tofts model were found to be extremely sensitive to the variance in signal intensity. The SNR of the pre-injection T1 map indicates the limiting precision with which K{sup trans} can be calculated. Conclusions: Current small-animal imaging systems and pulse sequences robust to motion artifacts have the capacity for reproducible quantitative acquisitions with DCE-MRI. In these circumstances, it is feasible to achieve a level of precision limited only by physiologic variability.« less

  7. Evaluation of gadolinium-EOB-DTPA uptake after portal vein embolization: value of an increased flip angle.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Wagner, Clemens; Stelter, Lars; Grieser, Christian; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2014-03-01

    The optimal sequence for Gd-EOB-DTPA uptake measurement in the liver with the purpose of liver function measurement is still not defined. To prospectively evaluate the effect of an increased flip angle (FA) of a T1-weighted fat-saturated 3D sequence for the measurement of hepatocyte uptake of Gd-EOB-DTPA magnetic resonance imaging (MRI) after right portal vein embolization (PVE). Ten patients who received a PVE prior to an extended hemihepatectomy were examined 14 days after PVE using Gd-EOB-DTPA enhanced MRI of the liver using the standard FA of 10° and the increased FA of 30°. Relative enhancement of the right liver lobe (RLL) was 0.52 ± 0.12 for 10° and 1.41 ± 0.39 for 30°. Relative enhancement of the left liver lobe (LLL) was 0.58 ± 0.11 for 10° and 2.05 ± 0.61 for 30°. Relative enhancement of the RLL was significantly higher for 30° than for 10° (P = 0.009) and significantly higher in the 30° than in the 10° sequences (P = 0.005) for the LLL. A flip angle of 30° increases the contrast between liver partitions with and without portal venous embolization. Thereby, the sensitivity for differences in uptake intensity is increased. This could be of value for a more exact determination of differences in regional liver function and, consequently, the estimation of the future remnant liver function.

  8. Energy dissipation of slot-type flip buckets

    NASA Astrophysics Data System (ADS)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-03-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  9. Experimental Quantum-Walk Revival with a Time-Dependent Coin

    NASA Astrophysics Data System (ADS)

    Xue, P.; Zhang, R.; Qin, H.; Zhan, X.; Bian, Z. H.; Li, J.; Sanders, Barry C.

    2015-04-01

    We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.

  10. Energy dissipation of slot-type flip buckets

    NASA Astrophysics Data System (ADS)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-04-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h o is a function of the approach flow Froude number Fr o, the relative slot width b/ B o, and the relative slot angle θ/ β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  11. P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E. (Inventor); Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor)

    2000-01-01

    In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.

  12. Nonalcoholic Fatty Liver Disease: Diagnostic and Fat-Grading Accuracy of Low-Flip-Angle Multiecho Gradient-Recalled-Echo MR Imaging at 1.5 T

    PubMed Central

    Yokoo, Takeshi; Bydder, Mark; Hamilton, Gavin; Middleton, Michael S.; Gamst, Anthony C.; Wolfson, Tanya; Hassanein, Tarek; Patton, Heather M.; Lavine, Joel E.; Schwimmer, Jeffrey B.; Sirlin, Claude B.

    2009-01-01

    Purpose: To assess the accuracy of four fat quantification methods at low-flip-angle multiecho gradient-recalled-echo (GRE) magnetic resonance (MR) imaging in nonalcoholic fatty liver disease (NAFLD) by using MR spectroscopy as the reference standard. Materials and Methods: In this institutional review board–approved, HIPAA-compliant prospective study, 110 subjects (29 with biopsy-confirmed NAFLD, 50 overweight and at risk for NAFLD, and 31 healthy volunteers) (mean age, 32.6 years ± 15.6 [standard deviation]; range, 8–66 years) gave informed consent and underwent MR spectroscopy and GRE MR imaging of the liver. Spectroscopy involved a long repetition time (to suppress T1 effects) and multiple echo times (to estimate T2 effects); the reference fat fraction (FF) was calculated from T2-corrected fat and water spectral peak areas. Imaging involved a low flip angle (to suppress T1 effects) and multiple echo times (to estimate T2* effects); imaging FF was calculated by using four analysis methods of progressive complexity: dual echo, triple echo, multiecho, and multiinterference. All methods except dual echo corrected for T2* effects. The multiinterference method corrected for multiple spectral interference effects of fat. For each method, the accuracy for diagnosis of fatty liver, as defined with a spectroscopic threshold, was assessed by estimating sensitivity and specificity; fat-grading accuracy was assessed by comparing imaging and spectroscopic FF values by using linear regression. Results: Dual-echo, triple-echo, multiecho, and multiinterference methods had a sensitivity of 0.817, 0.967, 0.950, and 0.983 and a specificity of 1.000, 0.880, 1.000, and 0.880, respectively. On the basis of regression slope and intercept, the multiinterference (slope, 0.98; intercept, 0.91%) method had high fat-grading accuracy without statistically significant error (P > .05). Dual-echo (slope, 0.98; intercept, −2.90%), triple-echo (slope, 0.94; intercept, 1.42%), and multiecho (slope, 0.85; intercept, −0.15%) methods had statistically significant error (P < .05). Conclusion: Relaxation- and interference-corrected fat quantification at low-flip-angle multiecho GRE MR imaging provides high diagnostic and fat-grading accuracy in NAFLD. © RSNA, 2009 PMID:19221054

  13. Flipping a Switch "Down" When Not Aligned with the Gravitational Vertical.

    PubMed

    Bock, Otmar; Bury, Nils

    To flip a switch "down," our motor system can normally rely on concordant visual, gravitational, and egocentric cues about the vertical. However, divers must sometimes perform this task while visual cues are limited and gravitational cues are misaligned with egocentric cues. Astronauts must also flip switches "down" in absence of gravitational cues. Our study evaluates this ability using a laboratory simulation. The subjects were 24 healthy volunteers who were blindfolded, tilted into different angles of roll, and asked to silence an alarm by flipping a switch "down." The switch was constructed such that it could be flipped in any direction in the subjects' frontal plane. Two subjects deflected the switch in accordance with the direction of gravity, irrespective of their body orientation. Twenty subjects deflected it in accordance with their body orientation, irrespective of the direction of gravity. The remaining two persons could not be classified unequivocally. Notably, some egocentric responders deflected the rod consistently toward their feet, but others deflected it consistently toward other parts of their body. Since our findings disagree with perceptual studies where gravitational rather than egocentric cues predominated in the absence of vision, we posit that perception and action may access distinct internal representations of the vertical. On the practical side, our findings indicate that designers of spaceflight and underwater equipment should not rely on divers' intuitive knowledge on how to flip a switch "down." Bock O, Bury N. Flipping a switch "down" when not aligned with the gravitational vertical. Aerosp Med Hum Perform. 2016; 87(10):838-843.

  14. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  15. The effects of specific drills on the flip turns of freestyle swimmers based on a kinesiology analysis

    PubMed Central

    Peng, Yi; Zhao, Feng; Zhen, Kexin

    2016-01-01

    Abstract This research aimed to define the key factors in freestyle flip turns via a kinesiology analysis to diagnose swimmers. Hence, specially designed drills were created to improve swimmers’ flip-turn skills and assess the effects of training. Nine Chinese national modern pentathlon athletes ranging in age from 20 to 26 years with an average of 10 years of training experience were tested and trained in this study. The Kistler Performance Analysis System for Swimming was used for the pre- and post-test analyses. A kinesiology analysis of the data from the pre-test was used for the diagnosis and specific drills were adopted for 10 weeks, 3 times per week before the post-test. The comparison of the pre- and post-test performances was used to assess the effects of training. After 10 weeks of specific drill training for flip turns, participants’ turning skills significantly improved. Speed in approaching, somersaulting, pushing-off and gliding all increased. The angles of the knees and hips as well as the force applied improved, which contributed to swimmers’ increased speed. Since the skills needed for a flip turn are complex and not easily diagnosed via observation alone, this kinesiology analysis will make diagnosis objective and easy. PMID:28149404

  16. Ultrasonic bulk wave measurements on composite using fiber from recycled CFRP

    NASA Astrophysics Data System (ADS)

    Paterson, David; Ijomah, Winifred L.; Windmill, James F. C.; Kao, Chih-Chuan; Smillie, Grant

    2018-04-01

    This study investigates the velocity profile for both a virgin carbon fiber reinforced plastic (v-CFRP) and a reused fiber CFRP (rf-CFRP) which exhibit quasi-isotropy; all samples have 3 iterations of symmetry type [0, -45, +45, 90]s. An isotropic virgin CFRP (v-CFRP), produced by using a hand layup process, is presented along with a pyrolysis recycling process (at 600°C) designed to extract the carbon fibers. A virgin carbon fiber mat with a similar architecture was also thermally conditioned under the same pyrolysis conditions. Both resultant carbon fiber mats were used to produce the rf-CFRPs. Ultrasonic wave velocities at different angles of incidence for both v-CFRP and rf-CFRP were recorded. In the case of v-CFRP, two samples were studied, and it was recorded that the velocity for both a longitudinal wave and transverse wave remained relatively constant up until these waves completely attenuated at observed angles, indicating what would be expected from an isotropic sample. A close relationship in terms of waves speed was also recorded for the two v-CFRP samples. In the case of rf-CFRP, the longitudinal wave velocities were generally less closely related when compared to the v-CFRP, with a maximum of approximately 32% difference being recorded. The transverse wave velocity was also found to decrease incident angle indicating sample anisotropy. The authors suggest that the more severe decreasing velocity with increasing incident angle, when compared to v-CFRP, may be caused by resin impregnation issues and not by changes that occur during the recycling process. Therefore, a hypothesis that both the rf-CFRP and the V-CFRP will return a similar wave profile given an identical resin fiber content is put forward.

  17. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, S; Stemkens, B; Sbrizzi, A

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to thatmore » in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.« less

  18. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni; Sharp, Janelle; Xu, Wei; Lipton, Andrew S.; Hoatson, Gina L.; Vold, Robert L.

    2016-01-01

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. Our main tools were static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non-exponential at all temperatures with the extent of non-exponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. B 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes slow concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in softening the core and highlights aromatic residues as markers of the protein dynamical transitions. PMID:26529128

  19. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Villafranca, Toni

    We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298–80 K temperature range. We utilized static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is non- exponential at all temperatures with the extent of non-exponentiality increasing from higher tomore » lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al., J. Phys. Chem. 2013, 117, 6129–6137), suggests that the hydrophobic core undergoes concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The cross-over temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in the onset of the concerted fluctuations of the core and highlights aromatic residues as markers of the protein dynamical transitions.« less

  20. Glancing angle RF sheaths

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2013-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries. The sheath plays an important role in determining the efficiency of ICRF heating, the impurity influxes from the edge plasma, and the plasma-facing component damage. An important parameter in sheath theory is the angle θ between the equilibrium B field and the wall. Recent work with 1D and 2D sheath models has shown that the rapid variation of θ around a typical limiter can lead to enhanced sheath potentials and localized power deposition (hot spots) when the B field is near glancing incidence. The physics model used to obtain these results does not include some glancing-angle effects, e.g. possible modification of the angular dependence of the Child-Langmuir law and the role of the magnetic pre-sheath. Here, we report on calculations which explore these effects, with the goal of improving the fidelity of the rf sheath BC used in analytical and numerical calculations. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  1. Accuracy of WAAS-Enabled GPS-RF Warning Signals When Crossing a Terrestrial Geofence

    PubMed Central

    Grayson, Lindsay M.; Keefe, Robert F.; Tinkham, Wade T.; Eitel, Jan U. H.; Saralecos, Jarred D.; Smith, Alistair M. S.; Zimbelman, Eloise G.

    2016-01-01

    Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS), or more generally global navigation satellite system (GNSS) transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF) transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10−8, and p = 0.0006, respectively), as did all treatment interactions (p < 0.0001). Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts. PMID:27322287

  2. Accuracy of WAAS-Enabled GPS-RF Warning Signals When Crossing a Terrestrial Geofence.

    PubMed

    Grayson, Lindsay M; Keefe, Robert F; Tinkham, Wade T; Eitel, Jan U H; Saralecos, Jarred D; Smith, Alistair M S; Zimbelman, Eloise G

    2016-06-18

    Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS), or more generally global navigation satellite system (GNSS) transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF) transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10(-8), and p = 0.0006, respectively), as did all treatment interactions (p < 0.0001). Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts.

  3. Cyclogiro windmill

    DOEpatents

    Brulle, R.V.

    1981-09-03

    A cyclogiro windmill has a rotor provided with blades shaped in the configuration of symmetrical airfoils and actuators to pivot the blades about axes parallel to the axis of rotation for the rotor. The actuator for each blade constantly changes the rock angle for the blade, that is its angle with respect to a reference on the rotor, and this modulation is such that the blade in making a revolution around the axis of rotation for the rotor undergoes an interval of static operation wherein its angle of attack is for the most part constant and less than the static stall angle, a short interval where the blade flips to position in which its opposite surface is presented toward the free wind, a short interval of dynamic operation wherein the angle of attack exceeds the static stal angle, another interval of static operation at an angle of attack of essentially the same magnitude as before, another interval of blade flip, and another interval of dynamic operation. During the intervals of dynamic operation, the blades experience a significant increase in lift force without a corresponding increase in drag, so that a high lift-to-drag ratio develops. The blades during dynamic operation further develop strong vortices which are directed outwardly at the sides of the windmill stream tube, and this increases the width of the stream tube, causing a greater mass of air to flow through the rotor. The short intervals of operation under dynamic conditions enable the blades to extract more energy from the free wind than would be possible if the blade operated solely under static conditions, and this in turn renders the windmill more useful in moderate velocity winds as well as high velocity winds.

  4. Cyclogiro windmill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brulle, R.V.

    1981-09-03

    A cyclogiro windmill has a rotor provided with blades shaped in the configuration of symmetrical airfoils and actuators to pivot the blades about axes parallel to the axis of rotation for the rotor. The actuator for each blade constantly changes the rock angle for the blade, that is its angle with respect to a reference on the rotor, and this modulation is such that the blade in making a revolution around the axis of rotation for the rotor undergoes an interval of static operation wherein its angle of attack is for the most part constant and less than the staticmore » stall angle, a short interval where the blade flips to position in which its opposite surface is presented toward the free wind, a short interval of dynamic operation wherein the angle of attack exceeds the static stal angle, another interval of static operation at an angle of attack of essentially the same magnitude as before, another interval of blade flip, and another interval of dynamic operation. During the intervals of dynamic operation, the blades experience a significant increase in lift force without a corresponding increase in drag, so that a high lift-to-drag ratio develops. The blades during dynamic operation further develop strong vortices which are directed outwardly at the sides of the windmill stream tube, and this increases the width of the stream tube, causing a greater mass of air to flow through the rotor. The short intervals of operation under dynamic conditions enable the blades to extract more energy from the free wind than would be possible if the blade operated solely under static conditions, and this in turn renders the windmill more useful in moderate velocity winds as well as high velocity winds.« less

  5. Improved Cerebral Time-of-Flight Magnetic Resonance Angiography at 7 Tesla – Feasibility Study and Preliminary Results Using Optimized Venous Saturation Pulses

    PubMed Central

    Wrede, Karsten H.; Johst, Sören; Dammann, Philipp; Özkan, Neriman; Mönninghoff, Christoph; Kraemer, Markus; Maderwald, Stefan; Ladd, Mark E.; Sure, Ulrich; Umutlu, Lale; Schlamann, Marc

    2014-01-01

    Purpose Conventional saturation pulses cannot be used for 7 Tesla ultra-high-resolution time-of-flight magnetic resonance angiography (TOF MRA) due to specific absorption rate (SAR) limitations. We overcome these limitations by utilizing low flip angle, variable rate selective excitation (VERSE) algorithm saturation pulses. Material and Methods Twenty-five neurosurgical patients (male n = 8, female n = 17; average age 49.64 years; range 26–70 years) with different intracranial vascular pathologies were enrolled in this trial. All patients were examined with a 7 Tesla (Magnetom 7 T, Siemens) whole body scanner system utilizing a dedicated 32-channel head coil. For venous saturation pulses a 35° flip angle was applied. Two neuroradiologists evaluated the delineation of arterial vessels in the Circle of Willis, delineation of vascular pathologies, presence of artifacts, vessel-tissue contrast and overall image quality of TOF MRA scans in consensus on a five-point scale. Normalized signal intensities in the confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter were measured and vessel-tissue contrasts were calculated. Results Ratings for the majority of patients ranged between good and excellent for most of the evaluated features. Venous saturation was sufficient for all cases with minor artifacts in arteriovenous malformations and arteriovenous fistulas. Quantitative signal intensity measurements showed high vessel-tissue contrast for confluence of venous sinuses, M1 segment of left middle cerebral artery and adjacent gray matter. Conclusion The use of novel low flip angle VERSE algorithm pulses for saturation of venous vessels can overcome SAR limitations in 7 Tesla ultra-high-resolution TOF MRA. Our protocol is suitable for clinical application with excellent image quality for delineation of various intracranial vascular pathologies. PMID:25232868

  6. Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC).

    PubMed

    Hinrichs, Heiko; Hinrichs, Jan B; Gutberlet, Marcel; Lenzen, Henrike; Raatschen, Hans-Juergen; Wacker, Frank; Ringe, Kristina I

    2016-04-01

    To assess the value of variable flip angle-based T1 liver mapping on gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC) for evaluation of global and segmental liver function, and determine a possible correlation with disease severity. Sixty-one patients (19 female, 42 male; mean age 41 years) with PSC were included in this prospective study. T1 mapping was performed using a 3D-spoiled GRE sequence (flip angles 5°, 15°, 20°, 30°) before, 16 (HP1) and 132 min (HP2) after contrast injection. T1 values were measured and compared (Wilcoxon-Test) by placing ROIs in each liver segment. The mean reduction of T1 relaxation time at HP1 and HP2 was calculated and correlated with liver function tests (LFTs), MELD, Mayo Risk and Amsterdam Scores (Spearman correlation). Significant changes of T1 relaxation times between non-enhanced and gadoxetate disodium-enhanced MRI at HP1 and HP2 could be observed in all liver segments (p < 0.0001). A significant correlation of T1 reduction could be observed with LFTs, MELD and Mayo Risk Score (p < 0.05). T1 mapping of the liver using a variable flip angle-based sequence is a feasible technique to evaluate liver function on a global level, and may be extrapolated on a segmental level in patients with PSC. • T1 mapping enables evaluation of global liver function in PSC. • T1 relaxation time reduction correlates with the MELD and MayoRisk Score. • Extrapolated, T1 mapping may allow for segmental evaluation of liver function.

  7. Transverse emittance growth due to rf noise in the high-luminosity LHC crab cavities

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2015-10-01

    The high-luminosity LHC (HiLumi LHC) upgrade with planned operation from 2025 onward has a goal of achieving a tenfold increase in the number of recorded collisions thanks to a doubling of the intensity per bunch (2.2e11 protons) and a reduction of β* to 15 cm. Such an increase would significantly expedite new discoveries and exploration. To avoid detrimental effects from long-range beam-beam interactions, the half crossing angle must be increased to 295 microrad. Without bunch crabbing, this large crossing angle and small transverse beam size would result in a luminosity reduction factor of 0.3 (Piwinski angle). Therefore, crab cavities are an important component of the LHC upgrade, and will contribute strongly to achieving an increase in the number of recorded collisions. The proposed crab cavities are electromagnetic devices with a resonance in the radio frequency (rf) region of the spectrum (400.789 MHz). They cause a kick perpendicular to the direction of motion (transverse kick) to restore an effective head-on collision between the particle beams, thereby restoring the geometric factor to 0.8 [K. Oide and K. Yokoya, Phys. Rev. A 40, 315 (1989).]. Noise injected through the rf/low level rf (llrf) system could cause significant transverse emittance growth and limit luminosity lifetime. In this work, a theoretical relationship between the phase and amplitude rf noise spectrum and the transverse emittance growth rate is derived, for a hadron machine assuming zero synchrotron radiation damping and broadband rf noise, excluding infinitely narrow spectral lines. This derivation is for a single beam. Both amplitude and phase noise are investigated. The potential improvement in the presence of the transverse damper is also investigated.

  8. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.

    PubMed

    Lin, Xiao; Yang, Yi; Rivera, Nicholas; López, Josué J; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Zhang, Baile; Joannopoulos, John D; Soljačić, Marin

    2017-06-27

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene-BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon-phonon-polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons and, even more surprisingly, between hybrid graphene plasmons and between hybrid phonon polaritons. Graphene-BN heterostructures thus provide a versatile platform for the design of nanometasurfaces and nanoimaging elements.

  9. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures

    PubMed Central

    Lin, Xiao; Yang, Yi; Rivera, Nicholas; López, Josué J.; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Zhang, Baile; Joannopoulos, John D.; Soljačić, Marin

    2017-01-01

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene–BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon–phonon–polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons and, even more surprisingly, between hybrid graphene plasmons and between hybrid phonon polaritons. Graphene–BN heterostructures thus provide a versatile platform for the design of nanometasurfaces and nanoimaging elements. PMID:28611222

  10. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  11. Structural insights into eRF3 and stop codon recognition by eRF1

    PubMed Central

    Cheng, Zhihong; Saito, Kazuki; Pisarev, Andrey V.; Wada, Miki; Pisareva, Vera P.; Pestova, Tatyana V.; Gajda, Michal; Round, Adam; Kong, Chunguang; Lim, Mengkiat; Nakamura, Yoshikazu; Svergun, Dmitri I.; Ito, Koichi; Song, Haiwei

    2009-01-01

    Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1. PMID:19417105

  12. Comparison of Radiofrequency-targeted Vertebral Augmentation With Balloon Kyphoplasty for the Treatment of Vertebral Compression Fractures: 2-Year Results.

    PubMed

    Bornemann, Rahel; Jansen, Tom R; Kabir, Koroush; Pennekamp, Peter H; Stüwe, Brit; Wirtz, Dieter C; Pflugmacher, Robert

    2017-04-01

    A retrospective study. The aim of this study was the evaluation of the safety and effectiveness of radiofrequency-targeted vertebral augmentation (RF-TVA) in comparison with balloon kyphoplasty (BK) for the treatment of acute painful vertebral compression fractures (VCFs) on the basis of matched pairs. Vertebroplasty and BK are the common surgical interventions for the treatment of VCF. Both are effective and safe but pose some risks such as adjacent fractures and cement leakage. In 2009, RF-TVA was introduced as an innovative augmentation procedure for the treatment of VCF. A total of 192 patients (116 female; 51-90 y) with VCF (n=303) at 1 to 3 levels were treated with RF-TVA or BK. Functionality (Oswestry Disability Index), pain (visual analogue scale), vertebral height (anterior, middle), and kyphotic angle were evaluated over a 2-year period (postoperatively, 3-4 d, 3, 6, 12, and 24 mo). In addition, operating time and occurrence of cement leakage were recorded. Pain and functionality were significantly improved after both treatments. In both groups, there was an increase in the vertebral height and a decrease in the kyphotic angle, which remained relatively consistent during 24 months. The incidence of cement leakage was 9.4% (n=9) in the RF-TVA group and 24.0% (n=25) in the BK group. The mean operating time with radiofrequency kyphoplasty was 25.9±9.9 minutes, and with balloon kyphoplasty 48.0±18.4 minutes. RF-TVA is a safe and effective procedure for the treatment of vertebral compression fractures when compared with BK. Improvement in pain and functional scores after RF-TVA are durable through 24 months postprocedure and remained better than those after BK at long-term follow-up. Operating time for RF-TVA is shorter and the risk of cement leakage is lower. Both procedures provided similar results in vertebral height restoration and reduction in the kyphotic angle.

  13. RF waveguide phase-directed power combiners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  14. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.

  15. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  16. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...

  17. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...

  18. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...

  19. Quantitative magnetic resonance spectroscopy at 3T based on the principle of reciprocity.

    PubMed

    Zoelch, Niklaus; Hock, Andreas; Henning, Anke

    2018-05-01

    Quantification of magnetic resonance spectroscopy signals using the phantom replacement method requires an adequate correction of differences between the acquisition of the reference signal in the phantom and the measurement in vivo. Applying the principle of reciprocity, sensitivity differences can be corrected at low field strength by measuring the RF transmitter gain needed to obtain a certain flip angle in the measured volume. However, at higher field strength the transmit sensitivity may vary from the reception sensitivity, which leads to wrongly estimated concentrations. To address this issue, a quantification approach based on the principle of reciprocity for use at 3T is proposed and validated thoroughly. In this approach, the RF transmitter gain is determined automatically using a volume-selective power optimization and complemented with information from relative reception sensitivity maps derived from contrast-minimized images to correct differences in transmission and reception sensitivity. In this way, a reliable measure of the local sensitivity was obtained. The proposed method is used to derive in vivo concentrations of brain metabolites and tissue water in two studies with different coil sets in a total of 40 healthy volunteers. Resulting molar concentrations are compared with results using internal water referencing (IWR) and Electric REference To access In vivo Concentrations (ERETIC). With the proposed method, changes in coil loading and regional sensitivity due to B 1 inhomogeneities are successfully corrected, as demonstrated in phantom and in vivo measurements. For the tissue water content, coefficients of variation between 2% and 3.5% were obtained (0.6-1.4% in a single subject). The coefficients of variation of the three major metabolites ranged from 3.4-14.5%. In general, the derived concentrations agree well with values estimated with IWR. Hence, the presented method is a valuable alternative for IWR, without the need for additional hardware such as ERETIC and with potential advantages in diseased tissue. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures.

    PubMed

    Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas

    2007-10-01

    To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M)

  1. 76 FR 36553 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    .... Development of diagnostics or therapeutics for diseases of the nervous system linked to RGS protein-regulated... License Agreement. Licensing Contact: Tara L. Kirby, PhD; 301-435-4426; [email protected] . System to... system and methods related to the use of non-linear B 0 shims to improve excitation flip angle uniformity...

  2. Bench-top soldering aid for PC boards

    NASA Technical Reports Server (NTRS)

    Manton, N. R.; Schroff, R. A.

    1978-01-01

    Multiple-board rack allows technician to insert components into several boards, flip them all in single motion, and then systematically solder leads on reverse side. Two adjustable crossbars allow boards of any size up to 10 by 24 inches. Operator can rotate racks and adjust angle of boards from standing or sitting position.

  3. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, Michael; Ives, Robert Lawrence; Marsden, David

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range ofmore » advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.« less

  5. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  6. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  7. Effect of Seat Tube Angle and Exercise Intensity on Muscle Activity Patterns in Cyclists

    PubMed Central

    DUGGAN, WILL; DONNE, BERNARD; FLEMING, NEIL

    2017-01-01

    Previous studies have reported improved efficiency at steeper seat tube angle (STA) during ergometer cycling; however, neuromuscular mechanisms have yet to be fully determined. The current study investigated effects of STA on lower limb EMG activity at varying exercise intensities. Cyclists (n=11) were tested at 2 workloads; 160W and an individualised workload (IWL) equivalent to lactate threshold (TLac) minus 10%δ (derived from maximal incremental data), using 3 STA (70, 75 and 80°). Electromyographic data from Vastus Medialis (VM), Rectus Femoris (RF), Vastus Lateralis (VL) and Biceps Femoris (BF) were assessed. The timing and magnitude of activation were quantified and analysed using a two-way ANOVA. STA had significant (P < 0.05) effects on timing of onset and offset of VM, timing of offset of VL, and angle at peak for RF, all occurring later at 80 vs. 70° STA at IWL. In RF, increased activity occurred during the first 108° of the crank cycle at 80 vs. 70° at IWL (P < 0.01). As most of the power in the pedal stroke is generated during the mid-section of the down-stroke, movement of the activation range of knee extensors into the predominantly power phase of the pedal stroke would potentially account for increased efficiency and decreased cardio-respiratory costs. Greater activity of bi-articular RF, in the first 108º of the crank cycle at IWL (80 vs. 70º) may more closely resemble the pelvic stabilising activity of RF in running biomechanics; and potentially explain the more effective transition from cycling to running reported in triathletes using steeper STA. PMID:29399245

  8. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.

  9. Accurate T1 mapping of short T2 tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-Cones AFI-VTR) method.

    PubMed

    Ma, Ya-Jun; Lu, Xing; Carl, Michael; Zhu, Yanchun; Szeverenyi, Nikolaus M; Bydder, Graeme M; Chang, Eric Y; Du, Jiang

    2018-08-01

    To develop an accurate T 1 measurement method for short T 2 tissues using a combination of a 3-dimensional ultrashort echo time cones actual flip angle imaging technique and a variable repetition time technique (3D UTE-Cones AFI-VTR) on a clinical 3T scanner. First, the longitudinal magnetization mapping function of the excitation pulse was obtained with the 3D UTE-Cones AFI method, which provided information about excitation efficiency and B 1 inhomogeneity. Then, the derived mapping function was substituted into the VTR fitting to generate accurate T 1 maps. Numerical simulation and phantom studies were carried out to compare the AFI-VTR method with a B 1 -uncorrected VTR method, a B 1 -uncorrected variable flip angle (VFA) method, and a B 1 -corrected VFA method. Finally, the 3D UTE-Cones AFI-VTR method was applied to bovine bone samples (N = 6) and healthy volunteers (N = 3) to quantify the T 1 of cortical bone. Numerical simulation and phantom studies showed that the 3D UTE-Cones AFI-VTR technique provides more accurate measurement of the T 1 of short T 2 tissues than the B 1 -uncorrected VTR and VFA methods or the B 1 -corrected VFA method. The proposed 3D UTE-Cones AFI-VTR method showed a mean T 1 of 240 ± 25 ms for bovine cortical bone and 218 ± 10 ms for the tibial midshaft of human volunteers, respectively, at 3 T. The 3D UTE-Cones AFI-VTR method can provide accurate T 1 measurements of short T 2 tissues such as cortical bone. Magn Reson Med 80:598-608, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  10. A LOW-COST IMPEDANCE METER FOR SENSING THE MOISTURE CONTENT OF IN-SHELL PEANUTS

    USDA-ARS?s Scientific Manuscript database

    A low cost impedance meter developed at the National Peanut Research Laboratory described here was used to generate RF signals at frequencies of 1, 5 and 9 MHz. The RF signals were applied to a parallel-plate capacitor holding a sample of peanuts and the capacitance (C), phase angle (') and impedanc...

  11. Operation of the alula as an indicator of gear change in hoverflies.

    PubMed

    Walker, Simon M; Thomas, Adrian L R; Taylor, Graham K

    2012-06-07

    The alula is a hinged flap found at the base of the wings of most brachyceran Diptera. The alula accounts for up to 10 per cent of the total wing area in hoverflies (Syrphidae), and its hinged arrangement allows the wings to be swept back over the thorax and abdomen at rest. The alula is actuated via the third axillary sclerite, which is a component of the wing hinge that is involved in wing retraction and control. The third axillary sclerite has also been implicated in the gear change mechanism of flies. This mechanism allows rapid switching between different modes of wing kinematics, by imposing or removing contact with a mechanical stop limiting movement of the wing during the lower half of the downstroke. The alula operates in two distinct states during flight-flipped or flat-and we hypothesize that its state indicates switching between different flight modes. We used high-speed digital video of free-flying hoverflies (Eristalis tenax and Eristalis pertinax) to investigate whether flipping of the alula was associated with changes in wing and body kinematics. We found that alula state was associated with different distributions of multiple wing kinematic parameters, including stroke amplitude, stroke deviation angle, downstroke angle of incidence and timing of supination. Changes in all of these parameters have previously been linked to gear change in flies. Symmetric flipping of the alulae was associated with changes in the symmetric linear acceleration of the body, while asymmetric flipping of the alulae was associated with asymmetric angular acceleration of the body. We conclude that the wings produce less aerodynamic force when the alula is flipped, largely as a result of the accompanying changes in wing kinematics. The alula changes state at mid-downstroke, which is the point at which the gear change mechanism is known to come into effect. This transition is accompanied by changes in the other wing kinematic parameters. We therefore find that the state of the alula is linked to the same parameters as are affected by the gear change mechanism. We conclude that the state of the alula does indeed indicate the operation of different flight modes in Eristalis, and infer that a likely mechanism for these changes in flight mode is the gear change mechanism.

