A Programmable and Configurable Mixed-Mode FPAA SoC
2016-03-17
A Programmable and Configurable Mixed-Mode FPAA SoC Sahil Shah, Sihwan Kim, Farhan Adil, Jennifer Hasler, Suma George, Michelle Collins, Richard...Abstract: The authors present a Floating-Gate based, System-On-Chip large-scale Field- Programmable Analog Array IC that integrates divergent concepts...Floating-Gate, SoC, Command Word Classification This paper presents a Floating-Gate (FG) based, System- On-Chip (SoC) large-scale Field- Programmable
Modeling and simulation of floating gate nanocrystal FET devices and circuits
NASA Astrophysics Data System (ADS)
Hasaneen, El-Sayed A. M.
The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to nanocrystal charge has a strong effect on the memory characteristics. Also, the programming operation of the memory cell has been investigated. The tunneling rate from quantum well channel to quantum dot (nanocrystal) gate is calculated. The calculations include various memory parameters, wavefunctions, and energies of quantum well channel and quantum dot gate. The use of floating gate nanocrystal memory as a transistor with a programmable threshold voltage has been demonstrated. The incorporation of FG-NCFETs to design programmable integrated circuit building blocks has been discussed. This includes the design of programmable current and voltage reference circuits. Finally, we demonstrated the design of tunable gain op-amp incorporating FG-NCFETs. Programmable integrated circuit building blocks can be used in intelligent analog and digital systems.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Guo, Ruofeng; Kamei, Takahiro; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Hayashida, Tetsuro; Sakamoto, Kunihiro; Ogura, Atsushi; Masahara, Meishoku
2012-06-01
The floating-gate (FG)-type metal-oxide-semiconductor (MOS) capacitors with planar (planar-MOS) and three-dimensional (3D) nanosize triangular cross-sectional tunnel areas (3D-MOS) have successfully been fabricated by introducing rapid thermal oxidation (RTO) and postdeposition annealing (PDA), and their electrical characteristics between the control gate (CG) and FG have been systematically compared. It was experimentally found in both planar- and 3D-MOS capacitors that the uniform and higher breakdown voltages are obtained by introducing RTO owing to the high-quality thermal oxide formation on the surface and etched edge regions of the n+ polycrystalline silicon (poly-Si) FG, and the leakage current is highly suppressed after PDA owing to the improved quality of the tetraethylorthosilicate (TEOS) silicon dioxide (SiO2) between CG and FG. Moreover, a lower breakdown voltage between CG and FG was obtained in the fabricated 3D-MOS capacitors as compared with that of planar-MOS capacitors thanks to the enhanced local electric field at the tips of triangular tunnel areas. The developed nanosize triangular cross-sectional tunnel area is useful for the fabrication of low operating voltage flash memories.
Disturb-Free Three-Dimensional Vertical Floating Gate NAND with Separated-Sidewall Control Gate
NASA Astrophysics Data System (ADS)
Seo, Moon-Sik; Endoh, Tetsuo
2012-02-01
Recently, the three-dimensional (3D) vertical floating gate (FG) type NAND cell arrays with the sidewall control gate (SCG) structure are receiving attention to overcome the reliability issues of charge trap (CT) type 3D NAND. In order to achieve the multilevel cell (MLC) operation for lower bit cost in 3D NAND, it is important to eliminate reliability issues, such as the Vth distribution with interference and disturbance problems and Vth shift with retention issues. In this paper, we intensively investigated the disturbance problems of the 3D vertical FG type NAND cell with separated-sidewall control gate (S-SCG) structure for the reliable MLC operation. Above all, we successfully demonstrate the fully suppressed disturbance problems, such as indirect programming of the unselected cells, hot electron injection of the edge cells and direct influence to the neighboring passing cells, by using the S-SCG with 30 nm pillar size.
FG Width Scalability of the 3-D Vertical FG NAND Using the Sidewall Control Gate (SCG)
NASA Astrophysics Data System (ADS)
Seo, Moon-Sik; Endoh, Tetsuo
Recently, the 3-D vertical Floating Gate (FG) type NAND cell arrays with the Sidewall Control Gate (SCG), such as ESCG, DC-SF and S-SCG, are receiving attention to overcome the reliability issues of Charge Trap (CT) type device. Using this novel cell structure, highly reliable flash cell operations were successfully implemented without interference effect on the FG type cell. However, the 3-D vertical FG type cell has large cell size by about 60% for the cylindrical FG structure. In this point of view, we intensively investigate the scalability of the FG width of the 3-D vertical FG NAND cells. In case of the planar FG type NAND cell, the FG height cannot be scaled down due to the necessity of obtaining sufficient coupling ratio and high program speed. In contrast, for the 3-D vertical FG NAND with SCG, the FG is formed cylindrically, which is fully covered with surrounded CG, and very high CG coupling ratio can be achieved. As results, the scaling of FG width of the 3-D vertical FG NAND cell with S-SCG can be successfully demonstrated at 10nm regime, which is almost the same as the CT layer of recent BE-SONOS NAND.
Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator
Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok
2016-01-01
The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416
Anomalous annealing of floating gate errors due to heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yin, Yanan; Liu, Jie; Sun, Youmei; Hou, Mingdong; Liu, Tianqi; Ye, Bing; Ji, Qinggang; Luo, Jie; Zhao, Peixiong
2018-03-01
Using the heavy ions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL), the annealing of heavy-ion induced floating gate (FG) errors in 34 nm and 25 nm NAND Flash memories has been studied. The single event upset (SEU) cross section of FG and the evolution of the errors after irradiation depending on the ion linear energy transfer (LET) values, data pattern and feature size of the device are presented. Different rates of annealing for different ion LET and different pattern are observed in 34 nm and 25 nm memories. The variation of the percentage of different error patterns in 34 nm and 25 nm memories with annealing time shows that the annealing of FG errors induced by heavy-ion in memories will mainly take place in the cells directly hit under low LET ion exposure and other cells affected by heavy ions when the ion LET is higher. The influence of Multiple Cell Upsets (MCUs) on the annealing of FG errors is analyzed. MCUs with high error multiplicity which account for the majority of the errors can induce a large percentage of annealed errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wwei99@jlu.edu.cn; Han, Jinhua; Ying, Jun
2014-09-22
Two types of floating-gate based organic thin-film transistor nonvolatile memories (FG-OTFT-NVMs) were demonstrated, with poly(methyl methacrylate co glycidyl methacrylate) (P(MMA-GMA)) and tetratetracontane (TTC) as the tunneling layer, respectively. Their device performances were measured and compared. In the memory with a P(MMA-GMA) tunneling layer, typical unipolar hole transport was obtained with a relatively small mobility of 0.16 cm{sup 2}/V s. The unidirectional shift of turn-on voltage (V{sub on}) due to only holes trapped/detrapped in/from the floating gate resulted in a small memory window of 12.5 V at programming/erasing voltages (V{sub P}/V{sub E}) of ±100 V and a nonzero reading voltage. Benefited from the well-ordered moleculemore » orientation and the trap-free surface of TTC layer, a considerably high hole mobility of 1.7 cm{sup 2}/V s and a visible feature of electrons accumulated in channel and trapped in floating-gate were achieved in the memory with a TTC tunneling layer. High hole mobility resulted in a high on current and a large memory on/off ratio of 600 at the V{sub P}/V{sub E} of ±100 V. Both holes and electrons were injected into floating-gate and overwritten each other, which resulted in a bidirectional V{sub on} shift. As a result, an enlarged memory window of 28.6 V at the V{sub P}/V{sub E} of ±100 V and a zero reading voltage were achieved. Based on our results, a strategy is proposed to optimize FG-OTFT-NVMs by choosing a right tunneling layer to improve the majority carrier mobility and realize ambipolar carriers injecting and trapping in the floating-gate.« less
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali
2018-06-01
The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.
Study of the enhancement-mode AlGaN/GaN high electron mobility transistor with split floating gates
NASA Astrophysics Data System (ADS)
Wang, Hui; Wang, Ning; Jiang, Ling-Li; Zhao, Hai-Yue; Lin, Xin-Peng; Yu, Hong-Yu
2017-11-01
In this work, the charge storage based split floating gates (FGs) enhancement mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs) are studied. The simulation results reveal that under certain density of two dimensional electron gas, the variation tendency of the threshold voltage (Vth) with the variation of the blocking dielectric thickness depends on the FG charge density. It is found that when the length sum and isolating spacing sum of the FGs both remain unchanged, the Vth shall decrease with the increasing FGs number but maintaining the device as E-mode. It is also reported that for the FGs HEMT, the failure of a FG will lead to the decrease of Vth as well as the increase of drain current, and the failure probability can be improved significantly with the increase of FGs number.
Cohen, Ariel; Spira, Micha E; Yitshaik, Shlomo; Borghs, Gustaaf; Shwartzglass, Ofer; Shappir, Joseph
2004-07-15
We report the realization of electrical coupling between neurons and depletion type floating gate (FG) p-channel MOS transistors. The devices were realized in a shortened 0.5 microm CMOS technology. Increased boron implant dose was used to form the depletion type devices. Post-CMOS processing steps were added to expose the devices sensing area. The neurons are coupled to the polycrystalline silicon (PS) FG through 420A thermal oxide in an area which is located over the thick field oxide away from the transistor. The combination of coupling area pad having a diameter of 10 or 15 microm and sensing transistor with W/L of 50/0.5 microm results in capacitive coupling ratio of the neuron signal of about 0.5 together with relatively large transistor transconductance. The combination of the FG structure with a depletion type device, leads to the following advantages. (a) No need for dc bias between the solution in which the neurons are cultured and the transistor with expected consequences to the neuron as well as the silicon die durability. (b) The sensing area of the neuron activity is separated from the active area of the transistor. Thus, it is possible to design the sensing area and the channel area separately. (c) The channel area, which is the most sensitive part of the transistor, can be insulated and shielded from the ionic solution in which the neurons are cultured. (d) There is an option to add a switching transistor to the FG and use the FG also for the neuron stimulation.
Investigation of High-k Dielectrics and Metal Gate Electrodes for Non-volatile Memory Applications
NASA Astrophysics Data System (ADS)
Jayanti, Srikant
Due to the increasing demand of non-volatile flash memories in the portable electronics, the device structures need to be scaled down drastically. However, the scalability of traditional floating gate structures beyond 20 nm NAND flash technology node is uncertain. In this regard, the use of metal gates and high-k dielectrics as the gate and interpoly dielectrics respectively, seem to be promising substitutes in order to continue the flash scaling beyond 20nm. Furthermore, research of novel memory structures to overcome the scaling challenges need to be explored. Through this work, the use of high-k dielectrics as IPDs in a memory structure has been studied. For this purpose, IPD process optimization and barrier engineering were explored to determine and improve the memory performance. Specifically, the concept of high-k / low-k barrier engineering was studied in corroboration with simulations. In addition, a novel memory structure comprising a continuous metal floating gate was investigated in combination with high-k blocking oxides. Integration of thin metal FGs and high-k dielectrics into a dual floating gate memory structure to result in both volatile and non-volatile modes of operation has been demonstrated, for plausible application in future unified memory architectures. The electrical characterization was performed on simple MIS/MIM and memory capacitors, fabricated through CMOS compatible processes. Various analytical characterization techniques were done to gain more insight into the material behavior of the layers in the device structure. In the first part of this study, interfacial engineering was investigated by exploring La2O3 as SiO2 scavenging layer. Through the silicate formation, the consumption of low-k SiO2 was controlled and resulted in a significant improvement in dielectric leakage. The performance improvement was also gauged through memory capacitors. In the second part of the study, a novel memory structure consisting of continuous metal FG in the form of PVD TaN was investigated along with high-k blocking dielectric. The material properties of TaN metal and high-k / low-k dielectric engineering were systematically studied. And the resulting memory structures exhibit excellent memory characteristics and scalability of the metal FG down to ˜1nm, which is promising in order to reduce the unwanted FG-FG interferences. In the later part of the study, the thermal stability of the combined stack was examined and various approaches to improve the stability and understand the cause of instability were explored. The performance of the high-k IPD metal FG memory structure was observed to degrade with higher annealing conditions and the deteriorated behavior was attributed to the leakage instability of the high-k /TaN capacitor. While the degradation is pronounced in both MIM and MIS capacitors, a higher leakage increment was seen in MIM, which was attributed to the higher degree of dielectric crystallization. In an attempt to improve the thermal stability, the trade-off in using amorphous interlayers to reduce the enhanced dielectric crystallization on metal was highlighted. Also, the effect of oxygen vacancies and grain growth on the dielectric leakage was studied through a multi-deposition-multi-anneal technique. Multi step deposition and annealing in a more electronegative ambient was observed to have a positive impact on the dielectric performance.
NASA Astrophysics Data System (ADS)
Samanta, Piyas
2017-09-01
We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.
Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes
NASA Astrophysics Data System (ADS)
Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-11-01
Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.
Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation.
Jayant, Krishna; Auluck, Kshitij; Funke, Mary; Anwar, Sharlin; Phelps, Joshua B; Gordon, Philip H; Rajwade, Shantanu R; Kan, Edwin C
2013-07-01
The chemoreceptive neuron metal-oxide-semiconductor transistor described in the preceding paper is further used to monitor the adsorption and interaction of DNA molecules and subsequently manipulate the adsorbed biomolecules with injected static charge. Adsorption of DNA molecules onto poly-L-lysine-coated sensing gates (SGs) modulates the floating gate (FG) potential ψ(O), which is reflected as a threshold voltage shift measured from the control gate (CG) V(th_CG). The asymmetric capacitive coupling between the CG and SG to the FG results in V(th_CG) amplification. The electric field in the SG oxide E(SG_ox) is fundamentally different when we drive the current readout with V(CG) and V(ref) (i.e., the potential applied to the CG and reference electrode, respectively). The V(CG)-driven readout induces a larger E(SG_ox), leading to a larger V(th_CG) shift when DNA is present. Simulation studies indicate that the counterion screening within the DNA membrane is responsible for this effect. The DNA manipulation mechanism is enabled by tunneling electrons (program) or holes (erase) onto FGs to produce repulsive or attractive forces. Programming leads to repulsion and eventual desorption of DNA, while erasing reestablishes adsorption. We further show that injected holes or electrons prior to DNA addition either aids or disrupts the immobilization process, which can be used for addressable sensor interfaces. To further substantiate DNA manipulation, we used impedance spectroscopy with a split ac-dc technique to reveal the net interface impedance before and after charge injection.
NASA Astrophysics Data System (ADS)
Rafhay, Quentin; Beug, M. Florian; Duane, Russell
2007-04-01
This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.
NASA Technical Reports Server (NTRS)
Gosney, W. M.
1977-01-01
Electrically alterable read-only memories (EAROM's) or reprogrammable read-only memories (RPROM's) can be fabricated using a single-level metal-gate p-channel MOS technology with all conventional processing steps. Given the acronym DIFMOS for dual-injector floating-gate MOS, this technology utilizes the floating-gate technique for nonvolatile storage of data. Avalanche injection of hot electrons through gate oxide from a special injector diode in each bit is used to charge the floating gates. A second injector structure included in each bit permits discharge of the floating gate by avalanche injection of holes through gate oxide. The overall design of the DIFMOS bit is dictated by the physical considerations required for each of the avalanche injector types. The end result is a circuit technology which can provide fully decoded bit-erasable EAROM-type circuits using conventional manufacturing techniques.
NASA Astrophysics Data System (ADS)
Zhao, Jingtao; Zhao, Zhenguo; Chen, Zidong; Lin, Zhaojun; Xu, Fukai
2017-12-01
In this study, we have investigated the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with floating gate structures using the measured capacitancevoltage (C-V) and current-voltage (I-V) characteristics. It is found that the two-dimensional electron gas (2DEG) density under the central gate cannot be changed by the floating gate structures. However, the floating gate structures can cause the strain variation in the barrier layer, which lead to the non-uniform distribution of the polarization charges, then induce a polarization Coulomb field and scatter the 2DEG. More floating gate structures and closer distance between the floating gates and the central gate will result in stronger scattering effect of the 2DEG.
Investigation of field induced trapping on floating gates
NASA Technical Reports Server (NTRS)
Gosney, W. M.
1975-01-01
The development of a technology for building electrically alterable read only memories (EAROMs) or reprogrammable read only memories (RPROMs) using a single level metal gate p channel MOS process with all conventional processing steps is outlined. Nonvolatile storage of data is achieved by the use of charged floating gate electrodes. The floating gates are charged by avalanche injection of hot electrodes through gate oxide, and discharged by avalanche injection of hot holes through gate oxide. Three extra diffusion and patterning steps are all that is required to convert a standard p channel MOS process into a nonvolatile memory process. For identification, this nonvolatile memory technology was given the descriptive acronym DIFMOS which stands for Dual Injector, Floating gate MOS.
Jayant, Krishna; Singhai, Amit; Cao, Yingqiu; Phelps, Joshua B; Lindau, Manfred; Holowka, David A; Baird, Barbara A; Kan, Edwin C
2015-12-21
We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry.
Jayant, Krishna; Singhai, Amit; Cao, Yingqiu; Phelps, Joshua B.; Lindau, Manfred; Holowka, David A.; Baird, Barbara A.; Kan, Edwin C.
2015-01-01
We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry. PMID:26686301
Radiation Issues and Applications of Floating Gate Memories
NASA Technical Reports Server (NTRS)
Scheick, L. Z.; Nguyen, D. N.
2000-01-01
The radiation effects that affect various systems that comprise floating gate memories are presented. The wear-out degradation results of unirradiated flash memories are compared to irradiated flash memories. The procedure analyzes the failure to write and erase caused by wear-out and degradation of internal charge pump circuits. A method is described for characterizing the radiation effects of the floating gate itself. The rate dependence, stopping power dependence, SEU susceptibility and applications of floating gate in radiation environment are presented. The ramifications for dosimetry and cell failure are discussed as well as for the long term use aspects of non-volatile memories.
NASA Astrophysics Data System (ADS)
Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-05-01
As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 106 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.
Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory
NASA Astrophysics Data System (ADS)
Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa
2014-01-01
An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.
Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong
2013-01-01
High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This "super-float-gating" mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm(2)s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated.
NASA Astrophysics Data System (ADS)
Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin
2018-04-01
In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.
Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate
NASA Astrophysics Data System (ADS)
Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.
2009-11-01
In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.
NASA Astrophysics Data System (ADS)
Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka
2016-03-01
Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.
NASA Astrophysics Data System (ADS)
Faigon, A.; Martinez Vazquez, I.; Carbonetto, S.; García Inza, M.; G
2017-01-01
A floating gate dosimeter was designed and fabricated in a standard CMOS technology. The design guides and characterization are presented. The characterization included the controlled charging by tunneling of the floating gate, and its discharging under irradiation while measuring the transistor drain current whose change is the measure of the absorbed dose. The resolution of the obtained device is close to 1 cGy satisfying the requirements for most radiation therapies dosimetry. Pending statistical proofs, the dosimeter is a potential candidate for wide in-vivo control of radiotherapy treatments.
NASA Astrophysics Data System (ADS)
Itoh, Takuro; Toyota, Taro; Higuchi, Hiroyuki; Matsushita, Michio M.; Suzuki, Kentaro; Sugawara, Tadashi
2017-03-01
A tetracyanoquaterthienoquinoid (TCT4Q)-based field effect transistor is characterized by the ambipolar transfer characteristics and the facile shift of the threshold voltage induced by the bias stress. The trapping and detrapping kinetics of charge carriers was investigated in detail by the temperature dependence of the decay of source-drain current (ISD). We found a repeatable formation of a molecular floating gate is derived from a 'charge carrier-and-gate' cycle comprising four stages, trapping of mobile carriers, formation of a floating gate, induction of oppositely charged mobile carriers, and recombination between mobile and trapped carriers to restore the initial state.
NASA Astrophysics Data System (ADS)
Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong
2015-03-01
Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.
Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo
2014-08-01
Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.
Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang
2009-03-25
We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.
Floating gate transistors as biosensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Frisbie, C. Daniel
2016-11-01
Electrolyte gated transistors (EGTs) are a sub-class of thin film transistors that are extremely promising for biological sensing applications. These devices employ a solid electrolyte as the gate insulator; the very large capacitance of the electrolyte results in low voltage operation and high transconductance or gain. This talk will describe the fabrication of floating gate EGTs and their use as ricin sensors. The critical performance metrics for EGTs compared with other types of TFTs will also be reviewed.
Electrically Erasable Programmable Integrated Circuits for Replacement of Obsolete TTL Logic
1991-12-01
different discrete devices" [7]. Fowler-Nordheim Tunneling Simplified Theory. Electrons in polysilicon are usually prevented from entering SiO 2 by an...overcomes the energy barrier, the tunneling electrons will not return to the polysilicon but will be carried by the electric field, causing a current to flow...Floating Gate Transistors A floating gate transistor is an insulated-gate field effect transistor (FET) that has a gate, usually made of polysilicon , which
Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.
Bae, Jong-Ho; Lee, Jong-Ho
2016-05-01
A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
NASA Astrophysics Data System (ADS)
Palade, C.; Lepadatu, A. M.; Slav, A.; Lazanu, S.; Teodorescu, V. S.; Stoica, T.; Ciurea, M. L.
2018-01-01
Trilayer memory capacitors with Ge nanocrystals (NCs) floating gate in HfO2 were obtained by magnetron sputtering deposition on p-type Si substrate followed by rapid thermal annealing at relatively low temperature of 600 °C. The frequency dispersion of capacitance and resistance was measured in accumulation regime of Al/HfO2 gate oxide/Ge NCs in HfO2 floating gate/HfO2 tunnel oxide/SiOx/p-Si/Al memory capacitors. For simulation of the frequency dispersion a complex circuit model was used considering an equivalent parallel RC circuit for each layer of the trilayer structure. A series resistance due to metallic contacts and Si substrate was necessary to be included in the model. A very good fit to the experimental data was obtained and the parameters of each layer in the memory capacitor, i.e. capacitances and resistances were determined and in turn the intrinsic material parameters, i.e. dielectric constants and resistivities of layers were evaluated. The results are very important for the study and optimization of the hysteresis behaviour of floating gate memories based on NCs embedded in oxide.
NASA Astrophysics Data System (ADS)
Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo
2014-01-01
The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.
95. Photocopied August 1978. CRIBS BEING FLOATED INTO PLACE FOR ...
95. Photocopied August 1978. CRIBS BEING FLOATED INTO PLACE FOR THE CONSTRUCTION OF THE SECOND SET (NOS. 13-16) OF COMPENSATING GATES. NOTE THE ORIGINAL FOUR GATES IN THE BACKGROUND, MAY 14, 1915. (587) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Solution processed molecular floating gate for flexible flash memories
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-10-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.
Floating Gate CMOS Dosimeter With Frequency Output
NASA Astrophysics Data System (ADS)
Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.
2012-04-01
This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.
Solution processed molecular floating gate for flexible flash memories
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-01-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758
NASA Technical Reports Server (NTRS)
Edmonds, L. D.
2016-01-01
Since advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.
NASA Technical Reports Server (NTRS)
Edmonds, L. D.
2016-01-01
Because advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.
Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian
2016-07-04
Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th}more » was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.« less
NASA Astrophysics Data System (ADS)
Wang, Han; Gou, Chao; Luo, Kai
2017-04-01
This paper presents a fully on-chip NMOS low-dropout regulator (LDO) for portable applications with quasi floating gate pass element and fast transient response. The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump, which allows the charge pump to be a small economical circuit with small silicon area. In addition, a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and {I}{{Q}} of 395 μA. Under full-range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV, respectively.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan
High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio andmore » good memory retention.« less
NASA Astrophysics Data System (ADS)
Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu
2009-03-01
This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.
Floating-gate memory based on an organic metal-insulator-semiconductor capacitor
NASA Astrophysics Data System (ADS)
William, S.; Mabrook, M. F.; Taylor, D. M.
2009-08-01
A floating gate memory element is described which incorporates an evaporated gold film embedded in the gate dielectric of a metal-insulator-semiconductor capacitor based on poly(3-hexylthiophene). On exceeding a critical amplitude in the voltage sweep, hysteresis is observed in the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the device. The anticlockwise hysteresis in C-V is consistent with strong electron trapping during the positive cycle but little hole trapping during the negative cycle. We argue that the clockwise hysteresis observed in the negative cycle of the I-V plot, arises from leakage of trapped holes through the underlying insulator to the control gate.
Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.
Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L
2017-04-28
High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.
Multiplexed charge-locking device for large arrays of quantum devices
NASA Astrophysics Data System (ADS)
Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.
2015-10-01
We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.
MemFlash device: floating gate transistors as memristive devices for neuromorphic computing
NASA Astrophysics Data System (ADS)
Riggert, C.; Ziegler, M.; Schroeder, D.; Krautschneider, W. H.; Kohlstedt, H.
2014-10-01
Memristive devices are promising candidates for future non-volatile memory applications and mixed-signal circuits. In the field of neuromorphic engineering these devices are especially interesting to emulate neuronal functionality. Therefore, new materials and material combinations are currently investigated, which are often not compatible with Si-technology processes. The underlying mechanisms of the device often remain unclear and are paired with low device endurance and yield. These facts define the current most challenging development tasks towards a reliable memristive device technology. In this respect, the MemFlash concept is of particular interest. A MemFlash device results from a diode configuration wiring scheme of a floating gate transistor, which enables the persistent device resistance to be varied according to the history of the charge flow through the device. In this study, we investigate the scaling conditions of the floating gate oxide thickness with respect to possible applications in the field of neuromorphic engineering. We show that MemFlash cells exhibit essential features with respect to neuromorphic applications. In particular, cells with thin floating gate oxides show a limited synaptic weight growth together with low energy dissipation. MemFlash cells present an attractive alternative for state-of-art memresitive devices. The emulation of associative learning is discussed by implementing a single MemFlash cell in an analogue circuit.
Using a Floating-Gate MOS Transistor as a Transducer in a MEMS Gas Sensing System
Barranca, Mario Alfredo Reyes; Mendoza-Acevedo, Salvador; Flores-Nava, Luis M.; Avila-García, Alejandro; Vazquez-Acosta, E. N.; Moreno-Cadenas, José Antonio; Casados-Cruz, Gaspar
2010-01-01
Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe2O3 layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane. PMID:22163478
NASA Astrophysics Data System (ADS)
Hu, Quanli; Ha, Sang-Hyub; Lee, Hyun Ho; Yoon, Tae-Sik
2011-12-01
A nanocrystal (NC) floating gate memory with solution-processed indium-zinc-tin-oxide (IZTO) channel and silver (Ag) NCs embedded in thin gate dielectric layer (SiO2(30 nm)/Al2O3(3 nm)) was fabricated. Both the IZTO channel and colloidal Ag NC layers were prepared by spin-coating and subsequent annealing, and dip-coating process, respectively. A threshold voltage shift up to ~0.9 V, corresponding to the electron density of 6.5 × 1011 cm-2, at gate pulsing <=10 V was achieved by the charging of high density NCs. These results present the successful non-volatile memory characteristics of an oxide-semiconductor transistor fabricated through solution processes.
Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex.
Peleg, Orit; Lim, Roderick Y H
2010-07-01
Several biological mechanisms involve proteins or proteinaceous components that are intrinsically disordered. A case in point pertains to the nuclear pore complex (NPC), which regulates molecular transport between the nucleus and the cytoplasm. NPC functionality is dependent on unfolded domains rich in Phe-Gly (FG) repeats (i.e., FG-domains) that collectively act to promote or hinder cargo translocation. To a large extent, our understanding of FG-domain behavior is limited to in vitro investigations given the difficulty to resolve them directly in the NPC. Nevertheless, recent findings indicate a collective convergence towards rationalizing FG-domain function. This review aims to glean further insight into this fascinating problem by taking an objective look at the boundary conditions and contextual details underpinning FG-domain behavior in the NPC. Here, we treat the FG-domains as being commensurate with polymeric chains to address ambiguities such as for instance, how FG-domains tethered to the central channel of the NPC would behave differently as compared with their free-floating counterparts in solution. By bringing such fundamental questions to the fore, this review seeks to illuminate the importance of how such parameters can hold influence over the structure-function relation of intrinsically disordered proteins in the NPC and beyond.
Design of a reversible single precision floating point subtractor.
Anantha Lakshmi, Av; Sudha, Gf
2014-01-04
In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition/subtraction to be the most used floating-point operation. However, few designs exist on efficient reversible BCD subtractors but no work on reversible floating point subtractor. In this paper, it is proposed to present an efficient reversible single precision floating-point subtractor. The proposed design requires reversible designs of an 8-bit and a 24-bit comparator unit, an 8-bit and a 24-bit subtractor, and a normalization unit. For normalization, a 24-bit Reversible Leading Zero Detector and a 24-bit reversible shift register is implemented to shift the mantissas. To realize a reversible 1-bit comparator, in this paper, two new 3x3 reversible gates are proposed The proposed reversible 1-bit comparator is better and optimized in terms of the number of reversible gates used, the number of transistor count and the number of garbage outputs. The proposed work is analysed in terms of number of reversible gates, garbage outputs, constant inputs and quantum costs. Using these modules, an efficient design of a reversible single precision floating point subtractor is proposed. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3. The total on-chip power consumed by the proposed 32-bit reversible floating point subtractor is 0.410 W.
Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L
2014-02-25
Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.
Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing
2017-10-11
The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.
A preliminary study of molecular dynamics on reconfigurable computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolinski, C.; Trouw, F. R.; Gokhale, M.
2003-01-01
In this paper we investigate the performance of platform FPGAs on a compute-intensive, floating-point-intensive supercomputing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles through time by integrating their equations of motion. One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ] and mapped onto several reconfigurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract technology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators so that the design could be easily re-targeted. Experiments were performed using both non-pipelinedmore » and pipelined floating point modules. We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47 GFlops at 82 MHz (Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance at low power on jloating-point-intensivea pplications.« less
FLOAT OPERATED RADIAL GATE INSTALLATION. WASTEWAY NO. 1. WELLTONMOHAWK CANAL ...
FLOAT OPERATED RADIAL GATE INSTALLATION. WASTEWAY NO. 1. WELLTON-MOHAWK CANAL - STA. 99+23.50. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2497, dated March 8, 1949, Denver Colorado. Sheet 1 of 7 - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ
FLOAT OPERATED RADIAL GATE HOIST ASSEMBLY LIST OF PARTS ...
FLOAT OPERATED RADIAL GATE HOIST ASSEMBLY - LIST OF PARTS - BASE-CRANK. WASTEWAY NO. 1. WELLTON-MOHAWK CANAL - STA. 99+23.50. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2511, dated May 3, 1949, Denver Colorado. Sheet 1 of 2 - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ
NASA Astrophysics Data System (ADS)
Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.
2015-10-01
Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure. Electronic supplementary information (ESI) available: Energy-dispersive X-ray spectroscopy (EDS) spectra of the metal NPs, SEM image of MoS2 on Au NPs, erasing operations of the metal NPs-MoS2 memory device, transfer characteristics of the standard FET devices and Ag NP devices under programming operation, tapping-mode AFM height image of the fabricated MoS2 film for pristine MoS2 flash memory, gate signals used for programming the Au NPs-MoS2 and Pt NPs-MoS2 flash memories, and data levels recorded for 100 sequential cycles. See DOI: 10.1039/c5nr05054e
Wang, Wei; Hwang, Sun Kak; Kim, Kang Lib; Lee, Ju Han; Cho, Suk Man; Park, Cheolmin
2015-05-27
The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.
Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics
Kim, Seongsu; Kim, Tae Yun; Lee, Kang Hyuck; Kim, Tae-Ho; Cimini, Francesco Arturo; Kim, Sung Kyun; Hinchet, Ronan; Kim, Sang-Woo; Falconi, Christian
2017-01-01
Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As representative materials, we use chemical vapour deposition graphene deposited on a SiO2/Si substrate. The triboelectric charges, generated by friction with a Pt-coated atomic force microscope tip and injected through defects, are trapped at the air–SiO2 interface underneath graphene and act as ghost floating gates. Tunnelling triboelectrification uniquely permits to create, modify and destroy p and n regions at will with the spatial resolution of atomic force microscopes. As a proof of concept, we draw rewritable p/n+ and p/p+ junctions with resolutions as small as 200 nm. Our results open the way to time-variant two-dimensional electronics where conductors, p and n regions can be defined on demand. PMID:28649986
Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics
NASA Astrophysics Data System (ADS)
Kim, Seongsu; Kim, Tae Yun; Lee, Kang Hyuck; Kim, Tae-Ho; Cimini, Francesco Arturo; Kim, Sung Kyun; Hinchet, Ronan; Kim, Sang-Woo; Falconi, Christian
2017-06-01
Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As representative materials, we use chemical vapour deposition graphene deposited on a SiO2/Si substrate. The triboelectric charges, generated by friction with a Pt-coated atomic force microscope tip and injected through defects, are trapped at the air-SiO2 interface underneath graphene and act as ghost floating gates. Tunnelling triboelectrification uniquely permits to create, modify and destroy p and n regions at will with the spatial resolution of atomic force microscopes. As a proof of concept, we draw rewritable p/n+ and p/p+ junctions with resolutions as small as 200 nm. Our results open the way to time-variant two-dimensional electronics where conductors, p and n regions can be defined on demand.
X-band T/R switch with body-floating multi-gate PDSOI NMOS transistors
NASA Astrophysics Data System (ADS)
Park, Mingyo; Min, Byung-Wook
2018-03-01
This paper presents an X-band transmit/receive switch using multi-gate NMOS transistors in a silicon-on-insulator CMOS process. For low loss and high power handling capability, floating body multi-gate NMOS transistors are adopted instead of conventional stacked NMOS transistors, resulting in 53% reduction of transistor area. Comparing to the stacked NMOS transistors, the multi gate transistor shares the source and drain region between stacked transistors, resulting in reduced chip area and parasitics. The impedance between bodies of gates in multi-gate NMOS transistors is assumed to be very large during design and confirmed after measurement. The measured input 1 dB compression point is 34 dBm. The measured insertion losses of TX and RX modes are respectively 1.7 dB and 2.0 dB at 11 GHz, and the measured isolations of TX and RX modes are >27 dB and >20 dB in X-band, respectively. The chip size is 0.086 mm2 without pads, which is 25% smaller than the T/R switch with stacked transistors.
Photoresponses in Gold Nanoparticle Single-Electron Transistors with Molecular Floating Gates
NASA Astrophysics Data System (ADS)
Noguchi, Yutaka; Yamamoto, Makoto; Ishii, Hisao; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji
2013-11-01
We have proposed a simple method of activating advanced functions in single-electron transistors (SETs) based on the specific properties of individual molecules. As a prototype, we fabricated a copper phthalocyanine (CuPc)-doped SET. The device consists of a gold-nanoparticle (GNP)-based SET doped with CuPc as a photoresponsive floating gate. In this paper, we report the details of the photoresponses of the CuPc-doped SET, such as conductance switching, sensitivity to the wavelength of the incident light, and multiple induced states.
Upsets in Erased Floating Gate Cells With High-Energy Protons
Gerardin, S.; Bagatin, M.; Paccagnella, A.; ...
2017-01-01
We discuss upsets in erased floating gate cells, due to large threshold voltage shifts, using statistical distributions collected on a large number of memory cells. The spread in the neutral threshold voltage appears to be too low to quantitatively explain the experimental observations in terms of simple charge loss, at least in SLC devices. The possibility that memories exposed to high energy protons and heavy ions exhibit negative charge transfer between programmed and erased cells is investigated, although the analysis does not provide conclusive support to this hypothesis.
The GaN trench gate MOSFET with floating islands: High breakdown voltage and improved BFOM
NASA Astrophysics Data System (ADS)
Shen, Lingyan; Müller, Stephan; Cheng, Xinhong; Zhang, Dongliang; Zheng, Li; Xu, Dawei; Yu, Yuehui; Meissner, Elke; Erlbacher, Tobias
2018-02-01
A novel GaN trench gate (TG) MOSFET with P-type floating islands (FLI) in drift region, which can suppress the electric field peak at bottom of gate trench during the blocking state and prevent premature breakdown in gate oxide, is proposed and investigated by TCAD simulations. The influence of thickness, position, doping concentration and length of the FLI on breakdown voltage (BV) and specific on-resistance (Ron_sp) is studied, providing useful guidelines for design of this new type of device. Using optimized parameters for the FLI, GaN FLI TG-MOSFET obtains a BV as high as 2464 V with a Ron_sp of 3.0 mΩ cm2. Compared to the conventional GaN TG-MOSFET with the same structure parameters, the Baliga figure of merit (BFOM) is enhanced by 150%, getting closer to theoretical limit for GaN devices.
Floating-Point Units and Algorithms for field-programmable gate arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, Keith D.; Hemmert, K. Scott
2005-11-01
The software that we are attempting to copyright is a package of floating-point unit descriptions and example algorithm implementations using those units for use in FPGAs. The floating point units are best-in-class implementations of add, multiply, divide, and square root floating-point operations. The algorithm implementations are sample (not highly flexible) implementations of FFT, matrix multiply, matrix vector multiply, and dot product. Together, one could think of the collection as an implementation of parts of the BLAS library or something similar to the FFTW packages (without the flexibility) for FPGAs. Results from this work has been published multiple times and wemore » are working on a publication to discuss the techniques we use to implement the floating-point units, For some more background, FPGAS are programmable hardware. "Programs" for this hardware are typically created using a hardware description language (examples include Verilog, VHDL, and JHDL). Our floating-point unit descriptions are written in JHDL, which allows them to include placement constraints that make them highly optimized relative to some other implementations of floating-point units. Many vendors (Nallatech from the UK, SRC Computers in the US) have similar implementations, but our implementations seem to be somewhat higher performance. Our algorithm implementations are written in VHDL and models of the floating-point units are provided in VHDL as well. FPGA "programs" make multiple "calls" (hardware instantiations) to libraries of intellectual property (IP), such as the floating-point unit library described here. These programs are then compiled using a tool called a synthesizer (such as a tool from Synplicity, Inc.). The compiled file is a netlist of gates and flip-flops. This netlist is then mapped to a particular type of FPGA by a mapper and then a place- and-route tool. These tools assign the gates in the netlist to specific locations on the specific type of FPGA chip used and constructs the required routes between them. The result is a "bitstream" that is analogous to a compiled binary. The bitstream is loaded into the FPGA to create a specific hardware configuration.« less
Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K
2016-09-06
Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10 % vs 44 ± 11 %, p = 0.005, respectively). There were no differences in longitudinal strain (p = 0.38). Use of a respiratory navigator feedback game during navigator-gated CMR improved navigator efficiency in children from 33 to 58 %. This improved efficiency was associated with a 5 % increase in SNR for spiral cine DENSE. Extensive off-scanner training was not required to achieve the improvement in navigator efficiency.
NASA Astrophysics Data System (ADS)
Leroy, Yann; Armeanu, Dumitru; Cordan, Anne-Sophie
2011-05-01
The improvement of our model concerning a single nanocrystal that belongs to a nanocrystal floating gate of a flash memory is presented. In order to extend the gate voltage range applicability of the model, the 3D continuum of states of either metallic or semiconducting electrodes is discretized into 2D subbands. Such an approach gives precise information about the mechanisms behind the charging or release processes of the nanocrystal. Then, the self-energy and screening effects of an electron within the nanocrystal are evaluated and introduced in the model. This enables a better determination of the operating point of the nanocrystal memory. The impact of those improvements on the charging or release time of the nanocrystal is discussed.
Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter
NASA Astrophysics Data System (ADS)
Michele, Simone; Sammarco, Paolo; d'Errico, Michele
2016-08-01
We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.
NASA Astrophysics Data System (ADS)
Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji
2016-01-01
The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of -37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays.
Imaizumi, Yuki; Goda, Tatsuro; Toya, Yutaro; Matsumoto, Akira; Miyahara, Yuji
2016-01-01
Abstract The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of −37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays. PMID:27877886
Electrical overstress in AlGaN/GaN HEMTs: study of degradation processes
NASA Astrophysics Data System (ADS)
Kuzmík, J.; Pogany, D.; Gornik, E.; Javorka, P.; Kordoš, P.
2004-02-01
We study degradation mechanisms in 50 μm gate width/0.45 μm length AlGaN/GaN HEMTs after electrical overstresses. One hundred nanosecond long rectangular current pulses are applied on the drain contact keeping either both of the source and gate grounded or the source grounded and gate floating. Source-drain pulsed I- V characteristics show similar shape for both connections. After the HEMT undergoes the source-drain breakdown, a negative differential resistance region transits into a low voltage/high current region. Changes in the Schottky contact dc I- V characteristics and in the source and drain ohmic contacts are investigated as a function of the current stress level and are related to the HEMT dc performance. Catastrophic HEMT degradation was observed after Istress=1.65 A in case of the 'gate floating' connection due to ohmic contacts burnout. In case of the 'gate grounded' connection, Istress=0.45 A was sufficient for the gate failure showing a high gate susceptibility to overstress. Backside transient interferometric mapping technique experiment reveals a current filament formation under both HEMT stress connections. Infrared camera observations lead to conclusion that the filament formation together with a consequent high-density electron flow is responsible for a dark spot formation and gradual ohmic contact degradation.
Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET.
Dutta, Sangya; Kumar, Vinay; Shukla, Aditya; Mohapatra, Nihar R; Ganguly, Udayan
2017-08-15
Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in area and power compared to conventional analog circuit implementations was observed. In this paper, we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted (PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization (II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate spiking frequency dependence on input. MHz operation enables attractive hardware acceleration compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-integration (VLSI) which is essential for biology scale (~10 11 neuron based) large neural networks.
1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.
Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît
2009-01-01
We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.
Lajnef, Nizar; Chakrabartty, Shantanu; Elvin, Niell; Elvin, Alex
2006-01-01
In this paper we describe an implementation of a novel fatigue monitoring sensor based on integration of piezoelectric transduction with floating gate avalanche injection. The miniaturized sensor enables continuous battery-less monitoring and time-to-failure predictions of biomechanical implants. Measured results from a fabricated prototype in a 0.5 microm CMOS process indicate that the device can compute cumulative statistics of electrical signals generated by piezoelectric transducer, while consuming less that 1 microW of power. The ultra-low power operation makes the sensor attractive for integration with poly-vinylidene difluoride (PVDF) based transducers that have already proven to be biocompatible.
NASA Astrophysics Data System (ADS)
Zong, Xiang-fu; Wang, Xu; Weng, Yu-min; Yan, Ren-jin; Tang, Guo-an; Zhang, Zhao-qiang
1998-10-01
In this study, finite element modeling was used to evaluate the residual thermal stress in floating-gate tunneling oxide electrically erasable programmable read only memory (FLOTOX E2 PROMs) manufacturing process. Special attention is paid to the tunnel oxide region, in which high field electron injection is the basis to E2 PROMs operation. Calculated results show the presence of large stresses and stress gradients at the fringe. This may contribute to the invalidation of E2 PROMs. A possible failure mechanism of E2 PROM related to residual thermal stress-induced leakage is proposed.
NASA Astrophysics Data System (ADS)
Wei, Jiaxing; Liu, Siyang; Liu, Xiaoqiang; Sun, Weifeng; Liu, Yuwei; Liu, Xiaohong; Hou, Bo
2017-08-01
The endurance degradation mechanisms of p-channel floating gate flash memory device with two-transistor (2T) structure are investigated in detail in this work. With the help of charge pumping (CP) measurements and Sentaurus TCAD simulations, the damages in the drain overlap region along the tunnel oxide interface caused by band-to-band (BTB) tunneling programming and the damages in the channel region resulted from Fowler-Nordheim (FN) tunneling erasure are verified respectively. Furthermore, the lifetime model of endurance characteristic is extracted, which can extrapolate the endurance degradation tendency and predict the lifetime of the device.
A Radiation-Tolerant, Low-Power Non-Volatile Memory Based on Silicon Nanocrystal Quantum Dots
NASA Technical Reports Server (NTRS)
Bell, L. D.; Boer, E. A.; Ostraat, M. L.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; deBlauwe, J.; Green, M. L.
2001-01-01
Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO2 is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few- or single-electron storage in a small number of nanocrystal elements. In addition, the nanocrystal layer fabrication technique should be simple, 8-inch wafer compatible and well controlled in program/erase threshold voltage swing was seen during 100,000 program and erase cycles. Additional near-term goals for this project include extensive testing for radiation hardness and the development of artificial layered tunnel barrier heterostructures which have the potential for large speed enhancements for read/write of nanocrystal memory elements, compared with conventional flash devices. Additional information is contained in the original extended abstract.
Physical modeling of geometrically confined disordered protein assemblies
NASA Astrophysics Data System (ADS)
Ando, David
2015-08-01
The transport of cargo across the nuclear membrane is highly selective and accomplished by a poorly understood mechanism involving hundreds of nucleoporins lining the inside of the nuclear pore complex (NPC). Currently, there is no clear picture of the overall structure formed by this collection of proteins within the pore, primarily due to their disordered nature and uncertainty regarding the properties of individual nucleoporins. We first study the defining characteristics of the amino acid sequences of nucleoporins through bioinformatics techniques, although bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of FG motif containing nucleoporins (FG nups). The biophysical mechanism by which the critical FG nups regulate nucleocytoplasmic transport has remained elusive, yet our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These sequence features are likely conserved due to a common functionality between species regarding how FG nups functionally regulate traffic, therefore these results constrain current models and eliminate proposed biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC which would not result in such a conserved amino acid sequence structure. Additionally, this method allows us to identify potentially functionally analogous disordered proteins across distantly related species. To understand the physical implications of the sequence features on structure and dynamics of the nucleoporins, we performed coarse-grained simulations of nucleoporins to understand their individual polymer properties. Our results indicate that different regions or blocks of an individual NPC protein can have distinctly different forms of disorder and that this property appears to be a conserved functional feature, consistent with the results of our physical bioinformatic analysis. Further simulations of grafted rings of FG nups mimicking the in vivo geometry of the NPC were performed and supplemented with polymer brush modeling to understand how aggregates of FG nups regulate transport in vivo. We found that the block structure at the individual protein level in terms of polymer properties is critical to the formation of a unique higher-order polymer brush architecture that can exist in distinct morphologies depending on the effective interaction energy between the phenylalanine glycine (FG) domains of different nups. Because the interactions between FG domains may be modulated by certain forms of transport factors, our results indicate that transitions between brush morphologies that correspond to open and closed states could play an important role in regulating transport across the NPC, suggesting novel forms of gated transport across membrane pores with wide biomimetic applicability in our Diblock Copolymer Brush Gate model. Previous experimental research has concluded that FG nups from S. cerevisiae are present in a bimodal distribution, with the "Forest Model" classifying FG nups as either diblock polymer like "trees" or single block polymer like "shrubs." Our simulation and polymer brush modeling results indicated that the function of the tree FG nups in the Diblock Copolymer Brush Gate (DCBG) model is to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. Here we perform coarse grained simulations of the shrub FG nups which confirm that they have a single block polymer structure rather than the diblock structure of tree nups. Our molecular simulations also demonstrate that these single block FG nups are likely compact collapsed coil polymers, implying that shrubs are generally localized to their grafting location within the NPC. We find that adding a layer of shrub FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving shrub and tree nups. This effect can explain the puzzling connection between shrub FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single block and diblock FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability. In summary, this dissertation presents a cohesive body of research that uses a combination of techniques including bioinformatics, coarse grained molecular modeling, and polymer brush theory to understand the properties of individual FG nups and how they behave in aggregate, strongly constraining possible biophysical mechanisms which may play a role in regulating traffic through the NPC. Our results are observed across different species and are consistent with many experimental observations which have been reported. Finally, our DCBG model for NPC function provides testable predictions for future experimental investigation and provides a foundation for the design and commercialization of biomimetic pores for filtering applications in vitro and industrial use.
Ando, David; Gopinathan, Ajay
2017-01-01
Nucleocytoplasmic transport is highly selective, efficient, and is regulated by a poorly understood mechanism involving hundreds of disordered FG nucleoporin proteins (FG nups) lining the inside wall of the nuclear pore complex (NPC). Previous research has concluded that FG nups in Baker’s yeast (S. cerevisiae) are present in a bimodal distribution, with the “Forest Model” classifying FG nups as either di-block polymer like “trees” or single-block polymer like “shrubs”. Using a combination of coarse-grained modeling and polymer brush modeling, the function of the di-block FG nups has previously been hypothesized in the Di-block Copolymer Brush Gate (DCBG) model to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. In this manuscript we work to extend the original DCBG model by first performing coarse grained simulations of the single-block FG nups which confirm that they have a single block polymer structure rather than the di-block structure of tree nups. Our molecular simulations also demonstrate that these single-block FG nups are likely cohesive, compact, collapsed coil polymers, implying that these FG nups are generally localized to their grafting location within the NPC. We find that adding a layer of single-block FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving single-block and di-block FG nups. This effect can explain the puzzling connection between single-block FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single-block and di-block FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability. PMID:28068389
Son, Donghee; Koo, Ja Hoon; Song, Jun-Kyul; Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Park, Minjoon; Lee, Minbaek; Kim, Ji Hoon; Kim, Dae-Hyeong
2015-05-26
Electronics for wearable applications require soft, flexible, and stretchable materials and designs to overcome the mechanical mismatch between the human body and devices. A key requirement for such wearable electronics is reliable operation with high performance and robustness during various deformations induced by motions. Here, we present materials and device design strategies for the core elements of wearable electronics, such as transistors, charge-trap floating-gate memory units, and various logic gates, with stretchable form factors. The use of semiconducting carbon nanotube networks designed for integration with charge traps and ultrathin dielectric layers meets the performance requirements as well as reliability, proven by detailed material and electrical characterizations using statistics. Serpentine interconnections and neutral mechanical plane layouts further enhance the deformability required for skin-based systems. Repetitive stretching tests and studies in mechanics corroborate the validity of the current approaches.
Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction
NASA Astrophysics Data System (ADS)
Shin, Ik-Soo; Kim, Jung-Min; Jeun, Jun-Ho; Yoo, Seok-Hyun; Ge, Ziyi; Hong, Jong-In; Ho Bang, Jin; Kim, Yong-Sang
2012-04-01
An organic floating-gate memory device using CdSe quantum dots (QDs) as a charge-trapping element was fabricated. CdSe QDs were localized beneath a pentacene without any tunneling insulator, and the QD layer played a role as hole-trapping sites. The band bending formed at the junction between pentacene and QD layers inhibited back-injection of holes trapped in CdSe into pentacene, which appeared as a hysteretic capacitance-voltage response during the operation of the device. Nearly, 60% of trapped charge was sustained even after 104 s in programmed state, and this long retention time can be potentially useful in practical applications of non-volatile memory.
Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory
NASA Astrophysics Data System (ADS)
Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu
2015-07-01
Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.
Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory.
Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu
2015-07-23
Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.
Wasteway, intake side. The floatoperated radial gates are housed behind ...
Wasteway, intake side. The float-operated radial gates are housed behind the concrete (below water level), view to the northwest - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ
Refrigerant directly cooled capacitors
Hsu, John S [Oak Ridge, TN; Seiber, Larry E [Oak Ridge, TN; Marlino, Laura D [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN
2007-09-11
The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.
The floating-gate non-volatile semiconductor memory--from invention to the digital age.
Sze, S M
2012-10-01
In the past 45 years (from 1967 to 2012), the non-volatile semiconductor memory (NVSM) has emerged from a floating-gate concept to the prime technology driver of the largest industry in the world-the electronics industry. In this paper, we briefly review the historical development of NVSM and project its future trends to the year 2020. In addition, we consider NVSM's wide-range of applications from the digital cellular phone to tablet computer to digital television. As the device dimension is scaled down to the deca-nanometer regime, we expect that many innovations will be made to meet the scaling challenges, and NVSM-inspired technology will continue to enrich and improve our lives for decades to come.
NASA Technical Reports Server (NTRS)
Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya
2016-01-01
The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.
NASA Astrophysics Data System (ADS)
Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng
2016-12-01
This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.
1986-03-07
8217 CLS7 PA SPOONER ET AL, 87 MAR Big F/G 12 11111g 1.0 03,2 i 1111111L_ MICROCOP RE ION TEST NATtnNAL HURLAIl )IF SIANDAPFrl £, , , 11 11I% AD-A 171 579...North Gate - ’FPT-?\\ Sal) West Gate ,o > e-.? ! •• ai Bouganville \\>°( ,, FigreES-. ocaio of SiesI etgae CE Storagje Compound SP1 SP-7 - FPTA-3...determine the areal sample and analyze for extent of groundwater target compounds identified contamination. in 1-9 (or for volatile organics using EPA
Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.
Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig
2012-01-01
Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.
NASA Astrophysics Data System (ADS)
Verma, Madhulika; Sharma, Dheeraj; Pandey, Sunil; Nigam, Kaushal; Kondekar, P. N.
2017-01-01
In this work, we perform a comparative analysis between single and dual metal dielectrically modulated tunnel field-effect transistors (DMTFETs) for the application of label free biosensor. For this purpose, two different gate material with work-function as ϕM 1 and ϕM 2 are used in short-gate DMTFET, where ϕM 1 represents the work-function of gate M1 near to the drain end, while ϕM 2 denotes the work-function of gate M2 near to the source end. A nanogap cavity in the gate dielectric is formed by removing the selected portion of gate oxide for sensing the biomolecules. To investigate the sensitivity of these biosensors, dielectric constant and charge density within the cavity region are considered as governing parameters. The work-function of gate M2 is optimized and considered less than M1 to achieve abruptness at the source/channel junction, which results in better tunneling and improved ON-state current. The ATLAS device simulations show that dual metal SG-DMTFETs attains higher ON-state current and drain current sensitivity as compared to its counterpart device. Finally, a dual metal short-gate (DSG) biosensor is compared with the single metal short-gate (SG), single metal full-gate (FG), and dual metal full-gate (DFG) biosensors to analyse structurally enhanced conjugation effect on gate-channel coupling.
N-Channel field-effect transistors with floating gates for extracellular recordings.
Meyburg, Sven; Goryll, Michael; Moers, Jürgen; Ingebrandt, Sven; Böcker-Meffert, Simone; Lüth, Hans; Offenhäusser, Andreas
2006-01-15
A field-effect transistor (FET) for recording extracellular signals from electrogenic cells is presented. The so-called floating gate architecture combines a complementary metal oxide semiconductor (CMOS)-type n-channel transistor with an independent sensing area. This concept allows the transistor and sensing area to be optimised separately. The devices are robust and can be reused several times. The noise level of the devices was smaller than of comparable non-metallised gate FETs. In addition to the usual drift of FET devices, we observed a long-term drift that has to be controlled for future long-term measurements. The device performance for extracellular signal recording was tested using embryonic rat cardiac myocytes cultured on fibronectin-coated chips. The extracellular cell signals were recorded before and after the addition of the cardioactive isoproterenol. The signal shapes of the measured action potentials were comparable to the non-metallised gate FETs previously used in similar experiments. The fabrication of the devices involved the process steps of standard CMOS that were necessary to create n-channel transistors. The implementation of a complete CMOS process would facilitate the integration of the logical circuits necessary for signal pre-processing on a chip, which is a prerequisite for a greater number of sensor spots in future layouts.
Push the flash floating gate memories toward the future low energy application
NASA Astrophysics Data System (ADS)
Della Marca, V.; Just, G.; Regnier, A.; Ogier, J.-L.; Simola, R.; Niel, S.; Postel-Pellerin, J.; Lalande, F.; Masoero, L.; Molas, G.
2013-01-01
In this paper the energy consumption of flash floating gate cell, during a channel hot electron operation, is investigated. We characterize the device using different ramp and box pulses on control gate, to find the best solution to have low energy consumption and good cell performances. We use a new dynamic method to measure the drain current absorption in order to evaluate the impact of different bias conditions, and to study the cell behavior. The programming window and the energy consumption are considered as fundamental parameters. Using this dynamic technique, three zones of work are found; it is possible to optimize the drain voltage during the programming operation to minimize the energy consumption. Moreover, the cell's performances are improved using the CHISEL effect, with a reverse body bias. After the study concerning the programming pulses adjusting, we show the results obtained by increasing the channel doping dose parameter. Considering a channel hot electron programming operation, it is important to focus our attention on the bitline leakage consumption contribution. We measured it for the unselected bitline cells, and we show the effects of the lightly doped drain implantation energy on the leakage current. In this way the impact of gate induced drain leakage in band-to-band tunneling regime decreases, improving the cell's performances in a memory array.
Low-voltage all-inorganic perovskite quantum dot transistor memory
NASA Astrophysics Data System (ADS)
Chen, Zhiliang; Zhang, Yating; Zhang, Heng; Yu, Yu; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Che, Yongli; Jin, Lufan; Li, Yifan; Li, Qingyan; Dai, Haitao; Yang, Junbo; Yao, Jianquan
2018-05-01
An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (˜2.4 V), long retention time (>105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.
Computer Program to Add NOISEMAP Grids of Different Spacings
1980-04-01
GRIC POINT. C 1,J ARE THE INDICES !-OR THE #-IN’- GRIL , PUINT CLOSLSTP C uUT TO THE LkFT AND 8tLGW9 T~ic Oi.JIRL&j iEIG GkIO POIt4TO C .(1,RJ ARE THE...ACTUAL FLOATING POINT CUORGINATES THE bIG C i.kID POINT WOULD HAVE WERL IT IN THE i-INL GRIL .. C CUMMION /GRIOS/ NBF, NBFL, OG(IOUIOO), dSo FG(iI.0QI,1
NASA Astrophysics Data System (ADS)
Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung
2015-01-01
Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Mitchell, J.; Jones, K.