  12. Theoretical predictions of vibration-rotation-tunneling dynamics of the weakly bound trimer (H 2O) 2HCl

    NASA Astrophysics Data System (ADS)

    Struniewicz, Cezary; Korona, Tatiana; Moszynski, Robert; Milet, Anne

    2001-08-01

    In this Letter we report a theoretical study of the vibration-rotation-tunneling (VRT) states of the (H 2O) 2HCl trimer. Five degrees of freedom are considered: two angles corresponding to the torsional (flipping) motions of the free, non-hydrogen-bonded, hydrogen atoms in the complex, and three angles describing the overall rotation of the trimer in the space. A two-dimensional potential energy surface is generated ab initio by symmetry-adapted perturbation theory (SAPT). Tunneling splittings, frequencies of the intermolecular vibrations, and vibrational line strengths of spectroscopic transitions are predicted.

  13. DSS 14 64-meter antenna. Computed RF pathlength changes under gravity loadings

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1981-01-01

    Using a computer model of the reflector structure and its supporting assembly of the 64-m antenna rotating about the elevation axis, the radio frequency (RF) pathlengths changes resulting from gravity loadings were computed. A check on the computed values was made by comparing the computed foci offsets with actual field readings of the Z or axial focussing required for elevation angle changes.

  14. 13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier

    DTIC Science & Technology

    2011-11-11

    compressed through a CaF2 prism pair at Brewster angle , and directed to the second OPA stage after a periscope flipping its polarization. The 90% part of...FWHM pulse duration. HHG setup The OPA pulses are sent into a vacuum chamber and focused in an Argon ( lens focal length 150 mm) or Helium (focal

  15. Q(n) species distribution in K2O.2SiO2 glass by 29Si magic angle flipping NMR.

    PubMed

    Davis, Michael C; Kaseman, Derrick C; Parvani, Sahar M; Sanders, Kevin J; Grandinetti, Philip J; Massiot, Dominique; Florian, Pierre

    2010-05-06

    Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.

  16. Mini-RF Bistatic Observations of Lunar Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T.

    2017-12-01

    The Mini-RF radar onboard the Lunar Reconnaissance Orbiter (LRO) is currently operating in a bistatic configuration using the Goldstone DSS-13 and Arecibo Observatory as transmitters in X-band (4.2-cm) and S-band (12.6 cm), respectively. The Circular Polarization Ratio (CPR) is a typical product derived from backscattered microwave radiation that examines the scattering properties of the lunar surface, particularly the roughness of the surface on the order of the radar wavelength. Throughout the LRO extended mission, Mini-RF has targeted young craters on the lunar surface to examine the scattering properties of their ejecta blankets in both S- and X-band. Several observed craters and their ejecta blankets exhibit a clear coherent backscatter opposition effect at low bistatic (phase) angles. This opposition effect is consistent with optical studies of lunar soils done in the laboratory, but these observations are the first time this effect has been measured on the Moon at radar wavelengths. The style of the observed opposition effect differs between craters, which may indicate differences in ejecta fragment formation or emplacement. Differences in the CPR behavior as a function of bistatic angle may also provide opportunities for relative age dating between Copernican craters. Here, we examine the ejecta of nine Copernican and Eratosthenian aged craters in both S-band and X-band and document CPR characteristics as a function bistatic angle in order to test that hypothesis. The youngest craters observed by Mini-RF (e.g., Byrgius A (48 My), Kepler (635-1250 My)) exhibit a clear opposition effect, while older craters such as Hercules have a fairly flat response in CPR as a function of phase angle. Craters with ages between these two ends, e.g., Aristarchus, exhibit a weaker opposition response. Observing the scattering behavior of continuous ejecta blankets in multiple wavelengths may provide further information about the rate of breakdown of rocks of varying size to provide increased understanding of how impacts produce regolith on the Moon.

  17. Comments on, Xuan Li, Shanghong Zhao, Zihang Zhu, Bing Gong, Xingchun Chu, Yongjun Li, Jing Zhao and Yun Liu `an optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing', Journal of Modern Optics, 2015

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2016-11-01

    In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.

  18. Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.

    2015-12-01

    In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.

  19. Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.

  20. Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)

    PubMed Central

    Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.

    2008-01-01

    Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463

  1. Low reflectance high power RF load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  2. 47 CFR 73.51 - Determining operating power.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... modulation Maximum rated carrier power Class of amplifier 0.70 Plate 1 kW or less .80 Plate 2.5 kW and over .35 Low level 0.25 kW and over B .65 Low level 0.25 kW and over BC1 .35 Grid 0.25 kW and over 1 All...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the...

  3. Right heart catheterization using metallic guidewires and low SAR cardiovascular magnetic resonance fluoroscopy at 1.5 Tesla: first in human experience.

    PubMed

    Campbell-Washburn, Adrienne E; Rogers, Toby; Stine, Annette M; Khan, Jaffar M; Ramasawmy, Rajiv; Schenke, William H; McGuirt, Delaney R; Mazal, Jonathan R; Grant, Laurie P; Grant, Elena K; Herzka, Daniel A; Lederman, Robert J

    2018-06-21

    Cardiovascular magnetic resonance (CMR) fluoroscopy allows for simultaneous measurement of cardiac function, flow and chamber pressure during diagnostic heart catheterization. To date, commercial metallic guidewires were considered contraindicated during CMR fluoroscopy due to concerns over radiofrequency (RF)-induced heating. The inability to use metallic guidewires hampers catheter navigation in patients with challenging anatomy. Here we use low specific absorption rate (SAR) imaging from gradient echo spiral acquisitions and a commercial nitinol guidewire for CMR fluoroscopy right heart catheterization in patients. The low-SAR imaging protocol used a reduced flip angle gradient echo acquisition (10° vs 45°) and a longer repetition time (TR) spiral readout (10 ms vs 2.98 ms). Temperature was measured in vitro in the ASTM 2182 gel phantom and post-mortem animal experiments to ensure freedom from heating with the selected guidewire (150 cm × 0.035″ angled-tip nitinol Terumo Glidewire). Seven patients underwent CMR fluoroscopy catheterization. Time to enter each chamber (superior vena cava, main pulmonary artery, and each branch pulmonary artery) was recorded and device visibility and confidence in catheter and guidewire position were scored on a Likert-type scale. Negligible heating (< 0.07°C) was observed under all in vitro conditions using this guidewire and imaging approach. In patients, chamber entry was successful in 100% of attempts with a guidewire compared to 94% without a guidewire, with failures to reach the branch pulmonary arteries. Time-to-enter each chamber was similar (p=NS) for  the two approaches. The guidewire imparted useful catheter shaft conspicuity and enabled interactive modification of catheter shaft stiffness, however, the guidewire tip visibility was poor. Under specific conditions, trained operators can apply low-SAR imaging and using a specific fully-insulated metallic nitinol guidewire (150 cm × 0.035" Terumo Glidewire) to augment clinical CMR fluoroscopy right heart catheterization. Clinicaltrials.gov NCT03152773 , registered May 15, 2017.

  4. Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI

    NASA Astrophysics Data System (ADS)

    Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki

    2016-06-01

    The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were utilized for visualizing small vessels. Appropriately combining MA coils and TONE pulses could help advance micro-vessel visualization.

  5. A dual flip angle 3D bSSFP magnetization transfer-like method to differentiate between recent and old myocardial infarction.

    PubMed

    Germain, Philippe; El Ghannudi, Soraya; Labani, Aissam; Jeung, Mi Y; Gangi, Afshin; Ohlmann, Patrick; Roy, Catherine

    2018-03-01

    Magnetic resonance imaging (MRI) tissue signal is modulated by magnetization transfer (MT) phenomena, intrinsically induced by balanced steady-state free precession (bSSFP) imaging. To investigate the possible value of such a MT-like bSSFP approach in two clinical settings involving focal myocardial lesions highligthed by late gadolinium enhancement (LGE+): edema induced by recent myocardial infarction (MI) and fibrotic scar related to chronic infarction. Population: 48 LGE + patients were studied: 26 with recent MI, 22 with chronic MI. 20 LGE-normal subjects were considered the control group. Field strength/sequence: Navigator-based short axis 3D-bSSFP sequences with 20° and 90° excitation flip angles were acquired (1.5T). Pixel-wise normalized MT Ratio (nMTR) parametric images were calculated according to: nMTR = 100*(S 20 -S 90 *k)/S 20 , with S 20 and S 90 signal intensity in 20° and 90° flip angle images and k = Blood 20 /Blood 90 as a normalization ratio. Statistical tests: analysis of variance (ANOVA), receiver operating characteristic (ROC) analysis. Overall normal myocardial nMTR was 50.2 ± 3.6%. In recent MI, nMTR values were significantly reduced in LGE + regions (-22.3 ± 9.9%, P < 0.0001). In cases of chronic infarct, nMTR was significantly increased in LGE + regions (14.2 ± 11.4%, P < 0.0001). Comparison between observed results and theoretical values obtained with the Freeman-Hill formula showed that most variations observed in MI are related to MT effects instead of relaxation effects. In contrast to LGE imaging, which may show a similar hyperenhancement in recent and old infarctions, nMTR imaging demonstrates an opposite pattern: decreased values for recent infarction and increased values for old infarction, thus allowing to discriminate between these two clinical conditions without gadolinium injection. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:798-808. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  7. Development of advanced micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.

  8. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Aigong; Ma, Ping, E-mail: maping@semi.ac.cn; Zhang, Yonghui

    2014-12-22

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal couldmore » improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.« less

  9. Silicon-based products and solutions

    NASA Astrophysics Data System (ADS)

    Painchaud, Y.; Poulin, M.; Pelletier, F.; Latrasse, C.; Gagné, J.-F.; Savard, S.; Robidoux, G.; Picard, M.-.; Paquet, S.; Davidson, C.-.; Pelletier, M.; Cyr, M.; Paquet, C.; Guy, M.; Morsy-Osman, M.; Chagnon, M.; Plant, D. V.

    2014-03-01

    TeraXion started silicon photonics activities aiming at developing building blocks for new products and customized solutions. Passive and active devices have been developed including MMI couplers, power splitters, Bragg grating filters, high responsivity photodetectors, high speed modulators and variable optical attenuators. Packaging solutions including fiber attachment and hybrid integration using flip-chip were also developed. More specifically, a compact packaged integrated coherent receiver has been realized. Good performances were obtained as demonstrated by our system tests results showing transmission up to 4800 km with BER below hard FEC threshold. The package size is small but still limited by the electrical interface. Migrating to more compact RF interface would allow realizing the full benefit of this technology.

  10. Improved polar display technique of the phase angle of optical interference

    NASA Astrophysics Data System (ADS)

    Umeda, N.; Shirai, H.; Takasaki, H.

    1984-02-01

    A technique which displays the fractional order of optical interference by the azimuthal angle of radial arm has been improved by using a digital electronic circuit such as phase-locked loop and D flip-flop. The phase quadrature reference signals of this system are derived by reforming a reference signal and shifting it by a quarter wavelength referring to its waveform. As the result the orthogonal phase relation of the two signals is not affected by the frequency of the signal. This system has been proven to operate properly over the frequency range of 200-600 kHz without readjusting the electric system.

  11. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.

  12. Pulsed polarization spectroscopy with strong fields and an optically thick sample

    NASA Astrophysics Data System (ADS)

    Spano, Frank C.; Lehmann, Kevin K.

    1992-06-01

    The theory of pulsed polarization spectroscopy in the case of a saturating pump pulse and an optically thick sample is presented, both with and without inhomogeneous broadening. It is found that the molecular anisotropy produced by pumping an R- or P-branch transition is maximized by using a pulse whose flip angle is near 2π for the M component with the largest Rabi frequency. Calculations with no or extreme inhomogeneous broadening differ insignificantly. Such a pump pulse produces an anisotropy (and thus polarization rotation of the probe beam) of the opposite sign of that produced by weak-field excitation. Pulse-propagation calculations obtained by numerically solving the coupled Maxwell-Bloch equations demonstrate that there exist ``stable-area'' pulses, much like for a two-level system. The lowest such stable pulse produces a flip angle of 2.21π for the M=0 level and produces close to the maximum polarization anisotropy. This pulse still weakly excites the sample, and thus lengthens as it propagates to conserve area. The effective absorption coefficient, however, is much less than that for weak pulses. It is expected that such pulses should provide an order of magnitude or more sensitivity for polarization spectroscopy than that obtained with nonsaturating pulses.

  13. SAR and scan-time optimized 3D whole-brain double inversion recovery imaging at 7T.

    PubMed

    Pracht, Eberhard D; Feiweier, Thorsten; Ehses, Philipp; Brenner, Daniel; Roebroeck, Alard; Weber, Bernd; Stöcker, Tony

    2018-05-01

    The aim of this project was to implement an ultra-high field (UHF) optimized double inversion recovery (DIR) sequence for gray matter (GM) imaging, enabling whole brain coverage in short acquisition times ( ≈5 min, image resolution 1 mm 3 ). A 3D variable flip angle DIR turbo spin echo (TSE) sequence was optimized for UHF application. We implemented an improved, fast, and specific absorption rate (SAR) efficient TSE imaging module, utilizing improved reordering. The DIR preparation was tailored to UHF application. Additionally, fat artifacts were minimized by employing water excitation instead of fat saturation. GM images, covering the whole brain, were acquired in 7 min scan time at 1 mm isotropic resolution. SAR issues were overcome by using a dedicated flip angle calculation considering SAR and SNR efficiency. Furthermore, UHF related artifacts were minimized. The suggested sequence is suitable to generate GM images with whole-brain coverage at UHF. Due to the short total acquisition times and overall robustness, this approach can potentially enable DIR application in a routine setting and enhance lesion detection in neurological diseases. Magn Reson Med 79:2620-2628, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Neutron resonance spin echo with longitudinal DC fields

    NASA Astrophysics Data System (ADS)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  15. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  16. Low reflectance radio frequency load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  17. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE PAGES

    Myra, J. R.

    2017-07-07

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  18. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  19. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  20. Relation between magnetization and Faraday angles produced by ultrafast spin-flip processes within the three-level Λ-type system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinschberger, Y.; Lavoine, J. P.

    2015-08-07

    Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization dynamics of diverse materials. Over the last decade, there have been many theoretical and experimental developments on this subject. However, the relation between the magnetization dynamics and the transient MO response still remains unclear. In this work, we calculate the magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured in a single-beam experiment. Then, we compare the magnetization to the MO response. The magnetic material is modeled by a three-level Λ-type system, which represents a simple model to describe MO effects induced bymore » an ultrafast laser pulse. Our calculations use the density matrix formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking into account population relaxation and dephasing processes. Furthermore, we consider the Faraday rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles remain proportional to the magnetization only if the system has reached the equilibrium-state, and that this proportionality is directly related to the population and coherence decay rates. For the non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our model is able to interpret some recent experimental results obtained in a single-pulse experiment. We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of the absorbed energy is a characteristic of the system.« less

  1. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

    PubMed

    Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-06-01

    Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.

  2. Theoretical description of RESPIRATION-CP

    NASA Astrophysics Data System (ADS)

    Nielsen, Anders B.; Tan, Kong Ooi; Shankar, Ravi; Penzel, Susanne; Cadalbert, Riccardo; Samoson, Ago; Meier, Beat H.; Ernst, Matthias

    2016-02-01

    We present a quintuple-mode operator-based Floquet approach to describe arbitrary amplitude modulated cross polarization experiments under magic-angle spinning (MAS). The description is used to analyze variants of the RESPIRATION approach (RESPIRATIONCP) where recoupling conditions and the corresponding first-order effective Hamiltonians are calculated, validated numerically and compared to experimental results for 15N-13C coherence transfer in uniformly 13C,15N-labeled alanine and in uniformly 2H,13C,15N-labeled (deuterated and 100% back-exchanged) ubiquitin at spinning frequencies of 16.7 and 90.9 kHz. Similarities and differences between different implementations of the RESPIRATIONCP sequence using either CW irradiation or small flip-angle pulses are discussed.

  3. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wah, Benny; Breidigan, Jeffrey M.; Adams, Joseph

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standingmore » membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesides and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order I. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.« less

  4. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study.

    PubMed

    Wah, Benny; Breidigan, Jeffrey M; Adams, Joseph; Horbal, Piotr; Garg, Sumit; Porcar, Lionel; Perez-Salas, Ursula

    2017-04-11

    Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.

  5. Accelerated radiation damping for increased spin equilibrium (ARISE): a new method for controlling the recovery of longitudinal magnetization.

    PubMed

    Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L

    2008-11-01

    Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.

  6. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less

  7. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  8. Comparative study of plasma-deposited fluorocarbon coatings on different substrates

    NASA Astrophysics Data System (ADS)

    Farsari, E.; Kostopoulou, M.; Amanatides, E.; Mataras, D.; Rapakoulias, D. E.

    2011-05-01

    The deposition of hydrophobic fluorocarbon coatings from C2F6 and C2F6-H2 rf discharges on different substrates was examined. Polyester textile, glass and two different ceramic compounds were used as substrates. The effect of the total gas pressure, the rf power dissipation and the deposition time on the hydrophobic character of the samples was investigated. Films deposited on polyester textiles at low pressure (0.03 mbar) and power consumption (16 mW cm-2) using pure C2F6 presented the highest water contact angles (~150°). On the other hand, the addition of hydrogen was necessary in order to deposit stable hydrophobic coatings on glass and ceramic substrates. Coatings deposited on glass at intermediate deposition rates (~100 Å min-1) and pressures presented the highest angles (~105°). Concerning the heavy clay ceramics, samples treated in low-pressure (0.05 mbar) and low-power (16 mW cm-2) discharges showed the highest contact angles. The deposition time was found to play an important role in the hydrophobicity and long-term behaviour of porous and rough substrates.

  9. DSS 15, 45, and 65 34-meter high efficiency antenna radio frequency performance enhancement by tilt added to the subreflector during elevation angle changes

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1990-01-01

    The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.

  10. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    PubMed

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  11. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    PubMed Central

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  12. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm.

    PubMed

    Yao, Shujing; Zhang, Jiashu; Zhao, Yining; Hou, Yuanzheng; Xu, Xinghua; Zhang, Zhizhong; Kikinis, Ron; Chen, Xiaolei

    2018-05-01

    To address the feasibility and predictive value of multimodal image-based virtual reality in detecting and assessing features of neurovascular confliction (NVC), particularly regarding the detection of offending vessels, degree of compression exerted on the nerve root, in patients who underwent microvascular decompression for nonlesional trigeminal neuralgia and hemifacial spasm (HFS). This prospective study includes 42 consecutive patients who underwent microvascular decompression for classic primary trigeminal neuralgia or HFS. All patients underwent preoperative 1.5-T magnetic resonance imaging (MRI) with T2-weighted three-dimensional (3D) sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D time-of-flight magnetic resonance angiography, and 3D T1-weighted gadolinium-enhanced sequences in combination, whereas 2 patients underwent extra experimental preoperative 7.0-T MRI scans with the same imaging protocol. Multimodal MRIs were then coregistered with open-source software 3D Slicer, followed by 3D image reconstruction to generate virtual reality (VR) images for detection of possible NVC in the cerebellopontine angle. Evaluations were performed by 2 reviewers and compared with the intraoperative findings. For detection of NVC, multimodal image-based VR sensitivity was 97.6% (40/41) and specificity was 100% (1/1). Compared with the intraoperative findings, the κ coefficients for predicting the offending vessel and the degree of compression were >0.75 (P < 0.001). The 7.0-T scans have a clearer view of vessels in the cerebellopontine angle, which may have significant impact on detection of small-caliber offending vessels with relatively slow flow speed in cases of HFS. Multimodal image-based VR using 3D sampling perfection with application-optimized contrasts by using different flip angle evolutions in combination with 3D time-of-flight magnetic resonance angiography sequences proved to be reliable in detecting NVC and in predicting the degree of root compression. The VR image-based simulation correlated well with the real surgical view. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, M; Cao, Y

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 wasmore » calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.« less

  14. Multipacting optimization of a 750 MHz rf dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    Crab crossing schemes have been proposed to re-instate luminosity degradation due to crossing angles at the interaction points in next generation colliders to avoid the use of sharp bending magnets and their resulting large synchrotron radiation generation, highly undessirable in the detector region. The rf dipole has been considered for a different set of applications in several machines, both rings and linear colliders. We present in this paper a study of the effects on the multipacting levels and location depending on geometrical variations on the design for a crabbing/deflecting application in a high current (3/0.5 A), high repetition (750 MHz)more » electron/proton collider, as a matter to provide a comparison point for similar applications of rf dipoles.« less

  15. Fabrication and Characterization of Thermoresponsive Films Deposited by an RF Plasma Reactor

    PubMed Central

    Lucero, Adrianne E.; Reed, Jamie A.; Wu, Xiaomei; Canavan, Heather E.

    2014-01-01

    Summary Poly(N-isopropyl acrylamide) (pNIPAM) undergoes a sharp property change in response to a moderate thermal stimulus at physiological temperatures. In this work, we constructed a radio frequency (RF) plasma reactor for the plasma polymerization of pNIPAM. RF deposition is a method that coats surfaces of any geometry producing surfaces that are sterile and uniform, making this technique useful for forming biocompatible films. The films generated are characterized using X-ray photoelectron spectroscopy (XPS), contact angles, cell culture, and interferometry. We find that a plasma with a decreasing series of power settings (i.e., from 100W to 1W) at a pressure of 140 millitorr yields the most favorable results. PMID:24634643

  16. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    PubMed

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  17. PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons

    NASA Astrophysics Data System (ADS)

    Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre

    2017-06-01

    We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.

  18. On Neglecting Chemical Exchange Effects When Correcting in Vivo 31P MRS Data for Partial Saturation

    NASA Astrophysics Data System (ADS)

    Ouwerkerk, Ronald; Bottomley, Paul A.

    2001-02-01

    Signal acquisition in most MRS experiments requires a correction for partial saturation that is commonly based on a single exponential model for T1 that ignores effects of chemical exchange. We evaluated the errors in 31P MRS measurements introduced by this approximation in two-, three-, and four-site chemical exchange models under a range of flip-angles and pulse sequence repetition times (TR) that provide near-optimum signal-to-noise ratio (SNR). In two-site exchange, such as the creatine-kinase reaction involving phosphocreatine (PCr) and γ-ATP in human skeletal and cardiac muscle, errors in saturation factors were determined for the progressive saturation method and the dual-angle method of measuring T1. The analysis shows that these errors are negligible for the progressive saturation method if the observed T1 is derived from a three-parameter fit of the data. When T1 is measured with the dual-angle method, errors in saturation factors are less than 5% for all conceivable values of the chemical exchange rate and flip-angles that deliver useful SNR per unit time over the range T1/5 ≤ TR ≤ 2T1. Errors are also less than 5% for three- and four-site exchange when TR ≥ T1*/2, the so-called "intrinsic" T1's of the metabolites. The effect of changing metabolite concentrations and chemical exchange rates on observed T1's and saturation corrections was also examined with a three-site chemical exchange model involving ATP, PCr, and inorganic phosphate in skeletal muscle undergoing up to 95% PCr depletion. Although the observed T1's were dependent on metabolite concentrations, errors in saturation corrections for TR = 2 s could be kept within 5% for all exchanging metabolites using a simple interpolation of two dual-angle T1 measurements performed at the start and end of the experiment. Thus, the single-exponential model appears to be reasonably accurate for correcting 31P MRS data for partial saturation in the presence of chemical exchange. Even in systems where metabolite concentrations change, accurate saturation corrections are possible without much loss in SNR.

  19. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla.

    PubMed

    Umesh Rudrapatna, S; Juchem, Christoph; Nixon, Terence W; de Graaf, Robin A

    2016-07-01

    Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    NASA Astrophysics Data System (ADS)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  1. Evaluation of hydrocephalus patients with 3D-SPACE technique using variant FA mode at 3T.

    PubMed

    Algin, Oktay

    2018-06-01

    The major advantages of three-dimensional sampling perfection with application optimized contrasts using different flip-angle evolution (3D-SPACE) technique are its high resistance to artifacts that occurs as a result of radiofrequency or static field, the ability of providing images with sub-millimeter voxel size which allows obtaining reformatted images in any plane due to isotropic three-dimensional data with lower specific absorption rate values. That is crucial during examination of cerebrospinal-fluid containing complex structures, and the acquisition time, which is approximately 5 min for scanning of entire cranium. Recent data revealed that T2-weighted (T2W) 3D-SPACE with variant flip-angle mode (VFAM) imaging allows fast and accurate evaluation of the hydrocephalus patients during both pre- and post-operative period for monitoring the treatment. For a better assessment of these patients; radiologists and neurosurgeons should be aware of the details and implications regarding to the 3D-SPACE technique, and they should follow the updates in this field. There could be a misconception about the difference between T2W-VFAM and routine heavily T2W 3D-SPACE images. T2W 3D-SPACE with VFAM imaging is only a subtype of 3D-SPACE technique. In this review, we described the details of T2W 3D-SPACE with VFAM imaging and comprehensively reviewed its recent applications.

  2. Assessment of pituitary micro-lesions using 3D sampling perfection with application-optimized contrasts using different flip-angle evolutions.

    PubMed

    Wang, Jing; Wu, Yue; Yao, Zhenwei; Yang, Zhong

    2014-12-01

    The aim of this study was to explore the value of three-dimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) sequence in assessment of pituitary micro-lesions. Coronal 3D-SPACE as well as routine T1- and dynamic contrast-enhanced (DCE) T1-weighted images of the pituitary gland were acquired in 52 patients (48 women and four men; mean age, 32 years; age range, 17-50 years) with clinically suspected pituitary abnormality at 3.0 T, retrospectively. The interobserver agreement of assessment results was analyzed with K-statistics. Qualitative analyses were compared using Wilcoxon signed-rank test. There was good interobserver agreement of the independent evaluations for 3D-SPACE images (k = 0.892), fair for routine MR images (k = 0.649). At 3.0 T, 3D-SPACE provided significantly better images than routine MR images in terms of the boundary of pituitary gland, definition of pituitary lesions, and overall image quality. The evaluation of pituitary micro-lesions using combined routine and 3D-SPACE MR imaging was superior to that using only routine or 3D-SPACE imaging. The 3D-SPACE sequence can be used for appropriate and successful evaluation of the pituitary gland. We suggest 3D-SPACE sequence to be a powerful supplemental sequence in MR examinations with suspected pituitary micro-lesions.

  3. An approach to real-time magnetic resonance imaging for speech production

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth; Nayak, Krishna; Byrd, Dani; Lee, Sungbok

    2003-04-01

    Magnetic resonance imaging has served as a valuable tool for studying primarily static postures in speech production. Now, recent improvements in imaging techniques, particularly in temporal resolution, are making it possible to examine the dynamics of vocal tract shaping during speech. Examples include Mady et al. (2001, 2002) (8 images/second, T1 fast gradient echo) and Demolin et al. (2000) (4-5 images/second, ultra fast turbo spin echo sequence). The present study uses a non 2D-FFT acquisition strategy (spiral k-space trajectory) on a GE Signa 1.5T CV/i scanner with a low-flip angle spiral gradient echo originally developed for cardiac imaging [Kerr et al. (1997), Nayak et al. (2001)] with reconstruction rates of 8-10 images/second. The experimental stimuli included English sentences varying the syllable position of /n, r, l/ (spoken by 2 subjects) and Tamil sentences varying among five liquids (spoken by one subject). The imaging parameters were the following: 15 deg flip angle, 20-interleaves, 6.7 ms TR, 1.88 mm resolution over a 20 cm FOV, 5 mm slice thickness, and 2.4 ms spiral readouts. Data show clear real-time movements of the lips, tongue and velum. Sample movies and data analysis strategies will be presented. Segmental durations, positions, and inter-articulator timing can all be quantitatively evaluated. [Work supported by NIH.

  4. Effect of RF power density on micro- and macro-structural properties of PECVD grown hydrogenated nanocrystalline silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr

    2016-03-25

    This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less

  5. Systematically Asymmetric Heliospheric Magnetic Field: Evidence for a Quadrupole Mode and Non-Axisymmetry with Polarity Flip-Flops

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Hiltula, T.

    2004-10-01

    Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2∘ tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.

  6. Harmonic magneto-electric response in GaFeO3

    NASA Astrophysics Data System (ADS)

    Naiya, Amit Kumar; Awasthi, A. M.

    2018-04-01

    GaFeO3 is a well-known multiferroic material. Like optical second harmonic generation, it also generates radio frequency (RF) second harmonic due to its non-centrosymmetric orthorhombic structure. The harmonic RF response also features a magneto-electric character comparable in prominence to that of the fundamental response. We measured complex parts of the fundamental and the second harmonic over 80 K to 300 K. The second harmonic permittivity and its phase angle change sign at the spin glass transition temperature Tg = 200 K and becomes dispersive above ˜280 K.

  7. The schemes and methods for producing of the visual security features used in the color hologram stereography

    NASA Astrophysics Data System (ADS)

    Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.

    2017-05-01

    Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.

  8. Angle Control on the Optima HE/XE Ion Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Edward; Satoh, Shu

    2008-11-03

    The Optima HE/XE is the latest generation of high energy ion implanter from Axcelis, combining proven RF linear accelerator technology with new single wafer processing. The architecture of the implanter is designed to provide a parallel beam at the wafer plane over the full range of implant energies and beam currents. One of the advantages of this system is the ability to control both the horizontal and vertical implant angles for each implant. Included in the design is the ability to perform in situ measurements of the horizontal and vertical angles of the beam in real time. The method ofmore » the horizontal and vertical angle measurements is described in this paper.« less

  9. The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...

    2015-04-13

    The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less

  10. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarici, G.; Klepper, C Christopher; Colas, L.

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less

  11. Use of a compact range approach to evaluate rf and dual-mode missiles

    NASA Astrophysics Data System (ADS)

    Willis, Kenneth E.; Weiss, Yosef

    2000-07-01

    This paper describes a hardware-in-the-loop (HWIL) system developed for testing Radio Frequency (RF), Infra-Red (IR), and Dual-Mode missile seekers. The system consists of a unique hydraulic five-axis (three seeker axes plus two target axes) Flight Motion Table (FMT), an off-axis parabolic reflector, and electronics required to generate the signals to the RF feeds. RF energy that simulates the target is fed into the reflector from three orthogonal feeds mounted on the inner target axis, at the focal point area of the parabolic reflector. The parabolic reflector, together with the three RF feeds (the Compact Range), effectively produces a far-field image of the target. Both FMT target axis motion and electronic control of the RF beams (deflection) modify the simulated line-of-sight target angles. Multiple targets, glint, multi-path, ECM, and clutter can be introduced electronically. To evaluate dual-mode seekers, the center section of the parabolic reflector is replaced with an IR- transparent, but RF-reflective section. An IR scene projector mounts to the FMT target axes, with its image focused on the intersection of the FMT seeker axes. The system eliminates the need for a large anechoic chamber and 'Target Wall' or target motion system used with conventional HWIL systems. This reduces acquisition and operating costs of the facility.

  12. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities?

    DTIC Science & Technology

    2014-10-21

    measures working memory • Trail making test (both A and B): measures planning/executive function • "Black Box” (choice reaction time, critical flicker ...associated with SIR imaging. The former of these was mitigated by developing a novel B+ and !1B insensitive in- version composite pulse (Fig. 2) and...employing a low-flip angle TFE readout; the latter was mitigated by the efficiency of the TFE readout along with additional protocol optimization

  13. Algorithm comparison for schedule optimization in MR fingerprinting.

    PubMed

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

    NASA Astrophysics Data System (ADS)

    Xiaoming, ZHU; Heng, GUO; Jianfeng, ZHOU; Xiaofei, ZHANG; Jian, CHEN; Jing, LI; Heping, LI; Jianguo, TAN

    2018-04-01

    Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin-dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin-dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.

  15. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    PubMed Central

    Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.

    2013-01-01

    Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602

  16. Optima XE Single Wafer High Energy Ion Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Shu; Ferrara, Joseph; Bell, Edward

    2008-11-03

    The Optima XE is the first production worthy single wafer high energy implanter. The new system combines a state-of-art single wafer endstation capable of throughputs in excess of 400 wafers/hour with a production-proven RF linear accelerator technology. Axcelis has been evolving and refining RF Linac technology since the introduction of the NV1000 in 1986. The Optima XE provides production worthy beam currents up to energies of 1.2 MeV for P{sup +}, 2.9 MeV for P{sup ++}, and 1.5 MeV for B{sup +}. Energies as low as 10 keV and tilt angles as high as 45 degrees are also available., allowingmore » the implanter to be used for a wide variety of traditional medium current implants to ensure high equipment utilization. The single wafer endstation provides precise implant angle control across wafer and wafer to wafer. In addition, Optima XE's unique dose control system allows compensation of photoresist outgassing effects without relying on traditional pressure-based methods. We describe the specific features, angle control and dosimetry of the Optima XE and their applications in addressing the ever-tightening demands for more precise process controls and higher productivity.« less

  17. Controlling surface-segregation of a polymer to display carboxy groups on an outermost surface using perfluoroacyl groups.

    PubMed

    Nishimori, Keisuke; Kitahata, Shigeru; Nishino, Takashi; Maruyama, Tatsuo

    2018-05-10

    Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, in which carboxy groups were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.

  18. Array signal recovery algorithm for a single-RF-channel DBF array

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Wu, Wen; Fang, Da Gang

    2016-12-01

    An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.

  19. Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme.

    PubMed

    Panner, Amith; Crane, Courtney A; Weng, Changjiang; Feletti, Alberto; Fang, Shanna; Parsa, Andrew T; Pieper, Russell O

    2010-06-15

    The antiapoptotic protein FLIP(S) is a key suppressor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioblastoma multiforme (GBM) cells. We previously reported that a novel phosphatase and tensin homologue (PTEN)-Akt-atrophin-interacting protein 4 (AIP4) pathway regulates FLIP(S) ubiquitination and stability, although the means by which PTEN and Akt were linked to AIP4 activity were unclear. Here, we report that a second regulator of ubiquitin metabolism, the ubiquitin-specific protease 8 (USP8), is a downstream target of Akt, and that USP8 links Akt to AIP4 and the regulation of FLIP(S) stability and TRAIL resistance. In human GBM xenografts, levels of USP8 correlated inversely with pAkt levels, and genetic or pharmacologic manipulation of Akt regulated USP8 levels in an inverse manner. Overexpression of wild-type USP8, but not catalytically inactive USP8, increased FLIP(S) ubiquitination, decreased FLIP(S) half-life, decreased FLIP(S) steady-state levels, and decreased TRAIL resistance, whereas short interfering RNA (siRNA)-mediated suppression of USP8 levels had the opposite effect. Because high levels of the USP8 deubiquitinase correlated with high levels of FLIP(S) ubiquitination, USP8 seemed to control FLIP(S) ubiquitination through an intermediate target. Consistent with this idea, overexpression of wild-type USP8 decreased the ubiquitination of the FLIP(S) E3 ubiquitin ligase AIP4, an event previously shown to increase AIP4-FLIP(S) interaction, whereas siRNA-mediated suppression of USP8 increased AIP4 ubiquitination. Furthermore, the suppression of FLIP(S) levels by USP8 overexpression was reversed by the introduction of siRNA targeting AIP4. These results show that USP8, a downstream target of Akt, regulates the ability of AIP4 to control FLIP(S) stability and TRAIL sensitivity.

  20. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    PubMed

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  1. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  2. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  3. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    PubMed

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  4. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.

    PubMed

    Kim, Ki Soo; Hernandez, Daniel; Lee, Soo Yeol

    2015-10-24

    Capacitive radiofrequency (RF) hyperthermia suffers from excessive temperature rise near the electrodes and poorly localized heat transfer to the deep-seated tumor region even though it is known to have potential to cure ill-conditioned tumors. To better localize heat transfer to the deep-seated target region in which electrical conductivity is elevated by nanoparticle mediation, two-channel capacitive RF heating has been tried on a phantom. We made a tissue-mimicking phantom consisting of two compartments, a tumor-tissue-mimicking insert against uniform background agarose. The tumor-tissue-mimicking insert was made to have higher electrical conductivity than the normal-tissue-mimicking background by applying magnetic nanoparticle suspension to the insert. Two electrode pairs were attached on the phantom surface by equal-angle separation to apply RF electric field to the phantom. To better localize heat transfer to the tumor-tissue-mimicking insert, RF power with a frequency of 26 MHz was delivered to the two channels in a time-multiplexed way. To monitor the temperature rise inside the phantom, MR thermometry was performed at a 3T MRI intermittently during the RF heating. Finite-difference-time-domain (FDTD) electromagnetic and thermal simulations on the phantom model were also performed to verify the experimental results. As compared to the one-channel RF heating, the two-channel RF heating with time-multiplexed driving improved the spatial localization of heat transfer to the tumor-tissue-mimicking region in both the simulation and experiment. The two-channel RF heating also reduced the temperature rise near the electrodes significantly. Time-multiplexed two-channel capacitive RF heating has the capability to better localize heat transfer to the nanoparticle-mediated tumor region which has higher electrical conductivity than the background normal tissues.

  5. Intrinsic diffusion sensitivity of the balanced steady-state free precession (bSSFP) imaging sequence.

    PubMed

    Bär, Sébastien; Weigel, Matthias; von Elverfeldt, Dominik; Hennig, Jürgen; Leupold, Jochen

    2015-11-01

    The purpose of this work was to analyze the intrinsic diffusion sensitivity of the balanced steady-state free precession (bSSFP) imaging sequence, meaning the observation of diffusion-induced attenuation of the bSSFP steady-state signal due to the imaging gradients. Although these diffusion effects are usually neglected for most clinical gradient systems, such strong gradient systems are employed for high resolution imaging of small animals or MR Microscopy. The impact on the bSSFP signal of the imaging gradients characterized by their b-values was analyzed with simulations and experiments at a 7T animal scanner using a gradient system with maximum gradient amplitude of approx. 700 mT/m. It was found that the readout gradients have a stronger impact on the attenuation than the phase encoding gradients. Also, as the PE gradients are varying with each repetition interval, the diffusion effects induce strong modulations of the bSSFP signal over the sequence repetition cycles depending on the phase encoding gradient table. It is shown that a signal gain can be obtained through a change of flip angle as a new optimal flip angle maximizing the signal can be defined. The dependency of the diffusion effects on relaxation times and b-values were explored with simulations. The attenuation increases with T2. In conclusion, diffusion attenuation of the bSSFP signal becomes significant for high resolution imaging voxel size (roughly < 100 μm) of long T2 substances. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Hazards in Motion: Development of Mobile Geofences for Use in Logging Safety

    PubMed Central

    Zimbelman, Eloise G.; Keefe, Robert F.; Strand, Eva K.; Kolden, Crystal A.; Wempe, Ann M.

    2017-01-01

    Logging is one of the most hazardous occupations in the United States. Real-time positioning that uses global navigation satellite system (GNSS) technology paired with radio frequency transmission (GNSS-RF) has the potential to reduce fatal and non-fatal accidents on logging operations through the use of geofences that define safe work areas. Until recently, most geofences have been static boundaries. The aim of this study was to evaluate factors affecting mobile geofence accuracy in order to determine whether virtual safety zones around moving ground workers or equipment are a viable option for improving situational awareness on active timber sales. We evaluated the effects of walking pace, transmission interval, geofence radius, and intersection angle on geofence alert delay using a replicated field experiment. Simulation was then used to validate field results and calculate the proportion of GNSS error bearings resulting in early alerts. The interaction of geofence radius and intersection angle affected safety geofence alert delay in the field experiment. The most inaccurate alerts were negative, representing early warning. The magnitude of this effect was largest at the greatest intersection angles. Simulation analysis supported these field results and also showed that larger GNSS error corresponded to greater variability in alert delay. Increasing intersection angle resulted in a larger proportion of directional GNSS error that triggered incorrect, early warnings. Because the accuracy of geofence alerts varied greatly depending on GNSS error and angle of approach, geofencing for occupational safety is most appropriate for general situational awareness unless real-time correction methods to improve accuracy or higher quality GNSS-RF transponders are used. PMID:28394303

  7. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    PubMed

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  8. Helicopter Maneuverability and Agility Design Sensitivity and Air Combat Maneuver Data Correlation Study

    DTIC Science & Technology

    1991-10-01

    o n tr o l sy st em St ic ks , m ix in g, S A S , se rv os L an d in g I n te rf ac e - V er ti ca l lo ad s - In pl an e lo ad s E xt...ROUTINE ALPNPlt ,INPUT VARIABLE QFiQWrM »OUTPUT VARIABLE OP1LO ;LOW ANGLE BAP NABE EXP -30.0,30.0,5.0 jLOWER LIBIT. UPPER LIMIT, DELTA ; LOK ANGLE BAP

  9. Biologically Inspired Radio-Frequency (RF) Direction Finding

    DTIC Science & Technology

    2015-12-15

    estimation of an electromagnetic signal is important for many commercial and military applications including electronic warfare [1] and mobile...without scatter with scatter 1 Incident Angle (degree) 0 30 60 90 R ec ei ve d Pa tte rn (d B ) -62 -60 -58 -56 -54 -52 -50 port1 without scatter...150 without scatter with scatter 2 Incident Angle (degree) 0 30 60 90 R ec ei ve d Pa tte rn (d B ) -52 -50 -48 -46 -44 -42 port1 without scatter

  10. The FONT5 Bunch-by-Bunch Position and Angle Feedback System at ATF2

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Burrows, P. N.; Christian, G. B.; Constance, B.; Davis, M. R.; Gerbershagen, A.; Perry, C.; Resta-Lopez, J.

    The FONT5 upstream beam-based feedback system at ATF2 is designed to correct the position and angle jitter at the entrance to the ATF2 final-focus system, and also to demonstrate a prototype intra-train feedback system for the International Linear Collider interaction point. We discuss the hardware, from stripline BPMs to kickers, and RF and digital signal processing, as well as presenting results from the latest beam tests at ATF2.

  11. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience.

    PubMed

    Gaeta, Michele; Messina, Sonia; Mileto, Achille; Vita, Gian Luca; Ascenti, Giorgio; Vinci, Sergio; Bottari, Antonio; Vita, Giuseppe; Settineri, Nicola; Bruschetta, Daniele; Racchiusa, Sergio; Minutoli, Fabio

    2012-08-01

    To examine the usefulness of dual-echo dual-flip angle spoiled gradient recalled (SPGR) magnetic resonance imaging (MRI) technique in quantifying muscle fat fraction (MFF) of pelvic and thighs muscles as a marker of disease severity in boys with Duchenne muscular dystrophy (DMD), by correlating MFF calculation with clinical assessments. We also tried to identify characteristic patterns of disease distribution. Twenty consecutive boys (mean age, 8.6 years ± 2.3 [standard deviation, SD]; age range, 5-15 years; median age, 9 years;) with DMD were evaluated using a dual-echo dual-flip angle SPGR MRI technique, calculating muscle fat fraction (MFF) of eight muscles in the pelvic girdle and thigh (gluteus maximus, adductor magnus, rectus femoris, vastus lateralis, vastus medialis, biceps femoris, semitendinosus, and gracilis). Color-coded parametric maps of MFF were also obtained. A neurologist who was blinded to the MRI findings performed the clinical assessments (patient age, Medical Research Council score, timed Gower score, time to run 10 m). The relationships between mean MFF and clinical assessments were investigated using Spearman's rho coefficient. Positive and negative correlations were evaluated and considered significant if the P value was < 0.05. The highest mean MFF was found in the gluteus maximus (mean, 46.3 % ± 24.5 SD), whereas the lowest was found in the gracilis muscle (mean, 2.7 % ± 4.7 SD). Mean MFF of the gluteus maximus was significantly higher than that of the other muscles (P < 0.01), except for the adductor magnus and biceps muscles. A significant positive correlation was found between the mean MFF of all muscles and the patients age (20 patients; P < 0.005), Medical Research Council score (19 patients; P < 0.001), timed Gower score (17 patients; P < 0.03), and time to run 10 m (20 patients; P < 0.001). A positive correlation was also found between the mean MFF of the gluteus maximus muscle and the timed Gower score. Color-coded maps provided an efficient visual assessment of muscle fat content and its heterogeneous distribution. Muscle fat fraction calculation and mapping using the dual-echo dual-flip angle SPGR MRI technique are useful markers of disease severity and permit patterns of disease distribution to be identified in patients with DMD.

  12. Full Flip, Half Flip and No Flip: Evaluation of Flipping an Introductory Programming Course

    ERIC Educational Resources Information Center

    Fryling, Meg; Yoder, Robert; Breimer, Eric

    2016-01-01

    While some research has suggested that video lectures are just as effective as in-person lectures to convey basic information to students, not everyone agrees that the flipped classroom model is an effective way of educating students. This research explores traditional, semi-flipped and fully-flipped classroom models by comparing three sections of…

  13. Muscle activity during knee-extension strengthening exercise performed with elastic tubing and isotonic resistance.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Bandholm, Thomas; Thorborg, Kristian; Zebis, Mette K; Andersen, Lars L

    2012-12-01

    While elastic resistance training, targeting the upper body is effective for strength training, the effect of elastic resistance training on lower body muscle activity remains questionable. The purpose of this study was to evaluate the EMG-angle relationship of the quadriceps muscle during 10-RM knee-extensions performed with elastic tubing and an isotonic strength training machine. 7 women and 9 men aged 28-67 years (mean age 44 and 41 years, respectively) participated. Electromyographic (EMG) activity was recorded in 10 muscles during the concentric and eccentric contraction phase of a knee extension exercise performed with elastic tubing and in training machine and normalized to maximal voluntary isometric contraction (MVC) EMG (nEMG). Knee joint angle was measured during the exercises using electronic inclinometers (range of motion 0-90°). When comparing the machine and elastic resistance exercises there were no significant differences in peak EMG of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM) during the concentric contraction phase. However, during the eccentric phase, peak EMG was significantly higher (p<0.01) in RF and VM when performing knee extensions using the training machine. In VL and VM the EMG-angle pattern was different between the two training modalities (significant angle by exercise interaction). When using elastic resistance, the EMG-angle pattern peaked towards full knee extension (0°), whereas angle at peak EMG occurred closer to knee flexion position (90°) during the machine exercise. Perceived loading (Borg CR10) was similar during knee extensions performed with elastic tubing (5.7±0.6) compared with knee extensions performed in training machine (5.9±0.5). Knee extensions performed with elastic tubing induces similar high (>70% nEMG) quadriceps muscle activity during the concentric contraction phase, but slightly lower during the eccentric contraction phase, as knee extensions performed using an isotonic training machine. During the concentric contraction phase the two different conditions displayed reciprocal EMG-angle patterns during the range of motion. 5.

  14. RF atmospheric plasma jet surface treatment of paper

    NASA Astrophysics Data System (ADS)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  15. Investigation of the cavitating flow in injector nozzles for diesel and biodiesel

    NASA Astrophysics Data System (ADS)

    Zhong, Wenjun; He, Zhixia; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-07-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. At present the biodiesel is a kind of prospective alternative fuel in diesel engines, the flow characteristics for the biodiesel fuel need to be investigated. In this paper, based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate physical model. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. A high resolution and speed CCD camera equipped with a long distance microscope device was used to acquire flow images of diesel and biodiesel fuel, respectively. Then, the characteristics of cavitating flow and their effects on the fuel atomization characteristics were investigated. The experimental results show that the nozzle cavitating flow of both the diesel and biodiesel fuel could be divided into four regimes: turbulent flow, cavitation inception, development of cavitation and hydraulic flip. The critical pressures of both the cavitating flow and hydraulic flip of biodiesel are higher than those of diesel. The spray cone angle increases as the cavitation occurs, but it decreases when the hydraulic flip appears. Finally, it can be concluded that the Reynolds number decreases with the increase of cavitation number, and the discharge coefficient increases with the increase of cavitation number.

  16. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2014-03-01

    values   With the fat B1 map it is now possible to obtain a B1 map for the whole field of view. To do this we have been testing software to...10.1002/ mrm .21120. 7. Nehrke K. On the steady-state properties of actual flip angle imaging (AFI). Magn. Reson. Med. 2009;61:84–92. doi: 10.1002/ mrm ...by bilateral dynamic contrast‐enhanced MRI: A sensitivity and specificity study. Magn. … 2008;59:747–54. doi: 10.1002/ mrm .21530. 11. Hylton N

  17. Sparse array of RF sensors for sensing through the wall

    NASA Astrophysics Data System (ADS)

    Innocenti, Roberto

    2007-04-01

    In support of the U.S. Army's need for intelligence on the configuration, content, and human presence inside enclosed areas (buildings), the Army Research Laboratory is currently engaged in an effort to evaluate RF sensors for the "Sensing Through The Wall" initiative (STTW).Detection and location of the presence of enemy combatants in urban settings poses significant technical and operational challenges. This paper shows the potential of hand held RF sensors, with the possible assistance of additional sources like Unattended Aerial Vehicles (UAV), Unattended Ground Sensors (UGS), etc, to fulfill this role. In this study we examine both monostatic and multistatic combination of sensors, especially in configurations that allow the capture of images from different angles, and we demonstrate their capability to provide comprehensive information on a variety of buildings. Finally, we explore the limitations of this type of sensor arrangement vis-a-vis the required precision in the knowledge of the position and timing of the RF sensors. Simulation results are provided to show the potential of this type of sensor arrangement in such a difficult environment.

  18. The effects of implant angulation on the resonance frequency of a dental implant.

    PubMed

    Harirforoush, R; Arzanpour, S; Chehroudi, B

    2014-08-01

    Dental implants are ideally placed in an orientation that allows vertical transfer of occlusal forces along their long axis. Nevertheless, optimal situations for implant placement are seldom encountered resulting in implants placement in angulated positions, which may affect their long-term success. The resonance frequency (RF) is an objective tool used to monitor stability of the implant tissue integration; however, little is known of the effect of the implant orientation in bone on the RF and its potential significance. The purpose of this research was to determine the relation between the dental implant orientation and the corresponding RF of implant. Three-dimensional (3D) modelling software was used to construct a 3D model of a pig mandible from computed tomography (CT) images. The RF of the implant was analysed using finite element (FE) modal analysis in software ANSYS (v.12). In addition, a cubical model was also developed in MIMICS to investigate the parameters affecting the relationship between RF and implant orientation in a simplified environment. The orientation angle was increased from 0 to 10 degrees in 1 degree increments and the resulting RF was analysed using correlation analysis and one-way ANOVA. Our analysis illustrated that the RF fluctuation following altering implant orientation was strongly correlated (r=0.97) with the contacting cortical to cancellous bone ratio (CCBR) at the implant interface. The most extreme RF change (from 9.81kHz to 10.07kHz) occurred when the implant was moved 0.5mm in positive z-direction, which resulted in the maximum change of CCBR from 52.9 to 54.8. Copyright © 2014. Published by Elsevier Ltd.

  19. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  20. Optimizing electrical conductivity and optical transparency of IZO thin film deposited by radio frequency (RF) magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.

  1. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  2. Role of Coulomb blockade and spin-flip scattering in tunneling magnetoresistance of FeCo-Si-O nanogranular films

    NASA Astrophysics Data System (ADS)

    Kumar, Hardeep; Ghosh, Santanu; Bürger, Danilo; Li, Lin; Zhou, Shengqiang; Kabiraj, Debdulal; Avasthi, Devesh Kumar; Grötzschel, Rainer; Schmidt, Heidemarie

    2011-04-01

    In this work, we report the effect of FeCo atomic fraction (0.33 < x < 0.54) and temperature on the electrical, magnetic, and tunneling magnetoresistance (TMR) properties of FeCo-Si-O granular films prepared by atom beam sputtering technique. Glancing angle x-ray diffraction and TEM studies reveal that films are amorphous in nature. The dipole-dipole interactions (particle-matrix mixing) is evident from zero-field cooled and field-cooled magnetic susceptibility measurements and the presence of oxides (mainly Fe-related) is observed by x-ray photoelectron spectroscopy analysis. The presence of Fe-oxides is responsible for the observed reduction of saturation magnetization and rapid increase in coercivity below 50 K. TMR has been observed in a wide temperature range, and a maximum TMR of -4.25% at 300 K is observed for x = 0.39 at a maximum applied field of 60 kOe. The fast decay of maximum TMR at high temperatures and lower TMR values at 300 K when compared to PFeCo2/(1+PFeCo2), where PFeCo is the spin polarization of FeCo are in accordance with a theoretical model that includes spin-flip scattering processes. The temperature dependent study of TMR effect reveals a remarkably enhanced TMR at low temperatures. The TMR value varies from -2.1% at 300 K to -14.5% at 5 K for x = 0.54 and a large MR value of -18.5% at 5 K for x = 0.39 is explained on the basis of theoretical models involving Coulomb blockade effects. Qualitatively particle-matrix mixing and the presence of Fe-oxides seems to be the source of spin-flip scattering, responsible for fast decay of TMR at high temperatures. A combination of higher order tunneling (in Coulomb blockade regime) and spin-flip scattering (high temperature regime) explains the temperature dependent TMR of these films.

  3. Diagnosis of pneumothorax using a microwave-based detector

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Riechers, Ronald G., Sr.; Pasala, Krishna M.; Blanchard, Jeremy; Nozaki, Masako; Ramage, Anthony; Jackson, William; Rosner, Michael; Garcia-Pinto, Patricia; Yun, Catherine; Butler, Nathan; Riechers, Ronald G., Jr.; Williams, Daniel; Zeidman, Seth M.; Rhee, Peter; Ecklund, James M.; Fitzpatrick, Thomas; Lockhart, Stephen

    2001-08-01

    A novel method for identifying pneumothorax is presented. This method is based on a novel device that uses electromagnetic waves in the microwave radio frequency (RF) region and a modified algorithm previously used for the estimation of the angle of arrival of radar signals. In this study, we employ this radio frequency triage tool (RAFT) to the clinical condition of pneumothorax, which is a collapsed lung. In anesthetized pigs, RAFT can detect changes in the RF signature from a lung that is 20 percent or greater collapsed. These results are compared to chest x-ray. Both studies are equivalent in their ability to detect pneumothorax in pigs.

  4. A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate

    NASA Astrophysics Data System (ADS)

    Reed, Galen D.; Larson, Peder E. Z.; von Morze, Cornelius; Bok, Robert; Lustig, Michael; Kerr, Adam B.; Pauly, John M.; Kurhanewicz, John; Vigneron, Daniel B.

    2012-04-01

    A rapid echo planar imaging sequence for dynamic imaging of [1-13C] lactate and [1-13C] pyruvate simultaneously was developed. Frequency-based separation of these metabolites was achieved by spatial shifting in the phase-encoded direction with the appropriate choice of echo spacing. Suppression of the pyruvate-hydrate and alanine resonances is achieved through an optimized spectral-spatial RF waveform. Signal sampling efficiency as a function of pyruvate and lactate excitation angle was simulated using two site exchange models. Dynamic imaging is demonstrated in a transgenic mouse model, and phantom validations of the RF pulse frequency selectivity were performed.

  5. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  6. Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, D.; Choi, S.; Lee, H.; Kim, D.; Choi, S.; Kim, H.-J.

    2017-04-01

    Lung cancer is currently the worldwide leading cause of death from cancer. Thus, detection of lung cancer at its early stages is critical for improving the survival rate of patients. Chest digital tomosynthesis (CDT) is a recently developed imaging modality, combining many advantages of digital radiography (DR) and computed tomography (CT). This method has the potential to be widely used in the clinical setting. In this study, we introduce a developed CDT R/F system and compare its image quality with those of DR and CT, especially with respect to anatomical noise and lung nodule conspicuity, for LUNGMAN phantoms. The developed CDT R/F system consists of a CsI scintillator flat panel detector, X-ray tube, and tomosynthesis data acquisition geometry. For CDT R/F imaging, 41 projections were acquired at different angles, over the ± 20° angular range, in a linear translation geometry. To evaluate the clinical effectiveness of the CDT R/F system, the acquired images were compared with CT (Philips brilliance CT 64, Philips healthcare, U.S.) and DR (ADR-M, LISTEM, Korea) phantom images in terms of the anatomical noise power spectrum (aNPS). DR images exhibited low conspicuity for a small-size lung nodule, while CDT R/F and CT exhibited relatively high sensitivity for all lung nodule sizes. The aNPS of the CDT R/F system was better than that of DR, by resolving anatomical overlapping problems. In conclusion, the developed CDT R/F system is likely to contribute to early diagnosis of lung cancer, while requiring a relatively low patient dose, compared with CT.

  7. Evaluation of anti-migration properties of biliary covered self-expandable metal stents.

    PubMed

    Minaga, Kosuke; Kitano, Masayuki; Imai, Hajime; Harwani, Yogesh; Yamao, Kentaro; Kamata, Ken; Miyata, Takeshi; Omoto, Shunsuke; Kadosaka, Kumpei; Sakurai, Toshiharu; Nishida, Naoshi; Kudo, Masatoshi

    2016-08-14

    To assess anti-migration potential of six biliary covered self-expandable metal stents (C-SEMSs) by using a newly designed phantom model. In the phantom model, the stent was placed in differently sized holes in a silicone wall and retracted with a retraction robot. Resistance force to migration (RFM) was measured by a force gauge on the stent end. Radial force (RF) was measured with a RF measurement machine. Measured flare structure variables were the outer diameter, height, and taper angle of the flare (ODF, HF, and TAF, respectively). Correlations between RFM and RF or flare variables were analyzed using a linear correlated model. Out of the six stents, five stents were braided, the other was laser-cut. The RF and RFM of each stent were expressed as the average of five replicate measurements. For all six stents, RFM and RF decreased as the hole diameter increased. For all six stents, RFM and RF correlated strongly when the stent had not fully expanded. This correlation was not observed in the five braided stents excluding the laser cut stent. For all six stents, there was a strong correlation between RFM and TAF when the stent fully expanded. For the five braided stents, RFM after full stent expansion correlated strongly with all three stent flare structure variables (ODF, HF, and TAF). The laser-cut C-SEMS had higher RFMs than the braided C-SEMSs regardless of expansion state. RF was an important anti-migration property when the C-SEMS did not fully expand. Once fully expanded, stent flare structure variables plays an important role in anti-migration.

  8. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    PubMed Central

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p < 0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. Conclusions T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  10. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    PubMed

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (p<0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Numerical simulation of cavitation and atomization using a fully compressible three-phase model

    NASA Astrophysics Data System (ADS)

    Mithun, Murali-Girija; Koukouvinis, Phoevos; Gavaises, Manolis

    2018-06-01

    The aim of this paper is to present a fully compressible three-phase (liquid, vapor, and air) model and its application to the simulation of in-nozzle cavitation effects on liquid atomization. The model employs a combination of the homogeneous equilibrium barotropic cavitation model with an implicit sharp interface capturing volume of fluid (VOF) approximation. The numerical predictions are validated against the experimental results obtained for injection of water into the air from a step nozzle, which is designed to produce asymmetric cavitation along its two sides. Simulations are performed for three injection pressures, corresponding to three different cavitation regimes, referred to as cavitation inception, developing cavitation, and hydraulic flip. Model validation is achieved by qualitative comparison of the cavitation, spray pattern, and spray cone angles. The flow turbulence in this study is resolved using the large-eddy simulation approach. The simulation results indicate that the major parameters that influence the primary atomization are cavitation, liquid turbulence, and, to a smaller extent, the Rayleigh-Taylor and Kelvin-Helmholtz aerodynamic instabilities developing on the liquid-air interface. Moreover, the simulations performed indicate that periodic entrainment of air into the nozzle occurs at intermediate cavitation numbers, corresponding to developing cavitation (as opposed to incipient and fully developed cavitation regimes); this transient effect causes a periodic shedding of the cavitation and air clouds and contributes to improved primary atomization. Finally, the cone angle of the spray is found to increase with increased injection pressure but drops drastically when hydraulic flip occurs, in agreement with the relevant experiments.

  12. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    PubMed

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.

    PubMed

    Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P

    2017-05-01

    Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Integrated SSFP for functional brain mapping at 7 T with reduced susceptibility artifact

    NASA Astrophysics Data System (ADS)

    Sun, Kaibao; Xue, Rong; Zhang, Peng; Zuo, Zhentao; Chen, Zhongwei; Wang, Bo; Martin, Thomas; Wang, Yi; Chen, Lin; He, Sheng; Wang, Danny J. J.

    2017-03-01

    Balanced steady-state free precession (bSSFP) offers an alternative and potentially important tool to the standard gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI). Both passband and transition band based bSSFP have been proposed for fMRI. The applications of these methods, however, are limited by banding artifacts due to the sensitivity of bSSFP signal to off-resonance effects. In this article, a unique case of the SSFP-FID sequence, termed integrated-SSFP or iSSFP, was proposed to overcome the obstacle by compressing the SSFP profile into the width of a single voxel. The magnitude of the iSSFP signal was kept constant irrespective of frequency shift. Visual stimulation studies were performed to demonstrate the feasibility of fMRI using iSSFP at 7 T with flip angles of 4° and 25°, compared to standard bSSFP and gradient echo (GRE) imaging. The signal changes for the complex iSSFP signal in activated voxels were 2.48 ± 0.53 (%) and 2.96 ± 0.87 (%) for flip angles (FA) of 4° and 25° respectively at the TR of 9.88 ms. Simultaneous multi-slice acquisition (SMS) with the CAIPIRIHNA technique was carried out with iSSFP scanning to detect the anterior temporal lobe activation using a semantic processing task fMRI, compared with standard 2D GE-EPI. This study demonstrates the feasibility of iSSFP for fMRI with reduced susceptibility artifacts, while maintaining robust functional contrast at 7 T.