1986-01-01
High current and voltage controlled remotely. Remote Power Conroller includes two series-connected banks of parallel-connected MOSFET's to withstand high current and voltage. Voltage sharing between switch banks, low-impedance, gate-drive circuits used. Provided controlled range for turn on. Individually trimmable to insure simultaneous switching within few nanoseconds during both turn on and turn off. Control circuit for each switch bank and over-current trip circuit float independently and supplied power via transformer T1 from inverter. Control of floating stages by optocouplers.
Event-driven charge-coupled device design and applications therefor
NASA Technical Reports Server (NTRS)
Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)
2005-01-01
An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.
NASA Astrophysics Data System (ADS)
Yamamoto, Makoto; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji; Ishii, Hisao; Noguchi, Yutaka
2014-01-01
We have proposed a gold nanoparticle (GNP)-based single-electron transistor (SET) doped with a dye molecule, where the molecule works as a photoresponsive floating gate. Here, we examined the source-drain current (I_{\\text{SD}}) at a constant drain voltage under light irradiation with various wavelengths ranging from 400 to 700 nm. Current change was enhanced at the wavelengths of 600 and 700 nm, corresponding to the optical absorption band of the doped molecule (copper phthalocyanine: CuPc). Moreover, several peaks appear in the histograms of I_{\\text{SD}} during light irradiation, indicating that multiple discrete states were induced in the device. The results suggest that the current change was initiated by the light absorption of CuPc and multiple CuPc molecules near the GNP working as a floating gate. Molecular doping can activate advanced device functions in GNP-based SETs.
NASA Astrophysics Data System (ADS)
Chambonneau, Maxime; Souiki-Figuigui, Sarra; Chiquet, Philippe; Della Marca, Vincenzo; Postel-Pellerin, Jérémy; Canet, Pierre; Portal, Jean-Michel; Grojo, David
2017-04-01
We demonstrate that infrared femtosecond laser pulses with intensity above the two-photon ionization threshold of crystalline silicon induce charge transport through the tunnel oxide in floating gate Metal-Oxide-Semiconductor transistor devices. With repeated irradiations of Flash memory cells, we show how the laser-produced free-electrons naturally redistribute on both sides of the tunnel oxide until the electric field of the transistor is suppressed. This ability enables us to determine in a nondestructive, rapid and contactless way the flat band and the neutral threshold voltages of the tested device. The physical mechanisms including nonlinear ionization, quantum tunneling of free-carriers, and flattening of the band diagram are discussed for interpreting the experiments. The possibility to control the carriers in memory transistors with ultrashort pulses holds promises for fast and remote device analyses (reliability, security, and defectivity) and for considerable developments in the growing field of ultrafast microelectronics.
A fast and low-power microelectromechanical system-based non-volatile memory device
Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo
2011-01-01
Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559
Models for Total-Dose Radiation Effects in Non-Volatile Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Philip Montgomery; Wix, Steven D.
The objective of this work is to develop models to predict radiation effects in non- volatile memory: flash memory and ferroelectric RAM. In flash memory experiments have found that the internal high-voltage generators (charge pumps) are the most sensitive to radiation damage. Models are presented for radiation effects in charge pumps that demonstrate the experimental results. Floating gate models are developed for the memory cell in two types of flash memory devices by Intel and Samsung. These models utilize Fowler-Nordheim tunneling and hot electron injection to charge and erase the floating gate. Erase times are calculated from the models andmore » compared with experimental results for different radiation doses. FRAM is less sensitive to radiation than flash memory, but measurements show that above 100 Krad FRAM suffers from a large increase in leakage current. A model for this effect is developed which compares closely with the measurements.« less
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.
Choi, Sungjin; Lee, Junhyuk; Kim, Donghyoun; Oh, Seulki; Song, Wangyu; Choi, Seonjun; Choi, Eunsuk; Lee, Seung-Beck
2011-12-01
We report on the fabrication and capacitance-voltage characteristics of double layer nickel-silicide nanocrystals with Si3N4 interlayer tunnel barrier for nano-floating gate memory applications. Compared with devices using SiO2 interlayer, the use of Si3N4 interlayer separation reduced the average size (4 nm) and distribution (+/- 2.5 nm) of NiSi2 nanocrystal (NC) charge traps by more than 50% and giving a two fold increase in NC density to 2.3 x 10(12) cm(-2). The increased density and reduced NC size distribution resulted in a significantly decrease in the distribution of the device C-V characteristics. For each program voltage, the distribution of the shift in the threshold voltage was reduced by more than 50% on average to less than 0.7 V demonstrating possible multi-level-cell operation.
NASA Astrophysics Data System (ADS)
Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.
2018-02-01
Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.
NASA Technical Reports Server (NTRS)
Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.
2000-01-01
NASA requirements for computing and memory for microspacecraft emphasize high density, low power, small size, and radiation hardness. The distributed nature of storage elements in nanocrystal floating-gate memories leads to intrinsic fault tolerance and radiation hardness. Conventional floating-gate non-volatile memories are more susceptible to radiation damage. Nanocrystal-based memories also offer the possibility of faster, lower power operation. In the pursuit of filling these requirements, the following tasks have been accomplished: (1) Si nanocrystal charging has been accomplished with conducting-tip AFM; (2) Both individual nanocrystals on an oxide surface and nanocrystals formed by implantation have been charged; (3) Discharging is consistent with tunneling through a field-lowered oxide barrier; (4) Modeling of the response of the AFM to trapped charge has allowed estimation of the quantity of trapped charge; and (5) Initial attempts to fabricate competitive nanocrystal non-volatile memories have been extremely successful.
Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin
Taube Navaraj, William; García Núñez, Carlos; Shakthivel, Dhayalan; Vinciguerra, Vincenzo; Labeau, Fabrice; Gregory, Duncan H.; Dahiya, Ravinder
2017-01-01
This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals. PMID:28979183
DOE-FG02-00ER62797 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweedler, J.V.
2004-12-01
Specific Aims The overall goal of this proposal has been to develop and interface a new technology, molecular gates, with microfabricated systems to add an important capability to microfabricated DNA measurement systems. This project specifically focused on demonstrating how molecular gates could be used to capture a single analyte band, among a stream of bands from a separation or a flow injection analysis experiment, and release it for later measurement, thus allowing further manipulations on the selected analyte. Since the original proposal, the molecular gate concept has been greatly expanded to allow the gates to be used as externally controllablemore » intelligent interconnects in multilayer microfluidic networks. We have demonstrated: (1) the ability of the molecular gates to work with a much wider range of biological molecules including DNA, proteins and small metabolites; and (2) the capability of performing an electrophoretic separation and sequestering individual picoliter volume components (or even classes of components) into separate channels for further analysis. Both capabilities will enable characterization of small mass amounts of complex mixtures of DNA, proteins and even small molecules--allowing them to be further separated and chemically characterized.« less
NASA Astrophysics Data System (ADS)
Wang, Q.; Song, Z. T.; Liu, W. L.; Lin, C. L.; Wang, T. H.
2004-05-01
Monolayer-isolated silver (Ag) nanodots with the average diameter down to 7 nm are synthesized on Al 2O 3/Si substrate by vacuum electron-beam evaporation followed by annealing at 400 °C in N 2 ambient. Metal-insulator-silicon (MIS) structures with Ag nanodots embedded in Al 2O 3 gate dielectric are fabricated. Clear electron storage effect with the flatband voltage shift of 1.3 eV is observed through capacitance-conductance and conductance-voltage measurements. Our results demonstrate the feasibility of applying Ag nanodots for nanocrystal floating-gate memory devices.
Arshad, M K Md; Adzhri, R; Fathil, M F M; Gopinath, Subash C B; N M, Nuzaihan M
2018-08-01
The development of electrical biosensor towards device miniaturization in order to achieve better sensitivity with enhanced electrical signal has certain limitations especially complexity in fabrication process and costs. In this paper, an alternative technique with minor modification in the device structure is presented for signal amplification by implementing ambipolar conduction in the biosensor itself. We demonstrated the field-effect transistor (FET)-based biosensor coupled back-gate for attaining a higher sensitivity with the detection of lower target abundance. To utilize the coupled back-gate as a pre-amplifier, silicon-on-insulator wafer with thicknesses of top-silicon and buried oxide (BOX) layers of 70 nm and 145 nm, respectively were desired. Titanium dioxide (TiO2) nanomaterial was deposited using sol-gel method on the channel which acts as a transducer. Surface functionalization on TiO2 thin film allowed an effective immobilization of anti-cardiac troponin I antibody to interact cardiac troponin I (cTnI). Binding events at each step was validated by X-ray photoelectron spectroscopy (XPS) analysis. Further, electrical characterization (Id-Vd) confirms the potentiality of FET-based biosensor to detect cTnI (represents acute myocardial infarction disease) with the concentration ranges from 10 μg/ml down to 1 fg/ml. The sensitivity of 459.2 nA (g/ml)-1 and lower detection limit of 1 fg/ml were achieved at Vbg = -5 V and Vd = 5 V. The designed device demonstrates its ability to detect lower level of cTnI with pre-amplified electrical signal by back-gate biasing.
Microdose Induced Data Loss on Floating Gate Memories
NASA Technical Reports Server (NTRS)
Guertin, Steven M.; Nguyen, Duc M.; Patterson, Jeffrey D.
2006-01-01
Heavy ion irradiation of flash memories shows loss of stored data. The fluence dependence is indicative of microdose effects. Other qualitative factors identifying the effect as microdose are discussed. The data is presented, and compared to statistical results of a microdose target-based model.
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang
2016-03-01
In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.
Modeling and simulation of clutch pressure plate casting using alternate materials
NASA Astrophysics Data System (ADS)
Madhuraj, H. N.; Bharath, M. R.
2018-04-01
Clutch Pressure Plate is a stress bearing component in the clutch assembly. Cast iron alloys like FG300, G2500 are commonly used for clutch pressure plate castings. These materials have high compressive strength, low tensile strength & no ductility but these cost high for the manufacturers. There is a need for alternate material so as to reduce cost, defects in castings without losing the life and effectiveness of the clutch plate. The work carried out here is modeling the clutch pressure plate using CAD tool. And then the casting process is simulated by casting simulation for fluid flow and solidification analysis by trying alternate material. Here the castability of the alternate material En-Gjs-400-15 and the commonly used material FG300 for the clutch pressure plate component is analyzed by designing and optimizing a proper gating system.
Effects of Heavy Ion Exposure on Nanocrystal Nonvolatile Memory
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; Suhail, Mohammed; Kuhn, Peter; Prinz, Erwin; Kim, Hak; LaBel, Kenneth A.
2004-01-01
We have irradiated engineering samples of Freescale 4M nonvolatile memories with heavy ions. They use Silicon nanocrystals as the storage element, rather than the more common floating gate. The irradiations were performed using the Texas A&M University cyclotron Single Event Effects Test Facility. The chips were tested in the static mode, and in the dynamic read mode, dynamic write (program) mode, and dynamic erase mode. All the errors observed appeared to be due to single, isolated bits, even in the program and erase modes. These errors appeared to be related to the micro-dose mechanism. All the errors corresponded to the loss of electrons from a programmed cell. The underlying physical mechanisms will be discussed in more detail later. There were no errors, which could be attributed to malfunctions of the control circuits. At the highest LET used in the test (85 MeV/mg/sq cm), however, there appeared to be a failure due to gate rupture. Failure analysis is being conducted to confirm this conclusion. There was no unambiguous evidence of latchup under any test conditions. Generally, the results on the nanocrystal technology compare favorably with results on currently available commercial floating gate technology, indicating that the technology is promising for future space applications, both civilian and military.
Progress towards two double-dot qubits in Si/SiGe: quadruple quantum dots
NASA Astrophysics Data System (ADS)
Foote, Ryan H.; Ward, Daniel R.; Kim, Dohun; Thorgrimsson, Brandur; Smith, Luke; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.
We present the fabrication and electrical characterization of two types of gate-defined quadruple quantum dot devices formed in Si/SiGe heterostructures. We compare two designs, one which uses three layers of tightly overlapping gates and is similar to the work found in, and one which uses only two layers of gates and has significantly more open space between neighboring gates. We demonstrate charge-state conditional quantum oscillations in the more open device, we compare the tunability of both devices with each other, and we discuss the implications of these measurements on a path towards larger numbers of coupled quantum dot qubits. This work is supported in part by ARO (W911NF-12-1-0607), NSF (DMR-1206915, PHY-1104660), ONR (N00014-15-1-0029) and the Department of Defense. Development and maintenance of the growth facilities used for fabricating samples supported by DOE (DE-FG02-03ER46028). DK acknowledges support from the Korea Institute of Science and Technology Institutional Program (Project No. 2E26681). This research utilized facilities supported by the NSF (DMR-0832760, DMR-1121288).
Magic state distillation protocols with noisy Clifford gates
NASA Astrophysics Data System (ADS)
Brooks, Peter
2013-03-01
A promising approach to universal fault-tolerant quantum computation is to implement the non-universal group of Clifford gates, and to achieve universality by adding the ability to prepare high-fidelity copies of certain ``magic states''. By applying state distillation protocols, many noisy copies of a magic state ancilla can be purified into a smaller number of clean copies which are arbitrarily close to the perfect state, using only Clifford operations. In practice, the Clifford gates themselves will be noisy, which can limit the efficiency of state distillation and put a floor on the achievable fidelity with the desired state. Recently, a number of new state distillation protocols have been proposed that have the potential to reduce the required resource overhead. I analyze these protocols and explore the tradeoffs between these different approaches to magic state distillation when noisy Clifford gates are taken into account. Supported in part by IARPA under contract D11PC20165, by NSF under Grant No. PHY-0803371, by DOE under Grant No. DE-FG03-92-ER40701, and by NSA/ARO under Grant No. W911NF-09-1-0442.
152. Photographic copy of original construction drawing dated October 24, ...
152. Photographic copy of original construction drawing dated October 24, 1930 (from Record Group 115, Denver Branch of the National Archives, Denver). 60 x 12 RING GATE CONTROL; FLOAT WELL ASSEMBLY AND COVER HOIST STEM-CONNECTION ROD-SLEEVE. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Nonvolatile Memories Using Quantum Dot (QD) Floating Gates Assembled on II-VI Tunnel Insulators
NASA Astrophysics Data System (ADS)
Suarez, E.; Gogna, M.; Al-Amoody, F.; Karmakar, S.; Ayers, J.; Heller, E.; Jain, F.
2010-07-01
This paper presents preliminary data on quantum dot gate nonvolatile memories using nearly lattice-matched ZnS/Zn0.95Mg0.05S/ZnS tunnel insulators. The GeO x -cladded Ge and SiO x -cladded Si quantum dots (QDs) are self-assembled site-specifically on the II-VI insulator grown epitaxially over the Si channel (formed between the source and drain region). The pseudomorphic II-VI stack serves both as a tunnel insulator and a high- κ dielectric. The effect of Mg incorporation in ZnMgS is also investigated. For the control gate insulator, we have used Si3N4 and SiO2 layers grown by plasma- enhanced chemical vapor deposition.
A MODFET dc model with improved pinchoff and saturation characteristics
NASA Astrophysics Data System (ADS)
Rohdin, Hans; Roblin, Patrick
1986-05-01
An improved analytical dc model for the MODFET is proposed which uses a new approximation of the two-dimensional electron gas concentration versus gate-to-channel voltage, a ratio which models both the subthreshold region and the gradual saturation of carriers due to the onset of AlGaAs charge modulation. A two-region Grebene-Ghandi model with a floating boundary is used for the channel. A maximum transconductance and a finite intrinsic output conductance in the saturated region are predicted, in agreement with experimental observations. The model is shown to approach the saturated velocity model in the limit of very short gate lengths, and to approach the classical gradual channel model in the limit of very long gate lengths.
NASA Astrophysics Data System (ADS)
Suarez, Ernesto; Chan, Pik-Yiu; Lingalugari, Murali; Ayers, John E.; Heller, Evan; Jain, Faquir
2013-11-01
This paper describes the use of II-VI lattice-matched gate insulators in quantum dot gate three-state and flash nonvolatile memory structures. Using silicon-on-insulator wafers we have fabricated GeO x -cladded Ge quantum dot (QD) floating gate nonvolatile memory field-effect transistor devices using ZnS-Zn0.95Mg0.05S-ZnS tunneling layers. The II-VI heteroepitaxial stack is nearly lattice-matched and is grown using metalorganic chemical vapor deposition on a silicon channel. This stack reduces the interface state density, improving threshold voltage variation, particularly in sub-22-nm devices. Simulations using self-consistent solutions of the Poisson and Schrödinger equations show the transfer of charge to the QD layers in three-state as well as nonvolatile memory cells.
The ZnO-FET Biosensor for Cardiac Troponin I
NASA Astrophysics Data System (ADS)
Fathil, M. F. M.; Arshad, M. K. Md; Nuzaihan, M. N. M.; Gopinath, Subash C. B.; Ruslinda, A. R.; Hashim, U.
2018-03-01
This paper investigates the influence of substrate-gate coupling on the ZnO-FET biosensor’s sensitivity for detection of cardiac troponin I (cTnI), a ‘gold standard’ biomarker for acute myocardial infarction (AMI). The FET-based device with introduction of substrate-gate coupling on p-type silicon-on-insulator (SOI) substrate is fabricated using conventional lithography processes. An n-type zinc oxide (ZnO) thin film deposited via electron-beam evaporator is used as transducer for bridging the source and drain regions. Surface modifications via functionalization with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) as chemical linkers, followed by immobilization of cTnI monoclonal antibody (MAb-cTnI) as bio-receptor on the ZnO thin film allow different concentration of cTnI detection with high selectivity. The device’s sensitivity increases up to 9 %·(g/ml)-1 with the increase of the substrate-gate voltage (VSG) up to -10 V at very low limit of detection (LOD) down to 1.6 fg/ml.
NASA Astrophysics Data System (ADS)
Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping
A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.
Advanced, High Power, Next Scale, Wave Energy Conversion Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekhiche, Mike; Dufera, Hiz; Montagna, Deb
2012-10-29
The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressedmore » cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.« less
NASA Astrophysics Data System (ADS)
Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki
2017-04-01
We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.
Field programmable gate array-assigned complex-valued computation and its limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang
We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.
Jang, Hyun-June; Lee, Taein; Song, Jian; Russell, Luisa; Li, Hui; Dailey, Jennifer; Searson, Peter C; Katz, Howard E
2018-05-16
A field-effect transistor-based cortisol sensor was demonstrated in physiological conditions. An antibody-embedded polymer on the remote gate was proposed to overcome the Debye length issue (λ D ). The sensing membrane was made by linking poly(styrene- co-methacrylic acid) (PSMA) with anticortisol before coating the modified polymer on the remote gate. The embedded receptor in the polymer showed sensitivity from 10 fg/mL to 10 ng/mL for cortisol and a limit of detection (LOD) of 1 pg/mL in 1× PBS where λ D is 0.2 nm. A LOD of 1 ng/mL was shown in lightly buffered artificial sweat. Finally, a sandwich ELISA confirmed the antibody binding activity of antibody-embedded PSMA.
Neural dynamics in reconfigurable silicon.
Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E
2010-10-01
A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).
NASA Astrophysics Data System (ADS)
Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.
2017-04-01
The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.
Investigation of Structure of Gd and Tb Nuclei using STARS and LiBerACE
NASA Astrophysics Data System (ADS)
Bonniwell, Cain; Pauerstein, Ben; Allmond, J. M.; Beausang, C. W.
2009-10-01
This experiment, performed at Livermore Berkeley National Lab as a collaboration of Livermore, Berkeley, and the University of Richmond, was designed to investigate the structure of gadolinium and terbium nuclei using the P + 156Gd reaction at E beam = 27 MeV. The experimental design included use of the STARS system for detecting charged particles as well as the LiBerACE clover array for detecting gamma rays. The master gate was set to record particle-gamma as well as gamma-gamma coincidences. The data is currently being analyzed using the RADWARE escl8r software package which has allowed the creation of extensive level schemes for several Gd and Tb nuclei. So far the data suggests new gamma ray transitions as well as new energy states in 154Gd and 155Tb. The project is ongoing, and the results will be presented. This work was supported by the US Department of Energy under grant numbers DE-FG52NA26206 and DE-FG02-05ER41379.
NASA Astrophysics Data System (ADS)
Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang
2016-02-01
Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-06-14
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 V RMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame.
Iglesias-Rojas, Juan Carlos; Gomez-Castañeda, Felipe; Moreno-Cadenas, Jose Antonio
2017-01-01
In this paper, a Least Mean Square (LMS) programming scheme is used to set the offset voltage of two operational amplifiers that were built using floating-gate transistors, enabling a 0.95 VRMS trimmer-less flame detection sensor. The programming scheme is capable of setting the offset voltage over a wide range of values by means of electron injection. The flame detection sensor consists of two programmable offset operational amplifiers; the first amplifier serves as a 26 μV offset voltage follower, whereas the second amplifier acts as a programmable trimmer-less voltage comparator. Both amplifiers form the proposed sensor, whose principle of functionality is based on the detection of the electrical changes produced by the flame ionization. The experimental results show that it is possible to measure the presence of a flame accurately after programming the amplifiers with a maximum of 35 LMS-algorithm iterations. Current commercial flame detectors are mainly used in absorption refrigerators and large industrial gas heaters, where a high voltage AC source and several mechanical trimmings are used in order to accurately measure the presence of the flame. PMID:28613250
Takulapalli, Bharath R
2010-02-23
Field-effect transistor-based chemical sensors fall into two broad categories based on the principle of signal transduction-chemiresistor or Schottky-type devices and MOSFET or inversion-type devices. In this paper, we report a new inversion-type device concept-fully depleted exponentially coupled (FDEC) sensor, using molecular monolayer floating gate fully depleted silicon on insulator (SOI) MOSFET. Molecular binding at the chemical-sensitive surface lowers the threshold voltage of the device inversion channel due to a unique capacitive charge-coupling mechanism involving interface defect states, causing an exponential increase in the inversion channel current. This response of the device is in opposite direction when compared to typical MOSFET-type sensors, wherein inversion current decreases in a conventional n-channel sensor device upon addition of negative charge to the chemical-sensitive device surface. The new sensor architecture enables ultrahigh sensitivity along with extraordinary selectivity. We propose the new sensor concept with the aid of analytical equations and present results from our experiments in liquid phase and gas phase to demonstrate the new principle of signal transduction. We present data from numerical simulations to further support our theory.
Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor.
Liu, Yifan; Yobas, Levent
2016-04-26
Here, we present an experimental demonstration of slowing DNA translocation across a nanochannel by modulating the channel surface charge through an externally applied gate bias. The experiments were performed on a nanofluidic field-effect transistor, which is a monolithic integrated platform featuring a 50 nm-diameter in-plane alumina nanocapillary whose entire length is surrounded by a gate electrode. The field-effect transistor behavior was validated on the gating of ionic conductance and protein transport. The gating of DNA translocation was subsequently studied by measuring discrete current dips associated with single λ-DNA translocation events under a source-to-drain bias of 1 V. The translocation speeds under various gate bias conditions were extracted by fitting event histograms of the measured translocation time to the first passage time distributions obtained from a simple 1D biased diffusion model. A positive gate bias was observed to slow the translocation of single λ-DNA chains markedly; the translocation speed was reduced by an order of magnitude from 18.4 mm/s obtained under a floating gate down to 1.33 mm/s under a positive gate bias of 9 V. Therefore, a dynamic and flexible regulation of the DNA translocation speed, which is vital for single-molecule sequencing, can be achieved on this device by simply tuning the gate bias. The device is realized in a conventional semiconductor microfabrication process without the requirement of advanced lithography, and can be potentially further developed into a compact electronic single-molecule sequencer.
Two-color detection with charge sensitive infrared phototransistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sunmi, E-mail: kimsunmi@iis.u-tokyo.ac.jp; Kajihara, Yusuke; Komiyama, Susumu
2015-11-02
Highly sensitive two-color detection is demonstrated at wavelengths of 9 μm and 14.5 μm by using a charge sensitive infrared phototransistor fabricated in a triple GaAs/AlGaAs quantum well (QW) crystal. Two differently thick QWs (7 nm- and 9 nm-thicknesses) serve as photosensitive floating gates for the respective wavelengths via intersubband excitation: The excitation in the QWs is sensed by a third QW, which works as a conducting source-drain channel in the photosensitive transistor. The two spectral bands of detection are shown to be controlled by front-gate biasing, providing a hint for implementing voltage tunable ultra-highly sensitive detectors.
1988-03-01
Applesoft language, a variant of floating-point BASIC that is supplied with the computer. As an intepreted language, Apple- soft BASIC executes fairly...fit with (VI , II ) array. I 8400 Sound bell and display warning when current limit exceeded. 8500-8510 Output HV pulse, read and display amplitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervino, L; Soultan, D; Pettersson, N
2016-06-15
Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240more » cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.« less
Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Sangwan, Vinod K.; Lee, Hong-Sub; Bergeron, Hadallia; Balla, Itamar; Beck, Megan E.; Chen, Kan-Sheng; Hersam, Mark C.
2018-02-01
Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow-Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process. The two-dimensional MoS2 memtransistors show gate tunability in individual resistance states by four orders of magnitude, as well as large switching ratios, high cycling endurance and long-term retention of states. In addition to conventional neural learning behaviour of long-term potentiation/depression, six-terminal MoS2 memtransistors have gate-tunable heterosynaptic functionality, which is not achievable using two-terminal memristors. For example, the conductance between a pair of floating electrodes (pre- and post-synaptic neurons) is varied by a factor of about ten by applying voltage pulses to modulatory terminals. In situ scanning probe microscopy, cryogenic charge transport measurements and device modelling reveal that the bias-induced motion of MoS2 defects drives resistive switching by dynamically varying Schottky barrier heights. Overall, the seamless integration of a memristor and transistor into one multi-terminal device could enable complex neuromorphic learning and the study of the physics of defect kinetics in two-dimensional materials.
Configurable hardware integrate and fire neurons for sparse approximation.
Shapero, Samuel; Rozell, Christopher; Hasler, Paul
2013-09-01
Sparse approximation is an important optimization problem in signal and image processing applications. A Hopfield-Network-like system of integrate and fire (IF) neurons is proposed as a solution, using the Locally Competitive Algorithm (LCA) to solve an overcomplete L1 sparse approximation problem. A scalable system architecture is described, including IF neurons with a nonlinear firing function, and current-based synapses to provide linear computation. A network of 18 neurons with 12 inputs is implemented on the RASP 2.9v chip, a Field Programmable Analog Array (FPAA) with directly programmable floating gate elements. Said system uses over 1400 floating gates, the largest system programmed on a FPAA to date. The circuit successfully reproduced the outputs of a digital optimization program, converging to within 4.8% RMS, and an objective cost only 1.7% higher on average. The active circuit consumed 559 μA of current at 2.4 V and converges on solutions in 25 μs, with measurement of the converged spike rate taking an additional 1 ms. Extrapolating the scaling trends to a N=1000 node system, the spiking LCA compares favorably with state-of-the-art digital solutions, and analog solutions using a non-spiking approach. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu
2015-05-01
We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.
Paydavosi, Sarah; Aidala, Katherine E; Brown, Patrick R; Hashemi, Pouya; Supran, Geoffrey J; Osedach, Timothy P; Hoyt, Judy L; Bulović, Vladimir
2012-03-14
Retention and diffusion of charge in tris(8-hydroxyquinoline) aluminum (Alq(3)) molecular thin films are investigated by injecting electrons and holes via a biased conductive atomic force microscopy tip into the Alq(3) films. After the charge injection, Kelvin force microscopy measurements reveal minimal changes with time in the spatial extent of the trapped charge domains within Alq(3) films, even for high hole and electron densities of >10(12) cm(-2). We show that this finding is consistent with the very low mobility of charge carriers in Alq(3) thin films (<10(-7) cm(2)/(Vs)) and that it can benefit from the use of Alq(3) films as nanosegmented floating gates in flash memory cells. Memory capacitors using Alq(3) molecules as the floating gate are fabricated and measured, showing durability over more than 10(4) program/erase cycles and the hysteresis window of up to 7.8 V, corresponding to stored charge densities as high as 5.4 × 10(13) cm(-2). These results demonstrate the potential for use of molecular films in high storage capacity nonvolatile memory cells. © 2012 American Chemical Society
Park, Jae Hyo; Son, Se Wan; Byun, Chang Woo; Kim, Hyung Yoon; Joo, So Na; Lee, Yong Woo; Yun, Seung Jae; Joo, Seung Ki
2013-10-01
In this work, non-volatile memory thin-film transistor (NVM-TFT) was fabricated by nickel silicide-induced laterally crystallized (SILC) polycrystalline silicon (poly-Si) as the active layer. The nickel seed silicide-induced crystallized (SIC) poly-Si was used as storage layer which is embedded in the gate insulator. The novel unit pixel of active matrix organic light-emitting diode (AMOLED) using NVM-TFT is proposed and investigated the electrical and optical performance. The threshold voltage shift showed 17.2 V and the high reliability of retention characteristic was demonstrated until 10 years. The retention time can modulate the recharge refresh time of the unit pixel of AMOLED up to 5000 sec.