  15. To Flip or Not to Flip? An Exploratory Study Comparing Student Performance in Calculus I

    ERIC Educational Resources Information Center

    Schroeder, Larissa B.; McGivney-Burelle, Jean; Xue, Fei

    2015-01-01

    The purpose of this exploratory, mixed-methods study was to compare student performance in flipped and non-flipped sections of Calculus I. The study also examined students' perceptions of the flipping pedagogy. Students in the flipped courses reported spending, on average, an additional 1-2 hours per week outside of class on course content.…

  16. The Partially Flipped Classroom: The Effects of Flipping a Module on "Junk Science" in a Large Methods Course

    ERIC Educational Resources Information Center

    Burgoyne, Stephanie; Eaton, Judy

    2018-01-01

    Flipped classrooms are gaining popularity, especially in psychology statistics courses. However, not all courses lend themselves to a fully flipped design, and some instructors might not want to commit to flipping every class. We tested the effectiveness of flipping just one component (a module on junk science) of a large methods course. We…

  17. RF Curves for Extraction from the Accumulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, Dav; /Fermilab

    2002-03-10

    Since the start of Run IIa, the RF curves for the extraction process from the Accumulator have been based on an algorithm described in Pbar Note 636. There are a number of problems with this procedure that result in a dilution of the longitudinal phase space of the extracted beam. The procedure consists of a number of steps in which the frequency curve during each process is a linear time ramp. For a constant bend field, the synchronous phase angle is given as: {Lambda} = sin({phi}{sub s}) = -h/{eta} (1/f{sub rf}){sup 2}df{sub rf}/dt/qV/pc where h is the harmonic number ofmore » the RF. Equation (1) shows that if the frequency curve consists of a number of linear time ramps with different slopes, there will be discontinuities in the synchronous phase. These discontinuities in the synchronous phase will lead to dipole oscillations of the beam in the RF bucket. The discontinuities observed for the present RF curves are about 10 degrees. In the procedure outlined in Pbar Note 636, the RF bucket is formed on the high energy edge of the rectangular momentum distribution. As the RF bucket is pulled away from the core, it is also programmed to increase in area. If the distribution is not perfectly rectangular, or if the bucket is not formed at the edge of the distribution, the growing bucket will gather up more particles at the edges of the bucket resulting in a substantial increase of longitudinal emittance. Finally, it is fairly difficult to prepare a rectangular momentum distribution and keep it rectangular for extended periods of time. Once the rectangular distribution is prepared, the core momentum cooling must be turned off. If there is a delay in the extraction process, the sharp edges of the rectangular distribution will soon diffuse. With the momentum cooling disabled, the longitudinal emittance of the core will grow resulting in larger longitudinal emittances for the extracted beam.« less

  18. Comparing the Effectiveness of Blended, Semi-Flipped, and Flipped Formats in an Engineering Numerical Methods Course

    ERIC Educational Resources Information Center

    Clark, Renee M.; Kaw, Autar; Besterfield-Sacre, Mary

    2016-01-01

    Blended, flipped, and semi-flipped instructional approaches were used in various sections of a numerical methods course for undergraduate mechanical engineers. During the spring of 2014, a blended approach was used; in the summer of 2014, a combination of blended and flipped instruction was used to deliver a semi-flipped course; and in the fall of…

  19. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide.

    PubMed

    Bannerman, Douglas D; Eiting, Kristine T; Winn, Robert K; Harlan, John M

    2004-10-01

    Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.

  20. First and second order derivatives for optimizing parallel RF excitation waveforms.

    PubMed

    Majewski, Kurt; Ritter, Dieter

    2015-09-01

    For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. First and second order derivatives for optimizing parallel RF excitation waveforms

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt; Ritter, Dieter

    2015-09-01

    For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.

  2. Gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow.

    PubMed

    Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro

    2007-11-01

    This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.

  3. Flipping Math in a Secondary Classroom

    ERIC Educational Resources Information Center

    Graziano, Kevin J.; Hall, John D.

    2017-01-01

    Research on flipped instruction with K-12 English Language Learners (ELLs) is limited. The purpose of this study was to examine the academic performance of ELLs who received flipped instruction in an algebra course at a newcomer high school, and to investigate ELLs' perceptions of flipped learning. Results indicate flipped instruction engaged…

  4. Flipped Classroom Experiences: Student Preferences and Flip Strategy in a Higher Education Context

    ERIC Educational Resources Information Center

    McNally, Brenton; Chipperfield, Janine; Dorsett, Pat; Del Fabbro, Letitia; Frommolt, Valda; Goetz, Sandra; Lewohl, Joanne; Molineux, Matthew; Pearson, Andrew; Reddan, Gregory; Roiko, Anne; Rung, Andrea

    2017-01-01

    Despite the popularity of the flipped classroom, its effectiveness in achieving greater engagement and learning outcomes is currently lacking substantial empirical evidence. This study surveyed 563 undergraduate and postgraduate students (61% female) participating in flipped teaching environments and ten convenors of the flipped courses in which…

  5. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP

    PubMed Central

    Tsuchiya, Yuichi; Nakabayashi, Osamu; Nakano, Hiroyasu

    2015-01-01

    cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis. PMID:26694384

  6. Crash tests of four identical high-wing single-engine airplanes

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Hayduk, R. J.

    1980-01-01

    Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.

  7. Beyond Euler angles: exploiting the angle-axis parametrization in a multipole expansion of the rotation operator.

    PubMed

    Siemens, Mark; Hancock, Jason; Siminovitch, David

    2007-02-01

    Euler angles (alpha,beta,gamma) are cumbersome from a computational point of view, and their link to experimental parameters is oblique. The angle-axis {Phi, n} parametrization, especially in the form of quaternions (or Euler-Rodrigues parameters), has served as the most promising alternative, and they have enjoyed considerable success in rf pulse design and optimization. We focus on the benefits of angle-axis parameters by considering a multipole operator expansion of the rotation operator D(Phi, n), and a Clebsch-Gordan expansion of the rotation matrices D(MM')(J)(Phi, n). Each of the coefficients in the Clebsch-Gordan expansion is proportional to the product of a spherical harmonic of the vector n specifying the axis of rotation, Y(lambdamu)(n), with a fixed function of the rotation angle Phi, a Gegenbauer polynomial C(2J-lambda)(lambda+1)(cosPhi/2). Several application examples demonstrate that this Clebsch-Gordan expansion gives easy and direct access to many of the parameters of experimental interest, including coherence order changes (isolated in the Clebsch-Gordan coefficients), and rotation angle (isolated in the Gegenbauer polynomials).

  8. Evaluation of anti-migration properties of biliary covered self-expandable metal stents

    PubMed Central

    Minaga, Kosuke; Kitano, Masayuki; Imai, Hajime; Harwani, Yogesh; Yamao, Kentaro; Kamata, Ken; Miyata, Takeshi; Omoto, Shunsuke; Kadosaka, Kumpei; Sakurai, Toshiharu; Nishida, Naoshi; Kudo, Masatoshi

    2016-01-01

    AIM: To assess anti-migration potential of six biliary covered self-expandable metal stents (C-SEMSs) by using a newly designed phantom model. METHODS: In the phantom model, the stent was placed in differently sized holes in a silicone wall and retracted with a retraction robot. Resistance force to migration (RFM) was measured by a force gauge on the stent end. Radial force (RF) was measured with a RF measurement machine. Measured flare structure variables were the outer diameter, height, and taper angle of the flare (ODF, HF, and TAF, respectively). Correlations between RFM and RF or flare variables were analyzed using a linear correlated model. RESULTS: Out of the six stents, five stents were braided, the other was laser-cut. The RF and RFM of each stent were expressed as the average of five replicate measurements. For all six stents, RFM and RF decreased as the hole diameter increased. For all six stents, RFM and RF correlated strongly when the stent had not fully expanded. This correlation was not observed in the five braided stents excluding the laser cut stent. For all six stents, there was a strong correlation between RFM and TAF when the stent fully expanded. For the five braided stents, RFM after full stent expansion correlated strongly with all three stent flare structure variables (ODF, HF, and TAF). The laser-cut C-SEMS had higher RFMs than the braided C-SEMSs regardless of expansion state. CONCLUSION: RF was an important anti-migration property when the C-SEMS did not fully expand. Once fully expanded, stent flare structure variables plays an important role in anti-migration. PMID:27570427

  9. An investigation of errors and data processing techniques for an RF multilateration system. [position and velocity measurements of vertical takeoff aircraft during landing

    NASA Technical Reports Server (NTRS)

    Britt, C. L., Jr.

    1975-01-01

    The development of an RF Multilateration system to provide accurate position and velocity measurements during the approach and landing phase of Vertical Takeoff Aircraft operation is discussed. The system uses an angle-modulated ranging signal to provide both range and range rate measurements between an aircraft transponder and multiple ground stations. Range and range rate measurements are converted to coordinate measurements and the coordinate and coordinate rate information is transmitted by an integral data link to the aircraft. Data processing techniques are analyzed to show advantages and disadvantages. Error analyses are provided to permit a comparison of the various techniques.

  10. Robustness of Fat Quantification using Chemical Shift Imaging

    PubMed Central

    Hansen, Katie H; Schroeder, Michael E; Hamilton, Gavin; Sirlin, Claude B; Bydder, Mark

    2011-01-01

    This purpose of this study was to investigate the effect of parameter changes that can potentially lead to unreliable measurements in fat quantification. Chemical shift imaging was performed using spoiled gradient echo sequences with systematic variations in the following: 2D/3D sequence, number of echoes, delta echo time, fractional echo factor, slice thickness, repetition time, flip angle, bandwidth, matrix size, flow compensation and field strength. Results indicated no significant (or significant but small) changes in fat fraction with parameter. The significant changes can be attributed to known effects of T1 bias and the two forms of noise bias. PMID:22055856

  11. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2013-12-01

    11), and time to peak enhancement (TTP) were also determined for each lesion. TTP was calculated from the EMM parameters – i.e. the time at which...rate (α) (min-1) 0.54 ± 0.45 0.62 ± 0.64 14%±76% 51% ± 55% Washout rate (β) (min-1) 0.06 ± 0.03 0.03 ± 0.03 -11%±84% 67% ± 46% Time to peak ...radiofrequency field. Magn. Reson. Med. 2007;57:192– 200. doi: 10.1002/ mrm .21120. 7. Nehrke K. On the steady-state properties of actual flip angle imaging (AFI

  12. Dynamic knee stability and ballistic knee movement after ACL reconstruction: an application on instep soccer kick.

    PubMed

    Cordeiro, Nuno; Cortes, Nelson; Fernandes, Orlando; Diniz, Ana; Pezarat-Correia, Pedro

    2015-04-01

    The instep soccer kick is a pre-programmed ballistic movement with a typical agonist-antagonist coordination pattern. The coordination pattern of the kick can provide insight into deficient neuromuscular control. The purpose of this study was to investigate knee kinematics and hamstrings/quadriceps coordination pattern during the knee ballistic extension phase of the instep kick in soccer players after anterior cruciate ligament reconstruction (ACL reconstruction). Seventeen players from the Portuguese Soccer League participated in this study. Eight ACL-reconstructed athletes (experimental group) and 9 healthy individuals (control group) performed three instep kicks. Knee kinematics (flexion and extension angles at football contact and maximum velocity instants) were calculated during the kicks. Rectus femoris (RF), vastus lateralis, vastus medialis, biceps femoralis, and semitendinosus muscle activations were quantified during the knee extension phase. The ACL-reconstructed group had significantly lower knee extension angle (-1.2 ± 1.6, p < 0.021) and increased variability (1.1 ± 1.2, p < 0.012) when compared with the control group. Within the EMG variables, the RF had a significantly greater activity in the ACL-reconstructed group than in the control group (79.9 ± 27.7 % MVC vs. 49.2 ± 20.8 % MVC, respectively, p < 0.034). No other statistically significant differences were found. The findings of this study demonstrate that changes in ACL-reconstructed individuals were observed on knee extension angle and RF muscle activation while performing an instep kick. These findings are in accordance with the knee stability recovery process after ACL reconstruction. No differences were observed in the ballistic control movement pattern between normal and ACL-reconstructed subjects. Performing open kinetic chain exercises using ballistic movements can be beneficial when recovering from ACL reconstruction. The exercises should focus on achieving multi-joint coordination and full knee extension (range of motion). III.

  13. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  14. A Finite-Orbit-Width Fokker-Planck solver for modeling of RF Current Drive in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of constants-of-motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. A recent development is the capability to obtain solution simultaneously for FOW ions and Zero-Orbit-Width (ZOW) electrons. As a practical application, the code is used for simulation of alpha-particle heating by high-harmonic waves in ITER scenarios. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions such as alphas or NBI-produced deuterons, through finite Larmor-radius effects. Based on simulations, we formulate conditions where the fast ions absorb less than 10% of RF power. Supported by USDOE Grants ER54649, ER54744, and SC0006614.

  15. Flipped Learning in the Workplace

    ERIC Educational Resources Information Center

    Nederveld, Allison; Berge, Zane L.

    2015-01-01

    Purpose: The purpose of this paper is to serve as a summary of resources on flipped learning for workplace learning professionals. A recent buzzword in the training world is "flipped". Flipped learning and the flipped classroom are hot topics that have emerged in K-12 education, made their way to the university and are now being noticed…

  16. How to Flip the Classroom--"Productive Failure or Traditional Flipped Classroom" Pedagogical Design?

    ERIC Educational Resources Information Center

    Song, Yanjie; Kapur, Manu

    2017-01-01

    The paper reports a quasi-experimental study comparing the "traditional flipped classroom" pedagogical design with the "productive failure" (Kapur, 2016) pedagogical design in the flipped classroom for a 2-week curricular unit on polynomials in a Hong Kong Secondary school. Different from the flipped classroom where students…

  17. How Flipping Much? Consecutive Flipped Mathematics Courses and Their Influence on Students' Anxieties and Perceptions of Learning

    ERIC Educational Resources Information Center

    Dove, Anthony; Dove, Emily

    2017-01-01

    While studies have shown positive attributes related to flipped learning, especially in mathematics and statistics, there is limited understanding of how taking multiple flipped courses may impact students' learning of mathematics and their perceptions of mathematics. Specifically, this study examined how completing consecutive flipped mathematics…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng, E-mail: wy3121685@163.com

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  19. Flipping the Graduate Qualitative Research Methods Classroom: Did It Lead to Flipped Learning?

    ERIC Educational Resources Information Center

    Earley, Mark

    2016-01-01

    The flipped, or inverted, classroom has gained popularity in a variety of fields and at a variety of educational levels, from K-12 through higher education. This paper describes the author's positive experience flipping a graduate qualitative research methods classroom. After a review of the current literature on flipped classrooms in higher…

  20. Re-Envisioning the Archaic Higher Education Learning Environment: Implementation Processes for Flipped Classrooms

    ERIC Educational Resources Information Center

    Rabidoux, Salena; Rottmann, Amy

    2018-01-01

    Flipped classrooms are often utilized in PK-12 classrooms; however, there is also a growing trend of flipped classrooms in higher education. This paper presents the benefits and limitations of implementing flipped classrooms in higher education as well as resources for integrating a flipped classroom design to instruction. The various technology…

  1. Flip-J: Development of the System for Flipped Jigsaw Supported Language Learning

    ERIC Educational Resources Information Center

    Yamada, Masanori; Goda, Yoshiko; Hata, Kojiro; Matsukawa, Hideya; Yasunami, Seisuke

    2016-01-01

    This study aims to develop and evaluate a language learning system supported by the "flipped jigsaw" technique, called "Flip-J". This system mainly consists of three functions: (1) the creation of a learning material database, (2) allocation of learning materials, and (3) formation of an expert and jigsaw group. Flip-J was…

  2. Low-complexity peak-to-average power ratio reduction scheme for flip-orthogonal frequency division multiplexing visible light communication system based on μ-law mapping

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Zhang, Peiran; Lu, Huimin; Feng, LiFang

    2017-06-01

    An orthogonal frequency division multiplexing (OFDM) technique called flipped OFDM (flip-OFDM) is apposite for a visible light communication system that needs the transmitted signal to be real and positive. Flip-OFDM uses two consecutive OFDM subframes to transmit the positive and negative parts of the signal. However, peak-to-average power ratio (PAPR) for flip-OFDM is increased tremendously due to the low value of total average power that arises from many zero values in both the positive and flipped frames. We first analyze the performance of flip-OFDM and perform a comparison with the conventional DC-biased OFDM (DCO-OFDM); then we propose a flip-OFDM scheme combined with μ-law mapping to reduce the high PAPR. The simulation results show that the PAPR of the system is reduced about 17.2 and 5.9 dB when compared with the normal flip-OFDM and DCO-OFDM signals, respectively.

  3. Poisson property of the occurrence of flip-flops in a model membrane.

    PubMed

    Arai, Noriyoshi; Akimoto, Takuma; Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji

    2014-02-14

    How do lipid molecules in membranes perform a flip-flop? The flip-flops of lipid molecules play a crucial role in the formation and flexibility of membranes. However, little has been determined about the behavior of flip-flops, either experimentally, or in molecular dynamics simulations. Here, we provide numerical results of the flip-flops of model lipid molecules in a model membrane and investigate the statistical properties, using millisecond-order coarse-grained molecular simulations (dissipative particle dynamics). We find that there are three different ways of flip-flops, which can be clearly characterized by their paths on the free energy surface. Furthermore, we found that the probability of the number of the flip-flops is well fitted by the Poisson distribution, and the probability density function for the inter-occurrence times of flip-flops coincides with that of the forward recurrence times. These results indicate that the occurrence of flip-flops is a Poisson process, which will play an important role in the flexibilities of membranes.

  4. Multiplexed HTS rf SQUID magnetometer array for eddy current testing of aircraft rivet joints

    NASA Astrophysics Data System (ADS)

    Gärtner, S.; Krause, H.-J.; Wolters, N.; Lomparski, D.; Wolf, W.; Schubert, J.; Kreutzbruck, M. v.; Allweins, K.

    2002-05-01

    Using three rf SQUID magnetometers, a multiplexed SQUID array was implemented. The SQUIDs are positioned in line with 7 mm spacing and operated using one feedback electronics with sequential read out demodulation at different radio frequencies (rf). The cross-talk between SQUID channels was determined to be negligible. To show the performance of the SQUID array, eddy current (EC) measurements of aluminum aircraft samples in conjunction with a differential (double-D) EC excitation and lock-in readout were carried out. With computer-controlled continuous switching of the SQUIDs during the scan, three EC signal traces of the sample are obtained simultaneously. We performed measurements with an EC excitation frequency of 135 Hz to localize an artificial crack (sawcut flaw) of 20 mm length in an aluminum sheet with 0.6 mm thickness. The flaw was still detected when covered with aluminum of up to 10 mm thickness. In addition, measurements with varying angles between scanning direction and flaw orientation are presented.

  5. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  6. Perceptions of Senior-Year ELT Students for Flipped Classroom: A Materials Development Course

    ERIC Educational Resources Information Center

    Adnan, Müge

    2017-01-01

    This paper describes a structured attempt to integrate the flipped classroom model into a senior-level course at the higher education level. This study's purpose is to examine and compare the impact of flipped classrooms versus non-flipped as a means to contribute to the growing line of research on flipped teaching through an evaluation of both…

  7. To Flip or Not to Flip? Analysis of a Flipped Classroom Pedagogy in a General Biology Course

    ERIC Educational Resources Information Center

    Heyborne, William H.; Perrett, Jamis J.

    2016-01-01

    In an attempt to better understand the flipped technique and evaluate its purported superiority in terms of student learning gains, the authors conducted an experiment comparing a flipped classroom to a traditional lecture classroom. Although the outcomes were mixed, regarding the superiority of either pedagogical approach, there does seem to be a…

  8. ELEVATION OF C-FLIP IN CASTRATE-RESISTANT PROSTATE CANCER ANTAGONIZES THERAPEUTIC RESPONSE TO ANDROGEN-RECEPTOR TARGETED THERAPY

    PubMed Central

    McCourt, Clare; Maxwell, Pamela; Mazzucchelli, Roberta; Montironi, Rodolfo; Scarpelli, Marina; Salto-Tellez, Manuel; O’Sullivan, Joe M.; Longley, Daniel B.; Waugh, David J.J.

    2012-01-01

    Purpose To characterize the importance of cellular Fas-associated death domain (FADD)-like interleukin 1β-converting enzyme (FLICE) inhibitory protein (c-FLIP), a key regulator of caspase 8 (FLICE)-promoted apoptosis, in modulating the response of prostate cancer (CaP) cells to androgen receptor (AR)-targeted therapy. Experimental Design c-FLIP expression was characterized by immunohistochemical analysis of prostatectomy tissue. The functional importance of c-FLIP to survival and modulating response to bicalutamide was studied by molecular and pharmacological interventions. Results c-FLIP expression was increased in high-grade prostatic intra-epithelial neoplasia (HGPIN) and CaP tissue relative to normal prostate epithelium (P<0.001). Maximal c-FLIP expression was detected in castrate-resistant CaP (CRPC) (P<0.001). In vitro, silencing of c-FLIP induced spontaneous apoptosis and increased 22Rv1 and LNCaP cell sensitivity to bicalutamide, determined by flow cytometry, PARP cleavage and caspase activity assays. The histone deacetylase inhibitors (HDACi), droxinostat and SAHA, also down-regulated c-FLIP expression, induced caspase-8 and caspase-3/7 mediated apoptosis and increased apoptosis in bicalutamide-treated cells. Conversely, the elevated expression of c-FLIP detected in the CRPC cell line VCaP underpinned their insensitivity to bicalutamide and SAHA in vitro. However, knockdown of c-FLIP induced spontaneous apoptosis in VCaP cells, indicating its relevance to cell survival and therapeutic resistance. Conclusion c-FLIP reduces the efficacy of AR-targeted therapy and maintains the viability of CaP cells. A combination of HDACi with androgen-deprivation therapy (ADT) may be effective in early-stage disease, using c-FLIP expression as a predictive biomarker of sensitivity. Direct targeting of c-FLIP however may be relevant to enhance the response of existing and novel therapeutics in CRPC. PMID:22623731

  9. Points about Shoes

    MedlinePlus

    ... comfortable in the store. Slip off the flip-flops. Flip-flops don’t give your feet enough support, so ... things like stubbing your toe. Consider some flip-flop how-tos: Buy new flip-flops when they ...

  10. Performance of unenhanced respiratory-gated 3D SSFP MRA to depict hepatic and visceral artery anatomy and variants.

    PubMed

    Puippe, Gilbert D; Alkadhi, Hatem; Hunziker, Roger; Nanz, Daniel; Pfammatter, Thomas; Baumueller, Stephan

    2012-08-01

    To prospectively evaluate the performance of unenhanced respiratory-gated magnetization-prepared 3D-SSFP inversion recovery MRA (unenhanced-MRA) to depict hepatic and visceral artery anatomy and variants in comparison to contrast-enhanced dynamic gradient-echo MRI (CE-MRI) and to digital subtraction angiography (DSA). Eighty-four patients (55.6±12.4 years) were imaged with CE-MRI (TR/TE 3.5/1.7ms, TI 1.7ms, flip-angle 15°) and unenhanced-MRA (TR/TE 4.4/2.2ms, TI 200ms, flip-angle 90°). Two independent readers assessed image quality of hepatic and visceral arteries on a 4-point-scale. Vessel contrast was measured by a third reader. In 28 patients arterial anatomy was compared to DSA. Interobserver agreement regarding image quality was good for CE-MRI (κ=0.77) and excellent for unenhanced-MRA (κ=0.83). Unenhanced-MRA yielded diagnostic image quality in 71.6% of all vessels, whereas CE-MRI provided diagnostic image quality in 90.6% (p<0.001). Vessel-based image quality was significantly superior for all vessels at CE-MRI compared to unenhanced-MRA (p<0.01). Vessel contrast was similar among both sequences (p=0.15). Compared to DSA, CE-MRI and unenhanced-MRA yielded equal accuracy of 92.9-96.4% for depiction of hepatic and visceral artery variants (p=0.93). Unenhanced-MRA provides diagnostic image quality in 72% of hepatic and visceral arteries with no significant difference in vessel contrast and similar accuracy to CE-MRI for depiction of hepatic and visceral anatomy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Three-dimensional sampling perfection with application-optimised contrasts using a different flip angle evolutions sequence for routine imaging of the spine: preliminary experience

    PubMed Central

    Tins, B; Cassar-Pullicino, V; Haddaway, M; Nachtrab, U

    2012-01-01

    Objectives The bulk of spinal imaging is still performed with conventional two-dimensional sequences. This study assesses the suitability of three-dimensional sampling perfection with application-optimised contrasts using a different flip angle evolutions (SPACE) sequence for routine spinal imaging. Methods 62 MRI examinations of the spine were evaluated by 2 examiners in consensus for the depiction of anatomy and presence of artefact. We noted pathologies that might be missed using the SPACE sequence only or the SPACE and a sagittal T1 weighted sequence. The reference standards were sagittal and axial T1 weighted and T2 weighted sequences. At a later date the evaluation was repeated by one of the original examiners and an additional examiner. Results There was good agreement of the single evaluations and consensus evaluation for the conventional sequences: κ>0.8, confidence interval (CI)>0.6–1.0. For the SPACE sequence, depiction of anatomy was very good for 84% of cases, with high interobserver agreement, but there was poor interobserver agreement for other cases. For artefact assessment of SPACE, κ=0.92, CI=0.92–1.0. The SPACE sequence was superior to conventional sequences for depiction of anatomy and artefact resistance. The SPACE sequence occasionally missed bone marrow oedema. In conjunction with sagittal T1 weighted sequences, no abnormality was missed. The isotropic SPACE sequence was superior to conventional sequences in imaging difficult anatomy such as in scoliosis and spondylolysis. Conclusion The SPACE sequence allows excellent assessment of anatomy owing to high spatial resolution and resistance to artefact. The sensitivity for bone marrow abnormalities is limited. PMID:22374284

  12. Three-dimensional sampling perfection with application-optimised contrasts using a different flip angle evolutions sequence for routine imaging of the spine: preliminary experience.

    PubMed

    Tins, B; Cassar-Pullicino, V; Haddaway, M; Nachtrab, U

    2012-08-01

    The bulk of spinal imaging is still performed with conventional two-dimensional sequences. This study assesses the suitability of three-dimensional sampling perfection with application-optimised contrasts using a different flip angle evolutions (SPACE) sequence for routine spinal imaging. 62 MRI examinations of the spine were evaluated by 2 examiners in consensus for the depiction of anatomy and presence of artefact. We noted pathologies that might be missed using the SPACE sequence only or the SPACE and a sagittal T(1) weighted sequence. The reference standards were sagittal and axial T(1) weighted and T(2) weighted sequences. At a later date the evaluation was repeated by one of the original examiners and an additional examiner. There was good agreement of the single evaluations and consensus evaluation for the conventional sequences: κ>0.8, confidence interval (CI)>0.6-1.0. For the SPACE sequence, depiction of anatomy was very good for 84% of cases, with high interobserver agreement, but there was poor interobserver agreement for other cases. For artefact assessment of SPACE, κ=0.92, CI=0.92-1.0. The SPACE sequence was superior to conventional sequences for depiction of anatomy and artefact resistance. The SPACE sequence occasionally missed bone marrow oedema. In conjunction with sagittal T(1) weighted sequences, no abnormality was missed. The isotropic SPACE sequence was superior to conventional sequences in imaging difficult anatomy such as in scoliosis and spondylolysis. The SPACE sequence allows excellent assessment of anatomy owing to high spatial resolution and resistance to artefact. The sensitivity for bone marrow abnormalities is limited.

  13. Effects of intravenous gadolinium administration and flip angle on the assessment of liver fat signal fraction with opposed-phase and in-phase imaging.

    PubMed

    Yokoo, Takeshi; Collins, Julie M; Hanna, Robert F; Bydder, Mark; Middleton, Michael S; Sirlin, Claude B

    2008-07-01

    To assess the effects of intravenous gadolinium (Gd) and flip angle (FA) on liver fat quantification by opposed-phase (OP) and in-phase (IP) imaging. Our Institutional Review Board (IRB) approved this Health Insurance Portability and Accountability Act (HIPAA)-compliant, retrospective, clinical study. We identified 79 patients in whom abdominal OP and IP gradient-echoes were obtained at 1.5T before and after Gd administration. All 79 patients were imaged at high FA (> or =70 degrees ); 57 were also imaged at low FA (< or =20 degrees ). Fat signal fraction (FSF) was calculated from pre- and post-Gd liver images for each subject and FA using the formula, FSF = (S(IP) - S(OP))/2S(IP), where S(IP) and S(OP) are the OP and IP signal intensities, respectively. The dataset pairs (pre-Gd vs. post-Gd; high-FA vs. low-FA) were compared using linear regression analysis. Before Gd, FSF was significantly greater at high FA than at low FA, with regression parameters (slope/intercept) of 1.27*/0.02*, where * indicates P value <0.01. After Gd, FSF was similar at high and low FA (0.99/-0.00). Gd administration caused an FA-dependent reduction in FSF, larger at high FA (0.68*/-0.03*) than at low FA (0.94, -0.01*). FSF by OP-IP imaging is highly dependent on FA before Gd, but this dependency is eliminated after administration of Gd. Gd appears to minimize the effect of T1-weighting and may improve the accuracy of liver fat quantification. (c) 2008 Wiley-Liss, Inc.

  14. Induced Polarization Influences the Fundamental Forces in DNA Base Flipping

    PubMed Central

    2015-01-01

    Base flipping in DNA is an important process involved in genomic repair and epigenetic control of gene expression. The driving forces for these processes are not fully understood, especially in the context of the underlying dynamics of the DNA and solvent effects. We studied double-stranded DNA oligomers that have been previously characterized by imino proton exchange NMR using both additive and polarizable force fields. Our results highlight the importance of induced polarization on the base flipping process, yielding near-quantitative agreement with experimental measurements of the equilibrium between the base-paired and flipped states. Further, these simulations allow us to quantify for the first time the energetic implications of polarization on the flipping pathway. Free energy barriers to base flipping are reduced by changes in dipole moments of both the flipped bases that favor solvation of the bases in the open state and water molecules adjacent to the flipping base. PMID:24976900

  15. Single-transistor-clocked flip-flop

    DOEpatents

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  16. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells.

    PubMed

    Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

    2013-04-04

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

  17. Evaluation of esophageal motility utilizing the functional lumen imaging probe (FLIP)

    PubMed Central

    Carlson, Dustin A.; Kahrilas, Peter J.; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A.; Wong, Ian; Pandolfino, John E.

    2016-01-01

    Background Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. Methods 145 patients (ages 18 – 85, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered ‘abnormal’. FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered ‘abnormal’ if EGJ-DI was < 2.8 mm2/mmHg or contractility pattern demonstrated absent contractility or repetitive, retrograde contractions. Results HRM was abnormal in 111 (77%) patients: 70 achalasia (19 type I, 39 type II, 12 type III), 38 EGJ outflow obstruction, and three jackhammer esophagus. FLIP topography was abnormal in 106 (95%) of these patients, including all 70 achalasia patients. HRM was ‘normal’ in 34 (23%) patients: five ineffective esophageal motility and 29 normal motility. 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. Conclusions FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia. PMID:27725650

  18. Flow around a slotted circular cylinder at various angles of attack

    NASA Astrophysics Data System (ADS)

    Gao, Dong-Lai; Chen, Wen-Li; Li, Hui; Hu, Hui

    2017-10-01

    We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D ( D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.

  19. Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias

    2013-11-01

    By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.