Gating based on internal/external signals with dynamic correlation updates.
Wu, Huanmei; Zhao, Qingya; Berbeco, Ross I; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B
2008-12-21
Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.
Materials and methods for the preparation of nanocomposites
Nag, Angshuman; Talapin, Dmitri V.
2018-01-30
Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a method for making the same in a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, phase change layers, and sensor devices.
Bruce G. Marcot; M. Torre Jorgenson; Anthony R. DeGange
2014-01-01
During July 16â18, 2013, low-level photography flights were conducted (with a Cessna 185 with floats and a Cessna 206 with tundra tires) over the five administrative units of the National Park Service Arctic Network (Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Gates of the Arctic National Park and Preserve, Kobuk Valley National Park, and...
A randomization approach to handling data scaling in nuclear medicine.
Bai, Chuanyong; Conwell, Richard; Kindem, Joel
2010-06-01
In medical imaging, data scaling is sometimes desired to handle the system complexity, such as uniformity calibration. Since the data are usually saved in short integer, conventional data scaling will first scale the data in floating point format and then truncate or round the floating point data to short integer data. For example, when using truncation, scaling of 9 by 1.1 results in 9 and scaling of 10 by 1.1 results in 11. When the count level is low, such scaling may change the local data distribution and affect the intended application of the data. In this work, the authors use an example gated cardiac SPECT study to illustrate the effect of conventional scaling by factors of 1.1 and 1.2. The authors then scaled the data with the same scaling factors using a randomization approach, in which a random number evenly distributed between 0 and 1 is generated to determine how the floating point data will be saved as short integer data. If the random number is between 0 and 0.9, then 9.9 will be saved as 10, otherwise 9. In other words, the floating point value 9.9 will be saved in short integer value as 10 with 90% probability or 9 with 10% probability. For statistical analysis of the performance, the authors applied the conventional approach with rounding and the randomization approach to 50 consecutive gated studies from a clinical site. For the example study, the image reconstructed from the original data showed an apparent perfusion defect at the apex of the myocardium. The defect size was noticeably changed by scaling with 1.1 and 1.2 using the conventional approaches with truncation and rounding. Using the randomization approach, in contrast, the images from the scaled data appeared identical to the original image. Line profile analysis of the scaled data showed that the randomization approach introduced the least change to the data as compared to the conventional approaches. For the 50 gated data sets, significantly more studies showed quantitative differences between the original images and the images from the data scaled by 1.2 using the rounding approach than the randomization approach [46/50 (92%) versus 3/50 (6%), p < 0.05]. Likewise, significantly more studies showed visually noticeable differences between the original images and the images from the data scaled by 1.2 using the rounding approach than randomization [29/50 (58%) versus 1/50 (2%), p < 0.05]. In conclusion, the proposed randomization approach minimizes the scaling-introduced local data change as compared to the conventional approaches. It is preferred for nuclear medicine data scaling.
Modifications of traps to reduce bycatch of freshwater turtles
Bury, R. Bruce
2011-01-01
Mortality of freshwater turtles varies among types and deployments of traps. There are few or no losses in hoop or fyke traps set where turtles may reach air, including placement in shallows, addition of floats on traps, and tying traps securely to a stake or to shore. Turtle mortality occurs when traps are set deep, traps are checked at intervals >1 day, and when turtles are captured as bycatch. Devices are available that exclude turtles from traps set for crab or game fish harvest. Slotted gates in front of the trap mouth reduce turtle entry, but small individuals still may be trapped. Incidental take of turtles is preventable by integrating several designs into aquatic traps, such as adding floats to the top of traps so turtles may reach air or an extension tube (chimney, ramp) that creates an escape route.
MO-FG-BRA-08: Swarm Intelligence-Based Personalized Respiratory Gating in Lung SAbR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Sabouri, P; Sawant, A
Purpose: Respiratory gating is widely deployed as a clinical motion-management strategy in lung radiotherapy. In conventional gating, the beam is turned on during a pre-determined phase window; typically, around end-exhalation. In this work, we challenge the notion that end-exhalation is always the optimal gating phase. Specifically, we use a swarm-intelligence-based, inverse planning approach to determine the optimal respiratory phase and MU for each beam with respect to (i) the state of the anatomy at each phase and (ii) the time spent in that state, estimated from long-term monitoring of the patient’s breathing motion. Methods: In a retrospective study of fivemore » lung cancer patients, we compared the dosimetric performance of our proposed personalized gating (PG) with that of conventional end-of-exhale gating (CEG) and a previously-developed, fully 4D-optimized plan (combined with MLC tracking delivery). For each patient, respiratory phase probabilities (indicative of the time duration of the phase) were estimated over 2 minutes from lung tumor motion traces recorded previously using the Synchrony system (Accuray Inc.). Based on this information, inverse planning optimization was performed to calculate the optimal respiratory gating phase and MU for each beam. To ensure practical deliverability, each PG beam was constrained to deliver the assigned MU over a time duration comparable to that of CEG delivery. Results: Maximum OAR sparing for the five patients achieved by the PG and the 4D plans compared to CEG plans was: Esophagus Dmax [PG:57%, 4D:37%], Heart Dmax [PG:71%, 4D:87%], Spinal cord Dmax [PG:18%, 4D:68%] and Lung V13 [PG:16%, 4D:31%]. While patients spent the most time in exhalation, the PG-optimization chose end-exhale only for 28% of beams. Conclusion: Our novel gating strategy achieved significant dosimetric improvements over conventional gating, and approached the upper limit represented by fully 4D optimized planning while being significantly simpler and more clinically translatable. This work was partially supported through research funding from National Institutes of Health (R01CA169102) and Varian Medical Systems, Palo Alto, CA, USA.« less
Review of mixer design for low voltage - low power applications
NASA Astrophysics Data System (ADS)
Nurulain, D.; Musa, F. A. S.; Isa, M. Mohamad; Ahmad, N.; Kasjoo, S. R.
2017-09-01
A mixer is used in almost all radio frequency (RF) or microwave systems for frequency translation. Nowadays, the increase market demand encouraged the industry to deliver circuit designs to create proficient and convenient equipment with very low power (LP) consumption and low voltage (LV) supply in both digital and analogue circuits. This paper focused on different Complementary Metal Oxide Semiconductor (CMOS) design topologies for LV and LP mixer design. Floating Gate Metal Oxide Semiconductor (FGMOS) is an alternative technology to replace CMOS due to their high ability for LV and LP applications. FGMOS only required a few transistors per gate and can have a shift in threshold voltage (VTH) to increase the LP and LV performances as compared to CMOS, which makes an attractive option to replace CMOS.
NASA Astrophysics Data System (ADS)
Lee, Pui Fai
2007-12-01
Nanocrystals (NC) embedded in dielectrics have attracted a great deal of attention recently because they can potentially be applied in nonvolatile, high-speed, high-density and low-power memory devices. This device benefits from a relatively low operating voltage, high endurance, fast write-erase speeds and better immunity to soft errors. The nanocrystal materials suitable for such an application can be either metals or semiconductors. Recent studies have shown that high-k dielectrics, instead of SiO2 , for the tunneling layer in nanocrystal floating gate memory can improve the trade-off between data retention and program efficiency due to the unique band alignment of high-k dielectrics in the programming and retention modes. In this project, HfAlO has been selected as the high- k dielectric for the nanocrystal floating gate memory structure. The trilayer structure (HfAlO/Ge-NC/HfAlO) on Si was fabricated by PLD. Results revealed that relatively low substrate temperature and growth rate are favourable for the formation of smaller-size Ge nanocrystals. Effects of size/density of the Ge nanocrystal, the tunneling and control oxide layer thicknesses and the oxygen partial pressure during their growth on the charge storage and charge retention characteristics have also been studied. The island structure of the Ge nanocrystal suggests that the growth is based on the Volmer-Webber mode. The self-organized Ge nanocrystals so formed were uniform in size (5--20 nm diameter) and distribution with a density approaching 1012--1013cm-2. Flat-band voltage shift (DeltaVFB) of about 3.6 V and good retention property have been achieved. By varying aggregation distance, sputtering gas pressure and ionization power of the nanocluster source, nanoclusters of Ge with different sizes can be formed. The memory effect of the trilayer structure so formed with 10 nm Ge nanoclusters are manifested by the counter-clockwise hysteresis loop in the C-V curves and a maximum flat-band voltage shift of 5.0 V has been achieved. For comparison purposes, metal nanocrystals have also been investigated by utilizing both of the physical deposition methods as mentioned above. Silver (Ag) nanocrystals with size of 10--40 nm have been embedded in HfAlO matrix in the trilayer capacitor structure and a flat-band voltage shift of 2.0 V has been achieved.
Fabrication and characteristics of MOSFET protein chip for detection of ribosomal protein.
Park, Keun-Yong; Kim, Min-Suk; Choi, Sie-Young
2005-04-15
A metal oxide silicon field effect transistor (MOSFET) protein chip for the easy detection of protein was fabricated and its characteristics were investigated. Generally, the drain current of the MOSFET is varied by the gate potential. It is expected that the formation of an antibody-antigen complex on the gate of MOSFET would lead to a detectable change in the charge distribution and thus, directly modulate the drain current of MOSFET. As such, the drain current of the MOSFET protein chip can be varied by ribosomal proteins absorbed by the self-assembled monolayer (SAM) immobilized on the gate (Au) surface, as ribosomal protein has positive charge, and these current variations then used as the response of the protein chip. The gate of MOSFET protein chip is not directly biased by an external voltage source, so called open gate or floating gate MOSFET, but rather chemically modified by immobilized molecular receptors called self-assembled monolayer (SAM). In our experiments, the current variation in the proposed protein chip was about 8% with a protein concentration of 0.7 mM. As the protein concentration increased, the drain current also gradually increased. In addition, there were some drift of the drain current in the device. It is considered that these drift might be caused by the drift from the MOSFET itself or protein absorption procedures that are relied on the facile attachment of thiol (-S) ligands to the gate (Au) surface. We verified the formation of SAM on the gold surface and the absorption of protein through the surface plasmon resonance (SPR) measurement.
Enhanced biosensing resolution with foundry fabricated individually addressable dual-gated ISFETs.
Duarte-Guevara, Carlos; Lai, Fei-Lung; Cheng, Chun-Wen; Reddy, Bobby; Salm, Eric; Swaminathan, Vikhram; Tsui, Ying-Kit; Tuan, Hsiao Chin; Kalnitsky, Alex; Liu, Yi-Shao; Bashir, Rashid
2014-08-19
The adaptation of semiconductor technologies for biological applications may lead to a new era of inexpensive, sensitive, and portable diagnostics. At the core of these developing technologies is the ion-sensitive field-effect transistor (ISFET), a biochemical to electrical transducer with seamless integration to electronic systems. We present a novel structure for a true dual-gated ISFET that is fabricated with a silicon-on-insulator (SOI) complementary metal-oxide-semiconductor process by Taiwan Semiconductor Manufacturing Company (TSMC). In contrast to conventional SOI ISFETs, each transistor has an individually addressable back-gate and a gate oxide that is directly exposed to the solution. The elimination of the commonly used floating gate architecture reduces the chance of electrostatic discharge and increases the potential achievable transistor density. We show that when operated in a "dual-gate" mode, the transistor response can exhibit sensitivities to pH changes beyond the Nernst limit. This enhancement in sensitivity was shown to increase the sensor's signal-to-noise ratio, allowing the device to resolve smaller pH changes. An improved resolution can be used to enhance small signals and increase the sensor accuracy when monitoring small pH dynamics in biological reactions. As a proof of concept, we demonstrate that the amplified sensitivity and improved resolution result in a shorter detection time and a larger output signal of a loop-mediated isothermal DNA amplification reaction (LAMP) targeting a pathogenic bacteria gene, showing benefits of the new structure for biosensing applications.
1987-06-01
Debris diversion boom and debris, Appalachian Power Company Station at Winfield Lock and Dam, Kanavha River, West Virginia. Than, T 9 (sin a) - 1.94...control dam. Central gate Is blocked partly open causing .ime downstream scour. Water flows right to left. BOTTOM-Debris diversion boom and debris... Appalachian Power Company Station at Winfield Lock and Dam, Kanawha River, West Virginia. - 0 .’ Unclass ified SECURITY CLASSIFICATION OF THIS PAGE for- 40
Radiation Effects on Advanced Flash Memories
NASA Technical Reports Server (NTRS)
Nguyen, D. N.; Guertin, S.; Swift, G. M.; Johnston, A. H.
1998-01-01
Flash memories have evolved very rapidly in recent ears. New design techniques such as multilevel storage have been proposed to increase storage density, and are now available commercially. Threshold voltage distributions for single- and three-level technologies are compared. In order to implement this technology special circuitry must be added to allow the amount of charge stored in the floating gate to be controlled within narrow limits during the writing and also to detect the different amounts of charge during reading.
A novel micromixer based on the alternating current-flow field effect transistor.
Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Hu, Qingming; Jiang, Hongyuan
2016-12-20
Induced-charge electroosmosis (ICEO) phenomena have been attracting considerable attention as a means for pumping and mixing in microfluidic systems with the advantage of simple structures and low-energy consumption. We propose the first effort to exploit a fixed-potential ICEO flow around a floating electrode for microfluidic mixing. In analogy with the field effect transistor (FET) in microelectronics, the floating electrode act as a "gate" electrode for generating asymmetric ICEO flow and thus the device is called an AC-flow FET (AC-FFET). We take advantage of a tandem electrode configuration containing two biased center metal strips arranged in sequence at the bottom of the channel to generate asymmetric vortexes. The current device is manufactured on low-cost glass substrates via an easy and reliable process. Mixing experiments were conducted in the proposed device and the comparison between simulation and experimental results was also carried out, which indicates that the micromixer permits an efficient mixing effect. The mixing performance can be further enhanced by the application of a suitable phase difference between the driving electrode and the gate electrode or a square wave signal. Finally, we performed a critical analysis of the proposed micromixer in comparison with different mixer designs using a comparative mixing index (CMI). The novel methods put forward here offer a simple solution to mixing issues in microfluidic systems.
Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.
Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs
2017-05-01
Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hong, Augustin Jinwoo
Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.
System and method for floating-substrate passive voltage contrast
Jenkins, Mark W [Albuquerque, NM; Cole, Jr., Edward I.; Tangyunyong, Paiboon [Albuquerque, NM; Soden, Jerry M [Placitas, NM; Walraven, Jeremy A [Albuquerque, NM; Pimentel, Alejandro A [Albuquerque, NM
2009-04-28
A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.
Materials and methods for the preparation of nanocomposites
Talapin, Dmitri V.; Kovalenko, Maksym V.; Lee, Jong-Soo; Jiang, Chengyang
2016-05-24
Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a solution of the same, a method for making the same from a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, imaging devices, phase change layers, and sensor devices.
Nonvolatile programmable neural network synaptic array
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
A floating-gate metal oxide semiconductor (MOS) transistor is implemented for use as a nonvolatile analog storage element of a synaptic cell used to implement an array of processing synaptic cells. These cells are based on a four-quadrant analog multiplier requiring both X and Y differential inputs, where one Y input is UV programmable. These nonvolatile synaptic cells are disclosed fully connected in a 32 x 32 synaptic cell array using standard very large scale integration (VLSI) complementary MOS (CMOS) technology.
SONOS Nonvolatile Memory Cell Programming Characteristics
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2010-01-01
Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory is gaining favor over conventional EEPROM FLASH memory technology. This paper characterizes the SONOS write operation using a nonquasi-static MOSFET model. This includes floating gate charge and voltage characteristics as well as tunneling current, voltage threshold and drain current characterization. The characterization of the SONOS memory cell predicted by the model closely agrees with experimental data obtained from actual SONOS memory cells. The tunnel current, drain current, threshold voltage and read drain current all closely agreed with empirical data.
NASA Astrophysics Data System (ADS)
Han, Chang-Wook; Han, Min-Koo; Choi, Nack-Bong; Kim, Chang-Dong; Kim, Ki-Yong; Chung, In-Jae
2007-07-01
Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated on a flexible stainless-steel (SS) substrate. The stability of the a-Si:H TFT is a key issue for active matrix organic light-emitting diodes (AMOLEDs). The drain current decreases because of the threshold voltage shift (Δ VTH) during OLED driving. A negative voltage at a floated gate can be induced by a negative substrate bias through a capacitor between the substrate and the gate electrode without additional circuits. The negative voltage biased at the SS substrate can recover Δ VTH and reduced drain current of the driving TFT. The VTH of the TFT increased by 2.3 V under a gate bias of +15 V and a drain bias of +15 V at 65 °C applied for 3,500 s. The VTH decreased by -2.3 V and the drain current recovered 97% of its initial value under a substrate bias of -23 V at 65 °C applied for 3,500 s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D; Pollock, S; Keall, P
Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gatedmore » MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.« less
UltraSensitive Mycotoxin Detection by STING Sensors
Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader
2010-01-01
Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024
A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor.
Tzu-Yun Wang; Min-Rui Lai; Twigg, Christopher M; Sheng-Yu Peng
2014-06-01
A fully reconfigurable biopotential sensing amplifier utilizing floating-gate transistors is presented in this paper. By using the complementary differential pairs along with the current reuse technique, the theoretical limit for the noise efficiency factor of the proposed amplifier is below 1.5. Without consuming any extra power, floating-gate transistors are employed to program the low-frequency cutoff corner of the amplifier and to implement the common-mode feedback. A concept proving prototype chip was designed and fabricated in a 0.35 μm CMOS process occupying 0.17 mm (2) silicon area. With a supply voltage of 2.5 V, the measured midband gain is 40.7 dB and the measured input-referred noise is 2.8 μVrms. The chip was tested under several configurations with the amplifier bandwidth being programmed to 100 Hz, 1 kHz , and 10 kHz. The measured noise efficiency factors in these bandwidth settings are 1.96, 2.01, and 2.25, respectively, which are among the best numbers reported to date. The measured common-mode rejection and the supply rejection are above 70 dB . When the bandwidth is configured to be 10 kHz, the dynamic range measured at 1 kHz is 60 dB with total harmonic distortion less than 0.1%. The proposed amplifier is also demonstrated by recording electromyography (EMG), electrocardiography (ECG), electrooculography (EOG), and electroencephalography (EEG) signals from human bodies.
Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak
2015-10-07
Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic compressibility of bilayer graphene
NASA Astrophysics Data System (ADS)
Henriksen, Erik
2011-03-01
We have recently measured the electronic compressibility of bilayer graphene, allowing exploration of the thermodynamic density of states as a function of applied electric and magnetic fields. Utilizing dual-gated field-effect devices, we can independently vary both the carrier density and the size of the tunable band gap. An oscillating voltage applied to a back gate generates corresponding signals in the top gate via electric fields lines which penetrate the graphene, thereby allowing a direct measurement of the inverse compressibility, K-1 , of the bilayer. We have mapped K-1 , which is proportional to the inverse density of states, as a function of the top and back gate voltages in zero and finite magnetic field. A sharp increase in K-1 near zero density is observed with increasing electric field strength, signaling the controlled opening of a band gap. At high magnetic fields, broad Landau level (LL) oscillations are observed, directly revealing the doubled degeneracy of the lowest LL and allowing for a determination of the disorder broadening of the levels. We compare our results to tight-binding calculations of the bilayer band structure, and to recent theoretical studies of the compressibility of bilayer graphene. Together, these clearly illustrate the unusual hyperbolic nature of the low energy band structure, reveal a sizeable electron-hole asymmetry, and suggest that many-body interactions play only a small role in bilayer-on-substrate devices. This work is a collaboration with J. P. Eisenstein of Caltech, and is supported by the NSF under Grant No. DMR-0552270 and the DOE under Grant No. DE-FG03-99ER45766.
NASA Technical Reports Server (NTRS)
Martensen, Anna L.; Butler, Ricky W.
1987-01-01
The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.
Cryogenic measurements of aerojet GaAs n-JFETs
NASA Technical Reports Server (NTRS)
Goebel, John H.; Weber, Theodore T.
1993-01-01
The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.
Performance of a multistep fluorescence-gated proportional counter for hard X-ray astronomy
NASA Technical Reports Server (NTRS)
Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.
1992-01-01
Results from the first flight of our proportional counter in an imaging telescope led us to rebuild the detector. We have used a Penning gas mixture (xenon + 1 percent isobutylene) and introduced a preamplification region to improve the energy resolution. We have rebuilt the pressure vessel making novel use of molybdenum as the housing material in order to reduce the residual instrument background, particularly in the fluorescence-gated mode for which the detector design has been optimized. We have also increased the sensitive gas depth from 9 to 14 cm to further increase the sensitivity to both fluorescent pairs and conventional singles. Our calibrations have shown that the overall energy resolution of the detector has been enhanced by a factor of 2, and we predict that the sensitivity at float will increase by a factor of 3 in the 50-70 keV energy band.
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)
2005-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.
The Fault Tree Compiler (FTC): Program and mathematics
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Martensen, Anna L.
1989-01-01
The Fault Tree Compiler Program is a new reliability tool used to predict the top-event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, AND m OF n gates. The high-level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precisely (within the limits of double precision floating point arithmetic) within a user specified number of digits accuracy. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.
NASA Astrophysics Data System (ADS)
Edmonds, Larry D.; Irom, Farokh; Allen, Gregory R.
2017-08-01
A recent model provides risk estimates for the deprogramming of initially programmed floating gates via prompt charge loss produced by an ionizing radiation environment. The environment can be a mixture of electrons, protons, and heavy ions. The model requires several input parameters. This paper extends the model to include TID effects in the control circuitry by including one additional parameter. Parameters intended to produce conservative risk estimates for the Samsung 8 Gb SLC NAND flash memory are given, subject to some qualifications.
Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung
2018-05-01
The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium graminearum react to mycovirus infections, we characterized the role(s) of RNAi components involved in the antiviral defense response against Fusarium graminearum viruses (FgVs). We observed differences in the levels of induction of RNA silencing-related genes, including FgDICER-2 and FgAGO-1 , in response to infection by three different FgVs. FgAGO-1 can efficiently induce a robust RNAi response against FgV1 infection, but FgDICER genes might be relatively redundant to FgAGO-1 with respect to antiviral defense. However, the contribution of this gene in the response to the other FgV infections might be small. Compared to previous studies of Cryphonectria parasitica , which showed dicer-like protein 2 and Argonaute-like protein 2 to be important in antiviral RNA silencing, our results showed that F. graminearum developed a more complex and robust RNA silencing system against mycoviruses and that FgDICER-1 and FgDICER-2 and FgAGO-1 and FgAGO-2 had redundant roles in antiviral RNA silencing. Copyright © 2018 American Society for Microbiology.
How music alters a kiss: superior temporal gyrus controls fusiform-amygdalar effective connectivity.
Pehrs, Corinna; Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H; Kappelhoff, Hermann; Jacobs, Arthur M; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars
2014-11-01
While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform-amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
How music alters a kiss: superior temporal gyrus controls fusiform–amygdalar effective connectivity
Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H.; Kappelhoff, Hermann; Jacobs, Arthur M.; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars
2014-01-01
While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform–amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. PMID:24298171
NASA Astrophysics Data System (ADS)
Carl, D. A.; Hess, D. W.; Lieberman, M. A.; Nguyen, T. D.; Gronsky, R.
1991-09-01
Thin (3-300-nm) oxides were grown on single-crystal silicon substrates at temperatures from 523 to 673 K in a low-pressure electron cyclotron resonance (ECR) oxygen plasma. Oxides were grown under floating, anodic or cathodic bias conditions, although only the oxides grown under floating or anodic bias conditions are acceptable for use as gate dielectrics in metal-oxide-semiconductor technology. Oxide thickness uniformity as measured by ellipsometry decreased with increasing oxidation time for all bias conditions. Oxidation kinetics under anodic conditions can be explained by negatively charged atomic oxygen, O-, transport limited growth. Constant current anodizations yielded three regions of growth: (1) a concentration gradient dominated regime for oxides thinner than 10 nm, (2) a field dominated regime with ohmic charged oxidant transport for oxide thickness in the range of 10 nm to approximately 100 nm, and (3) a space-charge limited regime for films thicker than approximately 100 nm. The relationship between oxide thickness (xox), overall potential drop (Vox) and ion current (ji) in the space-charge limited transport region was of the form: ji ∝ V2ox/x3ox. Transmission electron microscopy analysis of 5-60-nm-thick anodized films indicated that the silicon-silicon dioxide interface was indistinguishable from that of thermal oxides grown at 1123 K. High-frequency capacitance-voltage (C-V) and ramped bias current-voltage (I-V) studies performed on 5.4-30-nm gate thickness capacitors indicated that the as-grown ECR films had high levels of fixed oxide charge (≳1011 cm-2) and interface traps (≳1012 cm-2 eV-1). The fixed charge level could be reduced to ≊4×1010 cm-2 by a 20 min polysilicon gate activation anneal at 1123 K in nitrogen; the interface trap density at mid-band gap decreased to ≊(1-2)×1011 cm-2 eV-1 after this process. The mean breakdown strength for anodic oxides grown under optimum conditions was 10.87±0.83 MV cm-1. Electrical properties of the 5.4-8-nm gates compared well with thicker films and control dry thermal oxides of similar thicknesses.
Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong
2015-11-10
In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-01-01
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714
Tierney, Brian D.; Choi, Sukwon; DasGupta, Sandeepan; ...
2017-08-16
A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-12-15
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, Brian D.; Choi, Sukwon; DasGupta, Sandeepan
A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less
Poletto, S; Gambetta, Jay M; Merkel, Seth T; Smolin, John A; Chow, Jerry M; Córcoles, A D; Keefe, George A; Rothwell, Mary B; Rozen, J R; Abraham, D W; Rigetti, Chad; Steffen, M
2012-12-14
We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00}→|11} transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of F(g)=90% (unconstrained) and 86% (maximum likelihood estimator).
NASA Astrophysics Data System (ADS)
Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K. H.
2015-10-01
Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases.Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases. Electronic supplementary information (ESI) available: Material preparation, surface functionalization and anti-HBsAg immobilization. See DOI: 10.1039/c5nr03146j
Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua
2018-04-20
Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase.
Changklungmoa, Narin; Kueakhai, Pornanan; Sangpairoj, Kant; Chaichanasak, Pannigan; Jaikua, Wipaphorn; Riengrojpitak, Suda; Sobhon, Prasert; Chaithirayanon, Kulathida
2015-06-01
The Fasciola gigantica thioredoxin-glutathione reductase (FgTGR) gene is a fusion between thioredoxin reductase (TR) and a glutaredoxin (Grx) gene. FgTGR was cloned by polymerase chain reaction (PCR) from adult complementary DNA (cDNA), and its sequences showed two isoforms, i.e., the cytosolic and mitochondrial FgTGR. Cytosolic FgTGR (cytFgTGR) was composed of 2370 bp, and its peptide had no signal sequence and hence was not a secreted protein. Mitochondrial FgTGR (mitFgTGR) was composed of 2506 bp with a signal peptide of 43 amino acids; therefore, it was a secreted protein. The putative cytFgTGR and mitFgTGR peptides comprised of 598 and 641 amino acids, respectively, with a molecular weight of 65.8 kDa for cytFgTGR and mitFgTGR, with a conserved sequence (CPYC) of TR, and ACUG and CVNVGC of Grx domains. The recombinant FgTGR (rFgTGR) was expressed in Escherichia coli BL21 (DE3) and used for production for a polyclonal antibody in rabbits (anti-rFgTGR). The FgTGR protein expression, estimated by indirect ELISA using the rabbit anti-rFgTGR as probe, showed high levels of expression in eggs, and 2- and 4-week-old juveniles and adults. The rFgTGR exhibited specific activities in the 5,5'-dithiobis (2-nitro-benzoic acid) (DTNB) reductase assay for TR activity and in β-hydroxyethul disulfide (HED) for Grx activity. When analyzed by immunoblotting and immunohistochemistry, rabbit anti-rFgTGR reacted with natural FgTGR at a molecular weight of 66 kDa from eggs, whole body fraction (WB) of metacercariae, NEJ, 2- and 4-week-old juveniles and adults, and the tegumental antigen (TA) of adult. The FgTGR protein was expressed at high levels in the tegument of 2- and 4-week-old juveniles. The FgTGR may be one of the major factors acting against oxidative stresses that can damage the parasite; hence, it could be considered as a novel vaccine or a drug target.
Transport properties of two-dimensional metal-phthalocyanine junctions: An ab initio study
NASA Astrophysics Data System (ADS)
Liu, Shuang-Long; Wang, Yun-Peng; Li, Xiang-Guo; Cheng, Hai-Ping
We study two dimensional (2D) electronic/spintronic junctions made of metal-organic frameworks via first-principles simulation. The system consists of two Mn-phthalocyanine leads and a Ni-phthalocyanine center. A 2D Mn phthalocyanine sheet is ferromagnetic half metal and a 2D Ni phthalocyanine sheet is nonmagnetic semiconductor. Our results show that this system has a large tunnel magnetic resistance. The transmission coefficient at Fermi energy decays exponentially with the length of the central region which is not surprising. However, the transmission of the junction can be tuned using gate voltage by up to two orders of magnitude. The origin of the change lies in the mode matching between the lead and the center electronic states. Moreover, the threshold gate voltage varies with the length of the center region which provides a way of engineering the transport properties. Finally, we combine non-equilibrium Green's function and Boltzmann transport equation to compute conductance of the junction. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), under Contract No. DE-FG02-02ER45995. Computations were done using the utilities of NERSC and University of Florida Research Computing.
Zhang, Chengkang; Luo, Zenghong; He, Dongdong; Su, Li; Yin, Hui; Wang, Guo; Liu, Hong; Rensing, Christopher; Wang, Zonghua
2018-01-01
Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum . Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene ( FgBUD3 ) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum . Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum .
Modeling of Sonos Memory Cell Erase Cycle
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.
High mobility AlGaN/GaN devices for β--dosimetry
NASA Astrophysics Data System (ADS)
Schmid, Martin; Howgate, John; Ruehm, Werner; Thalhammer, Stefan
2016-05-01
There is a high demand in modern medical applications for dosimetry sensors with a small footprint allowing for unobtrusive or high spatial resolution detectors. To this end we characterize the sensoric response of radiation resistant high mobility AlGaN/GaN semiconductor devices when exposed to β--emitters. The samples were operated as a floating gate transistor, without a field effect gate electrode, thus excluding any spurious effects from β--particle interactions with a metallic surface covering. We demonstrate that the source-drain current is modulated in dependence on the kinetic energy of the incident β--particles. Here, the signal is shown to have a linear dependence on the absorbed energy calculated from Monte Carlo simulations. Additionally, a stable and reproducible sensor performance as a β--dose monitor is shown for individual radioisotopes. Our experimental findings and the characteristics of the AlGaN/GaN high mobility layered devices indicate their potential for future applications where small sensor size is necessary, like for instance brachytherapy.
Trimeric autotransporter DsrA is a major mediator of fibrinogen binding in Haemophilus ducreyi.
Fusco, William G; Elkins, Christopher; Leduc, Isabelle
2013-12-01
Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. In both natural and experimental chancroid, H. ducreyi colocalizes with fibrin at the base of the ulcer. Fibrin is obtained by cleavage of the serum glycoprotein fibrinogen (Fg) by thrombin to initiate formation of the blood clot. Fg binding proteins are critical virulence factors in medically important Gram-positive bacteria. H. ducreyi has previously been shown to bind Fg in an agglutination assay, and the H. ducreyi Fg binding protein FgbA was identified in ligand blotting with denatured proteins. To better characterize the interaction of H. ducreyi with Fg, we examined Fg binding to intact, viable H. ducreyi bacteria and identified a novel Fg binding protein. H. ducreyi bound unlabeled Fg in a dose-dependent manner, as measured by two different methods. In ligand blotting with total denatured cellular proteins, digoxigenin (DIG)-Fg bound only two H. ducreyi proteins, the trimeric autotransporter DsrA and the lectin DltA; however, only the isogenic dsrA mutant had significantly less cell-associated Fg than parental strains in Fg binding assays with intact bacteria. Furthermore, expression of DsrA, but not DltA or an empty vector, rendered the non-Fg-binding H. influenzae strain Rd capable of binding Fg. A 13-amino-acid sequence in the C-terminal section of the passenger domain of DsrA appears to be involved in Fg binding by H. ducreyi. Taken together, these data suggest that the trimeric autotransporter DsrA is a major determinant of Fg binding at the surface of H. ducreyi.
Gu, Qin; Zhang, Chengqi; Yu, Fangwei; Yin, Yanni; Shim, Won-Bo; Ma, Zhonghua
2015-08-01
Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9-interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co-immunoprecipitation and affinity capture-mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Temporal Pole Top-Down Modulates the Ventral Visual Stream During Social Cognition.
Pehrs, Corinna; Zaki, Jamil; Schlochtermeier, Lorna H; Jacobs, Arthur M; Kuchinke, Lars; Koelsch, Stefan
2017-01-01
The temporal pole (TP) has been associated with diverse functions of social cognition and emotion processing. Although the underlying mechanism remains elusive, one possibility is that TP acts as domain-general hub integrating socioemotional information. To test this, 26 participants were presented with 60 empathy-evoking film clips during fMRI scanning. The film clips were preceded by a linguistic sad or neutral context and half of the clips were accompanied by sad music. In line with its hypothesized role, TP was involved in the processing of sad context and furthermore tracked participants' empathic concern. To examine the neuromodulatory impact of TP, we applied nonlinear dynamic causal modeling to a multisensory integration network from previous work consisting of superior temporal gyrus (STG), fusiform gyrus (FG), and amygdala, which was extended by an additional node in the TP. Bayesian model comparison revealed a gating of STG and TP on fusiform-amygdalar coupling and an increase of TP to FG connectivity during the integration of contextual information. Moreover, these backward projections were strengthened by emotional music. The findings indicate that during social cognition, TP integrates information from different modalities and top-down modulates lower-level perceptual areas in the ventral visual stream as a function of integration demands. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Poletto, S.; Gambetta, Jay M.; Merkel, Seth T.; Smolin, John A.; Chow, Jerry M.; Córcoles, A. D.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Abraham, D. W.; Rigetti, Chad; Steffen, M.
2012-12-01
We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00⟩→|11⟩ transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of Fg=90% (unconstrained) and 86% (maximum likelihood estimator).
Nanocrystal-mediated charge screening effects in nanowire field-effect transistors
NASA Astrophysics Data System (ADS)
Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.
2009-03-01
ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.
Trimeric Autotransporter DsrA Is a Major Mediator of Fibrinogen Binding in Haemophilus ducreyi
Fusco, William G.; Elkins, Christopher
2013-01-01
Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. In both natural and experimental chancroid, H. ducreyi colocalizes with fibrin at the base of the ulcer. Fibrin is obtained by cleavage of the serum glycoprotein fibrinogen (Fg) by thrombin to initiate formation of the blood clot. Fg binding proteins are critical virulence factors in medically important Gram-positive bacteria. H. ducreyi has previously been shown to bind Fg in an agglutination assay, and the H. ducreyi Fg binding protein FgbA was identified in ligand blotting with denatured proteins. To better characterize the interaction of H. ducreyi with Fg, we examined Fg binding to intact, viable H. ducreyi bacteria and identified a novel Fg binding protein. H. ducreyi bound unlabeled Fg in a dose-dependent manner, as measured by two different methods. In ligand blotting with total denatured cellular proteins, digoxigenin (DIG)-Fg bound only two H. ducreyi proteins, the trimeric autotransporter DsrA and the lectin DltA; however, only the isogenic dsrA mutant had significantly less cell-associated Fg than parental strains in Fg binding assays with intact bacteria. Furthermore, expression of DsrA, but not DltA or an empty vector, rendered the non-Fg-binding H. influenzae strain Rd capable of binding Fg. A 13-amino-acid sequence in the C-terminal section of the passenger domain of DsrA appears to be involved in Fg binding by H. ducreyi. Taken together, these data suggest that the trimeric autotransporter DsrA is a major determinant of Fg binding at the surface of H. ducreyi. PMID:24042118
An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics
Gupta, Priti; Markan, C. M.
2014-01-01
The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID:24765062
Ming Gu; Chakrabartty, Shantanu
2014-06-01
This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.
Mixing coarse-grained and fine-grained water in molecular dynamics simulations of a single system.
Riniker, Sereina; van Gunsteren, Wilfred F
2012-07-28
The use of a supra-molecular coarse-grained (CG) model for liquid water as solvent in molecular dynamics simulations of biomolecules represented at the fine-grained (FG) atomic level of modelling may reduce the computational effort by one or two orders of magnitude. However, even if the pure FG model and the pure CG model represent the properties of the particular substance of interest rather well, their application in a hybrid FG/CG system containing varying ratios of FG versus CG particles is highly non-trivial, because it requires an appropriate balance between FG-FG, FG-CG, and CG-CG energies, and FG and CG entropies. Here, the properties of liquid water are used to calibrate the FG-CG interactions for the simple-point-charge water model at the FG level and a recently proposed supra-molecular water model at the CG level that represents five water molecules by one CG bead containing two interaction sites. Only two parameters are needed to reproduce different thermodynamic and dielectric properties of liquid water at physiological temperature and pressure for various mole fractions of CG water in FG water. The parametrisation strategy for the FG-CG interactions is simple and can be easily transferred to interactions between atomistic biomolecules and CG water.
Antibacterial effects of fibrin glue-antibiotic mixtures.
Kram, H B; Bansal, M; Timberlake, O; Shoemaker, W C
1991-02-01
In the present in vitro study, we investigated the duration of action and antibacterial effects of nonautologous fibrin glue (FG) combined with antibiotics (Abs) including Ciprofloxacin, Teicoplanin, Cefoxitin, and Gentamicin; the effect of FG alone on bacterial growth was also evaluated. The rate of Ab diffusion from combined FG-Ab clots was evaluated by separate elution with pooled human serum (HS) and normal saline (NS); supernatants were removed daily and assayed for active concentrations of each Ab. The effects of FG and combined FG-Ab clots on bacterial growth were evaluated by inoculating brain-heart infusion (BHI) with Staphylococcus aureus, followed by the addition of FG or FG-Ab clots; a separate set of studies was also performed with the addition of mouse lung homogenate (MLH) as well. The addition of Ab to FG clots resulted in continuous diffusion of the Ab into the surrounding HS or NS for up to 5 to 7 days; however, more than two-thirds of the Ab diffused out within 2 to 3 days regardless of the Ab used. The antibacterial effects of FG-Ciprofloxacin and FG-Teicoplanin clots were significant compared to those of FG clots not containing Ab. In addition, the presence of FG clots (in BHI) resulted in a reduction in bacterial growth compared to that of BHI alone. The addition of MLH to BHI resulted in increased bacterial growth, but this effect was inhibited by the presence of combined FG-Ab clots.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Qian, T. M.; Mauel, M. E.
2017-10-01
In a laboratory magnetosphere, plasma is confined by a strong dipole magnet, where interchange and entropy mode turbulence can be studied and controlled in near steady-state conditions. Whole-plasma imaging shows turbulence dominated by long wavelength modes having chaotic amplitudes and phases. Here, we report for the first time, high-resolution measurement of the frequency-wavenumber power spectrum by applying the method of Capon to simultaneous multi-point measurement of electrostatic entropy modes using an array of floating potential probes. Unlike previously reported measurements in which ensemble correlation between two probes detected only the dominant wavenumber, Capon's ``maximum likelihood method'' uses all available probes to produce a frequency-wavenumber spectrum, showing the existence of modes propagating in both electron and ion magnetic drift directions. We also discuss the wider application of this technique to laboratory and magnetospheric plasmas with simultaneous multi-point measurements. Supported by NSF-DOE Partnership in Plasma Science Grant DE-FG02-00ER54585.
Sow, Li Cheng; Kong, Karmaine; Yang, Hongshun
2018-05-01
Pork gelatin is not suitable for halal and kosher application; however, fish gelatin (FG) can be modified for use as a pork gelatin (PG) mimetic. Herein, low-acyl gellan (GE), κ-carrageenan (KC), and salts (CaCl 2 or KCl) were combined with a 180 Bloom tilapia FG. A formulation comprising 5.925% (w/v) FG + 0.025% (w/v) GE + 3mM CaCl 2 best matched the physicochemical properties of PG. The modification increased the FG gel strength from 115 ± 2 to 149 ± 2 g (matching the 148 ± 2 of PG), while the T m increased from 27.9 ± 1.0 to 32.4 ± 0.8 °C (matching the 33.1 ± 0.3 °C of PG). Nanoaggregates (diameter between 150 and 300 nm) could be an important structural factor affecting the physicochemical properties, as both PG and GE-modified FG showed a similar frequency distribution in this size group (57.4 ± 1.6% (PG) compared with 56.3 ± 2.2% (modified FG)). To further explore the differences between KC and GE in modifying of FG's structure, the FG-KC and FG-GE gels were compared. The zeta potential and Fourier transform infrared (FTIR) spectroscopy results for the FG-KC gel supported an associative interaction with complex formation, as indicated from the large aggregates and amorphous phase under atomic force microscopy (AFM). Contrastingly, a segregative FG-GE interaction took place in presence of CaCl 2 . These structures and interaction differences between FG-GE and FG-KC influenced the macro-properties of FG, possibly explaining the differences in the modification of the melting temperature of FG. A diagram representing the interaction-structure-physicochemical properties was proposed to explain the differences between the FG-GE and FG-KC gels. Certain people cannot consume any pork product or derivatives for religious reasons, thus it is essential to find a pork gelatin (PG) substitute for food product development. The commonly used polysaccharides, gellan and carrageenan, together with salt, can be added to fish gelatin (FG) to match the textural properties of PG, representing a promising substitute for PG. The difference in the mechanism of gellan and carrageenan to improve properties of FG has been revealed from nanostructure level. The use of food grade ingredients and simple mixing process are favorable in the food industry. © 2018 Institute of Food Technologists®.
Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip.
Gai, Hongwei; Yu, Linfen; Dai, Zhongpeng; Ma, Yinfa; Lin, Bingcheng
2004-06-01
A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.
Evaluation of Magnetoresistive RAM for Space Applications
NASA Technical Reports Server (NTRS)
Heidecker, Jason
2014-01-01
Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.
Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua
2014-07-01
Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Fan, Jieru; Urban, Martin; Parker, Josie E; Brewer, Helen C; Kelly, Steven L; Hammond-Kosack, Kim E; Fraaije, Bart A; Liu, Xili; Cools, Hans J
2013-05-01
CYP51 encodes the cytochrome P450 sterol 14α-demethylase, an enzyme essential for sterol biosynthesis and the target of azole fungicides. In Fusarium species, including pathogens of humans and plants, three CYP51 paralogues have been identified with one unique to the genus. Currently, the functions of these three genes and the rationale for their conservation within the genus Fusarium are unknown. Three Fusarium graminearum CYP51s (FgCYP51s) were heterologously expressed in Saccharomyces cerevisiae. Single and double FgCYP51 deletion mutants were generated and the functions of the FgCYP51s were characterized in vitro and in planta. FgCYP51A and FgCYP51B can complement yeast CYP51 function, whereas FgCYP51C cannot. FgCYP51A deletion increases the sensitivity of F. graminearum to the tested azoles. In ΔFgCYP51B and ΔFgCYP51BC mutants, ascospore formation is blocked, and eburicol and two additional 14-methylated sterols accumulate. FgCYP51C deletion reduces virulence on host wheat ears. FgCYP51B encodes the enzyme primarily responsible for sterol 14α-demethylation, and plays an essential role in ascospore formation. FgCYP51A encodes an additional sterol 14α-demethylase, induced on ergosterol depletion and responsible for the intrinsic variation in azole sensitivity. FgCYP51C does not encode a sterol 14α-demethylase, but is required for full virulence on host wheat ears. This is the first example of the functional diversification of a fungal CYP51. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Adamec, R E
1998-01-01
The hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate initiation of lasting behavioral changes induced by the anxiogenic beta-carboline, FG-7142, was supported in this study. Behavioral changes normally induced by FG-7142 were blocked when the competitive NMDA receptor blocker, 7-amino-phosphono-heptanoic acid, was given prior to administration of FG-7142. When cats were subsequently given FG-7142 alone, the drug produced lasting behavioral changes like those reported previously. Flumazenil, a benzodiazepine receptor antagonist, reversed an increase in defensiveness produced by FG-7142 alone, replicating previous findings. The data are consistent with the hypothesis that NMDA-dependent long-term potentiation in limbic pathways subserving defensive response to threat mediates lasting increases in defensiveness produced by FG-7142.
Fibrinogen-induced endothelin-1 production from endothelial cells.
Sen, Utpal; Tyagi, Neetu; Patibandla, Phani K; Dean, William L; Tyagi, Suresh C; Roberts, Andrew M; Lominadze, David
2009-04-01
We previously demonstrated that fibrinogen (Fg) binding to the vascular endothelial intercellular adhesion molecule-1 (ICAM-1) leads to microvascular constriction in vivo and in vitro. Although a role of endothelin-1 (ET-1) in this Fg-induced vasoconstriction was suggested, the mechanism of action was not clear. In the current study, we tested the hypothesis that Fg-induced vasoconstriction results from ET-1 production by vascular endothelial cells (EC) and is mediated by activation of extracellular signal-regulated kinase -1/2 (ERK-1/2). Confluent, rat heart microvascular endothelial cells (RHMECs) were treated with one of the following: Fg (2 or 4 mg/ml), Fg (4 mg/ml) with ERK-1/2 kinase inhibitors (PD-98059 or U-0126), Fg (4 mg/ml) with an antibody against ICAM-1, or medium alone for 45 min. The amount of ET-1 formed and the concentration of released von Willebrand factor (vWF) in the cell culture medium were measured by ELISAs. Fg-induced exocytosis of Weibel-Palade bodies (WPBs) was assessed by immunocytochemistry. Phosphorylation of ERK-1/2 was detected by Western blot analysis. Fg caused a dose-dependent increase in ET-1 formation and release of vWF from the RHMECs. This Fg-induced increase in ET-1 production was inhibited by specific ERK-1/2 kinase inhibitors and by anti-ICAM-1 antibody. Immunocytochemical staining showed that an increase in Fg concentration enhanced exocytosis of WPBs in ECs. A specific endothelin type B receptor blocker, BQ-788, attenuated the enhanced phosphorylation of ERK-1/2 in ECs caused by increased Fg content in the culture medium. The presence of an endothelin converting enzyme inhibitor, SM-19712, slightly decreased Fg-induced phosphorylation of ERK-1/2, but inhibited production of Fg-induced ET-1 production. These results suggest that Fg-induced vasoconstriction may be mediated, in part, by activation of ERK-1/2 signaling and increased production of ET-1 that further increases EC ERK-1/2 signaling. Thus, an increased content of Fg may enhance vasoconstriction through increased production of ET-1.
Dark-energy cosmological models in f(G) gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2}more » do not favor the current expansion.« less
Lee, Hannah H.; Haleem, Amgad M.; Yao, Veronica; Li, Juan; Xiao, Xiao
2011-01-01
Fibrin glue (FG) is used in a variety of clinical applications and in the laboratory for localized and sustained release of factors potentially important for tissue engineering. However, the effect of different fibrinogen concentrations on FG scaffold delivery of bioactive adeno-associated viruses (AAVs) has not been established. This study was performed to test the hypothesis that FG concentration alters AAV release profiles, which affect AAV bioavailability. Gene transfer efficiency of AAV-GFP released from FG was measured using HEK-293 cells. Bioactivity of AAV transforming growth factor-beta1 (TGF-β1) released from FG was assessed using the mink lung cell assay, and by measuring induction of cartilage-specific gene expression in human mesenchymal stem cells (hMSCs). Nondiluted FG had longer clotting times, smaller pore sizes, thicker fibers, and slower dissolution rate, resulting in reduced release of AAV. AAV release and gene transfer efficiency was higher with 25% and 50% FG than with the 75% and 100% FG. AAV-TGF-β1 released from dilute-FG transduced hMSCs, resulting in higher concentrations of bioactive TGF-β1 and greater upregulation of cartilage-specific gene expression compared with hMSC from undiluted FG. This study, showing improved release, transduction efficiency, and chondrogenic effect on hMSC of bioactive AAV-TGF-β1 released from diluted FG, provides information important to optimization of this clinically available scaffold for therapeutic gene delivery, both in cartilage regeneration and for other tissue engineering applications. PMID:21449684
Oh, Dong-Won; Kang, Ji-Hyun; Lee, Hyo-Jung; Han, Sang-Duk; Kang, Min-Hyung; Kwon, Yie-Hyuk; Jun, Joon-Ho; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chung-Woong
2017-11-01
The film forming gel, adhered to skin surfaces upon application and formed a film, has an advantage onto skin to provide protection and continuous drug release to the application site. This study aimed to prepare a chitosan-based film forming gel containing ketoprofen (CbFG) and to evaluate the CbFG and film from CbFG (CbFG-film). CbFG were prepared with chitosan, lactic acid and various skin permeation enhancers. The physicochemical characteristics were evaluated by texture analysis, viscometry, SEM, DSC, XRD and FT-IR. To identify the mechanism of skin permeation, in vitro skin permeation study was conducted with a Franz diffusion cell and excised SD-rat and hairless mouse dorsal skin. In vivo efficacy assessment in mono-iodoacetate (MIA)-induced rheumatoid arthritis animal model was also conducted. CbFG was successfully prepared and, after applying CbFG to the excised rat dorsal skin, the CbFG-film was also formed well. The physicochemical characteristics of CbFG and CbFG-film could be explained by the grafting of oleic acid onto chitosan in the absence of catalysts. In addition, CbFG containing oleic acid had a higher skin permeation rate in comparison with any other candidate enhancers. The in vivo efficacy study also confirmed significant anti-inflammatory and analgesic effects. Consequently, we report the successful preparation of chitosan-based film forming gel containing ketoprofen with excellent mechanical properties, skin permeation and anti-inflammatory and analgesic effects.
NASA Astrophysics Data System (ADS)
Lee, Hyo Jun; Lee, Dong Uk; Kim, Eun Kyu; You, Hee-Wook; Cho, Won-Ju
2011-06-01
Nanocrystal-floating gate capacitors with WSi2 nanocrystals and high-k tunnel layers were fabricated to improve the electrical properties such as retention, programming/erasing speed, and endurance. The WSi2 nanocrystals were distributed uniformly between the tunnel and control gate oxide layers. The electrical performance of the tunnel barrier with the SiO2/HfO2/Al2O3 (2/1/3 nm) (OHA) tunnel layer appeared to be better than that with the Al2O3/HfO2/Al2O3 (2/1/3 nm) (AHA) tunnel layer. When ΔVFB is about 1 V after applying voltage at ±8 V, the programming/erasing speeds of AHA and OHA tunnel layers are 300 ms and 500 µs, respectively. In particular, the device with WSi2 nanocrystals and the OHA tunnel barrier showed a large memory window of about 7.76 V when the voltage swept from 10 to -10 V, and it was maintained at about 2.77 V after 104 cycles.
Experimental and theoretical studies of Sub-THz detection using strained-Si FETs
NASA Astrophysics Data System (ADS)
Delgado Notario, J. A.; Javadi, E.; Clericò, V.; Fobelets, K.; Otsuji, T.; Diez, E.; Velázquez-Pérez, J. E.; Meziani, Y. M.
2017-10-01
We report on experimental and theoretical studies of nanoscale gate-lengths strained Silicon MODFETs as room temperature non resonant detectors. Devices were excited at room temperature by an electronic source at 150 and 300 GHz to characterize their sub-THz response. The maximum of the photovoltaic response was obtained when the FET gate was biased at a value close to the threshold voltage. Simulations based on a bi-dimensional hydrodynamic model for the charge transport coupled to a Poisson equation solver were performed by using Synopsys TCAD. A charge boundary condition for the floating drain contact was implemented to obtain the photovoltaic response. Results from numerical simulations are in agreement with experimental ones. To understand the coupling between terahertz radiation and devices, the devices were rotated at different angles under excitation at both sub-terahertz frequencies and their response measured. Both NEP (Noise Equivalent Power) and Responsivity were calculated from measurements. To demonstrate their utility, devices were used as sensors in a terahertz imaging system for inspection of hidden objects at both frequencies.
Environmental Effects on Data Retention in Flash Cells
NASA Technical Reports Server (NTRS)
Katz, Rich; Flowers, David; Bergevin, Keith
2017-01-01
Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Antifuse technology, prevalent in non-volatile field programmable gate arrays (FPGAs), will eventually be phased out as new devices have not been developed for approximately a decade. The reliance on flash technology presents a long-term reliability issue for both DoD and NASA safety- and mission-critical applications. A thorough understanding of the data retention failure modes and statistics associated with Flash data retention is of vital concern to the fuze safety community. A key retention parameter for a flash cell is the threshold voltage (VTH), which is an indirect indicator of the amount of charge stored on the cells floating gate. This paper will present the results of our on-going tests: long-term storage at 150 C for a small population of devices, neutron radiation exposure, electrostatic discharge (ESD) testing, and the trends of large populations (over 300 devices for each condition) exposed to three difference temperatures: 25 C, 125 C, and 150 C.
Koyama, Masako; Hirano, Hidemi; Shirai, Natsuki; Matsuura, Yoshiyuki
2017-10-01
Xpo1p (yeast CRM1) is the major nuclear export receptor that carries a plethora of proteins and ribonucleoproteins from the nucleus to cytoplasm. The passage of the Xpo1p nuclear export complex through nuclear pore complexes (NPCs) is facilitated by interactions with nucleoporins (Nups) containing extensive repeats of phenylalanine-glycine (so-called FG repeats), although the precise role of each Nup in the nuclear export reaction remains incompletely understood. Here we report structural and biochemical characterization of the interactions between the Xpo1p nuclear export complex and the FG repeats of Nup42p, a nucleoporin localized at the cytoplasmic face of yeast NPCs and has characteristic SxFG/PxFG sequence repeat motif. The crystal structure of Xpo1p-PKI-Nup42p-Gsp1p-GTP complex identified three binding sites for the SxFG/PxFG repeats on HEAT repeats 14-20 of Xpo1p. Mutational analyses of Nup42p showed that the conserved serines and prolines in the SxFG/PxFG repeats contribute to Xpo1p-Nup42p binding. Our structural and biochemical data suggest that SxFG/PxFG-Nups such as Nup42p and Nup159p at the cytoplasmic face of NPCs provide high-affinity docking sites for the Xpo1p nuclear export complex in the terminal stage of NPC passage and that subsequent disassembly of the nuclear export complex facilitates recycling of free Xpo1p back to the nucleus. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Ma, Pengtao; Xu, Hongxng; Li, Lihui; Zhang, Hongxia; Han, Guohao; Xu, Yunfeng; Fu, Xiaoyi; Zhang, Xiaotian; An, Diaoguo
2016-01-01
Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits. PMID:27200022
Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice.
Changklungmoa, Narin; Phoinok, Natthacha; Yencham, Chonthicha; Sobhon, Prasert; Kueakhai, Pornanan
2016-08-15
In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals. Copyright © 2016 Elsevier B.V. All rights reserved.
Safronov, Alexander P.; Mikhnevich, Ekaterina A.; Blyakhman, Felix A.; Sklyar, Tatyana F.; Larrañaga Varga, Aitor; Medvedev, Anatoly I.; Fernández Armas, Sergio
2018-01-01
Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a “soft matter.” this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. The basic composition of the FG comprised the polymeric network of polyacrylamide, synthesized by free radical polymerization of monomeric acrylamide (AAm) in water solution at three levels of concentration (1.1 M, 0.85 M and 0.58 M) to provide the FG with varying elasticity. To improve FG biocompatibility and to prevent the precipitation of the particles, polysaccharide thickeners—guar gum or xanthan gum were used. The content of magnetic particles in FG varied up to 5.2 wt % depending on the FG composition. The mechanical properties of FG and their deformation in a uniform magnetic field were comparatively analyzed. FG filled with strontium hexaferrite particles have larger Young’s modulus value than FG filled with magnetite particles, most likely due to the specific features of the adhesion of the network’s polymeric subchains on the surface of the particles. FG networks with xanthan are stronger and have higher modulus than the FG with guar. FG based on magnetite, contract in a magnetic field 0.42 T, whereas some FG based on strontium hexaferrite swell. Weak FG with the lowest concentration of AAm shows a much stronger response to a field, as the concentration of AAm governs the Young’s modulus of ferrogel. A small magnetic field magnetoimpedance sensor prototype with Co68.6Fe3.9Mo3.0Si12.0B12.5 rapidly quenched amorphous ribbon based element was designed aiming to develop a sensor working with a disposable stripe sensitive element. The proposed protocol allowed measurements of the concentration dependence of magnetic particles in gels using magnetoimpedance responses in the presence of magnetite and strontium hexaferrite ferrogels with xanthan. We have discussed the importance of magnetic history for the detection process and demonstrated the importance of remnant magnetization in the case of the gels with large magnetic particles. PMID:29337918
Liang, Hao; Guo, Yi Chen; Chen, Li Ming; Li, Min; Han, Wei Zhong; Zhang, Xu; Jiang, Shi Liang
2016-08-02
Previous studies have demonstrated that elevated admission and fasting glucose (FG) is associated with worse outcomes in patients with acute myocardial infarction (AMI). However, the quantitative relationship between FG levels and in-hospital mortality in patients with AMI remains unknown. The aim of the study is to assess the prevalence of elevated FG levels in hospitalized Chinese patients with AMI and diabetes mellitus and to determine the quantitative relationship between FG levels and the in-hospital mortality as well as the optimal level of FG in patients with AMI and diabetes mellitus. A retrospective study was carried out in 1856 consecutive patients admitted for AMI and diabetes mellitus from 2002 to 2013. Clinical variables of baseline characteristics, in-hospital management and in-hospital adverse outcomes were recorded and compared among patients with different FG levels. Among all patients recruited, 993 patients (53.5 %) were found to have FG ≥100 mg/dL who exhibited a higher in-hospital mortality than those with FG < 100 mg/dL (P < 0.001). Although there was a high correlation between FG levels and in-hospital mortality in all patients (r = 0.830, P < 0.001), the relationship showed a J-curve configuration with an elevated mortality when FG was less than 80 mg/dL. Using multivariate logistic regression models, we identified that age, FG levels and Killip class of cardiac function were independent predictors of in-hospital mortality in AMI patients with diabetes mellitus. More than half of patients with AMI and diabetes mellitus have FG ≥100 mg/dL and the relationship between in-hospital mortality and FG level was a J-curve configuration. Both FG ≥ 100 mg/dL and FG <80 mg/dL were identified to be independent predictors of in-hospital mortality and thus the optimal FG level in AMI patients with diabetes mellitus appears to be 80-100 mg/dL.