  20. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima

    2016-05-06

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less

  1. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  2. Detection of trans–cis flips and peptide-plane flips in protein structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Wouter G., E-mail: wouter.touw@radboudumc.nl; Joosten, Robbie P.; Vriend, Gert, E-mail: wouter.touw@radboudumc.nl

    A method is presented to detect peptide bonds that need either a trans–cis flip or a peptide-plane flip. A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans–cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans–cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure–function relation. All data, including 1088 manually validated cases, are freely availablemore » and the method is available from a web server, a web-service interface and through WHAT-CHECK.« less

  3. The Flipped Learning Approach in Nursing Education: A Literature Review.

    PubMed

    Presti, Carmen Rosa

    2016-05-01

    This integrative review examines the application of the pedagogical methodology-the flipped classroom-in nursing education. A literature search of the CINAHL, ERIC, and the National Library of Medicine (PubMed and MEDLINE) databases was conducted, using the following key words: flipped classroom, inverted classroom, and nursing education. Results of a literature search yielded 94 articles, with 13 meeting the criteria of the flipped classroom approach in nursing education. Themes identified include the theoretical underpinning, strategies for implementation of a flipped classroom, and student satisfaction with and outcomes of the flipped classroom approach. Syntheses of the findings indicate that the flipped classroom approach can yield positive outcomes, but further study of this methodology is needed to guide future implementation. [J Nurs Educ. 2016;55(5):252-257.]. Copyright 2016, SLACK Incorporated.

  4. The eccentric Kozai-Lidov effect as a resonance phenomenon

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav V.

    2018-01-01

    Exploring weakly perturbed Keplerian motion within the restricted three-body problem, Lidov (Planet Space Sci 9:719-759, 1962) and, independently, Kozai (Astron J 67:591-598, 1962) discovered coupled oscillations of eccentricity and inclination (the KL cycles). Their classical studies were based on an integrable model of the secular evolution, obtained by double averaging of the disturbing function approximated with its first non-trivial term. This was the quadrupole term in the series expansion with respect to the ratio of the semimajor axis of the disturbed body to that of the disturbing body. If the next (octupole) term is kept in the expression for the disturbing function, long-term modulation of the KL cycles can be established (Ford et al. in Astrophys J 535:385-401, 2000; Naoz et al. in Nature 473:187-189, 2011; Katz et al. in Phys Rev Lett 107:181101, 2011). Specifically, flips between the prograde and retrograde orbits become possible. Since such flips are observed only when the perturber has a nonzero eccentricity, the term "eccentric Kozai-Lidov effect" (or EKL effect) was proposed by Lithwick and Naoz (Astrophys J 742:94, 2011) to specify such behavior. We demonstrate that the EKL effect can be interpreted as a resonance phenomenon. To this end, we write down the equations of motion in terms of "action-angle" variables emerging in the integrable Kozai-Lidov model. It turns out that for some initial values the resonance is degenerate and the usual "pendulum" approximation is insufficient to describe the evolution of the resonance phase. Analysis of the related bifurcations allows us to estimate the typical time between the successive flips for different parts of the phase space.

  5. Effect of flip-flops on lower limb kinematics during walking: a cross-sectional study using three-dimensional gait analysis.

    PubMed

    Sharpe, T; Malone, A; French, H; Kiernan, D; O'Brien, T

    2016-05-01

    Flip-flops are a popular footwear choice in warm weather however their minimalist design offers little support to the foot. To investigate the effect of flip-flops on lower limb gait kinematics in healthy adults, to measure adherence between the flip-flop and foot, and to assess the effect on toe clearance in swing. Fifteen healthy adults (8 male, mean age 27 years) completed a three-dimensional gait analysis assessment using Codamotion. Kinematic and lower limb temporal-spatial data were captured using the Modified Helen Hayes marker set with additional markers on the hallux and flip-flop sole. Compared to barefoot walking, there were no differences in temporal-spatial parameters walking with flip-flops. There was an increase in peak knee flexion in swing (mean difference 4.6°, 95 % confidence interval (CI) [-5.8°, -3.4°], p < 0.001) and peak ankle dorsiflexion at terminal swing (mean difference 2°, 95 % CI [-3°, -1°], p = 0.001). Other kinematic parameters were unchanged. Peak separation between foot and flip-flop was 8.8 cm (SD 1.48), occurring at pre-swing. Minimum toe clearance of the hallux in barefoot walking measured 4.2 cm (SD 0.8). Minimum clearance of the flip-flop was 1.6 cm (SD 0.56). Healthy adults adapted well to flip-flops. However, separation of the flip-flop from the foot led to increased knee flexion and ankle dorsiflexion in swing, probably to ensure that the flip-flop did not contact the ground and to maximise adherence to the foot. Minimum clearance of the flip-flop was low compared to barefoot clearance. This may increase the risk of tripping over uneven ground.

  6. Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein.

    PubMed

    Wilkie-Grantham, Rachel P; Matsuzawa, Shu-Ichi; Reed, John C

    2013-05-03

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIP(L)) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIP(L) protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIP(L) important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL.

  7. Student experiences across multiple flipped courses in a single curriculum.

    PubMed

    Khanova, Julia; Roth, Mary T; Rodgers, Jo Ellen; McLaughlin, Jacqueline E

    2015-10-01

    The flipped classroom approach has garnered significant attention in health professions education, which has resulted in calls for curriculum-wide implementations of the model. However, research to support the development of evidence-based guidelines for large-scale flipped classroom implementations is lacking. This study was designed to examine how students experience the flipped classroom model of learning in multiple courses within a single curriculum, as well as to identify specific elements of flipped learning that students perceive as beneficial or challenging. A qualitative analysis of students' comments (n = 6010) from mid-course and end-of-course evaluations of 10 flipped courses (in 2012-2014) was conducted. Common and recurring themes were identified through systematic iterative coding and sorting using the constant comparison method. Multiple coders, agreement through consensus and member checking were utilised to ensure the trustworthiness of findings. Several themes emerged from the analysis: (i) the perceived advantages of flipped learning coupled with concerns about implementation; (ii) the benefits of pre-class learning and factors that negatively affect these benefits, such as quality and quantity of learning materials, as well as overall increase in workload, especially in the context of multiple concurrent flipped courses; (iii) the role of the instructor in the flipped learning environment, particularly in engaging students in active learning and ensuring instructional alignment, and (iv) the need for assessments that emphasise the application of knowledge and critical thinking skills. Analysis of data from 10 flipped courses provided insight into common patterns of student learning experiences specific to the flipped learning model within a single curriculum. The study points to the challenges associated with scaling the implementation of the flipped classroom across multiple courses. Several core elements critical to the effective design and implementation of the flipped classroom model are identified. © 2015 John Wiley & Sons Ltd.

  8. The Flipped Classroom in Counselor Education

    ERIC Educational Resources Information Center

    Moran, Kristen; Milsom, Amy

    2015-01-01

    The flipped classroom is proposed as an effective instructional approach in counselor education. An overview of the flipped-classroom approach, including advantages and disadvantages, is provided. A case example illustrates how the flipped classroom can be applied in counselor education. Recommendations for implementing or researching flipped…

  9. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  10. Cellular FLICE-inhibitory Protein (cFLIP) Isoforms Block CD95- and TRAIL Death Receptor-induced Gene Induction Irrespective of Processing of Caspase-8 or cFLIP in the Death-inducing Signaling Complex*

    PubMed Central

    Kavuri, Shyam M.; Geserick, Peter; Berg, Daniela; Dimitrova, Diana Panayotova; Feoktistova, Maria; Siegmund, Daniela; Gollnick, Harald; Neumann, Manfred; Wajant, Harald; Leverkus, Martin

    2011-01-01

    Death receptors (DRs) induce apoptosis but also stimulate proinflammatory “non-apoptotic” signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIPS, cFLIPL, or mutants of cFLIPL (cFLIPD376N and cFLIPp43). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIPL induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIPS or cFLIPp43 blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin. PMID:21454681

  11. Advanced sensor systems for biotelemetry

    NASA Technical Reports Server (NTRS)

    Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor); Hines, John W. (Inventor); Somps, Christopher J. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  12. Advanced Sensor Systems for Biotelemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 microW, which yields a lifetime of approximately 6 - 9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38 x 28 mm to 22 x 8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  13. COHERENT enlightenment of the neutrino dark side

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2017-12-01

    In the presence of nonstandard neutrino interactions (NSI), oscillation data are affected by a degeneracy which allows the solar mixing angle to be in the second octant (also known as the dark side) and implies a sign flip of the atmospheric mass-squared difference. This leads to an ambiguity in the determination of the ordering of neutrino masses, one of the main goals of the current and future experimental neutrino program. We show that the recent observation of coherent neutrino-nucleus scattering by the COHERENT experiment, in combination with global oscillation data, excludes the NSI degeneracy at the 3.1 σ (3.6 σ ) C.L. for NSI with up (down) quarks.

  14. Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.

    PubMed

    Zaitsev, M; Steinhoff, S; Shah, N J

    2003-06-01

    A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.

  15. Polarization mode control of long-wavelength VCSELs by intracavity patterning

    DOE PAGES

    Long, Christopher Michael; Mickovic, Zlatko; Dwir, Benjamin; ...

    2016-04-26

    Polarization mode control is enhanced in wafer-fused vertical-cavity surface-emitting lasers emitting at 1310 nm wavelength by etching two symmetrically arranged arcs above the gain structure within the laser cavity. The intracavity patterning introduces birefringence and dichroism, which discriminates between the two polarization states of the fundamental transverse modes. We find that the cavity modifications define the polarization angle at threshold with respect to the crystal axes, and increase the gain anisotropy and birefringence on average, leading to an increase in the polarization switching current. As a result, experimental measurements are explained using the spin-flip model of VCSEL polarization dynamics.

  16. The Marriage of Constructivism and Flipped Learning

    ERIC Educational Resources Information Center

    Chang, Sau Hou

    2016-01-01

    This report talks about how a constructivist teacher used flipped learning in a college class. To illustrate how to use flipped learning in a constructivist classroom, examples were given with the four pillars of F-L-I-P: Flexible environment, learning culture, intentional content, and professional educator.

  17. Functional treatment after surgical repair for acute lateral ligament disruption of the ankle in athletes.

    PubMed

    Takao, Masato; Miyamoto, Wataru; Matsui, Kentaro; Sasahara, Jun; Matsushita, Takashi

    2012-02-01

    There have been several reports showing 20% to 40% failure after nonoperative functional treatment for acute lateral ligament disruption of the ankle. Functional treatment after primary surgical repair has the advantage of decreasing the failure rate in comparison with functional treatment alone. Cohort study; Level of evidence, 3. A total of 132 feet of 132 patients were included in this study. Of these, 78 patients were treated with functional treatment alone (group F), and the remaining 54 patients were treated with functional treatment after primary surgical repair (group RF). The clinical results were evaluated using the Japanese Society for Surgery of the Foot Ankle-Hindfoot scale (JSSF) score, measuring the talar tilt angle and the anterior displacement of the talus in stress radiography, and noting the elapsed time between the injury and the return to the full athletic activity with no external supports. The mean JSSF scores at 2 years after injury were 95.6 ± 5.0 points in group F and 97.5 ± 2.6 points in group RF (P = .0669). The differences of the talar tilt angles compared with the contralateral side and displacement of the talus on stress radiography at 2 years after injury were 1.1° ± 1.5° and 3.6 ± 1.6 mm in group F, and 0.8° ± 0.9° and 3.2 ± 0.8 mm in group RF, respectively (P = .4093, .1883). In group F, 8 cases showed fair to poor results, with JSSF scores below 80 points and instability at 2 years after injury. In group RF, 9 cases (9.4%) showed dorsum foot pain along the superficial peroneal nerve, which disappeared within a month. The time elapsed between the injury and the patient's return to full athletic activity without any external supports was 16.0 ± 5.6 weeks in group F and 10.1 ± 1.8 weeks in group RF (P < .0001). Nonoperative functional treatment alone and functional treatment after primary surgical repair showed similar overall results after acute lateral ankle sprain, but functional treatment alone had an approximately 10% failure rate and a slower return to full athletic activity. The authors recommend that treatment be tailored to suit each individual athlete.

  18. Short form FLICE-inhibitory protein promotes TNFα-induced necroptosis in fibroblasts derived from CFLARs transgenic mice.

    PubMed

    Shindo, Ryodai; Yamazaki, Soh; Ohmuraya, Masaki; Araki, Kimi; Nakano, Hiroyasu

    2016-11-04

    Cellular FLICE-inhibitory protein (cFLIP) is a catalytically inactive homolog of the initiator caspase, caspase 8 and blocks apoptosis through binding to caspase 8. Human CFLAR gene encodes two proteins, a long form cFLIP (cFLIP L ) and a short form cFLIP (cFLIPs) due to an alternative splicing. Recent studies have shown that expression of cFLIPs, but not cFLIP L promotes programmed necrosis (also referred to as necroptosis) in an immortalized human keratinocyte cell line, HaCaT. Here, we found that expression of cFLIPs similarly promoted necroptosis in immortalized fibroblasts. To further expand this observation and exclude the possibility that immortalization process of keratinocytes or fibroblasts might affect the phenotype induced by cFLIPs expression, we generated human CFLARs transgenic (Tg) mice. Primary fibroblasts derived from CFLARs Tg mice were increased in susceptibility to TNFα-induced necroptosis, but not apoptosis compared to wild-type (WT) fibroblasts. Moreover, hallmarks of necroptosis, such as phosphorylation of receptor-interacting protein kinase (RIPK)1 and RIPK3, and oligomer formation of mixed lineage kinase domain-like (MLKL) were robustly induced in CFLARs Tg fibroblasts compared to wild-type fibroblasts following TNFα stimulation. Thus, cFLIPs-dependent promotion of necroptosis is not unique to immortalized keratinocytes or fibroblasts, but also to generalized to primary fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, K.; Che, H.; Ge, Y. P.

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  20. Improvement of the repeatability of parallel transmission at 7T using interleaved acquisition in the calibration scan.

    PubMed

    Kameda, Hiroyuki; Kudo, Kohsuke; Matsuda, Tsuyoshi; Harada, Taisuke; Iwadate, Yuji; Uwano, Ikuko; Yamashita, Fumio; Yoshioka, Kunihiro; Sasaki, Makoto; Shirato, Hiroki

    2017-12-04

    Respiration-induced phase shift affects B 0 /B 1 + mapping repeatability in parallel transmission (pTx) calibration for 7T brain MRI, but is improved by breath-holding (BH). However, BH cannot be applied during long scans. To examine whether interleaved acquisition during calibration scanning could improve pTx repeatability and image homogeneity. Prospective. Nine healthy subjects. 7T MRI with a two-channel RF transmission system was used. Calibration scanning for B 0 /B 1 + mapping was performed under sequential acquisition/free-breathing (Seq-FB), Seq-BH, and interleaved acquisition/FB (Int-FB) conditions. The B 0 map was calculated with two echo times, and the B 1 + map was obtained using the Bloch-Siegert method. Actual flip-angle imaging (AFI) and gradient echo (GRE) imaging were performed using pTx and quadrature-Tx (qTx). All scans were acquired in five sessions. Repeatability was evaluated using intersession standard deviation (SD) or coefficient of variance (CV), and in-plane homogeneity was evaluated using in-plane CV. A paired t-test with Bonferroni correction for multiple comparisons was used. The intersession CV/SDs for the B 0 /B 1 + maps were significantly smaller in Int-FB than in Seq-FB (Bonferroni-corrected P < 0.05 for all). The intersession CVs for the AFI and GRE images were also significantly smaller in Int-FB, Seq-BH, and qTx than in Seq-FB (Bonferroni-corrected P < 0.05 for all). The in-plane CVs for the AFI and GRE images in Seq-FB, Int-FB, and Seq-BH were significantly smaller than in qTx (Bonferroni-corrected P < 0.01 for all). Using interleaved acquisition during calibration scans of pTx for 7T brain MRI improved the repeatability of B 0 /B 1 + mapping, AFI, and GRE images, without BH. 1 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Mapping of intracellular pH in the in vivo rodent heart using hyperpolarized [1-13C]pyruvate.

    PubMed

    Lau, Angus Z; Miller, Jack J; Tyler, Damian J

    2017-05-01

    To demonstrate the feasibility of mapping intracellular pH within the in vivo rodent heart. Alterations in cardiac acid-base balance can lead to acute contractile depression and alterations in Ca 2+ signaling. The transient reduction in adenosine triphosphate (ATP) consumption and cardiac contractility may be initially beneficial; however, sustained pH changes can be maladaptive, leading to myocardial damage and electrical arrhythmias. Spectrally selective radiofrequency (RF) pulses were used to excite the HCO3- and CO 2 resonances individually while preserving signal from the injected hyperpolarized [1- 13 C]pyruvate. The large flip angle pulses were placed within a three-dimensional (3D) imaging acquisition, which exploited CA-mediated label exchange between HCO3- and CO 2 . Images at 4.5 × 4.5 × 5 mm 3 resolution were obtained in the in vivo rodent heart. The technique was evaluated in healthy rodents scanned at baseline and during high cardiac workload induced by dobutamine infusion. The intracellular pH was measured to be 7.15 ± 0.04 at baseline, and decreased to 6.90 ± 0.06 following 15 min of continuous β-adrenergic stimulation. Volumetric maps of intracellular pH can be obtained following an injection of hyperpolarized [1- 13 C]pyruvate. The new method is anticipated to enable assessment of stress-inducible ischemia and potential ventricular arrythmogenic substrates within the ischemic heart. Magn Reson Med 77:1810-1817, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, J; Place, V; Panda, A

    Purpose: Several institutions have developed MRI guidelines for patients with MR-unsafe or MR-conditional pacemakers. Here we highlight the role of a medical physicist in implementing these guidelines for non-pacemaker dependent patients. Guidelines: Implementing these guidelines requires involvement from several medical specialties and a strong collaboration with the site MRI supervisor to develop a structured workflow. A medical physicist is required to be present during the scan to supervise the MR scanning and to maintain a safety checklist that ensures: 1) uninterrupted patient communication with the technologist, 2) continuous patient physiologic monitoring (e.g. blood pressure and electrocardiography) by a trained nurse,more » 3) redundant patient vitals monitoring (e.g. pulse oximetry) due to the possibility of in vivo electrocardiography reading fluctuations during image acquisition. A radiologist is strongly recommended to be available to review the images before patients are discharged from the scanner. Pacemaker MRI should be restricted to 1.5T field strength. The MRI sequences should be optimized by the physicist with regards to: a) SAR: limited to <1.5 W/Kg for MR-unsafe pacemakers in normal operating mode, b) RF exposure time: <30 min, c) Coils: use T/R coils but not restricted to such, d) Artifacts: further optimization of sequences whenever image quality is compromised due to the pacemaker. In particular, cardiac, breast and left-shoulder MRIs are most susceptible to these artifacts. Possible strategies to lower the SAR include: a) BW reduction, 2) echo-train-length reduction, 3) increase TR, 4) decrease number of averages, 5) decrease flip angle, 6) reduce slices and/or a combination of all the options. Conclusion: A medical physicist in collaboration with the MR supervisor plays an important role in the supervision/implementation of safe MR scanning of pacemaker patients. Developing and establishing a workflow has enabled our institution to scan over 30 patients with pacemakers without complications, including 3 cardiac MR exams.« less

  3. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe.

    PubMed

    Carlson, Dustin A; Kahrilas, Peter J; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A; Wong, Ian; Pandolfino, John E

    2016-12-01

    Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. In all, 145 patients (aged 18-85 years, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered "abnormal". FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered "abnormal" if EGJ-DI was <2.8 mm 2 /mm Hg or contractility pattern demonstrated absent contractility or repetitive, retrograde contractions. HRM was abnormal in 111 (77%) patients: 70 achalasia (19 type I, 39 type II, and 12 type III), 38 EGJ outflow obstruction, and three jackhammer esophagus. FLIP topography was abnormal in 106 (95%) of these patients, including all 70 achalasia patients. HRM was "normal" in 34 (23%) patients: five ineffective esophageal motility and 29 normal motility. In all, 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia.

  4. Flipping Radiology Education Right Side Up.

    PubMed

    O'Connor, Erin E; Fried, Jessica; McNulty, Nancy; Shah, Pallav; Hogg, Jeffery P; Lewis, Petra; Zeffiro, Thomas; Agarwal, Vikas; Reddy, Sravanthi

    2016-07-01

    In flipped learning, medical students independently learn facts and concepts outside the classroom, and then participate in interactive classes to learn to apply these facts. Although there are recent calls for medical education reform using flipped learning, little has been published on its effectiveness. Our study compares the effects of flipped learning to traditional didactic instruction on students' academic achievement, task value, and achievement emotions. At three institutions, we alternated flipped learning with traditional didactic lectures during radiology clerkships, with 175 medical students completing a pretest on general diagnostic imaging knowledge to assess baseline cohort comparability. Following instruction, posttests and survey examinations of task value and achievement emotions were administered. Linear mixed effects analysis was used to examine the relationship between test scores and instruction type. Survey responses were modeled using ordinal category logistic regression. Instructor surveys were also collected. There were no baseline differences in test scores. Mean posttest minus pretest scores were 10.5% higher in the flipped learning group than in the didactic instruction group (P = 0.013). Assessment of task value and achievement emotions showed greater task value, increased enjoyment, and decreased boredom with flipped learning (all P < 0.01). All instructors preferred the flipped learning condition. Flipped learning was associated with increased academic achievement, greater task value, and more positive achievement emotions when compared to traditional didactic instruction. Further investigation of flipped learning methods in radiology education is needed to determine whether flipped learning improves long-term retention of knowledge, academic success, and patient care. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Investigating Flipped Learning: Student Self-Regulated Learning, Perceptions, and Achievement in an Introductory Biology Course

    NASA Astrophysics Data System (ADS)

    Sletten, Sarah Rae

    2017-06-01

    In flipped classrooms, lectures, which are normally delivered in-class, are assigned as homework in the form of videos, and assignments that were traditionally assigned as homework, are done as learning activities in class. It was hypothesized that the effectiveness of the flipped model hinges on a student's desire and ability to adopt a self-directed learning style. The purpose of this study was twofold; it aimed at examining the relationship between two variables—students' perceptions of the flipped model and their self-regulated learning (SRL) behaviors—and the impact that these variables have on achievement in a flipped class. For the study, 76 participants from a flipped introductory biology course were asked about their SRL strategy use and perceptions of the flipped model. SRL strategy use was measured using a modified version of the Motivated Strategies for Learning Questionnaire (MSLQ; Wolters et al. 2005), while the flipped perceptions survey was newly derived. Student letter grades were collected as a measure of achievement. Through regression analysis, it was found that students' perceptions of the flipped model positively predict students' use of several types of SRL strategies. However, the data did not indicate a relationship between student perceptions and achievement, neither directly nor indirectly, through SRL strategy use. Results suggest that flipped classrooms demonstrate their successes in the active learning sessions through constructivist teaching methods. Video lectures hold an important role in flipped classes, however, students may need to practice SRL skills to become more self-directed and effectively learn from them.

  6. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  7. Impacts of Flipped Classroom in High School Health Education

    ERIC Educational Resources Information Center

    Chen, Li-Ling

    2016-01-01

    As advanced technology increasingly infiltrated into classroom, the flipped classroom has come to light in secondary educational settings. The flipped classroom is a new instructional approach that intends to flip the traditional teacher-centered classroom into student centered. The purpose of this research is to investigate the impact of the…

  8. Performance and Motivation in a Middle School Flipped Learning Course

    ERIC Educational Resources Information Center

    Winter, Joshua W.

    2018-01-01

    Flipped learning is a teaching approach that promotes collaboration by using technology to 'flip' traditional instruction. Content is delivered outside of class in the individual space (online) and the group space (classroom) is used to engage in collaborative activities. Flipped learning shifts the teacher's role toward facilitation. Research on…

  9. Peer Teaching in a Flipped Teacher Education Classroom

    ERIC Educational Resources Information Center

    Graziano, Kevin J.

    2017-01-01

    More and more school administrators are expecting new teachers to flip their classrooms prior to completing their teacher certification. The purpose of this study was to explore the experiences of preservice teachers who facilitated learning in a flipped classroom, to identify the benefits and challenges of flipped instruction on preservice…

  10. How "Flipping" the Classroom Can Improve the Traditional Lecture

    ERIC Educational Resources Information Center

    Berrett, Dan

    2012-01-01

    In this article, the author discusses a teaching technique called "flipping" and describes how "flipping" the classroom can improve the traditional lecture. As its name suggests, flipping describes the inversion of expectations in the traditional college lecture. It takes many forms, including interactive engagement, just-in-time teaching (in…

  11. The Flip Side of Flipped Language Teaching

    ERIC Educational Resources Information Center

    Lyddon, Paul A.

    2015-01-01

    The past decade has seen a growing interest in "flipped teaching", an inversion of traditional teaching methods, whereby instruction formerly taking place in the classroom is made accessible online and lesson time is spent on interaction. Until very recently, flipped learning was largely limited to the Science, Technology, Engineering,…

  12. Flipped Learning, Flipped Satisfaction, Getting the Balance Right

    ERIC Educational Resources Information Center

    Swinburne, Rosemary Fisher; Ross, Bella; LaFerriere, Richard; Maritz, Alex

    2017-01-01

    This paper explores students' perceptions of their learning outcomes, engagement, and satisfaction with a technology-facilitated flipped approach in a third-year core subject at an Australian university during 2014. In this pilot study, findings reveal that students preferred the flipped approach to the traditional face-to-face delivery and…

  13. Applying the Flipped Classroom Model to English Language Arts Education

    ERIC Educational Resources Information Center

    Young, Carl A., Ed.; Moran, Clarice M., Ed.

    2017-01-01

    The flipped classroom method, particularly when used with digital video, has recently attracted many supporters within the education field. Now more than ever, language arts educators can benefit tremendously from incorporating flipped classroom techniques into their curriculum. "Applying the Flipped Classroom Model to English Language Arts…

  14. A high-resolution (13)C 3D CSA-CSA-CSA correlation experiment by means of magic angle turning.

    PubMed

    Hu, J Z; Ye, C; Pugmire, R J; Grant, D M

    2000-08-01

    It is shown in this paper that a previously reported 90 degrees sample flipping (13)C 2D CSA-CSA correlation experiment may be carried out alternatively by employing constant slow sample rotation about the magic angle axis and by synchronizing the read pulse to 13 of the rotor cycle. A high-resolution 3D CSA-CSA-CSA correlation experiment based on the magic angle turning technique is reported in which the conventional 90 degrees 2D CSA-CSA powder pattern for each carbon in a system containing a number of inequivalent carbons may be separated according to the isotropic chemical shift value. The technique is demonstrated on 1,2,3-trimethoxybenzene in which all of the overlapping powder patterns that cannot be segregated by the 2D CSA-CSA experiment are resolved successfully by the 3D CSA-CSA-CSA experiment, including even the two methoxy groups (M(1) and M(3)) whose isotropic shifts, confirmed by high-speed MAS, are separated by only 1 ppm. A difference of 4 ppm in the principal value component (delta(33)) between M(1) and M(3) is readily obtained. Copyright 2000 Academic Press.

  15. Protonation-dependent base flipping in the catalytic triad of a small RNA

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Wang, Xiaohui; Zhang, John Z. H.

    2017-09-01

    Protonation dependent base flipping in RNA has never been studied theoretically. In this work we studied protonation-dependent behavior of the base flipping in the catalytic triad of a single-stranded RNA which was previously characterized by NMR experiment. Molecular dynamics simulation reveals that the GA mismatch in this region accounts for this behavior. Free energy profiles show that the stable point for flipping dihedral shifts about 35° and the free energy barrier along the flipping pathway is elevated upon protonation. The orientation of Guanine from syn to anti conformation is coupled with protonation-dependent base flipping and G-HA+ base pair is formed under acidic condition.

  16. Flipped-Class Pedagogy Enhances Student Metacognition and Collaborative-Learning Strategies in Higher Education But Effect Does Not Persist

    PubMed Central

    van Vliet, E. A.; Winnips, J. C.; Brouwer, N.

    2015-01-01

    In flipped-class pedagogy, students prepare themselves at home before lectures, often by watching short video clips of the course contents. The aim of this study was to investigate the effects of flipped classes on motivation and learning strategies in higher education using a controlled, pre- and posttest approach. The same students were followed in a traditional course and in a course in which flipped classes were substituted for part of the traditional lectures. On the basis of the validated Motivated Strategies for Learning Questionnaire (MSLQ), we found that flipped-class pedagogy enhanced the MSLQ components critical thinking, task value, and peer learning. However, the effects of flipped classes were not long-lasting. We therefore propose repeated use of flipped classes in a curriculum to make effects on metacognition and collaborative-learning strategies sustainable. PMID:26113628

  17. Flipped Learning With Simulation in Undergraduate Nursing Education.

    PubMed

    Kim, HeaRan; Jang, YounKyoung

    2017-06-01

    Flipped learning has proliferated in various educational environments. This study aimed to verify the effects of flipped learning on the academic achievement, teamwork skills, and satisfaction levels of undergraduate nursing students. For the flipped learning group, simulation-based education via the flipped learning method was provided, whereas traditional, simulation-based education was provided for the control group. After completion of the program, academic achievement, teamwork skills, and satisfaction levels were assessed and analyzed. The flipped learning group received higher scores on academic achievement, teamwork skills, and satisfaction levels than the control group, including the areas of content knowledge and clinical nursing practice competency. In addition, this difference gradually increased between the two groups throughout the trial. The results of this study demonstrated the positive, statistically significant effects of the flipped learning method on simulation-based nursing education. [J Nurs Educ. 2017;56(6):329-336.]. Copyright 2017, SLACK Incorporated.

  18. Conformational interconversions in peptide beta-turns: analysis of turns in proteins and computational estimates of barriers.

    PubMed

    Gunasekaran, K; Gomathi, L; Ramakrishnan, C; Chandrasekhar, J; Balaram, P

    1998-12-18

    The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (

  19. Deep Exploration of the Flipped Classroom before Implementing

    ERIC Educational Resources Information Center

    Logan, Brenda

    2015-01-01

    This paper is a review of the literature that attempts to explain and document the literature on the flipped classroom. It examines 49 studies that explain the flipped approach in the classroom. This paper, particularly, delineates the history, the theory, benefits, criticisms, recommended practices, and what the research on flipping reveals.…

  20. Present Research on the Flipped Classroom and Potential Tools for the EFL Classroom

    ERIC Educational Resources Information Center

    Mehring, Jeff

    2016-01-01

    The flipped classroom can support the implementation of a communicative, student-centered learning environment in the English as a foreign language classroom. Unfortunately, there is little research which supports the incorporation of flipped learning in the English as a foreign language classroom. Numerous studies have focused on flipped learning…

  1. MathsFlip: Flipped Learning. Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Rudd, Peter; Aguilera, Alaidde Berenice Villaneuva; Elliott, Louise; Chambers, Bette

    2017-01-01

    The MathsFlip intervention aimed to improve the attainment of pupils in Years 5 and 6. The programme, developed by Shireland Collegiate Academy, used a 'flipped learning' approach involving pupils learning core content online, outside of class time, and then participating in activities in class to reinforce their learning. The programme used an…

  2. Implementing and Assessing a Flipped Classroom Model for First-Year Engineering Design

    ERIC Educational Resources Information Center

    Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew

    2016-01-01

    Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…

  3. The flipped classroom for professional development: part I. Benefits and strategies.

    PubMed

    McDonald, Katie; Smith, Charlene M

    2013-10-01

    Individualizing the educational encounter is supported by flipping the classroom experience. This column offers an overview and describes the benefits of flipping the classroom. Part II will explore the practicalities and pedagogy of lecture capture using podcasts and videos, a technology strategy used in flipping the classroom. Copyright 2013, SLACK Incorporated.

  4. Implementing the Flipped Classroom: An Exploration of Study Behaviour and Student Performance

    ERIC Educational Resources Information Center

    Boevé, Anja J.; Meijer, Rob R.; Bosker, Roel J.; Vugteveen, Jorien; Hoekstra, Rink; Albers, Casper J.

    2017-01-01

    The flipped classroom is becoming more popular as a means to support student learning in higher education by requiring students to prepare before lectures and actively engaging students during lectures. While some research has been conducted into student performance in the flipped classroom, students' study behaviour throughout a flipped course…

  5. Flipped Instruction with English Language Learners at a Newcomer High School

    ERIC Educational Resources Information Center

    Graziano, Kevin J.; Hall, John D.

    2017-01-01

    Research on flipped instruction with English Language Learners (ELLs) is sparse. Data-driven flipped research conducted with ELLs primarily involves adult learners attending a college or university. This study examined the academic performance of secondary ELLs who received flipped instruction in an algebra course at a newcomer school compared to…

  6. A Flipped Classroom Redesign in General Chemistry

    ERIC Educational Resources Information Center

    Reid, Scott A.

    2016-01-01

    The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course ("J. Chem. Educ.," 2016, 93, 13-23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while…

  7. Research on Flipping College Algebra: Lessons Learned and Practical Advice for Flipping Multiple Sections

    ERIC Educational Resources Information Center

    Overmyer, Jerry

    2015-01-01

    This quantitative research compares five sections of College Algebra using flipped classroom methods with six sections using the traditional lecture/homework structure and its effect on student achievement as measured through a common final exam. Common final exam scores were the dependent variables. Instructors of flipped sections who had…

  8. Flip-flop pharmacokinetics – delivering a reversal of disposition: challenges and opportunities during drug development

    PubMed Central

    Yáñez, Jaime A; Remsberg, Connie M; Sayre, Casey L; Forrest, M Laird; Davies, Neal M

    2011-01-01

    Flip-flop pharmacokinetics is a phenomenon often encountered with extravascularly administered drugs. Occurrence of flip-flop spans preclinical to human studies. The purpose of this article is to analyze both the pharmacokinetic interpretation errors and opportunities underlying the presence of flip-flop pharmacokinetics during drug development. Flip-flop occurs when the rate of absorption is slower than the rate of elimination. If it is not recognized, it can create difficulties in the acquisition and interpretation of pharmacokinetic parameters. When flip-flop is expected or discovered, a longer duration of sampling may be necessary in order to avoid overestimation of fraction of dose absorbed. Common culprits of flip-flop disposition are modified dosage formulations; however, formulation characteristics such as the drug chemical entities themselves or the incorporated excipients can also cause the phenomenon. Yet another contributing factor is the physiological makeup of the extravascular site of administration. In this article, these causes of flip-flop pharmacokinetics are discussed with incorporation of relevant examples and the implications for drug development outlined. PMID:21837267

  9. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling.

    PubMed

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Leverkus, Martin; Ströbel, Philipp; Marx, Alexander

    2017-10-27

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1 high thymomas and TCs.

  10. Detection of solder bump defects on a flip chip using vibration analysis

    NASA Astrophysics Data System (ADS)

    Liu, Junchao; Shi, Tielin; Xia, Qi; Liao, Guanglan

    2012-03-01

    Flip chips are widely used in microelectronics packaging owing to the high demand of integration in IC fabrication. Solder bump defects on flip chips are difficult to detect, because the solder bumps are obscured by the chip and substrate. In this paper a nondestructive detection method combining ultrasonic excitation with vibration analysis is presented for detecting missing solder bumps, which is a typical defect in flip chip packaging. The flip chip analytical model is revised by considering the influence of spring mass on mechanical energy of the system. This revised model is then applied to estimate the flip chip resonance frequencies. We use an integrated signal generator and power amplifier together with an air-coupled ultrasonic transducer to excite the flip chips. The vibrations are measured by a laser scanning vibrometer to detect the resonance frequencies. A sensitivity coefficient is proposed to select the sensitive resonance frequency order for defect detection. Finite element simulation is also implemented for further investigation. The results of analytical computation, experiment, and simulation prove the efficacy of the revised flip chip analytical model and verify the effectiveness of this detection method. Therefore, it may provide a guide for the improvement and innovation of the flip chip on-line inspection systems.

  11. The effect of flipped teaching combined with modified team-based learning on student performance in physiology.

    PubMed

    Gopalan, Chaya; Klann, Megan C

    2017-09-01

    Flipped classroom is a hybrid educational format that shifts guided teaching out of class, thus allowing class time for student-centered learning. Although this innovative teaching format is gaining attention, there is limited evidence on the effectiveness of flipped teaching on student performance. We compared student performance and student attitudes toward flipped teaching with that of traditional lectures using a partial flipped study design. Flipped teaching expected students to have completed preclass material, such as assigned reading, instructor-prepared lecture video(s), and PowerPoint slides. In-class activities included the review of difficult topics, a modified team-based learning (TBL) session, and an individual assessment. In the unflipped teaching format, students were given PowerPoint slides and reading assignment before their scheduled lectures. The class time consisted of podium-style lecture, which was captured in real time and was made available for students to use as needed. Comparison of student performance between flipped and unflipped teaching showed that flipped teaching improved student performance by 17.5%. This was true of students in both the upper and lower half of the class. A survey conducted during this study indicated that 65% of the students changed the way they normally studied, and 69% of the students believed that they were more prepared for class with flipped learning than in the unflipped class. These findings suggest that flipped teaching, combined with TBL, is more effective than the traditional lecture. Copyright © 2017 the American Physiological Society.

  12. Correlation between surface properties and wettability of multi-scale structured biocompatible surfaces

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.

    2015-11-01

    The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.

  13. Association of Increased F4/80high Macrophages With Suppression of Serum-Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells.

    PubMed

    Huang, Qi-Quan; Birkett, Robert; Doyle, Renee E; Haines, G Kenneth; Perlman, Harris; Shi, Bo; Homan, Philip; Xing, Lianping; Pope, Richard M

    2017-09-01

    Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. Mice with Flip deleted in myeloid cells (Flip f/f LysM c/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. In contrast to expectations, Flip f/f LysM c/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80 high macrophages in the joints of the Flip f/f LysM c/+ mice was not decreased, but increased. FLIP was reduced in the F4/80 high macrophages in the ankles of the Flip f/f LysM c/+ mice, while F4/80 high macrophages expressed an antiinflammatory phenotype in both the Flip f/f LysM c/+ and control mice. Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage. © 2017, American College of Rheumatology.

  14. Modeling Radar Scattering by Planetary Regoliths for Varying Angles of Incidence

    NASA Astrophysics Data System (ADS)

    Prem, P.; Patterson, G. W.; Zimmerman, M. I.

    2017-12-01

    Bistatic radar observations can play an important role in characterizing the texture and composition of planetary regoliths. Multiple scattering within a closely-packed particulate medium, such as a regolith, can lead to a response referred to as the Coherent Backscatter Opposition Effect (CBOE), associated with an increase in the intensity of backscattered radiation and an increase in Circular Polarization Ratio (CPR) at small bistatic angles. The nature of the CBOE is thought to depend not only on regolith properties, but also on the angle of incidence (Mishchenko, 1992). The latter factor is of particular interest in light of recent radar observations of the Moon over a range of bistatic and incidence angles by the Mini-RF instrument (on board the Lunar Reconnaissance Orbiter), operating in bistatic mode with a ground-based transmitter at the Arecibo Observatory. These observations have led to some intriguing results that are not yet well-understood ­- for instance, the lunar South Polar crater Cabeus shows an elevated CPR at only some combinations of incidence angle/bistatic angle, a potential clue to the depth distribution of water ice at the lunar poles (Patterson et al., 2017). Our objective in this work is to develop a model for radar scattering by planetary regoliths that can assist in the interpretation of Mini-RF observations. We approach the problem by coupling the Multiple Sphere T-Matrix (MSTM) code of Mackowski and Mishchenko (2011) to a Monte Carlo radiative transfer model. The MSTM code is based on the solution of Maxwell's equations for the propagation of electromagnetic waves in the presence of a cluster of scattering/absorbing spheres, and can be used to model the scattering of radar waves by an aggregation of nominal regolith particles. The scattering properties thus obtained serve as input to the Monte Carlo model, which is used to simulate radar scattering at larger spatial scales. The Monte Carlo approach has the advantage of being able to readily accommodate varying incidence angles, as well as heterogeneities in regolith composition and properties - factors that may be of interest in both lunar and other contexts. We will report on the development and validation of the coupled MSTM-Monte Carlo model, and discuss its application to problems of interest.

  15. Analysis of the lateral push-off in the freestyle flip turn.

    PubMed

    Araujo, Luciana; Pereira, Suzana; Gatti, Roberta; Freitas, Elinai; Jacomel, Gabriel; Roesler, Helio; Villas-Boas, Joao

    2010-09-01

    The aim of this study was to examine the contact phase during the lateral push-off in the turn of front crawl swimming to determine which biomechanical variables (maximum normalized peak force, contact time, impulse, angle of knee flexion, and total turn time within 15 m) contribute to the performance of this turn technique. Thirty-four swimmers of state, national, and international competitive standard participated in the study. For data collection, the following equipment was used: an underwater force platform, a 30-Hz VHS video camera, and a MiniDv digital camera within an underwater box. Data are expressed as descriptive statistics. Inferential analyses were performed using Pearson's correlation and multiple linear regressions. All variables studied had a significant relationship with turn performance. We conclude that a turn executed with a knee flexion angle of between 100° and 120° provides optimum peak forces to generate impulses that allow the swimmer to lose less time in the turn without the need for an excessive force application and with less energy lost.

  16. Survey of background scattering from materials found in small-angle neutron scattering.

    PubMed

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  17. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  18. Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods

    PubMed Central

    Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.

    2013-01-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822

  19. Does "Flipping" Promote Engagement?: A Comparison of a Traditional, Online, and Flipped Class

    ERIC Educational Resources Information Center

    Burke, Alison S.; Fedorek, Brian

    2017-01-01

    "Flipped" or inverted classrooms are designed to utilize class time for application and knowledge building, while course content is delivered through the use of online lectures and watched at home on the students' time. It is believed that flipped classrooms promote student engagement and a deeper understanding of the class material. The…

  20. Scaffolded Semi-Flipped General Chemistry Designed to Support Rural Students' Learning

    ERIC Educational Resources Information Center

    Lenczewski, Mary S.

    2016-01-01

    Students who lack academic maturity can sometimes feel overwhelmed in a fully flipped classroom. Here an alternative, the Semi-Flipped method, is discussed. Rural students, who face unique challenges in transitioning from high school learning to college-level learning, can particularly profit from the use of the Semi-Flipped method in the General…

  1. Assessing Behavioral Engagement in Flipped and Non-Flipped Mathematics Classrooms: Teacher Abilities and Other Potential Factors

    ERIC Educational Resources Information Center

    Hodgson, Theodore R.; Cunningham, Abby; McGee, Daniel; Kinne, Lenore J.; Murphy, Teri J.

    2017-01-01

    There is a growing evidence that flipped classrooms are associated with increased levels of student engagement, as compared to engagement in "traditional" settings. Much of this research, however, occurs in post-secondary classrooms and is based upon self-reported engagement data. This study seeks to extend existing flipped classroom…

  2. The Flipped Classroom in Systems Analysis & Design: Leveraging Technology to Increase Student Engagement

    ERIC Educational Resources Information Center

    Saulnier, Bruce M.

    2015-01-01

    Problems associated with the ubiquitous presence of technology on college campuses are discussed and the concept of the flipped classroom is explained. Benefits of using the flipped classroom to offset issues associated with the presence of technology in the classroom are explored. Fink's Integrated Course Design is used to develop a flipped class…

  3. An Investigation of the Use of the "Flipped Classroom" Pedagogy in Secondary English Language Classrooms

    ERIC Educational Resources Information Center

    Yang, Chi Cheung Ruby

    2017-01-01

    Aim/Purpose: To examine the use of a flipped classroom in the English Language subject in secondary classrooms in Hong Kong. Background: The research questions addressed were: (1) What are teachers' perceptions towards the flipped classroom pedagogy?; (2) How can teachers transfer their flipped classroom experiences to teaching other…

  4. K-12 Teacher Perceptions Regarding the Flipped Classroom Model for Teaching and Learning

    ERIC Educational Resources Information Center

    Gough, Evan; DeJong, David; Grundmeyer, Trent; Baron, Mark

    2017-01-01

    A great deal of evidence can be cited from higher education literature on the effectiveness of the flipped classroom; however, very little research was discovered on the flipped classroom at the K-12 level. This study examined K-12 teachers' perceptions regarding the flipped classroom and differences in teachers' perceptions based on grade level…

  5. A Learning Analytics Approach to Investigating Factors Affecting EFL Students' Oral Performance in a Flipped Classroom

    ERIC Educational Resources Information Center

    Lin, Chi-Jen; Hwang, Gwo-Jen

    2018-01-01

    Flipped classrooms have been widely adopted and discussed by school teachers and researchers in the past decade. However, few studies have been conducted to formally evaluate the effectiveness of flipped classrooms in terms of improving EFL students' English oral presentation, not to mention investigating factors affecting their flipped learning…

  6. Identifying Professional Competencies of the Flip-Chip Packaging Engineer in Taiwan

    ERIC Educational Resources Information Center

    Guu, Y. H.; Lin, Kuen-Yi; Lee, Lung-Sheng

    2014-01-01

    This study employed a literature review, expert interviews, and a questionnaire survey to construct a set of two-tier competencies for a flip-chip packaging engineer. The fuzzy Delphi questionnaire was sent to 12 flip-chip engineering experts to identify professional competencies that a flip-chip packaging engineer must have. Four competencies,…

  7. The Benefits, Drawbacks, and Challenges of Using the Flipped Classroom in an Introduction to Psychology Course

    ERIC Educational Resources Information Center

    Roehling, Patricia V.; Root Luna, Lindsey M.; Richie, Fallon J.; Shaughnessy, John J.

    2017-01-01

    Flipped pedagogy has become a popular approach in education. While preliminary research suggests that the flipped classroom has a positive effect on learning in Science, Technology, Engineering, and Mathematics and quantitative courses, the research on the flipped classroom in a content heavy social science course is minimal and contradictory. We…

  8. ConfChem Conference on Flipped Classroom: Flipping at an Open-Enrollment College

    ERIC Educational Resources Information Center

    Butzler, Kelly B.

    2015-01-01

    The flipped classroom is a blended, constructivist learning environment that reverses where students gain and apply knowledge. Instructors from K-12 to the college level are interested in the prospect of flipping their classes, but are unsure how and with which students to implement this learning environment. There has been little discussion…

  9. The implementation of flipped classroom model in CIE in the environment of non-target language

    NASA Astrophysics Data System (ADS)

    Xiao, Renfei; Mustofa, Ali; Zhang, Fang; Su, Xiaoxue

    2018-01-01

    This paper sets a theoretical framework that it’s both feasible and indispensable of flipping classroom in Chinese International Education (CIE) in the non-target language environments. There are mainly three sections included: 1) what is flipped classroom and why it becomes inevitable existence; 2) why should we flip the classroom in CIE environments, especially in non-target language environments; 3) take Pusat Bahasa Mandarin Universitas Negeri Surabaya as an instance to discuss the application of flipped classroom in non-target language environments.

  10. The flipped classroom: practices and opportunities for health sciences librarians.

    PubMed

    Youngkin, C Andrew

    2014-01-01

    The "flipped classroom" instructional model is being introduced into medical and health sciences curricula to provide greater efficiency in curriculum delivery and produce greater opportunity for in-depth class discussion and problem solving among participants. As educators employ the flipped classroom to invert curriculum delivery and enhance learning, health sciences librarians are also starting to explore the flipped classroom model for library instruction. This article discusses how academic and health sciences librarians are using the flipped classroom and suggests opportunities for this model to be further explored for library services.

  11. Nanostructured light-absorbing crystalline CuIn(1-x)GaxSe2 thin films grown through high flux, low energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.

    2013-10-01

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  12. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling

    PubMed Central

    Belharazem, Djeda; Grass, Albert; Paul, Cornelia; Vitacolonna, Mario; Schalke, Berthold; Rieker, Ralf J.; Körner, Daniel; Jungebluth, Philipp; Simon-Keller, Katja; Hohenberger, Peter; Roessner, Eric M.; Wiebe, Karsten; Gräter, Thomas; Kyriss, Thomas; Ott, German; Geserick, Peter; Ströbel, Philipp; Marx, Alexander

    2017-01-01

    The anti-apoptotic cellular FLICE-like inhibitory protein cFLIP plays a pivotal role in normal tissues homoeostasis and the development of many tumors, but its role in normal thymus (NT), thymomas and thymic carcinomas (TC) is largely unknown. Expression, regulation and function of cFLIP were analyzed in biopsies of NT, thymomas, thymic squamous cell carcinomas (TSCC), thymic epithelial cells (TECs) derived thereof and in the TC line 1889c by qRT-PCR, western blot, shRNA techniques, and functional assays addressing survival, senescence and autophagy. More than 90% of thymomas and TSCCs showed increased cFLIP expression compared to NT. cFLIP expression declined with age in NTs but not in thymomas. During short term culture cFLIP expression levels declined significantly slower in neoplastic than non-neoplastic primary TECs. Down-regulation of cFLIP by shRNA or NF-κB inhibition accelerated senescence and induced autophagy and cell death in neoplastic TECs. The results suggest a role of cFLIP in the involution of normal thymus and the development of thymomas and TSCC. Since increased expression of cFLIP is a known tumor escape mechanism, it may serve as tissue-based biomarker in future clinical trials, including immune checkpoint inhibitor trials in the commonly PD-L1high thymomas and TCs. PMID:29163772

  13. FLIP switches Fas-mediated glucose signaling in human pancreatic cells from apoptosis to cell replication

    NASA Astrophysics Data System (ADS)

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-06-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of cell turnover. In human islets, elevated glucose concentrations impair cell proliferation and induce cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive cells; FLIP was no longer detectable in such TUNEL-positive cells. Up-regulation of FLIP, by incubation with transforming growth factor or by transfection with an expression vector coding for FLIP, protected cells from glucose-induced apoptosis, restored cell proliferation, and improved cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation.

  14. Impact of the Flipped Classroom on Student Performance and Retention: A Parallel Controlled Study in General Chemistry

    ERIC Educational Resources Information Center

    Ryan, Michael D.; Reid, Scott A.

    2016-01-01

    Despite much recent interest in the flipped classroom, quantitative studies are slowly emerging, particularly in the sciences. We report a year-long parallel controlled study of the flipped classroom in a second-term general chemistry course. The flipped course was piloted in the off-semester course in Fall 2014, and the availability of the…

  15. The flipped classroom: strategies for an undergraduate nursing course.

    PubMed

    Schlairet, Maura C; Green, Rebecca; Benton, Melissa J

    2014-01-01

    This article presents the authors' experience with flipping a fundamental concepts of nursing course for students in an undergraduate baccalaureate program. Authors describe implementing a flipped class, practical strategies to transform students' learning experience, and lessons learned. This article serves as a guide to faculty and programs seeking to develop and implement the flipped class model in nursing education.

  16. Flipping and Still Learning: Experiences of a Flipped Classroom Approach for a Third-Year Undergraduate Human Geography Course

    ERIC Educational Resources Information Center

    Graham, Marnie; McLean, Jessica; Read, Alexander; Suchet-Pearson, Sandie; Viner, Venessa

    2017-01-01

    The flipped classroom approach, a form of blended learning, is currently popular in education praxis. Initial reports on the flipped classroom include that it offers opportunities to increase student engagement and build meaningful learning and teaching experiences. In this article, we analyse teacher and student experiences of a trial flipped…

  17. Do Students Learn More from a Flip? An Exploration of the Efficacy of Flipped and Traditional Lessons

    ERIC Educational Resources Information Center

    DeSantis, Joshua; Van Curen, Rebecca; Putsch, Jake; Metzger, Justin

    2015-01-01

    Flipped lesson planning, as popularized by Bergman & Sams (2012a), has been viewed by many as a revolutionary pedagogy, tailor-made for the twenty-first century classroom. Enthusiasm for flipped lesson planning has out-paced the collection of data that might determine its effectiveness. This paper presents the results of a study that compared…

  18. To What Extent Does 'Flipping' Make Lessons Effective in a Multimedia Production Class?

    ERIC Educational Resources Information Center

    Choi, Jaeho; Lee, Youngju

    2018-01-01

    This study examines the effects of a flipped classroom in a technology integration course for pre-service teachers. In total, 79 students were randomly assigned into a flipped classroom or a traditional classroom group and given three multimedia production tasks. Students in the flipped group reviewed an e-book for lessons on multimedia…

  19. Correlations between Learners' Initial EFL Proficiency and Variables of Clicker-Aided Flipped EFL Class

    ERIC Educational Resources Information Center

    Yu, Zhonggen; Yu, Liheng

    2017-01-01

    Although the flipped class has been hotly discussed, the clicker-aided flipped EFL class (CFEC) still remains a mystery for most scholars. This study aims to determine the correlations between the initial EFL proficiency and other variables of the clicker-aided EFL flipped class. The sample was made up of randomly selected 79 participants (Female…

  20. Confchem Conference on Flipped Classroom: Student Engagement with Flipped Chemistry Lectures

    ERIC Educational Resources Information Center

    Seery, Michael K.

    2015-01-01

    This project introduces the idea of "flipped lecturing" to a group of second-year undergraduate students. The aim of flipped lecturing is to provide much of the "content delivery" of the lecture in advance, so that the lecture hour can be devoted to more in-depth discussion, problem solving, and so on. As well as development of…

  1. Information Literacy and the Flipped Classroom: Examining the Impact of a One-Shot Flipped Class on Student Learning and Perceptions

    ERIC Educational Resources Information Center

    Brooks, Andrea Wilcox

    2014-01-01

    This article examines the flipped classroom approach in higher education and its use in one -shot information literacy instruction sessions. The author presents findings from a pilot study of student learning and student perceptions pertaining to flipped model IL instruction. Students from two sections of the same course participated in this…

  2. Stochastic local operations and classical communication (SLOCC) and local unitary operations (LU) classifications of n qubits via ranks and singular values of the spin-flipping matrices

    NASA Astrophysics Data System (ADS)

    Li, Dafa

    2018-06-01

    We construct ℓ -spin-flipping matrices from the coefficient matrices of pure states of n qubits and show that the ℓ -spin-flipping matrices are congruent and unitary congruent whenever two pure states of n qubits are SLOCC and LU equivalent, respectively. The congruence implies the invariance of ranks of the ℓ -spin-flipping matrices under SLOCC and then permits a reduction of SLOCC classification of n qubits to calculation of ranks of the ℓ -spin-flipping matrices. The unitary congruence implies the invariance of singular values of the ℓ -spin-flipping matrices under LU and then permits a reduction of LU classification of n qubits to calculation of singular values of the ℓ -spin-flipping matrices. Furthermore, we show that the invariance of singular values of the ℓ -spin-flipping matrices Ω 1^{(n)} implies the invariance of the concurrence for even n qubits and the invariance of the n-tangle for odd n qubits. Thus, the concurrence and the n-tangle can be used for LU classification and computing the concurrence and the n-tangle only performs additions and multiplications of coefficients of states.

  3. Cell phone-generated radio frequency electromagnetic field effects on the locomotor behaviors of the fishes Poecilia reticulata and Danio rerio.

    PubMed

    Lee, David; Lee, Joshua; Lee, Imshik

    2015-01-01

    The locomotor behavior of small fish was characterized under a cell phone-generated radio frequency electromagnetic field (RF EMF). The trajectory of movement of 10 pairs of guppy (Poecilia reticulate) and 15 pairs of Zebrafish (Danio rerio) in a fish tank was recorded and tracked under the presence of a cell phone-generated RF EMF. The measures were based on spatial and temporal distributions. A time-series trajectory was utilized to emphasize the dynamic nature of locomotor behavior. Fish movement was recorded in real-time. Their spatial, velocity, turning angle and sinuosity distribution were analyzed in terms of F(v,x), P[n(x,t)], P(v), F (θ) and F(s), respectively. In addition, potential temperature elevation caused by a cellular phone was also examined. We demonstrated that a cellular phone-induced temperature elevation was not relevant, and that our measurements reflected RF EMF-induced effects on the locomotor behavior of Poecilia reticulata and Danio rerio. Fish locomotion was observed under normal conditions, in the visual presence of a cell phone, after feeding, and under starvation. Fish locomotor behavior was random both in normal conditions and in the presence of an off-signaled cell phone. However, there were significant changes in the locomotion of the fish after feeding under the RF EMF. The locomotion of the fed fish was affected in terms of changes in population and velocity distributions under the presence of the RF EMF emitted by the cell phone. There was, however, no significant difference in angular distribution.

  4. High efficiency RF amplifier development over wide dynamic range for accelerator application

    NASA Astrophysics Data System (ADS)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  5. Comparison of Pharmaceutical Calculations Learning Outcomes Achieved Within a Traditional Lecture or Flipped Classroom Andragogy.

    PubMed

    Anderson, H Glenn; Frazier, Lisa; Anderson, Stephanie L; Stanton, Robert; Gillette, Chris; Broedel-Zaugg, Kim; Yingling, Kevin

    2017-05-01

    Objective. To compare learning outcomes achieved from a pharmaceutical calculations course taught in a traditional lecture (lecture model) and a flipped classroom (flipped model). Methods. Students were randomly assigned to the lecture model and the flipped model. Course instructors, content, assessments, and instructional time for both models were equivalent. Overall group performance and pass rates on a standardized assessment (Pcalc OSCE) were compared at six weeks and at six months post-course completion. Results. Student mean exam scores in the flipped model were higher than those in the lecture model at six weeks and six months later. Significantly more students passed the OSCE the first time in the flipped model at six weeks; however, this effect was not maintained at six months. Conclusion. Within a 6 week course of study, use of a flipped classroom improves student pharmacy calculation skill achievement relative to a traditional lecture andragogy. Further study is needed to determine if the effect is maintained over time.

  6. Comparison of Pharmaceutical Calculations Learning Outcomes Achieved Within a Traditional Lecture or Flipped Classroom Andragogy

    PubMed Central

    Frazier, Lisa; Anderson, Stephanie L.; Stanton, Robert; Gillette, Chris; Broedel-Zaugg, Kim; Yingling, Kevin

    2017-01-01

    Objective. To compare learning outcomes achieved from a pharmaceutical calculations course taught in a traditional lecture (lecture model) and a flipped classroom (flipped model). Methods. Students were randomly assigned to the lecture model and the flipped model. Course instructors, content, assessments, and instructional time for both models were equivalent. Overall group performance and pass rates on a standardized assessment (Pcalc OSCE) were compared at six weeks and at six months post-course completion. Results. Student mean exam scores in the flipped model were higher than those in the lecture model at six weeks and six months later. Significantly more students passed the OSCE the first time in the flipped model at six weeks; however, this effect was not maintained at six months. Conclusion. Within a 6 week course of study, use of a flipped classroom improves student pharmacy calculation skill achievement relative to a traditional lecture andragogy. Further study is needed to determine if the effect is maintained over time. PMID:28630511

  7. A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image

    PubMed Central

    Li, Li; Hou, Qingzheng; Lu, Jianfeng; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen

    2014-01-01

    Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606

  8. Just in Time to Flip Your Classroom

    NASA Astrophysics Data System (ADS)

    Lasry, Nathaniel; Dugdale, Michael; Charles, Elizabeth

    2014-01-01

    With advocates like Sal Khan and Bill Gates, flipped classrooms are attracting an increasing amount of media and research attention.2 We had heard Khan's TED talk and were aware of the concept of inverted pedagogies in general. Yet it really hit home when we accidentally flipped our classroom. Our objective was to better prepare our students for class. We set out to effectively move some of our course content outside of class and decided to tweak the Just-in-Time Teaching approach (JiTT).3 To our surprise, this tweak—which we like to call the flip-JiTT—ended up completely flipping our classroom. What follows is narrative of our experience and a procedure that any teacher can use to extend JiTT to a flipped classroom.

  9. Retention of Content Utilizing a Flipped Classroom Approach.

    PubMed

    Shatto, Bobbi; LʼEcuyer, Kristine; Quinn, Jerod

    The flipped classroom experience promotes retention and accountability for learning. The authors report their evaluation of a flipped classroom for accelerated second-degree nursing students during their primary medical-surgical nursing course. Standardized HESI® scores were compared between a group of students who experienced the flipped classroom and a previous group who had traditional teaching methods. Short- and long-term retention was measured using standardized exams 3 months and 12 months following the course. Results indicated that short-term retention was greater and long- term retention was significantly great in the students who were taught using flipped classroom methodology.

  10. Comment on "Collision monochromatization in e+e- colliders"

    NASA Astrophysics Data System (ADS)

    Shatilov, D.

    2018-02-01

    Bogomyagkov and Levichev [Phys. Rev. Accel. Beams 20, 051001 (2017), 10.1103/PhysRevAccelBeams.20.051001] have recently reported on monochromatization in collision schemes with crossing angle. From their results, in particular, it may seem that: (1) horizontal dispersion at the IP can provide monochromatization factor Λ ≫1 while retaining Piwinski angle ϕ >1 , (2) production rate in such a scheme for FCC-ee at 62.5 GeV can be larger than that in the nominal crab waist collision, and (3) strong rf focusing can be used for monochromatization purposes. We demonstrate here that the first two statements are not correct, and the last one is very doubtful.

  11. Flipping for success: evaluating the effectiveness of a novel teaching approach in a graduate level setting.

    PubMed

    Moraros, John; Islam, Adiba; Yu, Stan; Banow, Ryan; Schindelka, Barbara

    2015-02-28

    Flipped Classroom is a model that's quickly gaining recognition as a novel teaching approach among health science curricula. The purpose of this study was four-fold and aimed to compare Flipped Classroom effectiveness ratings with: 1) student socio-demographic characteristics, 2) student final grades, 3) student overall course satisfaction, and 4) course pre-Flipped Classroom effectiveness ratings. The participants in the study consisted of 67 Masters-level graduate students in an introductory epidemiology class. Data was collected from students who completed surveys during three time points (beginning, middle and end) in each term. The Flipped Classroom was employed for the academic year 2012-2013 (two terms) using both pre-class activities and in-class activities. Among the 67 Masters-level graduate students, 80% found the Flipped Classroom model to be either somewhat effective or very effective (M = 4.1/5.0). International students rated the Flipped Classroom to be significantly more effective when compared to North American students (X(2) = 11.35, p < 0.05). Students' perceived effectiveness of the Flipped Classroom had no significant association to their academic performance in the course as measured by their final grades (r s = 0.70). However, students who found the Flipped Classroom to be effective were also more likely to be satisfied with their course experience. Additionally, it was found that the SEEQ variable scores for students enrolled in the Flipped Classroom were significantly higher than the ones for students enrolled prior to the implementation of the Flipped Classroom (p = 0.003). Overall, the format of the Flipped Classroom provided more opportunities for students to engage in critical thinking, independently facilitate their own learning, and more effectively interact with and learn from their peers. Additionally, the instructor was given more flexibility to cover a wider range and depth of material, provide in-class applied learning opportunities based on problem-solving activities and offer timely feedback/guidance to students. Yet in our study, this teaching style had its fair share of challenges, which were largely dependent on the use and management of technology. Despite these challenges, the Flipped Classroom proved to be a novel and effective teaching approach at the graduate level setting.