Romeo, August; Arall, Marina; Supèr, Hans
2012-01-01
Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception.
Romeo, August; Arall, Marina; Supèr, Hans
2012-01-01
Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception. PMID:22934028
The fungal myosin I is essential for Fusarium toxisome formation.
Tang, Guangfei; Chen, Yun; Xu, Jin-Rong; Kistler, H Corby; Ma, Zhonghua
2018-01-01
Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.
The fungal myosin I is essential for Fusarium toxisome formation
Xu, Jin-Rong
2018-01-01
Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi. PMID:29357387
NASA Astrophysics Data System (ADS)
Cai, Xiuyu
2007-12-01
Organic semiconductors are attracting more and more interest as a promising set of materials in the field of electronics research. This thesis focused on several new organic semiconductors and a novel high-kappa dielectric thin film (SrTiO3), which are two essential parts in Organic Thin Film Transistors (OTFTs). Structure and morphology of thin films of tricyanovinyl capped oligothiophenes were studied using atomic force microscopy and x-ray diffraction. Thin film transistors of one compound exhibited a reasonable electron mobility of 0.02 cm2/Vs. Temperature dependent measurements on the thin film transistor based on this compound revealed shallow trap states that were interpreted in terms of a multiple trap and release model. Moreover, inversion of the majority charge carrier type from electrons to holes was observed when the number of oligothiophene rings increased to six and ambipolar transport behavior was observed for tricyanovinyl sexithiophene. Another interesting organic semiconductor compound is the fluoalkylquarterthiophene, which showed ambipolar transport and large hysteresis in the transfer curve. Due to the bistable state at floating gate, the thin film transistor was exploited to study non-volatile floating gate memory effects. The temperature dependence of the retention time for this memory device revealed that the electron trapping was an activated process. Following the earlier work on hybrid acene-thiophene organic semiconductors, new compounds with similar structure were studied to reveal the mechanism of the air-stability exhibited by some compounds. They all formed highly crystalline thin films and showed reasonable device performances which are well correlated with the molecular structures, thin film microstructures, and solid state packing. The most air-stable compound had no observable degradation with exposure to air for 15 months. SrTiO3 was developed to be employed in OTFTs. Optimization of thin film growth was performed using reactive sputtering growth. Excellent SrTiO3 epitaixal thin film growth was revealed on conductive SrTiO 3:Nb substrates. A maximum charge carrier density of 1014 cm-2 was obtained based on pentacene and perylene diimide thin film transistors. Some new physical phenomena, such as step-like transfer characteristic curve and negative transconductance, were observed at such high field effect induced charge carrier density.
20-GFLOPS QR processor on a Xilinx Virtex-E FPGA
NASA Astrophysics Data System (ADS)
Walke, Richard L.; Smith, Robert W. M.; Lightbody, Gaye
2000-11-01
Adaptive beamforming can play an important role in sensor array systems in countering directional interference. In high-sample rate systems, such as radar and comms, the calculation of adaptive weights is a very computational task that requires highly parallel solutions. For systems where low power consumption and volume are important the only viable implementation is as an Application Specific Integrated Circuit (ASIC). However, the rapid advancement of Field Programmable Gate Array (FPGA) technology is enabling highly credible re-programmable solutions. In this paper we present the implementation of a scalable linear array processor for weight calculation using QR decomposition. We employ floating-point arithmetic with mantissa size optimized to the target application to minimize component size, and implement them as relationally placed macros (RPMs) on Xilinx Virtex FPGAs to achieve predictable dense layout and high-speed operation. We present results that show that 20GFLOPS of sustained computation on a single XCV3200E-8 Virtex-E FPGA is possible. We also describe the parameterized implementation of the floating-point operators and QR-processor, and the design methodology that enables us to rapidly generate complex FPGA implementations using the industry standard hardware description language VHDL.
Rangarajan, Vinitha; Hermes, Dora; Foster, Brett L.; Weiner, Kevin S.; Jacques, Corentin; Grill-Spector, Kalanit
2014-01-01
Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception. PMID:25232118
Retention of data in heat-damaged SIM cards and potential recovery methods.
Jones, B J; Kenyon, A J
2008-05-02
Examination of various SIM cards and smart card devices indicates that data may be retained in SIM card memory structures even after heating to temperatures up to 450 degrees C, which the National Institute of Standards and Technology (NIST) has determined to be approximately the maximum average sustained temperature at desk height in a house fire. However, in many cases, and certainly for temperatures greater than 450 degrees C, the SIM card chip has suffered structural or mechanical damage that renders simple probing or rewiring ineffective. Nevertheless, this has not necessarily affected the data, which is stored as charge in floating gates, and alternative methods for directly accessing the stored charge may be applicable.
Peyro, M.; Soheilypour, M.; Lee, B.L.; Mofrad, M.R.K.
2015-01-01
The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named ‘like charge regions’ (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC. PMID:26541386
Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.
Raveh, Barak; Karp, Jerome M; Sparks, Samuel; Dutta, Kaushik; Rout, Michael P; Sali, Andrej; Cowburn, David
2016-05-03
Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport.
Novel Flaxseed Gum Nanocomposites Are Slow Release Iron Supplements.
Liang, Shan; Huang, Yu; Shim, Youn Young; Ma, Xiang; Reaney, Martin J T; Wang, Yong
2018-05-23
Nanocomposites, based on iron salts and soluble flaxseed gum (FG), were prepared as potential treatments of iron deficiency anemia (IDA). FG was extracted, characterized, and formulated into iron-loading nanocomposites via ion-exchange against FeCl 3 , Fe 2 (SO 4 ) 3 , FeCl 2 , and FeSO 4 ·7H 2 O. FG-iron nanocomposites preparation condition was optimized, and physicochemical properties of the nanocomposites were investigated. In vitro release kinetics of iron in simulated gastric fluid (SGF) was also evaluated. FG heteropolysaccharide, consisting of rhamnose (33.73%), arabinose (24.35%), xylose (14.23%), glucose (4.54%), and galactose (23.15%) monosaccharides, linked together via varieties of glycosidic bonds, was a good recipient for both ferric and ferrous irons under screened conditions (i.e., 80 °C, 2 h, I/G = 1:2). Iron loaded contents in the nanocomposites prepared from FG-FeCl 3 , FG-Fe 2 (SO 4 ) 3 , FG-FeCl 2 , and FG-FeSO 4 ·7H 2 O were 25.51%, 10.36%, 5.83%, and 22.83%, respectively. Iron in these nanocomposites was mostly in a bound state, especially in FG-FeCl 3 , due to chelation forming bonds between iron and polysaccharide hydroxyl or carboxyl groups and formed stable polysaccharide-iron crystal network structures. Free iron ions were effectively removed by ethanol treatments. Because of chelation, the nanocomposites delayed iron release in SGF and the release kinetics were consistent with Korsmeyer-Peppas model. This indicates that such complexes might reduce side effects of free iron in human stomach. Altogether, this study indicates that these synthetic FG-iron nanocomposites might be developed as novel iron supplements for iron deficiency, in which FG-FeCl 3 is considered as the best option.
The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal
Zeng, Q. F.; Bai, P.; Wang, J. P.; Ding, X. M.; Luo, Y. H.; Bai, S. P.; Xuan, Y.; Su, Z. W.; Lin, S. Q.; Zhao, L. J.; Zhang, K. Y.
2015-01-01
The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P < 0.05, except for ADG of days 29 to 35), and F/G linearly increased (P < 0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P < 0.05), while serum total protein, albumin, and globulin content linearly decreased (P < 0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P < 0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28d on the basis of a quadratic broken-line model. PMID:25834247
The response of meat ducks from 15 to 35 d of age to gossypol from cottonseed meal.
Zeng, Q F; Bai, P; Wang, J P; Ding, X M; Luo, Y H; Bai, S P; Xuan, Y; Su, Z W; Lin, S Q; Zhao, L J; Zhang, K Y
2015-06-01
The objective of this study was to investigate the responses of meat ducks of 15 to 35 d of age to free gossypol (FG) from cottonseed meal (CSM) and to establish the maximum limits of dietary FG concentration based on growth performance, blood parameters, and tissue residues of gossypol. Nine hundred 15-d-old ducks were randomly allocated to 5 treatments with 10 cages/treatment and 18 ducks/cage on the basis of BW. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets in which 0% (without FG), 25% (36 mg FG/kg), 50% (75 mg FG/kg), 75% (111 mg FG/kg), and 100% (153 mg FG/kg) of protein from soybean meal were replaced by that from CSM. Increasing dietary FG content, BW, and ADG decreased (linearly, P<0.05, except for ADG of days 29 to 35), and F/G linearly increased (P<0.05). At 35 d, blood hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration linearly decreased (P<0.05), while serum total protein, albumin, and globulin content linearly decreased (P<0.05), and the residue of gossypol in liver, kidney, heart, breast, and leg muscle linearly increased (P<0.001) with increases in dietary FG concentration. Ducks fed 36 mg FG/kg (5.83% CSM of diet) diet had a normal histological structure of liver, and muscle (breast and leg) had no residue of gossypol. The maximum limit of dietary FG concentration was estimated to range from a low of 36 mg/kg to maximize serum globulin concentration to a high of 124 mg/kg to minimize feed intake for 22 to 28 d on the basis of a quadratic broken-line model. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.
Koklioti, Malamatenia A; Skaltsas, Theodosis; Sato, Yuta; Suenaga, Kazu; Stergiou, Anastasios; Tagmatarchis, Nikos
2017-07-13
Metal nanoclusters (M NCs ) based on silver and gold, abbreviated as Ag NCs and Au NCs , respectively, were synthesized and combined with functionalized graphene, abbreviated as f-G, forming novel M NC /f-G ensembles. The preparation of M NCs /f-G was achieved by employing attractive electrostatic interactions developed between negatively charged M NCs , attributed to the presence of carboxylates due to α-lipoic acid employed as a stabilizer, and positively charged f-G, attributed to the presence of ammonium units as addends. The realization of M NC /f-G ensembles was established via titration assays as evidenced by electronic absorption and photoluminescence spectroscopy as well as scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX) spectroscopy analyses. Photoinduced charge-transfer phenomena were inferred within M NCs /f-G, attributed to the suppression of M NC photoluminescence by the presence of f-G. Next, the M NC /f-G ensembles were successfully employed as proficient catalysts for the model reduction of 4-nitrophenol to the corresponding 4-aminophenol as proof for the photoinduced hydrogen production. Particularly, the reduction kinetics decelerated by half when bare M NCs were employed vs. the M NC /f-G ensembles, highlighting the beneficial role of M NCs /f-G in catalysing the process. Furthermore, Au NCs /f-G displayed exceptionally higher catalytic activity both in the dark and under visible light illumination conditions, which is ascribed to three synergistic mechanisms, namely, (a) hydride transfer from Au-H, (b) hydride transfer from photogenerated Au-H species, and (c) hydrogen produced by the photoreduction of water. Finally, recycling and re-employing M NCs /f-G in successive catalytic cycles without loss of activity toward the reduction of 4-nitrophenol was achieved, thereby highlighting their wider applicability.
Li, Bing; Liu, Luping; Li, Ying; Dong, Xin; Zhang, Haifeng; Chen, Huaigu; Zheng, Xiaobo; Zhang, Zhengguang
2017-05-01
Vesicle trafficking is an important event in eukaryotic organisms. Many proteins and lipids transported between different organelles or compartments are essential for survival. These processes are mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Rab-GTPases, and multisubunit tethering complexes such as class C core vacuole or endosome tethering and homotypic fusion or vacuole protein sorting (HOPS). Our previous study has demonstrated that FgVam7, which encodes a SNARE protein involving in vesicle trafficking, plays crucial roles in growth, asexual or sexual development, deoxynivalenol production, and pathogenicity in Fusarium graminearum. Here, the affinity purification approach was used to identify FgVam7-interacting proteins to explore its regulatory mechanisms during vesicle trafficking. The orthologs of yeast Vps39, a HOPS tethering complex subunit, and Sso1, a SNARE protein localized to the vacuole or endosome, were identified and selected for further characterization. In yeast two-hybrid and glutathione-S-transferase pull-down assays, FgVam7, FgVps39, and FgSso1 interacted with each other as a complex. The ∆Fgvps39 mutant generated by targeted deletion was significantly reduced in vegetative growth and asexual development. It failed to produce sexual spores and was defective in plant infection and deoxynivalenol production. Further cellular localization and cytological examinations suggested that FgVps39 is involved in vesicle trafficking from early or late endosomes to vacuoles in F. graminearum. Additionally, the ∆Fgvps39 mutant was defective in vacuole morphology and autophagy, and it was delayed in endocytosis. Our results demonstrate that FgVam7 interacts with FgVps39 and FgSso1 to form a unique complex, which is involved in vesicle trafficking and modulating the proper development of infection-related morphogenesis in F. graminearum.
Characterization and vaccine potential of Fasciola gigantica saposin-like protein 1 (SAP-1).
Kueakhai, Pornanan; Changklungmoa, Narin; Waseewiwat, Pinkamon; Thanasinpaiboon, Thanaporn; Cheukamud, Werachon; Chaichanasak, Pannigan; Sobhon, Prasert
2017-01-15
The recombinant Fasciola gigantica Saposin-like protien-1 (rFgSAP-1) was cloned by polymerase chain reaction (PCR) from NEJ cDNA, expressed in Escherichia coli BL21 (DE3) and used for production of a polyclonal antibody in rabbits (anti-rFgSAP-1). By immunoblotting and immunohistochemistry, rabbit IgG anti-rFgSAP-1 reacted with rFgSAP-1 at a molecular weight 12kDa, but not with rFgSAP-2. The rFgSAP-1 reacted with antisera from mouse infected with F. gigantica metacercariae collected at 2, 4, and 6 weeks after infection. The FgSAP-1 protein was expressed at a high level in the caecal epithelium of metacercariae and NEJs. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rFgSAP-1 combined with Alum adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae per mouse by the oral route. The percents protection of rFgSAP-1 vaccine were estimated to be 73.2% and 74.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The levels of IgG1 and IgG2a specific to rFgSAP-1 in the immune sera, which are indicative of Th2 and Th1 immune responses, were inversely and significantly correlated with the numbers of worm recoveries. The rFgSAP-1-vaccinated mice showed significantly reduced levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and liver damage. These indicated that rFgSAP-1 has strong potential as a vaccine candidate against F. gigantica, whose efficacy will be studied further in large economic animals including cattle, sheep, and goat. Copyright © 2016 Elsevier B.V. All rights reserved.
Gupta, Ankita; Sripa, Banchob; Tripathi, Timir
2017-08-01
Glutaredoxins (Grxs) are small thiol-dependent proteins and key elements of redox signaling as they regulate the redox state of important cellular proteins. In the present study, the complete sequence of a glutaredoxin protein, obtained from the liver fluke Fasciola gigantica, was PCR-amplified and cloned. The 690-bp open reading frame (ORF) encodes a 230-amino acid protein with two conserved domains (FgGrxD1 and FgGrxD2) and has similarities with two monothiol Grxs of Saccharomyces cerevisiae, i.e., ScGrx3 and ScGrx4. The full-length FgGrx along with its two constituent domains were overexpressed in Escherichia coli as hexahistidyl-tagged proteins. The affinity chromatography resulted in almost pure and soluble proteins. The full-length FgGrx and the FgGrxD2 showed reddish-brown color, indicating the presence of bound iron in the second domain. In the insulin based reduction assay, both FgGrx and FgGrxD2 containing the active site motif CGFS exhibited a weak reducing activity, whereas FgGrxD1 was inactive. Additionally, FgGrx did not show any GSH-disulfide transhydrogenase activity when 2-hydroxyethyl disulfide (HED) or de-hydroascorbate (DHA) were taken as substrates. These results indicated the probable role of FgGrx in cellular iron-sulfur homeostasis. FgGrx was found to be reversibly S-glutathionylated, suggesting a potential redox regulation that is likely to take place at the active site Cys158. Since there is only one Cys in FgGrxD2, the Cys158 might be involved in FeS binding. This study is the first report on the presence of Grx in platyhelminthic parasites and provides a starting point for further characterization of the redox network in liver flukes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jiang, Cong; Li, Yang; Li, Chaohui; Liu, Huiquan; Kang, Zhensheng; Xu, Jin-Rong
2016-01-01
PRP4 encodes the only kinase among the spliceosome components. Although it is an essential gene in the fission yeast and other eukaryotic organisms, the Fgprp4 mutant was viable in the wheat scab fungus Fusarium graminearum. Deletion of FgPRP4 did not block intron splicing but affected intron splicing efficiency in over 60% of the F. graminearum genes. The Fgprp4 mutant had severe growth defects and produced spontaneous suppressors that were recovered in growth rate. Suppressor mutations were identified in the PRP6, PRP31, BRR2, and PRP8 orthologs in nine suppressor strains by sequencing analysis with candidate tri-snRNP component genes. The Q86K mutation in FgMSL1 was identified by whole genome sequencing in suppressor mutant S3. Whereas two of the suppressor mutations in FgBrr2 and FgPrp8 were similar to those characterized in their orthologs in yeasts, suppressor mutations in Prp6 and Prp31 orthologs or FgMSL1 have not been reported. Interestingly, four and two suppressor mutations identified in FgPrp6 and FgPrp31, respectively, all are near the conserved Prp4-phosphorylation sites, suggesting that these mutations may have similar effects with phosphorylation by Prp4 kinase. In FgPrp31, the non-sense mutation at R464 resulted in the truncation of the C-terminal 130 aa region that contains all the conserved Prp4-phosphorylation sites. Deletion analysis showed that the N-terminal 310-aa rich in SR residues plays a critical role in the localization and functions of FgPrp4. We also conducted phosphoproteomics analysis with FgPrp4 and identified S289 as the phosphorylation site that is essential for its functions. These results indicated that FgPrp4 is critical for splicing efficiency but not essential for intron splicing, and FgPrp4 may regulate pre-mRNA splicing by phosphorylation of other components of the tri-snRNP although itself may be activated by phosphorylation at S289. PMID:27058959
Guo, Hai-Dong; Wang, Hai-Jie; Tan, Yu-Zhen; Wu, Jin-Hong
2011-01-01
The high death rate of the transplanted stem cells in the infarcted heart and the low efficiency of differentiation toward cardiomyocytes influence the outcome of stem cell transplantation for treatment of myocardial infarction (MI). Fibrin glue (FG) has been extensively used as a cell implantation matrix to increase cell survival. However, mechanisms of the effects of FG for stem cell transplantation to improve cardiac function are unclear. We have isolated c-kit+/Sca-1+ marrow-derived cardiac stem cells (MCSCs) from rat bone marrow; the cells expressed weakly early cardiac transcription factor Nkx2.5, GATA-4, Mef2C, and Tbx5. Effects of FG on survival, proliferation, and migration of MCSCs were examined in vitro. Cytoprotective effects of FG were assessed by exposure of MCSCs to anoxia. Efficacy of MCSC transplantation in FG was evaluated in the female rat MI model. The MCSCs survived well and proliferated in FG, and they may migrate out from the edge of FG in the wound and nature state. Acridine orange/ethidium bromide staining and lactate dehydrogenase analysis showed that MCSCs in FG were more resistant to anoxia as compared with MCSCs alone. In a rat MI model, cardiac function was improved and scar area was obviously reduced in group of MCSCs in FG compared with group of MCSCs and FG alone, respectively. Y chromosome fluorescence in situ hybridization showed that there were more survived MCSCs in group of MCSCs in FG than those in group of MCSCs alone, and most Y chromosome positive cells expressed cardiac troponin T (cTnT) and connexin-43 (Cx-43). Cx-43 was located between Y chromosome positive cells and recipient cardiomyocytes. Microvessel density in the peri-infarct regions and infarct regions significantly increased in group of MCSCs in FG. These results suggest that FG provide a suitable microenvironment for survival and proliferation of MCSCs and protect cells from apoptosis and necrosis caused by anoxia. MCSCs could differentiate into cardiomyocytes after being transplanted in the border of the infarcted myocardium and form connections with native cardiomyocytes. FG is helpful for MCSC transplantation to repair myocardium and improve cardiac function through promoting the survival, migration, and cardiomyogenic differentiation of MCSCs and inducing angiogenesis.
Biomechanics of the transport barrier in the nuclear pore complex.
Stanley, George J; Fassati, Ariberto; Hoogenboom, Bart W
2017-08-01
The nuclear pore complex (NPC) is the selective gateway through which all molecules must pass when entering or exiting the nucleus. It is a cog in the gene expression pathway, an entrance to the nucleus exploited by viruses, and a highly-tuned nanoscale filter. The NPC is a large proteinaceous assembly with a central lumen occluded by natively disordered proteins, known as FG-nucleoporins (or FG-nups). These FG-nups, along with a family of soluble proteins known as nuclear transport receptors (NTRs), form the selective transport barrier. Although much is known about the transport cycle and the necessity of NTRs for chaperoning cargo molecules through the NPC, the mechanism by which NTRs and NTR•cargo complexes translocate the selective transport barrier is not well understood. How can disordered FG-nups and soluble NTRs form a transport barrier that is selective, ATP-free, and fast? In this work, we review various mechanical approaches - both experimental and theoretical/computational - employed to better understand the morphology of the FG-nups, and their role in nucleocytoplasmic transport. Recent experiments on FG-nups tethered to planar surfaces, coupled with quantitative modelling work suggests that FG-nup morphologies are the result of a finely balanced system with significant contributions from FG-nup cohesiveness and entropic repulsion, and from NTR•FG-nup binding avidity; whilst AFM experiments on intact NPCs suggest that the FG-nups are sufficiently cohesive to form condensates in the centre of the NPC lumen, which may transiently dissolve to facilitate the transport of larger cargoes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hesterberg, T W; Hart, G A
1994-12-01
In a recent rat inhalation study, 2 years of exposure to high concentrations of fiberglass (FG) resulted in no treatment-related fibrosis or thoracic tumors. To determine the relevancy of this study for human risk assessment, it is important to compare the rat experimental exposure levels with those of humans. Data on human exposures were taken from several studies and included FG manufacturing, installation and removal, and ambient air. FG levels in the rat aerosol were 200,000-fold higher than indoor air, > 2000-fold higher than during FG insulation manufacturing, and > 1000-fold higher than FG batt installation. The rat aerosol was 30-fold more concentrated than the highest human exposure (blowing installation of unbound FG). Rat FG lung burden also vastly exceeded that of FG workers, which was not significantly elevated above nonworker levels. The amount of fibers/mg dry lung for the rat after lifetime exposure was > 4000-fold greater than for the FG worker, average exposure 11 years. Aerosol and lung fiber dimensions in the rat study were comparable to those of human exposures. From these comparisons, it can be concluded that the exposure level in the rat inhalation study was sufficiently, if not excessively, high in comparison to human exposures. Increasing the experimental exposure in the rat studies would not serve to mirror human environmental or occupational exposures.
Radio-controlled boat for measuring water velocities and bathymetry
NASA Astrophysics Data System (ADS)
Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej
2016-04-01
Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek RiverSurveyor M9 instrument.
Occhipinti, Laura; Chang, Yiming; Altvater, Martin; Menet, Anna M.; Kemmler, Stefan; Panse, Vikram G.
2013-01-01
Multiple export receptors passage bound pre-ribosomes through nuclear pore complexes (NPCs) by transiently interacting with the Phe-Gly (FG) meshwork of their transport channels. Here, we reveal how the non-FG interacting yeast mRNA export factor Gly-Leu-FG lethal 2 (Gle2) functions in the export of the large pre-ribosomal subunit (pre-60S). Structure-guided studies uncovered conserved platforms used by Gle2 to export pre-60S: an uncharacterized basic patch required to bind pre-60S, and a second surface that makes non-FG contacts with the nucleoporin Nup116. A basic patch mutant of Gle2 is able to function in mRNA export, but not pre-60S export. Thus, Gle2 provides a distinct interaction platform to transport pre-60S to the cytoplasm. Notably, Gle2’s interaction platforms become crucial for pre-60S export when FG-interacting receptors are either not recruited to pre-60S or are impaired. We propose that large complex cargos rely on non-FG as well as FG-interactions for their efficient translocation through the nuclear pore complex channel. PMID:23907389
Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon.
Escuredo, Olga; Dobre, Irina; Fernández-González, María; Seijo, M Carmen
2014-04-15
The present work provides information regarding the statistical relationships among the palynological characteristics, sugars (fructose, glucose, sucrose, melezitose and maltose), moisture content and sugar ratios (F+G, F/G and G/W) of 136 different honey types (including bramble, chestnut, eucalyptus, heather, acacia, lime, rape, sunflower and honeydew). Results of the statistical analyses (multiple comparison Bonferroni test, Spearman rank correlations and principal components) revealed the valuable significance of the botanical origin on the sugar ratios (F+G, F/G and G/W). Brassica napus and Helianthus annuus pollen were the variables situated near F+G and G/W ratio, while Castanea sativa, Rubus and Eucalyptus pollen were located further away, as shown in the principal component analysis. The F/G ratio of sunflower, rape and lime honeys were lower than those found for the chestnut, eucalyptus, heather, acacia and honeydew honeys (>1.4). A lower value F/G ratio and lower water content were related with a faster crystallization in the honey. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu
2016-09-01
The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis.
Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P.; Lin, Yi-Pin; Chang, Yung-Fu
2016-01-01
The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634
Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery
Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.
2012-01-01
Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702
Sun, Li; Yan, Zhuanjun; Duan, Youxin; Zhang, Junyan; Liu, Bin
2018-06-01
The aim of this study was to improve the mechanical properties, wear resistance and antibacterial properties of conventional glass ionomer cements (GICs) by fluorinated graphene (FG), under the premise of not influencing their solubility and fluoride ion releasing property. FG with bright white color was prepared using graphene oxide by a hydrothermal reaction. Experimental modified GICs was prepared by adding FG to the traditional GICs powder with four different weight ratios (0.5wt%, 1wt%, 2wt% and 4wt%) using mechanical blending. Compressive and flexural strength of each experimental and control group materials were investigated using a universal testing machine. The Vickers microhardness of all the specimens was measured by a Vicker microhardness tester. For tribological properties of the composites, specimens of each group were investigated by high-speed reciprocating friction tester. Fluoride ion releasing was measured by fluoride ion selective electrode methods. The antibacterial effect of GICs/FG composites on selected bacteria (Staphylococci aureus and Streptococcus mutans) was tested with pellicle sticking method. The prepared GICs/FG composites with white color were successfully fabricated. Increase of Vickers microhardness and compressive strength and decrease of friction coefficient of the GICs/FG composites were achieved compared to unreinforced materials. The colony count against S. aureus and S. mutans decreased with the increase of the content of FG. And the antibacterial rate of S. mutans can be up to 85.27% when the FG content was 4wt%. Additionally, fluoride ion releasing property and solubility did not show significant differences between unreinforced and FG reinforced GICs. Adding FG to traditional GICs could not only improve mechanical and tribological properties of the composites, but also improve their antibacterial properties. In addition, the GICs/FG composites had no negative effect on the color, solubility and fluoride ion releasing properties, which will open up new roads for the application of dental materials. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Wang, Yue-qi; Zhou, Yan; Cheng, Na; Chen, Mu-xin; Ai, Lin; Liu, Yu-hua; Zhang, Jian-guo; Luo, Jia-jun; Xu, Xue-nian
2015-04-01
To immunoscreen the gene encoding thioredoxin peroxidase (TPx) from a cDNA library made from adult Fasciola gigantica worms, clone and express the gene, and evaluate the immunodiagnostic value of TPx recombinant protein. The A ZAP cDNA library was immunoscreened with pooled serum of fascioliasis gigantica patients. The obtained positive clones were sequenced and analyzed by multiple sequence alignment. The full-length (rFgTPx) and N-termianal truncated (rFgTPx_nt) sequence of FgTPx was subcloned into prokaryotic plasmid pET28a(+) with a non-fusion expression technique, respectively. The recombinant proteins of rFgTPx and rFgTPx_nt were purified by His-bind affinity column (Ni-NTA). rFgTPx and rFgTPx_nt were used in indirect ELISA to test the antibody response of the serum samples. Sera of 27 fascioliasis gigantica patients, 15 patients with schistosomaisis japonica, 15 clonorchiasis sinensis patients, and 32 healthy donors were tested by using the recombinant protein based ELISA. The TPx recombinant proteins were obtained through expression, purification and renaturation, the relative molecular mass of rFgTPx and rFgTPx_nt were Mr 30,000 and Mr 26,000, respectively. The total diagnostic coincidence rate, sensitivity and specificity of rFgTPx_nt-based ELISA was 87.6% (78/89), 66.7% (18/27), and 96.8% (60/62), respectively. The cross reaction with Schistosoma japonicum and Clonorchis sinensis was 0 and 1/15 for rFgTPx_nt, respectively. Before and after treatment, A450 value of the serum samples from fascioliasis patients was 0.233 ± 0.088 and 0.129 ± 0.072, respectively (t = 4.27, P < 0.01). The gene encoding TPx is expressed in the prokaryotic expression system. The recombinant protein shows proper sensitivity and high specificity for the serodiagnosis of Fasciola gigantica infection.
Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert
2015-01-01
Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans.
Static Analysis of Functionally Graded Composite Beams
NASA Astrophysics Data System (ADS)
Das, S.; Sarangi, S. K.
2016-09-01
This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.
Perceived Animacy Influences the Processing of Human-Like Surface Features in the Fusiform Gyrus
Shultz, Sarah; McCarthya, Gregory
2014-01-01
While decades of research have demonstrated that a region of the right fusiform gyrus (FG) responds selectively to faces, a second line of research suggests that the FG responds to a range of animacy cues, including biological motion and goal-directed actions, even in the absence of faces or other human-like surface features. These findings raise the question of whether the FG is indeed sensitive to faces or to the more abstract category of animate agents. The current study uses fMRI to examine whether the FG responds to all faces in a category-specific way or whether the FG is especially sensitive to the faces of animate agents. Animate agents are defined here as intentional agents with the capacity for rational goal-directed actions. Specifically, we examine how the FG responds to an entity that looks like an animate agent but that lacks the capacity for goal-directed, rational action. Region-of-interest analyses reveal that the FG activates more strongly to the animate compared with the inanimate entity, even though the surface features of both animate and inanimate entities were identical. These results suggest that the FG does not respond to all faces in a category-specific way, and is instead especially sensitive to whether an entity is animate. PMID:24905285
Impact of scaling voltage and size on the performance of Side-contacted Field Effect Diode
NASA Astrophysics Data System (ADS)
Touchaei, Behnam Jafari; Manavizadeh, Negin
2018-05-01
Side-contacted Fild Effect Diode (S-FED), with low leakage current and high Ion/Ioff ratio, has been recently introduced to suppress short channel effects in nanoscale regime. The voltage and size scalability of S-FEDs and effects on the power consumption, propagation delay time, and power delay product have been studied in this article. The most attractive properties are related to channel length to channel thickness ratio in the S-FED which reduces in comparison with MOSFET significantly, while gates control over the channel improve and the off-state current reduces dramatically. This promising advantage is not only capable to improve important S-FED's characteristics such as subthreshold slope but also eliminate Latch-up and floating body effect.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
Zhao, Longyan; Qin, Yujing; Guan, Ruowei; Zheng, Wenqi; Liu, Jikai; Zhao, Jinhua
2018-04-15
The digestibility of fucosylated glycosaminoglycan (FG) and its effects on digestive enzymes were investigated using an in vitro digestion model. Results showed that the molecular weight and the reducing sugar content of FG were not significantly changed, and no free monosaccharides released from FG were detected after the salivary, gastric and intestinal digestion, indicating that both the backbone and the sulfated fucose branches of FG are resistant to be cleaved in the saliva and gastrointestinal tract environments. Furthermore, FG can dose-dependently inhibit digestive enzymes such as α-amylase, pepsin and pancreatic lipase in different degrees under the simulated digestion conditions due to the sulfate and carboxyl groups. These physiological effects of FG may help control the postprandial glucose concentration and have the potential in the prevention or treatment of reflux disease and obesity. The findings may provide information on the digestibility and beneficial physiological effects of FG as a potential natural product to promote human health. Copyright © 2018 Elsevier Ltd. All rights reserved.
Miyazawa, Masaki; Matsuda, Mitsuru; Yano, Masaaki; Hara, Yasumasa; Arihara, Fumitaka; Horita, Yosuke; Matsuda, Koichiro; Sakai, Akito; Noda, Yatsugi
2016-01-01
Gastric adenocarcinoma of the fundic gland (chief cell-predominant type, GA-FG-CCP) is a rare variant of well-differentiated adenocarcinoma, and has been proposed to be a novel disease entity. GA-FG-CCP originates from the gastric mucosa of the fundic gland region without chronic gastritis or intestinal metaplasia. The majority of GA-FG-CCPs exhibit either a submucosal tumor-like superficial elevated shape or a flat shape on macroscopic examination. Narrow-band imaging with endoscopic magnification may reveal a regular or an irregular microvascular pattern, depending on the degree of tumor exposure to the mucosal surface. Pathological analysis of GA-FG-CCPs is characterized by a high frequency of submucosal invasion, rare occurrences of lymphatic and venous invasion, and low-grade malignancy. Detection of diffuse positivity for pepsinogen-I by immunohistochemistry is specific for GA-FG-CCP. Careful endoscopic examination and detailed pathological evaluation are essential for early and accurate diagnosis of GA-FG-CCP. Nearly all GA-FG-CCPs are treated by endoscopic resection due to their small tumor size and low risk of recurrence or metastasis. PMID:28082804
A clocked high-pass-filter-based offset cancellation technique for high-gain biomedical amplifiers
NASA Astrophysics Data System (ADS)
Pal, Dipankar; Goswami, Manish
2010-05-01
In this article, a simple offset cancellation technique based on a clocked high-pass filter with extremely low output offset is presented. The configuration uses the on-resistance of a complementary metal oxide semiconductor (CMOS) transmission gate (X-gate) and tunes the lower 3-dB cut-off frequency with a matched pair of floating capacitors. The results compare favourably with the more complex auto-zeroing and chopper stabilisation techniques of offset cancellation in terms of power dissipation, component count and bandwidth, while reporting inferior output noise performance. The design is suitable for use in biomedical amplifier systems for applications such as ENG-recording. The system is simulated in Spectre Cadence 5.1.41 using 0.6 μm CMOS technology and the total block gain is ∼83.0 dB while the phase error is <5°. The power consumption is 10.2 mW and the output offset obtained for an input monotone signal of 5 μVpp is 1.28 μV. The input-referred root mean square noise voltage between 1 and 5 kHz is 26.32 nV/√Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanheusden, K.; Warren, W.L.; Devine, R.A.B.
It is shown how mobile H{sup +} ions can be generated thermally inside the oxide layer of Si/SiO{sub 2}/Si structures. The technique involves only standard silicon processing steps: the nonvolatile field effect transistor (NVFET) is based on a standard MOSFET with thermally grown SiO{sub 2} capped with a poly-silicon layer. The capped thermal oxide receives an anneal at {approximately}1100 C that enables the incorporation of the mobile protons into the gate oxide. The introduction of the protons is achieved by a subsequent 500-800 C anneal in a hydrogen-containing ambient, such as forming gas (N{sub 2}:H{sub 2} 95:5). The mobile protonsmore » are stable and entrapped inside the oxide layer, and unlike alkali ions, their space-charge distribution can be controlled and rapidly rearranged at room temperature by an applied electric field. Using this principle, a standard MOS transistor can be converted into a nonvolatile memory transistor that can be switched between normally on and normally off. Switching speed, retention, endurance, and radiation tolerance data are presented showing that this non-volatile memory technology can be competitive with existing Si-based non-volatile memory technologies such as the floating gate technologies (e.g. Flash memory).« less
Pérez Suárez, Santiago T.; Travieso González, Carlos M.; Alonso Hernández, Jesús B.
2013-01-01
This article presents a design methodology for designing an artificial neural network as an equalizer for a binary signal. Firstly, the system is modelled in floating point format using Matlab. Afterward, the design is described for a Field Programmable Gate Array (FPGA) using fixed point format. The FPGA design is based on the System Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator allows one to design in a fast and flexible way. It uses low level details of the circuits and the functionality of the system can be fully tested. System Generator can be used to check the architecture and to analyse the effect of the number of bits on the system performance. Finally the System Generator design is compiled for the Xilinx Integrated System Environment (ISE) and the system is described using a hardware description language. In ISE the circuits are managed with high level details and physical performances are obtained. In the Conclusions section, some modifications are proposed to improve the methodology and to ensure portability across FPGA manufacturers.
Wang, Pengfei; Wang, Jian; Zhang, Wenbo; Li, Yousheng; Li, Jieshou
2009-03-01
Intra-abdominal sepsis and hemorrhagic shock have been found to impair the healing of intestinal anastomoses. The present study examined whether fibrin glue (FG) and recombinant human growth hormone (GH) can improve intestinal primary anastomotic healing in a pig model of traumatic shock associated with peritonitis. Further, the study was designed to investigate the probable mechanism of these agents. Female anesthetized pigs were divided into five groups. Group sham (n = 7), pigs without traumatic shock had small bowel resection anastomoses; group control (n = 14), pigs had bowel resection anastomoses 24 h after abdominal gunshot plus exsanguination/resuscitation; group FG (n = 14); group GH (n = 14); group FG/GH (n = 14), pigs received FG, recombinant GH, or both, respectively. Recombinant GH was given daily for 7 days. Blood samples were collected daily for measurement of interleukin-6 (IL-6) and tumor necrosis factor (TNF)-alpha levels. Investigations also included adhesion formation, anastomotic bursting pressure, tensile strength, hydroxyproline (HP) content, myeloperoxidase (MPO), tumor necrosis factor (NF)-kappaB activity, and histology analysis 10 days later. A second experiment (n = 20 subjects assigned to each of the five groups) was designed to study survival during the first 20 postoperative days. Traumatic shock associated with peritonitis led to significant decreases in intestinal anastomotic bursting pressures, tensile strengths, and tissue hydroxyproline content, along with severe adhesion formation, increases in MPO activity and NF-kappaB activity, and plasma levels of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). Both FG and recombinant GH treatment led to early significant increases in plasma levels of TNF-alpha and IL-6. At the same time, FG alone, unlike recombinant GH alone, led to significant increases in anastomotic bursting pressures, tensile strength, and tissue HP content, along with decreases in anastomotic MPO and NF-kappaB activity and later plasma levels of TNF-a and IL-6. The FG group also developed more marked neoangiogenesis and collagen deposition on histology analysis. However, FG and recombinant GH synergistically effected improved anastomotic healing, abolishing the infaust effects promoted by recombinant GH. Adhesion formation after intestinal anastomosis could not be lowered by FG alone or by the combination of FG and recombinant GH. Both FG alone and FG/GH, in contrast to GH alone and control treatment, significantly prolonged the survival time of experimental animals. We found that FG, but not recombinant GH, could lower the risk of anastomotic leakage, improve intestinal anastomotic healing, and prolong survival in a pig model of traumatic shock associated with peritonitis. Both FG and recombinant GH synergistically effected improved intestinal anastomotic healing. It was suggested that GH could be used locally to promote intestinal anastomotic healing in intra-abdominal peritonitis.
Fish elevator and method of elevating fish
Truebe, Jonathan; Drooker, Michael S.
1984-01-01
A means and method for transporting fish from a lower body of water to a higher body of water. The means comprises a tubular lock with a gated entrance below the level of the lower body of water through which fish may enter the lock and a discharge passage above the level of the upper body of water. The fish raising means in the lock is a crowder pulled upward by a surface float as water from the upper body of water gravitationally flows into the closed lock filling it to the level of the upper body. Water is then pumped into the lock to raise the level to the discharge passage. The crowder is then caused to float upward the remaining distance through the water to the level of the discharge passage by the introduction of air into a pocket on the underside of the crowder. The fish are then automatically discharged from the lock into the discharge passage by the out of water position of the crowder. The movement of the fish into the discharge passage is aided by the continuous overflow of water still being pumped into the lock. A pipe may be connected to the discharge passage to deliver the fish to a selected location in the upper body of water.
Figure-ground processing during fixational saccades in V1: indication for higher-order stability.
Gilad, Ariel; Pesoa, Yair; Ayzenshtat, Inbal; Slovin, Hamutal
2014-02-26
In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.
Antitumor effect of fibrin glue containing temozolomide against malignant glioma
Anai, Shigeo; Hide, Takuichiro; Takezaki, Tatsuya; Kuroda, Jun-ichiro; Shinojima, Naoki; Makino, Keishi; Nakamura, Hideo; Yano, Shigetoshi; Kuratsu, Jun-ichi
2014-01-01
Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma. PMID:24673719
Wu, Zhong-Min; Ni, Jing-Jing; Ling, Shu-Cai
2007-12-01
To study the relationship between substance P (SP) and/or calcitonin gene-related peptide (CGRP) immunoreactive neurons in dorsal root ganglia (DRG) and the transmission of nociception in the penile frenulum of rats. The fluoro-gold (FG) retrograde tracing method was used to trace the origin of nerve terminals in the penile frenulum of rats. And SP and/or CGRP immunofluorescence labeling was employed to detect the distribution of SP and/or CGRP immunoreactive neurons in DRG. FG retrograde tracing showed that the FG retrolabeled neurons were localized in L6-DRG and S1-DRG. SP and/or CGRP immunofluorescence labeling indicated that a large number of DRG neurons were SP- and CGRP-immunoreactive, different in size, bright red and bright green respectively in color, and arranged in rows or spots among nerve bundles. All the FG/SP and FG/CGRP double-labeled neurons were medium or small-sized. One third of the FG-labeled neurons were SP-immunoreactive, and a half of them CGRP-immunoreactive in L6-DRG and S1-DRG respectively. The FG/SP/CGRP-labeled neurons accounted for one fifth of the FG retro labeled neurons. SP- and CGRP-immunoreactive neurons in L6-DRG and SI-DRG of rats may be involved in the transmission of nociception in rat penile frenulum.
Szott, Luisa M.; Horbett, Thomas A.
2010-01-01
The role of complement C3 in mediating adhesion of monocytes to plasma deposited tetraglyme surfaces was studied. Although fibrinogen (Fg) is usually considered the main factor in mediating phagocyte attachment, plasma deposited PEO-like tetraethylene glycol dimethyl ether (tetraglyme) coatings that have ultra-low Fg adsorption (< 10 ng/cm2) from low concentration solutions and low monocyte adhesion in vitro still show high phagocyte adhesion after short implantations and later become encapsulated when tested in vivo. To test whether higher Fg adsorption under in vivo conditions could explain the higher in vivo reactivity, we again measured the resistance of tetraglyme films to Fg adsorption. We found a surprising and previously unreported increased amount of adsorbed Fg on tetraglyme surfaces from higher concentration protein solutions. However, monocyte adhesion to tetraglyme did not markedly increase despite the increased Fg adsorption. We thus suspected proteins other than Fg must be responsible for the increased in vivo reactivity. We found that on tetraglyme pre-adsorbed with C3-depleted serum, monocyte adhesion was greatly reduced as compared to samples adsorbed with normal serum. Addition of exogenous pure C3 to the serum used to pre-adsorb the surfaces restored monocyte adhesion to tetraglyme coatings. While Fg clearly plays an important role in mediating monocyte adhesion to tetraglyme surfaces, the results show an additional role for adsorbed C3 in monocyte adhesion. PMID:20939050
Yang, Yunwen; Yu, Xiaowen; Zhang, Yue; Ding, Guixia; Zhu, Chunhua; Huang, Songming; Jia, Zhanjun; Zhang, Aihua
2018-04-16
Renal hypoxia occurs in acute kidney injury (AKI) of various etiologies. Activation of hypoxia-inducible transcription factor (HIF) has been identified as an important mechanism of cellular adaptation to low oxygen. Preconditional HIF activation protects against AKI, suggesting a new approach in AKI treatment. HIF is degraded under normoxic conditions mediated by oxygen-dependent hydroxylation of specific prolyl residues of the regulative α-subunits by HIF prolyl hydroxylases (PHD). FG-4592 is a novel, orally active, small-molecule HIF PHD inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). The current study aimed to evaluate the effect of FG-4592 (Roxadustat) on cis -diamminedichloroplatinum (cisplatin)-induced kidney injury. In mice, pretreatment with FG-4592 markedly ameliorated cisplatin-induced kidney injury as shown by the improved renal function (blood urea nitrogen (BUN), serum creatinine (Scr), and cystatin C) and kidney morphology (periodic acid-Schiff (PAS) staining) in line with a robust blockade of renal tubular injury markers of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in FG-4592-treated mice. Along with the protective effects shown above, FG-4592 pretreatment strongly enhanced HIF-1α in tubular cells, as well as the expressions of HIF target genes. FG-4592 alone did not affect the renal function and morphology in mice. In vitro , FG-4592 treatment significantly up-regulated HIF-1α and protected the tubular cells against cisplatin-induced apoptosis. In summary, FG-4592 treatment remarkably ameliorated the cisplatin-induced kidney injury possibly through the stabilization of HIF. Thus, besides the role in treating CKD anemia, the clinical use of FG-4592 also could be extended to AKI. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Sengupta, Anamika; Obara, Yoshihiko; Banerji, Tapan K; Maitra, Saumen K
2002-12-01
Formoguanamine (2,4-diamino-s-triazine) was known to be an effective chemical agent in inducing blindness in poultry chicks, but not in adult birds. The present study was undertaken to demonstrate the influences, if any, of this chemical on the visual performance and retinal histology in an adult sub-tropical wild bird the roseringed parakeet (Psittacula krameri). Formoguanamine (FG) hydrochloride was subcutaneously injected into adult parakeets at the dosage of 25 mg (dissolved in 0.75 ml physiological saline)/100 g body weight/day, for two consecutive days while the control birds were injected only with the placebo. The effects were studied after 10, 20, and 30 days of the last treatment of FG. Within 24 h of the treatment of FG, about 90% of the total birds exhibited lack of visual responses to any light stimulus and even absence of pupillary light reactions. The remaining birds became totally blind on the day following the last injection of FG and remained so till the end of investigation. At the microscopic level, conspicuous degenerative changes were noted in the outer pigmented epithelium and the photoreceptive layer of rods and cones in the retinas of FG treated birds. A significant reduction in the thickness of the outer nuclear layer was also found in the retinas of FG treated parakeets, compared to that in the control birds. However, the inner cell layers of the retina in the control and FG administered parakeets were almost identical. It deserves special mention that the effects of FG, noted after 30 days of last treatment, were not very different from those noted just after 10 days of treatment. Collectively, the results of the present investigation demonstrate that FG can be used as a potent pharmacological agent for inducing irreversible blindness through selective damage in retinal tissue even in the adult wild bird, thereby making FG treatment an alternative euthanasic device to a cumbersome, stressful, surgical method of enucleation of the ocular system for laboratory studies.
Ito, Tetsufumi; Oliver, Douglas L
2010-01-01
Terminals containing vesicular glutamate transporter (VGLUT) 2 make dense axosomatic synapses on tectothalamic GABAergic neurons. These are one of the three types of glutamatergic synapses in the inferior colliculus (IC) identified by one of three combinations of transporter protein: VGLUT1 only, VGLUT2 only, or both VGLUT1 and 2. To identify the source(s) of these three classes of glutamatergic terminals, we employed the injection of Fluorogold (FG) into the IC and retrograde transport in combination with in situ hybridization for VGLUT1 and VGLUT2 mRNA. The distribution of FG-positive soma was consistent with previous reports. In the auditory cortex, all FG-positive cells expressed only VGLUT1. In the IC, the majority of FG-positive cells expressed only VGLUT2. In the intermediate nucleus of the lateral lemniscus, most FG-positive cells expressed VGLUT2, and a few FG-positive cells expressed both VGLUT1 and 2. In the superior olivary complex (SOC), the majority of FG-positive cells expressing VGLUT2 were in the lateral superior olive, medial superior olive, and some periolivary nuclei. Fewer FG-positive cells expressed VGLUT1&2. In the ventral cochlear nucleus, almost all FG-positive cells expressed VGLUT1&2. On the other hand in the dorsal cochlear nucleus, the vast majority of FG-positive cells expressed only VGLUT2. Our data suggest that (1) the most likely sources of VGLUT2 terminals in the IC are the intermediate nucleus of the lateral lemniscus, the dorsal cochlear nucleus, the medial and lateral superior olive, and the IC itself, (2) VGLUT1 terminals in the IC originate only in the ipsilateral auditory cortex, and (3) VGLUT1&2 terminals in IC originate mainly from the VCN with minor contributions from the SOC and the lateral lemniscal nuclei.
Schmidt, Hermann Broder; Görlich, Dirk
2015-01-01
Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic ‘FG particles’. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTR⋅cargo complexes, while cargo shielding and increased NTR⋅cargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore. DOI: http://dx.doi.org/10.7554/eLife.04251.001 PMID:25562883
Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes
Labokha, Aksana A; Gradmann, Sabine; Frey, Steffen; Hülsmann, Bastian B; Urlaub, Henning; Baldus, Marc; Görlich, Dirk
2013-01-01
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. PMID:23202855
Zerbib, F; Vialette, G; Cayla, R; Rudelli, A; Sauvet, P; Bechade, D; Seurat, P L; Lamouliatte, H
1993-01-01
Follicular gastritis (FG) is characterized by lymphoid follicle hyperplasia in the gastric mucosa. The aim of this prospective study was to determine the prevalence of FG in adults, their relation to Helicobacter pylori infection, and their histological and endoscopic features. Of 445 patients (379 men, 66 women), 36.4 years old (range: 18-86), FG was detected in 63 patients (14.2%). This was highly significantly associated with H. pylori infection: 49/138 infected patients (35.5%) versus 14/307 non infected patients (4.6%) (P < 0.001). None of the histological features of the antral mucosa were correlated with FG. The prevalence of FG in patients less than 20 years old (in 45.4%) and between 20 and 40 years (in 41.3%) was higher than in patients aged from 40 to 60 years (in 33%) and older than 60 years (in 23%) (no significant difference). No one endoscopic feature of the gastric mucosa was predictive of the presence of FG. We conclude that FG is highly correlated with H. pylori infection and represents a local immune response to bacterial antigens. Their occurrence is probably multifactorial and related to age, duration of infection, bacterial strains, host immune status.
Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia.
Onitsuka, Toshiaki; Shenton, Martha E; Kasai, Kiyoto; Nestor, Paul G; Toner, Sarah K; Kikinis, Ron; Jolesz, Ferenc A; McCarley, Robert W
2003-04-01
The fusiform gyrus (FG), or occipitotemporal gyrus, is thought to subserve the processing and encoding of faces. Of note, several studies have reported that patients with schizophrenia show deficits in facial processing. It is thus hypothesized that the FG might be one brain region underlying abnormal facial recognition in schizophrenia. The objectives of this study were to determine whether there are abnormalities in gray matter volumes for the anterior and the posterior FG in patients with chronic schizophrenia and to investigate relationships between FG subregions and immediate and delayed memory for faces. Patients were recruited from the Boston VA Healthcare System, Brockton Division, and control subjects were recruited through newspaper advertisement. Study participants included 21 male patients diagnosed as having chronic schizophrenia and 28 male controls. Participants underwent high-spatial-resolution magnetic resonance imaging, and facial recognition memory was evaluated. Main outcome measures included anterior and posterior FG gray matter volumes based on high-spatial-resolution magnetic resonance imaging, a detailed and reliable manual delineation using 3-dimensional information, and correlation coefficients between FG subregions and raw scores on immediate and delayed facial memory derived from the Wechsler Memory Scale III. Patients with chronic schizophrenia had overall smaller FG gray matter volumes (10%) than normal controls. Additionally, patients with schizophrenia performed more poorly than normal controls in both immediate and delayed facial memory tests. Moreover, the degree of poor performance on delayed memory for faces was significantly correlated with the degree of bilateral anterior FG reduction in patients with schizophrenia. These results suggest that neuroanatomic FG abnormalities underlie at least some of the deficits associated with facial recognition in schizophrenia.
Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo
2014-06-03
Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.
Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking
Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A.; Moncman, Carole L.
2016-01-01
Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate–ribosylation factor 6 (Arf6) is a small guanosine triphosphate–binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)–labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. PMID:26738539
Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking.
Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A; Moncman, Carole L; Whiteheart, Sidney W
2016-03-17
Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate-ribosylation factor 6 (Arf6) is a small guanosine triphosphate-binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)-labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. © 2016 by The American Society of Hematology.
Stewart, Chelsea M; Buffalo, Cosmo Z; Valderrama, J Andrés; Henningham, Anna; Cole, Jason N; Nizet, Victor; Ghosh, Partho
2016-08-23
The sequences of M proteins, the major surface-associated virulence factors of the widespread bacterial pathogen group A Streptococcus, are antigenically variable but have in common a strong propensity to form coiled coils. Paradoxically, these sequences are also replete with coiled-coil destabilizing residues. These features are evident in the irregular coiled-coil structure and thermal instability of M proteins. We present an explanation for this paradox through studies of the B repeats of the medically important M1 protein. The B repeats are required for interaction of M1 with fibrinogen (Fg) and consequent proinflammatory activation. The B repeats sample multiple conformations, including intrinsically disordered, dissociated, as well as two alternate coiled-coil conformations: a Fg-nonbinding register 1 and a Fg-binding register 2. Stabilization of M1 in the Fg-nonbinding register 1 resulted in attenuation of Fg binding as expected, but counterintuitively, so did stabilization in the Fg-binding register 2. Strikingly, these register-stabilized M1 proteins gained the ability to bind Fg when they were destabilized by a chaotrope. These results indicate that M1 stability is antithetical to Fg interaction and that M1 conformational dynamics, as specified by destabilizing residues, are essential for interaction. A "capture-and-collapse" model of association accounts for these observations, in which M1 captures Fg through a dynamic conformation and then collapses into a register 2-coiled coil as a result of stabilization provided by binding energy. Our results support the general conclusion that destabilizing residues are evolutionarily conserved in M proteins to enable functional interactions necessary for pathogenesis.
Sangpairoj, Kant; Changklungmoa, Narin; Vanichviriyakit, Rapeepun; Sobhon, Prasert; Chaithirayanon, Kulathida
2014-05-01
2-Cys peroxiredoxin (Prx) is the main antioxidant enzyme in Fasciola species for detoxifying hydrogen peroxide which is generated from the hosts' immune effector cells and the parasites' own metabolism. In this study, the recombinant Prx protein from Fasciola gigantica (rFgPrx-2) was expressed and purified in a prokaryotic expression system. This recombinant protein with molecular weight of 26 kDa was enzymatically active in reduction of hydrogen peroxide both in presence of thioredoxin and glutathione systems, and also protected the supercoiled plasmid DNA from oxidative damage in metal-catalyzed oxidation (MCO) system in a concentration-dependent manner. By immunoblotting, using antibody against rFgPrx-2 as probe, a native FgPrxs, whose MW at 25 kDa, was detected in all developmental stages of the parasite. Concentrations of native FgPrxs were increasing in all stages reaching highest level in adult stage. The antibody also showed cross reactivities with corresponding proteins in some cattle helminthes. Natural antibody to FgPrxs could be detected in the sera of mice at 3 and 4 weeks after infection with F. gigantica metacercariae. By immunofluorescence, FgPrxs was highly expressed in tegument and tegumental cells, parenchyma, moderately expressed in cecal epithelial cells in early, juvenile and adult worms. Furthermore, FgPrxs was also detected in the female reproductive organs, including eggs, ovary, vitelline cells, and testis, suggesting that FgPrxs might play an essential role in protecting parasite's tissues from free radical attack during their life cycle. Thus, FgPrxs is one potential candidate for drug therapy and vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.
Extrinsic Origins of the Somatostatin and Neuropeptide Y innervation of the Rat Basolateral Amygdala
McDonald, Alexander J.; Zaric, Violeta
2015-01-01
The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. The present study combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for cortical nonpyramidal neuronal markers to determine if cortical LRNP neurons project to the BLC in the rat. Injections of FG into the BLC produced widespread retrograde labeling in the cerebral hemispheres and diencephalon. Triple-labeling for FG, somatostatin (SOM), and neuropeptide Y (NPY) revealed a small number of FG+/SOM+/NPY+ neurons and FG+/SOM+/NPY− neurons in the lateral entorhinal area, amygdalopiriform transition area, and piriform cortex, but not in the prefrontal and insular cortices, or in the diencephalon. In addition, FG+/SOM+/NPY+ neurons were observed in the amygdalostriatal transition area and in a zone surrounding the intercalated nuclei. About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories. PMID:25769940
Bidirectional communication between amygdala and fusiform gyrus during facial recognition.