  12. The Flipped Classroom: Primary and Secondary Teachers' Views on an Educational Movement in Schools in Sweden Today

    ERIC Educational Resources Information Center

    Hultén, Magnus; Larsson, Bo

    2018-01-01

    The aim of this study is to contribute to an increased understanding of the flipped classroom movement. A total of 7 teachers working in school years 4-9 and who both actively flipped their classrooms and had been early adopters in this movement were interviewed. Two research questions were posed: "What characterizes flipped classroom…

  13. [Evaluation of flipped classroom teaching model in undergraduates education of oral and maxillofacial surgery].

    PubMed

    Cai, Ming; Cao, Xia; Fang, Xiao; Wang, Xu-dong; Zhang, Li-li; Zheng, Jia-wei; Shen, Guo-fang

    2015-12-01

    Flipped classroom is a new teaching model which is different from the traditional teaching method. The history and characteristics of flipped classroom teaching model were introduced in this paper. A discussion on how to establish flipped classroom teaching protocol in oral and maxillofacial surgery education was carried out. Curriculum transformation, construction of education model and possible challenges were analyzed and discussed.

  14. Flipping the Classroom without Flipping Out the Students: Working with an Instructional Designer in an Undergraduate Evidence-Based Nursing Practice Course

    ERIC Educational Resources Information Center

    Matsuda, Yui; Azaiza, Khitam; Salani, Deborah

    2017-01-01

    The flipped classroom approach is an innovative teaching method to promote students' active learning. It has been used in nursing education and has showed positive results. The purpose of this article is to describe the process of developing a flipped classroom approach for an undergraduate evidence-based nursing practice course and discuss…

  15. Cross-Layer Resilience Exploration

    DTIC Science & Technology

    2015-03-31

    complex 563 server-class systems) and any arbitrary fault model (permanent, transient, multi-bit, etc.) System Design Analysis Using flip- flop ...level fault injection, we rank the vulnerability of each flip- flop in the processor in terms of its likelihood to propagate faults [3]. This allows the...hardened flip- flops , which are flip- flops designed to uphold the bit representation of their output circuit even under particle strikes [1, 6, 10

  16. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.C. Jr.; Lemon, S.; Bonneau, P.

    1993-08-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF has been studied. The authors find that the newest ECL flip-flops (ECLinPS) are much faster than older families (10H) at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  17. Generalized Flip-Flop Input Equations Based on a Four-Valued Boolean Algebra

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Tapia, Moiez A.

    1996-01-01

    A procedure is developed for obtaining generalized flip-flop input equations, and a concise method is presented for representing these equations. The procedure is based on solving a four-valued characteristic equation of the flip-flop, and can encompass flip-flops that are too complex to approach intuitively. The technique is presented using Karnaugh maps, but could easily be implemented in software.

  18. Facing the challenges in ophthalmology clerkship teaching: Is flipped classroom the answer?

    PubMed Central

    Lin, Ying; Zhu, Yi; Chen, Chuan; Wang, Wei; Chen, Tingting; Li, Tao; Li, Yonghao; Liu, Bingqian; Lian, Yu; Lu, Lin; Zou, Yuxian

    2017-01-01

    Recent reform of medical education highlights the growing concerns about the capability of the current educational model to equip medical school students with essential skills for future career development. In the field of ophthalmology, although many attempts have been made to address the problem of the decreasing teaching time and the increasing load of course content, a growing body of literature indicates the need to reform the current ophthalmology teaching strategies. Flipped classroom is a new pedagogical model in which students develop a basic understanding of the course materials before class, and use in-class time for learner-centered activities, such as group discussion and presentation. However, few studies have evaluated the effectiveness of the flipped classroom in ophthalmology education. This study, for the first time, assesses the use of flipped classroom in ophthalmology, specifically glaucoma and ocular trauma clerkship teaching. A total number of 44 international medical school students from diverse background were enrolled in this study, and randomly divided into two groups. One group took the flipped glaucoma classroom and lecture-based ocular trauma classroom, while the other group took the flipped ocular trauma classroom and lecture-based glaucoma classroom. In the traditional lecture-based classroom, students attended the didactic lecture and did the homework after class. In the flipped classroom, students were asked to watch the prerecorded lectures before the class, and use the class time for homework discussion. Both the teachers and students were asked to complete feedback questionnaires after the classroom. We found that the two groups did not show differences in the final exam scores. However, the flipped classroom helped students to develop skills in problem solving, creative thinking and team working. Also, compared to the lecture-based classroom, both teachers and students were more satisfied with the flipped classroom. Interestingly, students had a more positive attitude towards the flipped ocular trauma classroom than the flipped glaucoma classroom regarding the teaching process, the course materials, and the value of the classroom. Therefore, the flipped classroom model in ophthalmology teaching showed promise as an effective approach to promote active learning. PMID:28384167

  19. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis.

    PubMed Central

    Siegmund, Daniela; Hadwiger, Philipp; Pfizenmaier, Klaus; Vornlocher, Hans-Peter; Wajant, Harald

    2002-01-01

    BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The combination of TRAIL and FLIP-targeting siRNA could therefore be a useful strategy to attack cancer cells, which are resistant to TRAIL alone. PMID:12520089

  20. Facing the challenges in ophthalmology clerkship teaching: Is flipped classroom the answer?

    PubMed

    Lin, Ying; Zhu, Yi; Chen, Chuan; Wang, Wei; Chen, Tingting; Li, Tao; Li, Yonghao; Liu, Bingqian; Lian, Yu; Lu, Lin; Zou, Yuxian; Liu, Yizhi

    2017-01-01

    Recent reform of medical education highlights the growing concerns about the capability of the current educational model to equip medical school students with essential skills for future career development. In the field of ophthalmology, although many attempts have been made to address the problem of the decreasing teaching time and the increasing load of course content, a growing body of literature indicates the need to reform the current ophthalmology teaching strategies. Flipped classroom is a new pedagogical model in which students develop a basic understanding of the course materials before class, and use in-class time for learner-centered activities, such as group discussion and presentation. However, few studies have evaluated the effectiveness of the flipped classroom in ophthalmology education. This study, for the first time, assesses the use of flipped classroom in ophthalmology, specifically glaucoma and ocular trauma clerkship teaching. A total number of 44 international medical school students from diverse background were enrolled in this study, and randomly divided into two groups. One group took the flipped glaucoma classroom and lecture-based ocular trauma classroom, while the other group took the flipped ocular trauma classroom and lecture-based glaucoma classroom. In the traditional lecture-based classroom, students attended the didactic lecture and did the homework after class. In the flipped classroom, students were asked to watch the prerecorded lectures before the class, and use the class time for homework discussion. Both the teachers and students were asked to complete feedback questionnaires after the classroom. We found that the two groups did not show differences in the final exam scores. However, the flipped classroom helped students to develop skills in problem solving, creative thinking and team working. Also, compared to the lecture-based classroom, both teachers and students were more satisfied with the flipped classroom. Interestingly, students had a more positive attitude towards the flipped ocular trauma classroom than the flipped glaucoma classroom regarding the teaching process, the course materials, and the value of the classroom. Therefore, the flipped classroom model in ophthalmology teaching showed promise as an effective approach to promote active learning.

  1. Influence of RF excitation during pulsed laser deposition in oxygen atmosphere on the structural properties and luminescence of nanocrystalline ZnO:Al thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meljanac, Daniel, E-mail: dmeljan@irb.hr; Plodinec, Milivoj; Siketić, Zdravko

    2016-03-15

    Thin ZnO:Al layers were deposited by pulsed laser deposition in vacuum and in oxygen atmosphere at gas pressures between 10 and 70 Pa and by applying radio-frequency (RF) plasma. Grazing incidence small angle x-ray scattering and grazing incidence x-ray diffraction (GIXRD) data showed that an increase in the oxygen pressure leads to an increase in the roughness, a decrease in the sample density, and changes in the size distribution of nanovoids. The nanocrystal sizes estimated from GIXRD were around 20 nm, while the sizes of the nanovoids increased from 1 to 2 nm with the oxygen pressure. The RF plasma mainly influenced themore » nanostructural properties and point defects dynamics. The photoluminescence consisted of three contributions, ultraviolet (UV), blue emission due to Zn vacancies, and red emission, which are related to an excess of oxygen. The RF excitation lowered the defect level related to blue emission and narrowed the UV luminescence peak, which indicates an improvement of the structural ordering. The observed influence of the deposition conditions on the film properties is discussed as a consequence of two main effects: the variation of the energy transfer from the laser plume to the growing film and changes in the growth chemistry.« less

  2. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  3. α-flips and T-points in the Lorenz system

    NASA Astrophysics Data System (ADS)

    Creaser, Jennifer L.; Krauskopf, Bernd; Osinga, Hinke M.

    2015-03-01

    We consider the Lorenz system near the classic parameter regime and study the phenomenon we call an α-flip. An α-flip is a transition where the one-dimensional stable manifolds Ws(p±) of two secondary equilibria p± undergo a sudden transition in terms of the direction from which they approach p±. This is a bifurcation at infinity and does not involve an invariant object in phase space. This fact was discovered by Sparrow in the 1980s but the stages of the transition could not be calculated and the phenomenon was not well understood (Sparrow 1982 The Lorenz equations (New York: Springer)). Here we employ a boundary value problem set-up and use pseudo-arclength continuation in AUTO to follow this sudden transition of Ws(p±) as a continuous family of orbit segments. In this way, we geometrically characterize and determine the moment of the actual α-flip. We also investigate how the α-flip takes place relative to the two-dimensional stable manifold of the origin, which shows no apparent topological change before or after the α-flip. Our approach allows for easy detection and subsequent two-parameter continuation of the first and further α-flips. We illustrate this for the first 25 α-flips and find that they end at terminal points, or T-points, where there is a heteroclinic connection from the secondary equilibria to the origin. It turns out that α-flips must occur naturally near T-points. We find scaling relations for the α-flips and T-points that allow us to predict further such bifurcations and to improve the efficiency of our computations.

  4. The flipped classroom allows for more class time devoted to critical thinking.

    PubMed

    DeRuisseau, Lara R

    2016-12-01

    The flipped classroom was utilized in a two-semester, high-content science course that enrolled between 50 and 80 students at a small liberal arts college. With the flipped model, students watched ~20-min lectures 2 days/wk outside of class. These videos were recorded via screen capture and included a detailed note outline, PowerPoint slides, and review questions. The traditional format included the same materials, except that lectures were delivered in class each week and spanned the entire period. During the flipped course, the instructor reviewed common misconceptions and asked questions requiring higher-order thinking, and five graded case studies were performed each semester. To determine whether assessments included additional higher-order thinking skills in the flipped vs. traditional model, questions across course formats were compared via Blooms Taxonomy. Application-level questions that required prediction of an outcome in a new scenario comprised 38 ± 3 vs. 12 ± 1% of summative assessment questions (<0.01): flipped vs. traditional. Final letter grades in both formats of the course were compared with major GPA. Students in the flipped model performed better than their GPA predicted, as 85.5% earned a higher grade (vs. 42.2% in the traditional classroom) compared with their major GPA. These data demonstrate that assessments transitioned to more application-level compared with factual knowledge-based questions with this particular flipped model, and students performed better in their final letter grade compared with the traditional lecture format. Although the benefits to a flipped classroom are highlighted, student evaluations did suffer. More detailed studies comparing the traditional and flipped formats are warranted. Copyright © 2016 the American Physiological Society.

  5. The "flipped classroom" approach: Stimulating positive learning attitudes and improving mastery of histology among medical students.

    PubMed

    Cheng, Xin; Ka Ho Lee, Kenneth; Chang, Eric Y; Yang, Xuesong

    2017-07-01

    Traditional medical education methodologies have been dramatically impacted by the introduction of new teaching approaches over the past few decades. In particular, the "flipped classroom" format has drawn a great deal of attention. However, evidence regarding the effectiveness of the flipped model remains limited due to a lack of outcome-based studies. In the present study, a pilot histology curriculum of the organ systems was implemented among 24 Traditional Chinese Medicine (TCM) students in a flipped classroom format at Jinan University. As a control, another 87 TCM students followed a conventional histology curriculum. The academic performance of the two groups was compared. In addition, a questionnaire was administered to the flipped classroom group. The test scores for the flipped classroom participants were found to be significantly higher compared to non-participants in the control group. These results suggest that students may benefit from using the flipped classroom format. Follow-up questionnaires also revealed that most of the flipped classroom participants undertook relatively more earnest preparations before class and were actively involved in classroom learning activities. The teachers were also found to have more class time for leading discussions and delivering quizzes rather than repeating rote didactics. Consequently, the increased teaching and learning activities contributed to a better performance among the flipped classroom group. This pilot study suggests that a flipped classroom approach can be used to improve histology education among medical students. However, future studies employing randomization, larger numbers of students, and more precise tracking methods are needed before definitive conclusions can be drawn. Anat Sci Educ 10: 317-327. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  6. Evaluation of a flipped classroom approach to learning introductory epidemiology.

    PubMed

    Shiau, Stephanie; Kahn, Linda G; Platt, Jonathan; Li, Chihua; Guzman, Jason T; Kornhauser, Zachary G; Keyes, Katherine M; Martins, Silvia S

    2018-04-02

    Although the flipped classroom model has been widely adopted in medical education, reports on its use in graduate-level public health programs are limited. This study describes the design, implementation, and evaluation of a flipped classroom redesign of an introductory epidemiology course and compares it to a traditional model. One hundred fifty Masters-level students enrolled in an introductory epidemiology course with a traditional format (in-person lecture and discussion section, at-home assignment; 2015, N = 72) and a flipped classroom format (at-home lecture, in-person discussion section and assignment; 2016, N = 78). Using mixed methods, we compared student characteristics, examination scores, and end-of-course evaluations of the 2016 flipped classroom format and the 2015 traditional format. Data on the flipped classroom format, including pre- and post-course surveys, open-ended questions, self-reports of section leader teaching practices, and classroom observations, were evaluated. There were no statistically significant differences in examination scores or students' assessment of the course between 2015 (traditional) and 2016 (flipped). In 2016, 57.1% (36) of respondents to the end-of-course evaluation found watching video lectures at home to have a positive impact on their time management. Open-ended survey responses indicated a number of strengths of the flipped classroom approach, including the freedom to watch pre-recorded lectures at any time and the ability of section leaders to clarify targeted concepts. Suggestions for improvement focused on ways to increase regular interaction with lecturers. There was no significant difference in students' performance on quantitative assessments comparing the traditional format to the flipped classroom format. The flipped format did allow for greater flexibility and applied learning opportunities at home and during discussion sections.

  7. Analysis and Evaluation of the Reconfigured Exponential Troposphere Model (ETM)

    DTIC Science & Technology

    2006-05-10

    Southeast Asia, Northeast Asia, Amazon Rainforest , Sahara Desert, and Australia) have been selected for comparison based on their climate extremes, such as...of Appendix B Appendix B presents angle errors for the Middle East, the Amazon Rainforest , Northeast Asia, and Southeast Asia using the ETM Monthly...and calibration should be carefully implemented in this region for RF communication, application, and operation. For the Amazon Rainforest region, data

  8. Does the Flipped Classroom Improve Learning in Graduate Medical Education?

    PubMed

    Riddell, Jeff; Jhun, Paul; Fung, Cha-Chi; Comes, James; Sawtelle, Stacy; Tabatabai, Ramin; Joseph, Daniel; Shoenberger, Jan; Chen, Esther; Fee, Christopher; Swadron, Stuart P

    2017-08-01

    The flipped classroom model for didactic education has recently gained popularity in medical education; however, there is a paucity of performance data showing its effectiveness for knowledge gain in graduate medical education. We assessed whether a flipped classroom module improves knowledge gain compared with a standard lecture. We conducted a randomized crossover study in 3 emergency medicine residency programs. Participants were randomized to receive a 50-minute lecture from an expert educator on one subject and a flipped classroom module on the other. The flipped classroom included a 20-minute at-home video and 30 minutes of in-class case discussion. The 2 subjects addressed were headache and acute low back pain. A pretest, immediate posttest, and 90-day retention test were given for each subject. Of 82 eligible residents, 73 completed both modules. For the low back pain module, mean test scores were not significantly different between the lecture and flipped classroom formats. For the headache module, there were significant differences in performance for a given test date between the flipped classroom and the lecture format. However, differences between groups were less than 1 of 10 examination items, making it difficult to assign educational importance to the differences. In this crossover study comparing a single flipped classroom module with a standard lecture, we found mixed statistical results for performance measured by multiple-choice questions. As the differences were small, the flipped classroom and lecture were essentially equivalent.

  9. Molecular mechanism for lipid flip-flops.

    PubMed

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2007-12-06

    Transmembrane lipid translocation (flip-flop) processes are involved in a variety of properties and functions of cell membranes, such as membrane asymmetry and programmed cell death. Yet, flip-flops are one of the least understood dynamical processes in membranes. In this work, we elucidate the molecular mechanism of pore-mediated transmembrane lipid translocation (flip-flop) acquired from extensive atomistic molecular dynamics simulations. On the basis of 50 successful flip-flop events resolved in atomic detail, we demonstrate that lipid flip-flops may spontaneously occur in protein-free phospholipid membranes under physiological conditions through transient water pores on a time scale of tens of nanoseconds. While the formation of a water pore is induced here by a transmembrane ion density gradient, the particular way by which the pore is formed is irrelevant for the reported flip-flop mechanism: the appearance of a transient pore (defect) in the membrane inevitably leads to diffusive translocation of lipids through the pore, which is driven by thermal fluctuations. Our findings strongly support the idea that the formation of membrane defects in terms of water pores is the rate-limiting step in the process of transmembrane lipid flip-flop, which, on average, requires several hours. The findings are consistent with available experimental and computational data and provide a view to interpret experimental observations. For example, the simulation results provide a molecular-level explanation in terms of pores for the experimentally observed fact that the exposure of lipid membranes to electric field pulses considerably reduces the time required for lipid flip-flops.

  10. Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.

    2014-02-01

    Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.

  11. An Examination of Student Outcomes and Student Satisfaction in a Flipped Learning Environment: A Quasi-Experimental Design

    ERIC Educational Resources Information Center

    Lee, Angela M.

    2016-01-01

    Flipped learning has become a hot topic in education, in part because of the media portrayal of flipped learning in existing news stories. Although there has been a rise in popularity and implementation, there has been a lack of empirical research in the field of flipped learning. The purpose of this exploratory study was to address some of the…

  12. A Quasi Experiment to Determine the Effectiveness of a "Partially Flipped" versus "Fully Flipped" Undergraduate Class in Genetics and Evolution

    ERIC Educational Resources Information Center

    Adams, Alison E. M.; Garcia, Jocelyn; Traustadóttir, Tinna

    2016-01-01

    Two sections of Genetics and Evolution were taught by one instructor. One group (the fully flipped section) had the entire class period devoted to active learning (with background material that had to be watched before class), and the other group (the partially flipped section) had just a portion of class time spent on active learning (with the…

  13. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave Doughty; S. Lemon; P. Bonneau

    1992-10-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF (Continuous Electron Beam Accelerator Facility) has been studied. It is found that the newest ECL (emitter coupled logic) flip-flops (ECLinPS) are much faster than older families at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  14. Fabrication of five-level ultraplanar micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper reports a detailed study of the fabrication of various piston, torsion, and cantilever style micromirror arrays using a novel, simple, and inexpensive flip-chip assembly technique. Several rectangular and polar arrays were commercially prefabricated in the MUMPs process and then flip-chip bonded to form advanced micromirror arrays where adverse effects typically associated with surface micromachining were removed. These arrays were bonded by directly fusing the MUMPs gold layers with no complex preprocessing. The modules were assembled using a computer-controlled, custom-built flip-chip bonding machine. Topographically opposed bond pads were designed to correct for slight misalignment errors during bonding and typically result in less than 2 micrometers of lateral alignment error. Although flip-chip micromirror performance is briefly discussed, the means used to create these arrays is the focus of the paper. A detailed study of flip-chip process yield is presented which describes the primary failure mechanisms for flip-chip bonding. Studies of alignment tolerance, bonding force, stress concentration, module planarity, bonding machine calibration techniques, prefabrication errors, and release procedures are presented in relation to specific observations in process yield. Ultimately, the standard thermo-compression flip-chip assembly process remains a viable technique to develop highly complex prototypes of advanced micromirror arrays.

  15. Development of a Flipped Medical School Dermatology Module.

    PubMed

    Fox, Joshua; Faber, David; Pikarsky, Solomon; Zhang, Chi; Riley, Richard; Mechaber, Alex; O'Connell, Mark; Kirsner, Robert S

    2017-05-01

    The flipped classroom module incorporates independent study in advance of in-class instructional sessions. It is unproven whether this methodology is effective within a medical school second-year organ system module. We report the development, implementation, and effectiveness of the flipped classroom methodology in a second-year medical student dermatology module at the University of Miami Leonard M. Miller School of Medicine. In a retrospective cohort analysis, we compared attitudinal survey data and mean scores for a 50-item multiple-choice final examination of the second-year medical students who participated in this 1-week flipped course with those of the previous year's traditional, lecture-based course. Each group comprised nearly 200 students. Students' age, sex, Medical College Admission Test scores, and undergraduate grade point averages were comparable between the flipped and traditional classroom students. The flipped module students' mean final examination score of 92.71% ± 5.03% was greater than that of the traditional module students' 90.92% ± 5.51% ( P < 0.001) score. Three of the five most commonly missed questions were identical between the two cohorts. The majority of students preferred the flipped methodology to attending live lectures or watching previously recorded lectures. The flipped classroom can be an effective instructional methodology for a medical school second-year organ system module.

  16. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  17. A computer analysis of the RF performance of a ground-mounted, air-supported radome

    NASA Astrophysics Data System (ADS)

    Punnett, M. B.; Joy, E. B.

    Several reports and actual operating experience have highlighted the degradation of RF Performance which can occur when SSR or IFF antenna are mounted above primary search antenna within metal space frame or dielectric space frame radomes. These effects are usually attributed to both the high incidence angles and sensitivity of the low gain antennae to sidelobe changes due to scattered energy. Although it has been widely accepted that thin membrane radomes would provide superior performance for this application, there has been little supporting documentation. A plane-wave-spectrum (PWS) computer-based radome analysis was conducted to assess the performance of a specific air-supported radome for the SSR application. In conducting the analysis a mathematical model of a modern SSR antenna was combined with a model of an existing Birdair radome design.

  18. Study and practice of flipped classroom in optoelectronic technology curriculum

    NASA Astrophysics Data System (ADS)

    Shi, Jianhua; Lei, Bing; Liu, Wei; Yao, Tianfu; Jiang, Wenjie

    2017-08-01

    "Flipped Classroom" is one of the most popular teaching models, and has been applied in more and more curriculums. It is totally different from the traditional teaching model. In the "Flipped Classroom" model, the students should watch the teaching video afterschool, and in the classroom only the discussion is proceeded to improve the students' comprehension. In this presentation, "Flipped Classroom" was studied and practiced in opto-electronic technology curriculum; its effect was analyzed by comparing it with the traditional teaching model. Based on extensive and deep investigation, the phylogeny, the characters and the important processes of "Flipped Classroom" are studied. The differences between the "Flipped Classroom" and the traditional teaching model are demonstrated. Then "Flipped Classroom" was practiced in opto-electronic technology curriculum. In order to obtain high effectiveness, a lot of teaching resources were prepared, such as the high-quality teaching video, the animations and the virtual experiments, the questions that the students should finish before and discussed in the class, etc. At last, the teaching effect was evaluated through analyzing the result of the examination and the students' surveys.

  19. Dynamics of spontaneous flipping of a mismatched base in DNA duplex.

    PubMed

    Yin, Yandong; Yang, Lijiang; Zheng, Guanqun; Gu, Chan; Yi, Chengqi; He, Chuan; Gao, Yi Qin; Zhao, Xin Sheng

    2014-06-03

    DNA base flipping is a fundamental theme in DNA biophysics. The dynamics for a B-DNA base to spontaneously flip out of the double helix has significant implications in various DNA-protein interactions but are still poorly understood. The spontaneous base-flipping rate obtained previously via the imino proton exchange assay is most likely the rate of base wobbling instead of flipping. Using the diffusion-decelerated fluorescence correlation spectroscopy together with molecular dynamics simulations, we show that a base of a single mismatched base pair (T-G, T-T, or T-C) in a double-stranded DNA can spontaneously flip out of the DNA duplex. The extrahelical lifetimes are on the order of 10 ms, whereas the intrahelical lifetimes range from 0.3 to 20 s depending on the stability of the base pairs. These findings provide detailed understanding on the dynamics of DNA base flipping and lay down foundation to fully understand how exactly the repair proteins search and locate the target mismatched base among a vast excess of matched DNA bases.

  20. Family of fuzzy J-K flip-flops based on bounded product, bounded sum and complementation.

    PubMed

    Gniewek, L; Kluska, J

    1998-01-01

    This paper presents a concept of new fuzzy J-K flip-flops based on bounded product, bounded sum and fuzzy complementation operations. Relationships between various types of the J-K flip-flops are given and characteristics of them are graphically shown by computer simulation. Two examples of circuits able to memorize and fuzzy information processing using the proposed fuzzy J-K flip-flops are presented.

  1. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  2. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  3. Quasi-experimental study on the effectiveness of a flipped classroom for teaching adult health nursing.

    PubMed

    Park, Esther O; Park, Ji Hyun

    2018-04-01

    The effectiveness of flipped learning as one of the teaching methods of active learning has been left unexamined in nursing majors, compared to the frequent attempts to uncover the effectiveness of it in other disciplines. The purpose of this study was to reveal the effectiveness of flipped learning pedagogy in an adult health nursing course, controlling for other variables. The study applied a quasi-experimental approach, comparing pre- and post-test results in learning outcomes. Included in this analysis were the records of 81 junior nursing major students. The convenience sampling method was used to select the participants. Those in the experimental group were exposed to a flipped classroom experience that was given after the completion of their traditional class. The students' learning outcomes and the level of critical thinking skills were evaluated before and after the intervention of the flipped classroom. After the flipped classroom experience, the scores of the students' achievement in subject topics and critical thinking skills, specifically intellectual integrity and creativity, showed a greater level of increase than those of their controlled counterparts. This remained true even after controlling for previous academic performance and the level of creativity. This study confirmed the effectiveness of the flipped classroom as a measure of active learning by applying a quantitative approach. But, regarding the significance of the initial contribution of flipped learning in the discipline of nursing science, carrying out a more authentic experimental study could justify the impact of flipped learning pedagogy. © 2017 Japan Academy of Nursing Science.

  4. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3.

    PubMed

    Chen, Shuzhen; Cao, Wei; Yue, Ping; Hao, Chunhai; Khuri, Fadlo R; Sun, Shi-Yong

    2011-10-01

    Celecoxib is a COX-2 inhibitor that reduces the risk of colon cancer. However, the basis for its cancer chemopreventive activity is not fully understood. In this study, we defined a mechanism of celecoxib action based on degradation of cellular FLICE-inhibitory protein (c-FLIP), a major regulator of the death receptor pathway of apoptosis. c-FLIP protein levels are regulated by ubiquitination and proteasome-mediated degradation. We found that celecoxib controlled c-FLIP ubiquitination through Akt-independent inhibition of glycogen synthase kinase-3 (GSK3), itself a candidate therapeutic target of interest in colon cancer. Celecoxib increased the levels of phosphorylated GSK3, including the α and β forms, even in cell lines, where phosphorylated Akt levels were not increased. Phosphoinositide 3-kinase inhibitors abrogated Akt phosphorylation as expected but had no effect on celecoxib-induced GSK3 phosphorylation. In contrast, protein kinase C (PKC) inhibitors abolished celecoxib-induced GSK3 phosphorylation, implying that celecoxib influenced GSK3 phosphorylation through a mechanism that relied upon PKC and not Akt. GSK3 blockade either by siRNA or kinase inhibitors was sufficient to attenuate c-FLIP levels. Combining celecoxib with GSK3 inhibition enhanced attenuation of c-FLIP and increased apoptosis. Proteasome inhibitor MG132 reversed the effects of GSK3 inhibition and increased c-FLIP ubiquitination, confirming that c-FLIP attenuation was mediated by proteasomal turnover as expected. Our findings reveal a novel mechanism through which the regulatory effects of c-FLIP on death receptor signaling are controlled by GSK3, which celecoxib acts at an upstream level to control independently of Akt.

  5. Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3

    PubMed Central

    Chen, Shuzhen; Cao, Wei; Yue, Ping; Hao, Chunhai; Khuri, Fadlo R.; Sun, Shi-Yong

    2011-01-01

    Celecoxib is a COX2 inhibitor that reduces the risk of colon cancer. However, the basis for its cancer chemopreventive activity is not fully understood. In this study, we defined a mechanism of celecoxib action based on degradation of c-FLIP, a major regulator of the death receptor pathway of apoptosis. c-FLIP protein levels are regulated by ubiquitination and proteasome-mediated degradation. We found that celecoxib controlled c-FLIP ubiquitination through Akt-independent inhibition of GSK3 kinase, itself a candidate therapeutic target of interest in colon cancer. Celecoxib increased the levels of phosphorylated GSK3 (p-GSK3), including the α and β forms, even in cell lines where p-Akt levels were not increased. PI3K inhibitors abrogated Akt phosphorylation as expected but had no effect on celecoxib-induced GSK3 phosphorylation. In contrast, PKC inhibitors abolished celecoxib-induced GSK3 phosphorylation, implying that celecoxib influenced GSK3 phosphorylation through a mechanism relied upon PKC but not Akt. GSK3 blockade either by siRNA or kinase inhibitors was sufficient to attenuate c-FLIP levels. Combining celecoxib with GSK3 inhibition enhanced attenuation of c-FLIP and increased apoptosis. Proteasome inhibitor MG132 reversed the effects of GSK3 inhibition and increased c-FLIP ubiquitination, confirming that c-FLIP attenuation was mediated by proteasomal turnover as expected. Our findings reveal a novel mechanism through which the regulatory effects of c-FLIP on death receptor signaling are controlled by GSK3, which celecoxib acts at an upstream level to control independently of Akt. PMID:21868755

  6. A gross anatomy flipped classroom effects performance, retention, and higher-level thinking in lower performing students.

    PubMed

    Day, Leslie J

    2018-01-22

    A flipped classroom is a growing pedagogy in higher education. Many research studies on the flipped classroom have focused on student outcomes, with the results being positive or inconclusive. A few studies have analyzed confounding variables, such as student's previous achievement, or the impact of a flipped classroom on long-term retention and knowledge transfer. In the present study, students in a Doctor of Physical Therapy program in a traditional style lecture of gross anatomy (n = 105) were compared to similar students in a flipped classroom (n = 112). Overall, students in the flipped anatomy classroom had an increase in semester average grades (P = 0.01) and performance on higher-level analytical questions (P < 0.001). Long-term retention and knowledge transfer was analyzed in a subsequent semester's sequenced kinesiology course, with students from the flipped anatomy classroom performing at a higher level in kinesiology (P < 0.05). Student's pre-matriculation grade point average was also considered. Previously lower performing students, when in a flipped anatomy class, outperformed their traditional anatomy class counterparts in anatomy semester grades (P < 0.05), accuracy on higher-level analytical anatomy multiple-choice questions (P < 0.05) and performance in subsequent course of kinesiology (P < 0.05). This study suggests that the flipped classroom may benefit lower performing student's knowledge acquisition and transfer to a greater degree than higher performing students. Future studies should explore the underlying reasons for improvement in lower performing students. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  7. Spin-resolved electron waiting times in a quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  8. Surveying the Lunar Surface for New Craters with Mini-RF/Goldstone X-Band Bistatic Observations

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Patterson, G.; Turner, F. S.; Morgan, G.; Stickle, A. M.; Speyerer, E. J.; Espiritu, R. C.; Thomson, B. J.

    2017-12-01

    A multi-look temporal imaging survey by Speyerer et al. (2016) using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) has highlighted detectable and frequent impact bombardment processes actively modifying the lunar surface. Over 220 new resolvable impacts have been detected since NASA's Lunar Reconnaissance Orbiter (LRO) entered orbit around the Moon, at a flux that is substantially higher than anticipated from previous studies (Neukum et al., 2001). The Miniature Radio Frequency (Mini-RF) instrument aboard LRO is a hybrid dual-polarized synthetic aperture radar (SAR) that now operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34-meter antenna DSS-13 to collect S- and X-band (12.6 and 4.2 cm, respectively) bistatic radar data of the Moon, respectively. Here we targeted some of the larger (>30 m) craters identified by Speyerer et al. (2016) and executed bistatic X-band radar observations both to evaluate our ability to detect and resolve these impact features and further characterize the spatial extent and material size of their ejecta outside optical wavelengths. Data acquired during Mini-RF monostatic operations, when the transmitter was active, show no coverage of the regions in question before or after two of the new impacts occurred. This makes Mini-RF and Earth-based bistatic observations all the more valuable for examination of these fresh new geologic features. Preliminary analyses of Arecibo/Greenbank and Mini-RF/Goldstone observations are unable to resolve the new crater cavities (due to our current resolving capability of 100 m/px), but they further confirm lunar surface roughness changes occurred between 2008 and 2017. Mini-RF X-band observations show newly ejected material was dispersed on the order of 100-300 meters from the point of impact. Scattering observed in the X-band data suggests the presence of rocky ejecta 4 - 45 cm in diameter on the surface and buried to depths of at least 0.5 m.

  9. Small animal magnetic resonance imaging: an efficient tool to assess liver volume and intrahepatic vascular anatomy.

    PubMed

    Melloul, Emmanuel; Raptis, Dimitri A; Boss, Andreas; Pfammater, Thomas; Tschuor, Christoph; Tian, Yinghua; Graf, Rolf; Clavien, Pierre-Alain; Lesurtel, Mickael

    2014-04-01

    To develop a noninvasive technique to assess liver volumetry and intrahepatic portal vein anatomy in a mouse model of liver regeneration. Fifty-two C57BL/6 male mice underwent magnetic resonance imaging (MRI) of the liver using a 4.7 T small animal MRI system after no treatment, 70% partial hepatectomy (PH), or selective portal vein embolization. The protocol consisted of the following sequences: three-dimensional-encoded spoiled gradient-echo sequence (repetition time per echo time 15 per 2.7 ms, flip angle 20°) for volumetry, and two-dimensional-encoded time-of-flight angiography sequence (repetition time per echo time 18 per 6.4 ms, flip angle 80°) for vessel visualization. Liver volume and portal vein segmentation was performed using a dedicated postprocessing software. In animals with portal vein embolization, portography served as reference standard. True liver volume was measured after sacrificing the animals. Measurements were carried out by two independent observers with subsequent analysis by the Cohen κ-test for interobserver agreement. MRI liver volumetry highly correlated with the true liver volume measurement using a conventional method in both the untreated liver and the liver remnant after 70% PH with a high interobserver correlation coefficient of 0.94 (95% confidence interval, 0.80-0.98 for untreated liver [P < 0.001] and 0.90-0.97 after 70% PH [P < 0.001]). The diagnostic accuracy of magnetic resonance angiography for the occlusion of one branch of the portal vein was 0.95 (95% confidence interval, 0.84-1). The level of agreement between the two observers for the description of intrahepatic vascular anatomy was excellent (Cohen κ value = 0.925). This protocol may be used for noninvasive liver volumetry and visualization of portal vein anatomy in mice. It will serve the dynamic study of new strategies to enhance liver regeneration in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. T2‐Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE‐prepared variable flip angle turbo spin echo readout (DANTE‐SPACE)

    PubMed Central

    Viessmann, Olivia; Li, Linqing; Benjamin, Philip

    2016-01-01

    Purpose To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. Methods A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black‐blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE‐preparation module for 7T. Signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE‐SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE‐SPACE. Results The 7T‐optimized SPACE sequence improved the vessel wall point‐spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE‐SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). Conclusion The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655–663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26890988

  11. T2-Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE).

    PubMed

    Viessmann, Olivia; Li, Linqing; Benjamin, Philip; Jezzard, Peter

    2017-02-01

    To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black-blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE-preparation module for 7T. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE-SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE-SPACE. The 7T-optimized SPACE sequence improved the vessel wall point-spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE-SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655-663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  12. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    PubMed

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for real-time CMR at the ultimate limit of this technology.

  13. [The initial (I and II) and advanced (III and IV) stages of juvenile patellar chondromalacia. Its diagnosis by magnetic resonance using a 1.5-T magnet with FLASH sequences].

    PubMed

    Macarini, L; Rizzo, A; Martino, F; Zaccheo, N; Angelelli, G; Rotondo, A

    1998-06-01

    Juvenile patellar chondromalacia is a common orthopedic disorder which can mimic other conditions; early diagnosis is mandatory to prevent its evolution into osteoarthrosis. In the early stages of patellar chondromalacia (I and II), the lesions originate in the deep cartilage layer and the joint surface is not affected. Arthroscopy can demonstrate joint surface changes only and give indirect information about deeper lesions. We investigated the yield of 2D FLASH MRI with 30 degrees flip angle and a dedicated coil in the diagnosis of patellar chondromalacia, especially in its early stages. Eighteen patients (mean age: 21 years) with clinically suspected patellar chondromalacia were examined with MRI; 13 of them were also submitted to arthroscopy. A 1.5 T unit with a transmit-and-receive extremity coil was used. We acquired T1 SE sequences (TR/TE: 500-700/15/20) and 2D T2* FLASH sequence (TR/TE/FA: 500-800/18/30 degrees). The field of view was 160-180 mm and the matrix 192 x 256, with 2-3 NEX. The images were obtained on the axial plane. The lesions were classified in 4 stages according to Shahriaree classification. Agreement between MR and arthroscopic findings was good in both early and advanced lesions in 12/13 cases. Early lesions appeared as hyperintense focal thickening of the hyaline cartilage (stage I) or as small cystic lesions within the cartilage and no articular surface involvement (stage II). The medial patellar facet was the most frequent site. Advanced lesions appeared as articular surface ulcerations, thinning and cartilage hypointensity (stage III); stage IV lesions presented as complete erosions of the hyaline cartilage and hypointense underlying bone. 2D FLASH MRI with 30 degrees flip angle can show the differences in water content in the cartilage and thus permit to detect early chondromalacia lesions in the deep cartilage.

  14. Evaluation of the Communication Between Arachnoid Cysts and Neighboring Cerebrospinal Fluid Spaces by T2W 3D-SPACE With Variant Flip-Angle Technique at 3 T.

    PubMed

    Algin, Oktay

    2018-05-21

    Phase-contrast cine magnetic resonance imaging (PC-MRI) is a widely used technique for determination of possible communication of arachnoid cysts (ACs). Three-dimensional (3D) sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) technique is a relatively new method for 3D isotropic scanning of the entire cranium within a short time. In this research, the usage of the 3D-SPACE technique in differentiation of communicating or noncommunicating type ACs was evaluated. Thirty-five ACs in 34 patients were retrospectively examined. The 3D-SPACE, PC-MRI, and contrast material-enhanced cisternography (if present) images of the patients were analyzed. Each cyst was described according to cyst size/location, third ventricle diameter, Evans index, and presence of hydrocephalus. Communication was defined as absent (score 0), suspected (score 1), or present (score 2) on each sequence. Results of PC-MRI or cisternography (if available) examinations were used as criterion standard techniques to categorize all cysts as communicating or noncommunicating type. The results of 3D-SPACE were compared with criterion standard techniques. The comparisons between groups were performed using Mann-Whitney and Fisher exact tests. For demonstration of communication status of the cysts, criterion standard test results and 3D-SPACE findings were almost in perfect harmony (κ[95% confidence interval: 0.94]; P < 0.001). When evaluating the communicative properties, 3D-SPACE findings correlated with other final results at a rate of 97%. There is a positive correlation with third ventricular diameters and Evans index for all patients (r = 0.77, P < 0.001). For other analyzed variables, there is no significant difference or correlation between the groups. The 3D-SPACE technique is an easy, useful, and noninvasive alternative for the evaluation of morphology, topographical relationships, and communication status of ACs.

  15. MR fingerprinting with simultaneous B1 estimation.

    PubMed

    Buonincontri, Guido; Sawiak, Stephen J

    2016-10-01

    MR fingerprinting (MRF) can be used for quantitative estimation of physical parameters in MRI. Here, we extend the method to incorporate B1 estimation. The acquisition is based on steady state free precession MR fingerprinting with a Cartesian trajectory. To increase the sensitivity to the B1 profile, abrupt changes in flip angle were introduced in the sequence. Slice profile and B1 effects were included in the dictionary and the results from two- and three-dimensional (3D) acquisitions were compared. Acceleration was demonstrated using retrospective undersampling in the phase encode directions of 3D data exploiting redundancy between MRF frames at the edges of k-space. Without B1 estimation, T2 and B1 were inaccurate by more than 20%. Abrupt changes in flip angle improved B1 maps. T1 and T2 values obtained with the new MRF methods agree with classical spin echo measurements and are independent of the B1 field profile. When using view sharing reconstruction, results remained accurate (error <10%) when sampling under 10% of k-space from the 3D data. The methods demonstrated here can successfully measure T1, T2, and B1. Errors due to slice profile can be substantially reduced by including its effect in the dictionary or acquiring data in 3D. Magn Reson Med 76:1127-1135, 2016. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  16. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  17. Assessment of learning gains in a flipped biochemistry classroom.

    PubMed

    Ojennus, Deanna Dahlke

    2016-01-01

    The flipped classroom has become an increasingly popular pedagogical approach to teaching and learning. In this study, learning gains were assessed in a flipped biochemistry course and compared to gains in a traditional lecture. Although measured learning gains were not significantly different between the two courses, student perception of learning gains did differ and indicates a higher level of satisfaction with the flipped lecture format. © 2015 The International Union of Biochemistry and Molecular Biology.

  18. Results of a Flipped Classroom Teaching Approach in Anesthesiology Residents.

    PubMed

    Martinelli, Susan M; Chen, Fei; DiLorenzo, Amy N; Mayer, David C; Fairbanks, Stacy; Moran, Kenneth; Ku, Cindy; Mitchell, John D; Bowe, Edwin A; Royal, Kenneth D; Hendrickse, Adrian; VanDyke, Kenneth; Trawicki, Michael C; Rankin, Demicha; Guldan, George J; Hand, Will; Gallagher, Christopher; Jacob, Zvi; Zvara, David A; McEvoy, Matthew D; Schell, Randall M

    2017-08-01

    In a flipped classroom approach, learners view educational content prior to class and engage in active learning during didactic sessions. We hypothesized that a flipped classroom improves knowledge acquisition and retention for residents compared to traditional lecture, and that residents prefer this approach. We completed 2 iterations of a study in 2014 and 2015. Institutions were assigned to either flipped classroom or traditional lecture for 4 weekly sessions. The flipped classroom consisted of reviewing a 15-minute video, followed by 45-minute in-class interactive sessions with audience response questions, think-pair-share questions, and case discussions. The traditional lecture approach consisted of a 55-minute lecture given by faculty with 5 minutes for questions. Residents completed 3 knowledge tests (pretest, posttest, and 4-month retention) and surveys of their perceptions of the didactic sessions. A linear mixed model was used to compare the effect of both formats on knowledge acquisition and retention. Of 182 eligible postgraduate year 2 anesthesiology residents, 155 (85%) participated in the entire intervention, and 142 (78%) completed all tests. The flipped classroom approach improved knowledge retention after 4 months (adjusted mean = 6%; P  = .014; d  = 0.56), and residents preferred the flipped classroom (pre = 46%; post = 82%; P  < .001). The flipped classroom approach to didactic education resulted in a small improvement in knowledge retention and was preferred by anesthesiology residents.

  19. A modified implementation of tristate inverter based static master-slave flip-flop with improved power-delay-area product.

    PubMed

    Singh, Kunwar; Tiwari, Satish Chandra; Gupta, Maneesha

    2014-01-01

    The paper introduces novel architectures for implementation of fully static master-slave flip-flops for low power, high performance, and high density. Based on the proposed structure, traditional C(2)MOS latch (tristate inverter/clocked inverter) based flip-flop is implemented with fewer transistors. The modified C(2)MOS based flip-flop designs mC(2)MOSff1 and mC(2)MOSff2 are realized using only sixteen transistors each while the number of clocked transistors is also reduced in case of mC(2)MOSff1. Postlayout simulations indicate that mC(2)MOSff1 flip-flop shows 12.4% improvement in PDAP (power-delay-area product) when compared with transmission gate flip-flop (TGFF) at 16X capacitive load which is considered to be the best design alternative among the conventional master-slave flip-flops. To validate the correct behaviour of the proposed design, an eight bit asynchronous counter is designed to layout level. LVS and parasitic extraction were carried out on Calibre, whereas layouts were implemented using IC station (Mentor Graphics). HSPICE simulations were used to characterize the transient response of the flip-flop designs in a 180 nm/1.8 V CMOS technology. Simulations were also performed at 130 nm, 90 nm, and 65 nm to reveal the scalability of both the designs at modern process nodes.

  20. A Modified Implementation of Tristate Inverter Based Static Master-Slave Flip-Flop with Improved Power-Delay-Area Product

    PubMed Central

    Tiwari, Satish Chandra; Gupta, Maneesha

    2014-01-01

    The paper introduces novel architectures for implementation of fully static master-slave flip-flops for low power, high performance, and high density. Based on the proposed structure, traditional C2MOS latch (tristate inverter/clocked inverter) based flip-flop is implemented with fewer transistors. The modified C2MOS based flip-flop designs mC2MOSff1 and mC2MOSff2 are realized using only sixteen transistors each while the number of clocked transistors is also reduced in case of mC2MOSff1. Postlayout simulations indicate that mC2MOSff1 flip-flop shows 12.4% improvement in PDAP (power-delay-area product) when compared with transmission gate flip-flop (TGFF) at 16X capacitive load which is considered to be the best design alternative among the conventional master-slave flip-flops. To validate the correct behaviour of the proposed design, an eight bit asynchronous counter is designed to layout level. LVS and parasitic extraction were carried out on Calibre, whereas layouts were implemented using IC station (Mentor Graphics). HSPICE simulations were used to characterize the transient response of the flip-flop designs in a 180 nm/1.8 V CMOS technology. Simulations were also performed at 130 nm, 90 nm, and 65 nm to reveal the scalability of both the designs at modern process nodes. PMID:24723808

  1. Effect of deposition parameters and heat-treatment on the microstructure, mechanical and electrochemical properties of hydroxyapatite/titanium coating deposited on Ti6Al4V by RF-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Jianwei; Chen, Zhangbo; Han, Wenjun; He, Danfeng; Yang, Yiming; Wang, Qingliang

    2017-09-01

    Functionally graded HA/Ti coatings were deposited on silicon and Ti6Al4V substrate by radio-frequency (RF) magnetron sputtering. The effect of RF-power, negative bias and heat-treatment on the microstructure, mechanical and electrochemical properties of the coatings were characterized by SEM, XRD, FTIR, AFM Nanoindentation and electrochemical workstation. The obtained results showed that the as-deposited HA/Ti coatings were characteristic of amorphous structure, which transformed into a crystal structure after heat-treatment, and reformed O-H peak. The content of crystallization was increasing with the increase of negative bias. A dense, homogenous, smooth and featured surface, and columnar cross-section structure was observed in SEM observation. AFM results showed that the surface roughness became higher after heat-treatment, and increased with increasing RF-power. The mechanical test indicated that the coating had a higher nanohardness (9.1 GPa) in the case of  -100 V and 250 W than that of Ti6Al4V substrate, and a critical load as high as 17  ±  3.5 N. The electrochemical test confirmed the HA/Ti coating served as a stable protecting barrier in improving the corrosion resistance, which the corrosion current density was 1.3% of Ti6Al4V, but it was significantly influenced by RF-power and negative bias. The contact angle test demonstrated that all the coatings exhibited favorable hydrophilic properties, and it decreased by 20-25% compared to that untreated samples. Thus all results indicated that magnetron sputtering is a promising way for fabricating a better biocompatible ceramic coating by adjusting deposition parameters and post-deposition heat treatments.

  2. Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter.

    PubMed

    Heidbüchel, H; Willems, R; van Rensburg, H; Adams, J; Ector, H; Van de Werf, F

    2000-05-09

    Gaining anatomic information about the posterior isthmus is not generally part of flutter ablation procedures. We postulated that right atrial (RA) angiography could rationalize the ablation approach by revealing the conformation of the isthmus. In 100 consecutive patients, biplane RA angiography was performed before ablation to guide catheter contact with the isthmus along its length. Angiography showed a wide variation in the width of the isthmus (17 to 54 mm; 31.3+/-7.9), its angle with the inferior vena cava in the right anterior oblique projection (68 degrees to 114 degrees; 90.3+/-9.0 degrees ), and its lateral position relative to the inferior vena cava in the left anterior oblique projection. A deep sub-Eustachian recess was revealed in 47%, with a mean depth of 4.3+/-2.1 mm (1.5 to 9.4). A Eustachian valve was visualized in 24%. Ablation resulted in bidirectional conduction block (which could be transient) in all, with a median of 2 dragging radiofrequency (RF) applications (2.3+/-2.5 RF applications; 57 degrees C, < or =99 seconds each). Permanent block was achieved in 99%, with a median of 3 RF applications (3.4+/-3.0). The presence of a Eustachian valve or concave isthmus was associated with statistically more RF applications; the same trend was seen for patients with deep pouches. The number of RF applications decreased statistically throughout the study, indicating a learning curve. No patient had a recurrence after a follow-up of 13+/-11 months. Right atrial angiography reveals a highly variable isthmus anatomy, often showing particular configurations that can make ablation more laborious. Rational adaptation of the ablation approach to these anatomic findings may contribute to successful ablation.

  3. Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2014-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts

  4. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  5. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  6. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    NASA Astrophysics Data System (ADS)

    Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang

    2017-12-01

    At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  7. Converging Resonance Cones in the LAPTAG plasma

    NASA Astrophysics Data System (ADS)

    Katz, Cami; Ha, Chris; Gekelman, Walter; Pribyl, Patrick; Agmon, Nathan; Wise, Joe; Baker, Bob

    2013-10-01

    The LAPTAG laboratory is a high school outreach effort that has a 1.5m long 50 cm diameter magnetized plasma device. The plasma is produced by an ICP source (1X109 < n < 5X1011 cm-3) and has computer controlled data acquisition. Ring antennas are used to produce converging resonance cones. The experiment was performed in the quiescent plasma afterglow. The electrostatic cones were produced by rf applied to the rings (80 < f < 120 MHz), where fRF < f

  8. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  9. Analysis of High Grazing Angle Sea-clutter with the KK-Distribution

    DTIC Science & Technology

    2013-11-01

    work undertaken at the DSTO in characterising the maritime environment from high altitude airborne platforms. The focus of this report is to characterise...multichannel synthetic aperture radar through Adelaide University. He has worked at the DSTO as an RF engineer in the missile simulation centre, as a...with the Cooperative Research Centre for Sensor, Signal and Information Processing where he worked in the Pattern Recognition Group on the application

  10. Evaluation of the flipped classroom approach in a veterinary professional skills course

    PubMed Central

    Moffett, Jenny; Mill, Aileen C

    2014-01-01

    Background The flipped classroom is an educational approach that has had much recent coverage in the literature. Relatively few studies, however, use objective assessment of student performance to measure the impact of the flipped classroom on learning. The purpose of this study was to evaluate the use of a flipped classroom approach within a medical education setting to the first two levels of Kirkpatrick and Kirkpatrick’s effectiveness of training framework. Methods This study examined the use of a flipped classroom approach within a professional skills course offered to postgraduate veterinary students. A questionnaire was administered to two cohorts of students: those who had completed a traditional, lecture-based version of the course (Introduction to Veterinary Medicine [IVM]) and those who had completed a flipped classroom version (Veterinary Professional Foundations I [VPF I]). The academic performance of students within both cohorts was assessed using a set of multiple-choice items (n=24) nested within a written examination. Data obtained from the questionnaire were analyzed using Cronbach’s alpha, Kruskal–Wallis tests, and factor analysis. Data obtained from student performance in the written examination were analyzed using the nonparametric Wilcoxon rank sum test. Results A total of 133 IVM students and 64 VPF I students (n=197) agreed to take part in the study. Overall, study participants favored the flipped classroom approach over the traditional classroom approach. With respect to student academic performance, the traditional classroom students outperformed the flipped classroom students on a series of multiple-choice items (IVM mean =21.4±1.48 standard deviation; VPF I mean =20.25±2.20 standard deviation; Wilcoxon test, w=7,578; P<0.001). Conclusion This study demonstrates that learners seem to prefer a flipped classroom approach. The flipped classroom was rated more positively than the traditional classroom on many different characteristics. This preference, however, did not translate into improved student performance, as assessed by a series of multiple-choice items delivered during a written examination. PMID:25419164

  11. Evaluation of the flipped classroom approach in a veterinary professional skills course.

    PubMed

    Moffett, Jenny; Mill, Aileen C

    2014-01-01

    The flipped classroom is an educational approach that has had much recent coverage in the literature. Relatively few studies, however, use objective assessment of student performance to measure the impact of the flipped classroom on learning. The purpose of this study was to evaluate the use of a flipped classroom approach within a medical education setting to the first two levels of Kirkpatrick and Kirkpatrick's effectiveness of training framework. This study examined the use of a flipped classroom approach within a professional skills course offered to postgraduate veterinary students. A questionnaire was administered to two cohorts of students: those who had completed a traditional, lecture-based version of the course (Introduction to Veterinary Medicine [IVM]) and those who had completed a flipped classroom version (Veterinary Professional Foundations I [VPF I]). The academic performance of students within both cohorts was assessed using a set of multiple-choice items (n=24) nested within a written examination. Data obtained from the questionnaire were analyzed using Cronbach's alpha, Kruskal-Wallis tests, and factor analysis. Data obtained from student performance in the written examination were analyzed using the nonparametric Wilcoxon rank sum test. A total of 133 IVM students and 64 VPF I students (n=197) agreed to take part in the study. Overall, study participants favored the flipped classroom approach over the traditional classroom approach. With respect to student academic performance, the traditional classroom students outperformed the flipped classroom students on a series of multiple-choice items (IVM mean =21.4±1.48 standard deviation; VPF I mean =20.25±2.20 standard deviation; Wilcoxon test, w=7,578; P<0.001). This study demonstrates that learners seem to prefer a flipped classroom approach. The flipped classroom was rated more positively than the traditional classroom on many different characteristics. This preference, however, did not translate into improved student performance, as assessed by a series of multiple-choice items delivered during a written examination.

  12. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers

    PubMed Central

    Chen, Tony Lin-Wei; Wong, Duo Wai-Chi; Xu, Zhi; Tan, Qitao; Wang, Yan; Luximon, Ameersing

    2018-01-01

    Flip-flops may change walking gait pattern, increase muscle activity and joint loading, and predispose wearers to foot problems, despite that quantitative evidence is scarce. The purpose of this study was to examine the lower limb muscle co-contraction and joint contact force in flip-flops gait, and compare with those of barefoot and sports shoes walking. Ten healthy males were instructed to perform over-ground walking at self-selected speed under three footwear conditions: 1) barefoot, 2) sports shoes, and 3) thong-type flip-flops. Kinematic, kinetic and EMG data were collected and input to a musculoskeletal model to estimate muscle force and joint force. One-way repeated measures ANOVA was conducted to compare footwear conditions. It was hypothesized that flip-flops would induce muscle co-contraction and produce different gait kinematics and kinetics. Our results demonstrated that the musculoskeletal model estimation had a good temporal consistency with the measured EMG. Flip-flops produced significantly lower walking speed, higher ankle and subtalar joint range of motion, and higher shear ankle joint contact force than sports shoes (p < 0.05). There were no significant differences between flip-flops and barefoot conditions in terms of muscle co-contraction index, joint kinematics, and joint loading of the knee and ankle complex (p > 0.05). The variance in walking speed and footwear design may be the two major factors that resulted in the comparable joint biomechanics in flip-flops and barefoot walking. From this point of view, whether flip-flops gait is potentially harmful to foot health remains unclear. Given that shod walking is more common than barefoot walking on a daily basis, sports shoes with close-toe design may be a better footwear option than flip-flops for injury prevention due to its constraint on joint motion and loading. PMID:29561862

  13. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers.

    PubMed

    Chen, Tony Lin-Wei; Wong, Duo Wai-Chi; Xu, Zhi; Tan, Qitao; Wang, Yan; Luximon, Ameersing; Zhang, Ming

    2018-01-01

    Flip-flops may change walking gait pattern, increase muscle activity and joint loading, and predispose wearers to foot problems, despite that quantitative evidence is scarce. The purpose of this study was to examine the lower limb muscle co-contraction and joint contact force in flip-flops gait, and compare with those of barefoot and sports shoes walking. Ten healthy males were instructed to perform over-ground walking at self-selected speed under three footwear conditions: 1) barefoot, 2) sports shoes, and 3) thong-type flip-flops. Kinematic, kinetic and EMG data were collected and input to a musculoskeletal model to estimate muscle force and joint force. One-way repeated measures ANOVA was conducted to compare footwear conditions. It was hypothesized that flip-flops would induce muscle co-contraction and produce different gait kinematics and kinetics. Our results demonstrated that the musculoskeletal model estimation had a good temporal consistency with the measured EMG. Flip-flops produced significantly lower walking speed, higher ankle and subtalar joint range of motion, and higher shear ankle joint contact force than sports shoes (p < 0.05). There were no significant differences between flip-flops and barefoot conditions in terms of muscle co-contraction index, joint kinematics, and joint loading of the knee and ankle complex (p > 0.05). The variance in walking speed and footwear design may be the two major factors that resulted in the comparable joint biomechanics in flip-flops and barefoot walking. From this point of view, whether flip-flops gait is potentially harmful to foot health remains unclear. Given that shod walking is more common than barefoot walking on a daily basis, sports shoes with close-toe design may be a better footwear option than flip-flops for injury prevention due to its constraint on joint motion and loading.

  14. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  15. The Flipped Classroom – From Theory to Practice in Health Professional Education

    PubMed Central

    McLaughlin, Jacqueline E.

    2017-01-01

    The flipped classroom is growing in popularity in health professional education. As such, instructors are experiencing various growing pains in functionalizing this model, from justifying the approach to managing time inside and outside of class to assessing impact on learning. This review focuses on some key theories that support the flipped model and translates those key theories into practice across core aspects of the flipped classroom: pre-class preparation, in-class activities, after-class activities and assessment of student learning. PMID:28970619

  16. Twelve tips for "flipping" the classroom.

    PubMed

    Moffett, Jennifer

    2015-04-01

    The flipped classroom is a pedagogical model in which the typical lecture and homework elements of a course are reversed. The following tips outline the steps involved in making a successful transition to a flipped classroom approach. The tips are based on the available literature alongside the author's experience of using the approach in a medical education setting. Flipping a classroom has a number of potential benefits, for example increased educator-student interaction, but must be planned and implemented carefully to support effective learning.

  17. The Flipped Classroom - From Theory to Practice in Health Professional Education.

    PubMed

    Persky, Adam M; McLaughlin, Jacqueline E

    2017-08-01

    The flipped classroom is growing in popularity in health professional education. As such, instructors are experiencing various growing pains in functionalizing this model, from justifying the approach to managing time inside and outside of class to assessing impact on learning. This review focuses on some key theories that support the flipped model and translates those key theories into practice across core aspects of the flipped classroom: pre-class preparation, in-class activities, after-class activities and assessment of student learning.

  18. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  19. Flipped classroom improves student learning in health professions education: a meta-analysis.

    PubMed

    Hew, Khe Foon; Lo, Chung Kwan

    2018-03-15

    The use of flipped classroom approach has become increasingly popular in health professions education. However, no meta-analysis has been published that specifically examines the effect of flipped classroom versus traditional classroom on student learning. This study examined the findings of comparative articles through a meta-analysis in order to summarize the overall effects of teaching with the flipped classroom approach. We focused specifically on a set of flipped classroom studies in which pre-recorded videos were provided before face-to-face class meetings. These comparative articles focused on health care professionals including medical students, residents, doctors, nurses, or learners in other health care professions and disciplines (e.g., dental, pharmacy, environmental or occupational health). Using predefined study eligibility criteria, seven electronic databases were searched in mid-April 2017 for relevant articles. Methodological quality was graded using the Medical Education Research Study Quality Instrument (MERSQI). Effect sizes, heterogeneity estimates, analysis of possible moderators, and publication bias were computed using the COMPREHENSIVE META-ANALYSIS software. A meta-analysis of 28 eligible comparative studies (between-subject design) showed an overall significant effect in favor of flipped classrooms over traditional classrooms for health professions education (standardized mean difference, SMD = 0.33, 95% confidence interval, CI = 0.21-0.46, p < 0.001), with no evidence of publication bias. In addition, the flipped classroom approach was more effective when instructors used quizzes at the start of each in-class session. More respondents reported they preferred flipped to traditional classrooms. Current evidence suggests that the flipped classroom approach in health professions education yields a significant improvement in student learning compared with traditional teaching methods.

  20. Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Abbasi-Firouzjah, Marzieh; Shokri, Babak

    2014-02-01

    The main objective of this research is the experimental investigation of the surface properties of polymethyl methacrylate (PMMA) such as wettability and the roughness effect on Escherichia coli (gram negative) cell adhesion. Radio frequency (RF; 13.56 MHz) oxygen plasma was used to enhance the antibacterial and wettability properties of this polymer for biomedical applications, especially ophthalmology. The surface was activated by O2 plasma to produce hydrophilic functional groups. Samples were treated with various RF powers from 10 to 80 W and different gas flow rates from 20 to 120 sccm. Optical emission spectroscopy was used to monitor the plasma process. The modified surface hydrophilicity, morphology and transparency characteristics were studied by water contact angle measurements, atomic force microscopy and UV-vis spectroscopy, respectively. Based on the contact angle measurements of three liquids, surface free energy variations were investigated. Moreover, the antibacterial properties were evaluated utilizing the method of plate counting of Escherichia coli. Also, in order to investigate stability of the plasma treatment, an ageing study was carried out by water contact angle measurements repeated in the days after the treatment. For biomedical applications, especially eye lenses, highly efficient antibacterial surfaces with appropriate hydrophilicity and transparency are of great importance. In this study, it is shown that the plasma process is a reliable and convenient method to achieve these purposes. A significant alteration in the hydrophilicity of a pristine PMMA surface was observed after treatment. Also, our results indicated that the plasma-modified PMMAs exhibit appropriate antibacterial performance. Moreover, surface hydrophilicity and surface charge have more influence on bacterial adhesion rate than surface roughness. UV-vis analysis results do not show a considerable difference for transparency of samples after plasma treatment.

Top