Herrington, John D; Taylor, James M; Grupe, Daniel W; Curby, Kim M; Schultz, Robert T
2011-06-15
Decades of research have documented the specialization of fusiform gyrus (FG) for facial information processes. Recent theories indicate that FG activity is shaped by input from amygdala, but effective connectivity from amygdala to FG remains undocumented. In this fMRI study, 39 participants completed a face recognition task. 11 participants underwent the same experiment approximately four months later. Robust face-selective activation of FG, amygdala, and lateral occipital cortex were observed. Dynamic causal modeling and Bayesian Model Selection (BMS) were used to test the intrinsic connections between these structures, and their modulation by face perception. BMS results strongly favored a dynamic causal model with bidirectional, face-modulated amygdala-FG connections. However, the right hemisphere connections diminished at time 2, with the face modulation parameter no longer surviving Bonferroni correction. These findings suggest that amygdala strongly influences FG function during face perception, and that this influence is shaped by experience and stimulus salience. Copyright © 2011 Elsevier Inc. All rights reserved.
Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P
2018-06-01
There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.
Ultra-sensitive magnetic microscopy with an atomic magnetometer and flux guides
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Savukov, Igor
Many applications in neuroscience, biomedical research, and material science require high-sensitivity, high-resolution magnetometry. In order to meet this need we recently combined a cm-size spin-exchange relaxation-free Atomic Magnetometer (AM) with a flux guide (FG) to produce ultra-sensitive FG-AM magnetic microscopy. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution to tiny magnetic objects. In this talk, we will describe existing and next generation FG-AM devices and present experimental and numerical tests of its sensitivity and resolution. We demonstrate that an optimized FG-AM has sufficient resolution and sensitivity for the detection of a small number of neurons, which would be an important milestone in neuroscience. In addition, as a demonstration of one possible application of the FG-AM device, we conducted high-resolution magnetic imaging of micron-size magnetic particles. We will show that the device can produce clear microscopic magnetic image of 10 μm-size magnetic particles.
Experimental investigation of the latent heat of vaporization in aqueous nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soochan; Phelan, Patrick E., E-mail: phelan@asu.edu; Dai, Lenore
2014-04-14
This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids.more » That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.« less
Wang, Mu; Sheng, Xiu-Zhen; Xing, Jing; Tang, Xiao-Qian; Zhan, Wen-Bin
2011-03-16
In vitro, lymphocystis disease virus (LCDV) infection of flounder gill (FG) cell cultures causes obvious cytopathic effect (CPE). We describe attempts to isolate and characterize the LCDV-binding molecule(s) on the plasma membrane of FG cells that were responsible for virus entry. The results showed that the co-immunoprecipitation assay detected a 27.8 kDa molecule from FG cells that bound to LCDV. In a blocking ELISA, pre-incubation of FG cell membrane proteins with the specific antiserum developed against the 27.8 kDa protein could block LCDV binding. Similarly, antiserum against 27.8 kDa protein could also inhibit LCDV infection of FG cells in vitro. Mass spectrometric analysis established that the 27.8 kDa protein and beta-actin had a strong association. These results strongly supported the possibility that the 27.8 kDa protein was the putative receptor specific for LCDV infection of FG cells.
Shimizu, Hiroyuki; Uehara, Yutaka; Okada, Shuichi; Mori, Masatomo
2008-08-01
The contribution of fasting and postprandial glucose to hemoglobin A(1c) (HbA(1c)) levels was evaluated in insulin-treated patients. In 57 insulin-treated, diabetic out-patients, fasting glucose (before breakfast (B-FG), lunch (L-FG) and dinner (D-FG)) and postprandial glucose (B-PPG, L-PPG and D-PPG) levels were determined by the patients themselves at home using glucose self-monitoring apparatus over the course of one week. The correlation between HbA(1c) levels and self monitored blood glucose levels were calculated. In the conventionally treated group, there was a significant correlation between HbA(1c) and fasting glucose (FG) levels only before lunch, but at 2 hr after (PPG) all meals. In the intensively treated group, a significant correlation between HbA(1c) levels and FG levels was found before lunch and at 2 hr after breakfast and dinner. In all subjects, only FG levels before lunch correlated significantly with HbA(1c) levels, although PPG levels were significantly correlated with HbA(1c) at all points. The correlation was highest with PPG after breakfast and dinner. The sum of all FG, PPG and FG + PPG levels was significantly correlated with HbA(1c) levels. Postprandial hyperglycemia after breakfast and dinner should be regarded as most important for improving HbA(1c) levels in insulin treated diabetic patients.
Molecular cloning and characterization of leucine aminopeptidase from Fasciola gigantica.
Changklungmoa, Narin; Chaithirayanon, Kulathida; Kueakhai, Pornanan; Meemon, Krai; Riengrojpitak, Suda; Sobhon, Prasert
2012-07-01
M17 leucine aminopeptidase (LAP) is one of a family of metalloexopeptidases, of which short peptide fragments are cleaved from the N-terminals. In this study, the full length of cDNA encoding Fasciola gigantica LAP (FgLAP) was cloned from adult parasites. The amino acid sequences of FgLAP showed a high degree of identity (98%) with that from Fasciola hepatica and a low degree of identities (11% and 9%) with those from cattle and human. Phylogenetic analysis revealed that the FgLAP was closely related and grouped with F. hepatica LAP (FhLAP). Northern analysis showed that FgLAP transcriptional products have 1800 base pairs. Analysis by RNA in situ hybridization indicated that LAP gene was expressed in the cecal epithelial cells of adult parasites. A polyclonal antibody to a recombinant FgLAP (rFgLAP) detected the native LAP protein in various developmental stages of the parasite. In a functional test, this rFgLAP displayed aminolytic activity using a fluorogenic Leu-MCA substrate, and was significantly inhibited by bestatin. Its maximum activity was at pH 8.0 and enhanced by Mn(2+) ions. Localization of LAP proteins by immunohistochemistry and immunofluorescence techniques indicated that the enzyme was distributed in the apical cytoplasm of cecal epithelial cells. Because of its important metabolic role and fairly exposed position, FgLAP is a potential drug target and a possible vaccine candidate against fasciolosis. Copyright © 2012 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Fructus Gardenia (FG), containing the major active constituent Geniposide, is widely used in China for medicinal purposes. Currently, clinical reports of FG toxicity have not been published, however, animal studies have shown FG or Geniposide can cause hepatotoxicity in rats. We investigated Genipos...
Single Molecule Study of the Intrinsically Disordered FG-Repeat Nucleoporin 153
Milles, Sigrid; Lemke, Edward A.
2011-01-01
Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (RE) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (RE/RE,RC = 0.99 ± 0.15 with RE,RC corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (RE/RE,RC = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. PMID:21961597
Saposin-like protein 2 has an immunodiagnostic potential for detecting Fasciolosis gigantica.
Kueakhai, Pornanan; Changklungmoa, Narin; Chaithirayanon, Kulathida; Phatsara, Manussabhorn; Preyavichyapugdee, Narin; Riengrojpitak, Suda; Sangpairoj, Kant; Chusongsang, Phiraphol; Sobhon, Prasert
2015-01-01
Saposin-like protein 2 (SAP-2) plays an important role in the digestive process of Fasciola gigantica (Fg). It is one of the major proteins synthesized by the caecal epithelial cells and released into fluke's excretion-secretion. Therefore, FgSAP-2 is a plausible target for detecting fasciolosis. A polyclonal antibody (PoAb) against recombinant FgSAP-2 was produced by immunizing rabbits with the recombinant protein (rFgSAP-2), and used in sandwich ELISA assay to detect the circulating FgSAP-2 in sera of mice experimentally infected with F. gigantica metacercariae. The assay could detect rFgSAP-2 and the native FgSAP-2 in the excretory-secretory (ES) and whole body (WB) fractions of adult F. gigantica at the concentrations as low as 38 pg/ml, 24 ng/ml, and 102 ng/ml, respectively. As well, the sera from mice experimentally infected with F. gigantica were tested positive by this sandwich ELISA, which exhibited sensitivity, specificity, false positive rate, false negative rate and accuracy at 99.99, 98.67, 1.33, 0.01 and 99.32%, respectively. Therefore, this assay could be used for diagnosis of fasciolosis by F. gigantica. Copyright © 2015 Elsevier Inc. All rights reserved.
Sansri, Veerawat; Changklungmoa, Narin; Chaichanasak, Pannigan; Sobhon, Prasert; Meemon, Krai
2013-10-01
Cathepsin L proteases are a major class of endopeptidases expressed at a high level in Fasciola parasites. Several isoforms of cathepsin L were detected and they may perform different functions during the parasite development. In this study, a complete cDNA encoding a cathepsin L protease was cloned from a newly excysted juvenile (NEJ) cDNA library of Fasciola gigantica and named FgCatL1H. It encoded a 326 amino acid preproenzyme which shared 62.8-83.1% and 39.5-42.9% identity to Fasciola spp. and mammalian cathepsins L, respectively. All functionally important residues previously described for cathepsin L were conserved in FgCatL1H. Phylogenetic analysis demonstrated that FgCatL1H belonged to a distinct group, clade 4, with respect to adult and other juvenile Fasciola cathepsin L genes. FgCatL1H expression was detected by RT-PCR, using gene specific primers, in metacercariae and NEJ, and the expression gradually decreased in advanced developmental stages. A recombinant proFgCatL1H (rproFgCatL1H) was expressed in the yeast Pichia pastoris, affinity purified, and found to migrate in SDS-PAGE at approximately 47.6 and 38.3kDa in glycosylated and deglycosylated forms, respectively. The molecular mass of the activated mature rFgCatL1H in glycosylated form was approximately 40.7kDa. Immunoblotting and immunohistochemistry using rabbit antibodies against rproFgCatL1H showed that FgCatL1H was predominantly expressed in epithelial cells of the digestive tract of metacercariae, NEJs and juveniles of F. gigantica. FgCatL1H could cleave the synthetic fluorogenic substrate Z-Phe-Arg-MCA preferentially over Z-Gly-Pro-Arg-MCA at an optimum pH of 6.5. It also showed hydrolytic activity against native substrates, including type I collagen, laminin, and immunoglobulin G (IgG) in vitro, suggesting possible roles in host tissue migration and immune evasion. Therefore, the FgCatL1H is a possible target for vaccine and chemotherapy for controlling F. gigantica infection. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar; Kim, Hoon-Sik; MacLaren, Scott; Mason, Nadya; Petrov, Ivan; Rogers, John
2010-03-01
An approach to produce graphene films by epitaxial growth on silicon carbide substrate is promising, but its current implementation requires the use of SiC as the device substrate. We present a simple method for transferring epitaxial sheets of graphene on SiC to other substrates. The graphene was grown on the (0001) face of 6H-SiC by thermal annealing in a hydrogen atmosphere. Transfer was accomplished using a peeling process with a bilayer film of Gold/polyimide, to yield graphene with square millimeters of coverage on the target substrate. Back gated field-effect transistors fabricated on oxidized silicon substrates with Cr/Au as source-drain electrodes exhibited ambipolar characteristics with hole mobilities of ˜100 cm^2/V-s, and negligible influence of resistance at the contacts. This work was supported by the U.S. DOE, under Award No. DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.
Graphene-based nonvolatile terahertz switch with asymmetric electrodes.
Li, Yan; Yu, Hui; Qiu, Xinyu; Dai, Tingge; Jiang, Jianfei; Wang, Gencheng; Zhang, Qiang; Qin, Yali; Yang, Jianyi; Jiang, Xiaoqing
2018-01-24
We propose a nonvolatile terahertz (THz) switch which is able to perform the switching with transient stimulus. The device utilizes graphene as its floating-gate layer, which changes the transmissivity of THz signal by trapping the tunneling charges. The conventional top-down electrode configuration is replaced by a left-right electrode configuration, so THz signals could transmit through this device with the transmissivity being controlled by voltage pulses. The two electrodes are made of metals with different work functions. The resultant asymmetrical energy band structure ensures that both electrical programming and erasing are viable. With the aid of localized surface plasmon resonances in graphene ribbon arrays, the modulation depth is 89% provided that the Femi level of graphene is tuned between 0 and 0.2 eV by proper voltage pulses.
Analog integrated circuits design for processing physiological signals.
Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting
2010-01-01
Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.
Dentino, A R; Westerman, P W; Yeagle, P L
1995-05-04
The anti-viral and membrane fusion inhibitor, carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine (ZfFG), was studied in phospholipid bilayers, where earlier studies had indicated this peptide functioned. Multinuclear magnetic resonance (NMR) studies were performed with isotopically labeled peptide. A peptide labeled in the glycine carboxyl with 13C was synthesized, and the isotropic 13C-NMR chemical shift of that carbon was measured as a function of pH. A pKa of 3.6 for the carboxyl was determined from the peptide bound to a phosphatidylcholine bilayer. ZfFG inhibits the formation by sonication of highly curved, small unilamellar vesicles. Experiments as a function of pH revealed that this ability of ZfFG was governed by a pKa of 3.7. Therefore the protonation state of the carboxyl of ZfFG appeared to regulate the effectiveness of this anti-viral peptide at destabilizing highly curved phospholipid assemblies. Such destabilization had previously been discovered to be related to the mechanism of the anti-fusion and anti-viral activity of this peptide. The location of the carboxyl of ZfFG in the membrane was probed with paramagnetic relaxation enhancement of the 13C spin lattice relaxation of the carboxyl carbon in the glycine of ZfFG (enriched in 13C). Results suggested that this carboxyl is at or above the surface of the phospholipid bilayer. The dynamics of the molecule in the membrane were examined with 2H-NMR studies of ZfFG, deuterated in the alpha-carbon protons of the glycine. When ZfFG was bound to membranes of phosphatidylcholine, a sharp 2H-NMR spectral component was observed, consistent with a disordering of the glycine methylene segment of the peptide. When ZfFG was bound to N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE) bilayers at temperatures below 30 degrees C, a large quadrupole splitting was observed. These results suggest that ZfFG likely inhibits membrane fusion from the surface of the lipid bilayer, but not by forming a tight, stoichiometric complex with the phospholipids.
The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI
NASA Technical Reports Server (NTRS)
Montandon, L. M.; Small, E. E.
2008-01-01
The green vegetation fraction (Fg) is an important climate and hydrologic model parameter. A common method to calculate Fg is to create a simple linear mixing rnodeP between two NDVI endmembers: bare soil NDVI (NDVI(sub o)) and full vegetation NDVI (NDVI(sub infinity)). Usually it is assumed that NDVI(sub o), is close to zero (NDVI(sub o) approx.-0.05) and is generally chosen from the lowest observed NDVI values. However, the mean soil NDVI computed from 2906 samples is much larger (NDVI=0.2) and is highly variable (standard deviation=O. 1). We show that the underestimation of NDVI(sub o) yields overestimations of Fg. The largest errors occur in grassland and shrubland areas. Using parameters for NDVI(sub o) and NDVI(sub infinity) derived from global scenes yields overestimations of Fg ((Delta) Fg*) that are larger than 0.2 for the majority of U.S. land cover types when pixel NDVI values are 0.2
Transfer and dissipation of energy during wave group propagation on a gentle beach slope
NASA Astrophysics Data System (ADS)
Padilla, Enrique M.; Alsina, José M.
2017-08-01
The propagation of bichromatic wave groups over a constant 1:100 beach slope and the influence of the group modulation is presented. The modulation is controlled by varying the group frequency, fg, which is shown to remarkably affect the energy transfer to high and low frequency components. The growth of the high frequency (hf) wave skewness increases when fg decreases. This is explained by nonlinear coupling between the primary frequencies, which results in a larger growth of hf components as fg decreases, causing the hf waves to break earlier. Due to high spatial resolution, wave tracking has provided an accurate measurement of the varying breakpoint. These breaking locations are very well described (R2>0.91) by the wave-height to effective-depth ratio (γ). However, for any given Iribarren number, this γ is shown to increase with fg. Therefore, a modified Iribarren number is proposed to include the grouping structure, leading to a considerable improvement in reproducing the measured γ-values. Within the surf zone, the behavior of the Incident Long Wave also depends on the group modulation. For low fg conditions, the lf wave decays only slightly by transferring energy back to the hf wave components. However, for high fg wave conditions, strong dissipation of low frequency (lf) components occurs close to the shoreline associated with lf wave breaking. This mechanism is explained by the growth of the lf wave height, induced partly by the self-self interaction of fg, and partly by the nonlinear coupling between the primary frequencies and fg.
Genetic parameters and selection of soybean lines based on selection indexes.
Teixeira, F G; Hamawaki, O T; Nogueira, A P O; Hamawaki, R L; Jorge, G L; Hamawaki, C L; Machado, B Q V; Santana, A J O
2017-09-21
Defining selection criteria is important to obtain promising genotypes in a breeding program. The objective of this study was to estimate genetic parameters for agronomic traits and to perform soybean line selection using selection indices. The experiment was conducted at an experimental area located at Capim Branco farm, belonging to the Federal University of Uberlândia. A total of 37 soybean genotypes were evaluated in randomized complete block design with three replicates, in which twelve agronomic traits were evaluated. Analysis of variance, the Scott-Knott test at the 1 and 5% level of probability, and selection index analyses were performed. There was genetic variability for all agronomic traits, with medium to high levels of genotype determination coefficient. Twelve lines with a total cycle up to 110 days were observed and grouped with the cultivars MSOY 6101 and UFUS 7910. Three lines, UFUS FG 03, UFUS FG 20, and UFUS FG 31, were highlighted regarding grain yield with higher values than the national average of 3072 kg/ha. The direct selection enabled the highest trait individual gains. The Williams (1962) index and the Smith (1936) and Hazel (1943) index presented the highest selection gain for the grain yield character. The genotype-ideotype distance index and the index of the sum of ranks of Mulamba and Mock (1978) presented higher values of total selection gain. The lines UFUS FG 12, UFUS FG 14, UFUS FG 18, UFUS FG 25, and UFUS FG 31 were distinguished as superior genotypes by direct selection methods and selection indexes.
Fisher, Patrick D Ellis; Shen, Qi; Akpinar, Bernice; Davis, Luke K; Chung, Kenny Kwok Hin; Baddeley, David; Šarić, Anđela; Melia, Thomas J; Hoogenboom, Bart W; Lin, Chenxiang; Lusk, C Patrick
2018-02-27
Nuclear pore complexes (NPCs) form gateways that control molecular exchange between the nucleus and the cytoplasm. They impose a diffusion barrier to macromolecules and enable the selective transport of nuclear transport receptors with bound cargo. The underlying mechanisms that establish these permeability properties remain to be fully elucidated but require unstructured nuclear pore proteins rich in Phe-Gly (FG)-repeat domains of different types, such as FxFG and GLFG. While physical modeling and in vitro approaches have provided a framework for explaining how the FG network contributes to the barrier and transport properties of the NPC, it remains unknown whether the number and/or the spatial positioning of different FG-domains along a cylindrical, ∼40 nm diameter transport channel contributes to their collective properties and function. To begin to answer these questions, we have used DNA origami to build a cylinder that mimics the dimensions of the central transport channel and can house a specified number of FG-domains at specific positions with easily tunable design parameters, such as grafting density and topology. We find the overall morphology of the FG-domain assemblies to be dependent on their chemical composition, determined by the type and density of FG-repeat, and on their architectural confinement provided by the DNA cylinder, largely consistent with here presented molecular dynamics simulations based on a coarse-grained polymer model. In addition, high-speed atomic force microscopy reveals local and reversible FG-domain condensation that transiently occludes the lumen of the DNA central channel mimics, suggestive of how the NPC might establish its permeability properties.
Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.
Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin
2016-10-01
Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.
Silicon based quantum dot hybrid qubits
NASA Astrophysics Data System (ADS)
Kim, Dohun
2015-03-01
The charge and spin degrees of freedom of an electron constitute natural bases for constructing quantum two level systems, or qubits, in semiconductor quantum dots. The quantum dot charge qubit offers a simple architecture and high-speed operation, but generally suffers from fast dephasing due to strong coupling of the environment to the electron's charge. On the other hand, quantum dot spin qubits have demonstrated long coherence times, but their manipulation is often slower than desired for important future applications. This talk will present experimental progress of a `hybrid' qubit, formed by three electrons in a Si/SiGe double quantum dot, which combines desirable characteristics (speed and coherence) in the past found separately in qubits based on either charge or spin degrees of freedom. Using resonant microwaves, we first discuss qubit operations near the `sweet spot' for charge qubit operation. Along with fast (>GHz) manipulation rates for any rotation axis on the Bloch sphere, we implement two independent tomographic characterization schemes in the charge qubit regime: traditional quantum process tomography (QPT) and gate set tomography (GST). We also present resonant qubit operations of the hybrid qubit performed on the same device, DC pulsed gate operations of which were recently demonstrated. We demonstrate three-axis control and the implementation of dynamic decoupling pulse sequences. Performing QPT on the hybrid qubit, we show that AC gating yields π rotation process fidelities higher than 93% for X-axis and 96% for Z-axis rotations, which demonstrates efficient quantum control of semiconductor qubits using resonant microwaves. We discuss a path forward for achieving fidelities better than the threshold for quantum error correction using surface codes. This work was supported in part by ARO (W911NF-12-0607), NSF (PHY-1104660), DOE (DE-FG02-03ER46028), and by the Laboratory Directed Research and Development program at Sandia National Laboratories under contract DE-AC04-94AL85000.
The anatomical and functional specialization of the fusiform gyrus
Weiner, Kevin S.; Zilles, Karl
2015-01-01
The fusiform gyrus (FG) is commonly included in anatomical atlases and is considered a key structure for functionally-specialized computations of high-level vision such as face perception, object recognition, and reading. However, it is not widely known that the FG has a contentious history. In this review, we first provide a historical analysis of the discovery of the FG and why certain features, such as the mid-fusiform sulcus, were discovered and then forgotten. We then discuss how observer-independent methods for identifying cytoarchitectonical boundaries of the cortex revolutionized our understanding of cytoarchitecture and the correspondence between those boundaries and cortical folding patterns of the FG. We further explain that the co-occurrence between cortical folding patterns and cytoarchitectonical boundaries are more common than classically thought and also, are functionally meaningful especially on the FG and probably in high-level visual cortex more generally. We conclude by proposing a series of alternatives for how the anatomical organization of the FG can accommodate seemingly different theoretical aspects of functional processing, such as domain specificity and perceptual expertise. PMID:26119921
P53 alters the cytotoxicity and genotoxicity for oxidized graphene in human B-lymphoblastoid cells
NASA Astrophysics Data System (ADS)
Petibone, Dayton Matthew
Widespread use of oxidized graphene nanomaterials in industry, medicine, and consumer products raises concern about potential adverse impacts on human health. The p53 tumor suppressor protein is crucial to maintaining cellular and genetic stability to prevent carcinogenesis. Here, we show that oxygen functionalized graphene (f-G) absorption and p53 functional status correlate with cytotoxicity and genotoxicity in human B-lymphoblastoid cells. Trends in f-G absorption by were dose-dependent. Cells with functional p53 exposed to f-G arrested in G0/G1 phase of the cell cycle, suppressed f-G induced reactive oxygen species (ROS), and had elevated apoptosis. While compared to p53 competent cells, the p53 deficient cells exposed to f-G accumulated in S-phase of the cell cycle, had elevated ROS levels, and evaded apoptosis. The f-G genotoxicity was evident as increased loss-of-heterozygosity mutants independent of p53 status, and structural chromosome damage in p53 deficient cells. These findings have broad implications for the safety and efficacy of oxidized graphene nanomaterials in industrial, consumer products and biomedical applications.
Fibrin glue for local haemostasis in haemophilia surgery.
Rodriguez-Merchan, E Carlos
2017-12-01
Local fibrin glue (FG) appears to be a useful local haemostatic agent for severe haemorrhage in people with haemophilia (PWH) undergoing surgical procedures. To evaluate the role of local FG in PWH. A review of the literature on the topic has been performed. Local FG is not always necessary to achieve haemostasis in all surgical procedures performed in PWH. However, it could be a good adjunct therapy, primarily when a surgical field will bleed more than expected (e.g. patients with inhibitors), and also for circumcisions, dental extractions, and surgical treatment of pseudotumours. Although correct surgical haemostasis can typically be achieved by the infusion of factor concentrate at the adequate dose, my recommendation for surgeons is always to have local FG by their side. Local FG appears to be an effective adjunctive therapy for cases in which bleeding is likely (e.g. patients with inhibitors), and for circumcisions, oral surgery, and treatment of pseudotumours. Through the use of local FG, the doses of factor concentrate necessary to prevent bleeding could be reduced, providing considerable cost savings.
DeUgarte, Catherine Marin; Woods, K S; Bartolucci, Alfred A; Azziz, Ricardo
2006-04-01
Hirsutism (i.e. facial and body terminal hair growth in a male-like pattern in women) is the principal clinical sign of hyperandrogenism, although its definition remains unclear. The purposes of the present study were to define 1) the degree of facial and body terminal hair, as assessed by the modified Ferriman-Gallwey (mFG) score, in unselected women from the general population; 2) the effect of race (Black and White) on the same; and 3) the normative cutoff values. We conducted a prospective observational study at a tertiary academic medical center. Participants included 633 unselected White (n = 283) and Black (n = 350) women presenting for a preemployment physical exam. Interventions included history and physical examination. Terminal body hair growth was assessed using the mFG scoring system; nine body areas were scored from 0-4 for terminal hair growth distribution. The mFG scores were not normally distributed; although cluster analysis failed to identify a natural cutoff value or clustering of the population, principal component and univariate analyses denoted two nearly distinct clusters that occurred above and below an mFG value of 2, with the bulk of the scores below. Overall, an mFG score of at least 3 was observed in 22.1% of all subjects (i.e. the upper quartile); of these subjects, 69.3% complained of being hirsute, compared with 15.8% of women with an mFG score below this value, and similar to the proportion of women with an mFG score of at least 8 who considered themselves to be hirsute (70.0%). Overall, there were no significant differences between Black and White women. Our data indicate that the prevalence and degree of facial and body terminal hair growth, as assessed by the mFG score, is similar in Black and White women and that an mFG of at least 3 signals the population of women whose hair growth falls out of the norm.
NASA Astrophysics Data System (ADS)
Panda, Satyajit; Ray, M. C.
2008-04-01
In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.
Adamec, R E
2000-01-01
The hypothesis that benzodiazepine receptors mediate initiation of lasting behavioural changes induced by FG-7142 was supported in this study. Behavioural changes normally induced by FG-7142 were blocked by prior administration of the competitive benzodiazepine receptor blocker, Flumazenil. When cats were subsequently given FG-7142 alone, the drug produced lasting behavioural changes in species characteristic defensive responses to rodent and cat vocal threat. FG-7142 also induced long-lasting potentiation (LLP) of evoked potentials in a number of efferent pathways from the amygdala in both hemispheres. Flumazenil given prior to FG-7142 blocked LLP in all but one of the amygdala efferent pathways, suggesting benzodiazepine receptor dependence of initiation of LLP. Three physiological changes were most closely correlated with behavioural changes. LLP in the right amygdalo-ventromedial hypothalamic (VMH) and amygdalo-periacqueductal gray (PAG) pathways coincided closely with behavioural changes, as did a reduced threshold for the right amygdalo-VMH evoked potential. Administration of Flumazenil after FG-7142 returned defensive behaviour to pre FG-7142 baseline levels in a drug-dependent manner. At the same time LLP only in the right amygdalo-PAG pathway was reduced by Flumazenil. LLP in other pathways and amygdalo-VMH threshold were unaltered by Flumazenil. Moreover, covariance analyses indicated that increased defensiveness depended solely on LLP in the right amygdalo-PAG. These findings support the view that maintenance of lasting increases in defensive behaviour depend upon LLP of excitatory neural transmission between amygdala and lateral column of the PAG in the right hemisphere. Moreover, FG-7142 may be a useful model of the effects of traumatic stressors on limbic system function in anxiety, especially in view of the recent data in humans implicating right hemispheric function in persisting negative affective states in post-traumatic stress disorder.
Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.
Milles, Sigrid; Lemke, Edward A
2011-10-05
Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Anemia in new congenital adult type polycystic kidney mice.
Koumegawa, J; Nagano, N; Arai, H; Wada, M; Kusaka, M; Takahashi, H
1991-12-01
Mechanisms for the development of anemia and the effects of recombinant human erythropoietin (r-HuEPO) on hematological parameters were studied in new congenital adult type polycystic kidney (DBA/2FG-pcy) mice. The majority of DBA/2FG-pcy mice showed progressive anemia and an elevation of blood urea nitrogen, while a minority showed progressive anemia following polycythemia. Kidneys with numerous cysts in the cortex and medulla occupied virtually the entire abdominal cavity, and the combined kidney weight taken as a percentage of body weight reached 13.5% in the DBA/2FG-pcy mouse. The osmotic fragility of DBA/2FG-pcy mice erythrocytes was significantly increased compared with that of normal control mice. In addition, two-fold increases in serum EPO levels, determined by radioimmunoassay, and a decreased number of colony forming unit-erythroid (CFU-E) were observed in the DBA/2FG-pcy mice. The administration of r-HuEPO during anemia significantly increased the red blood cell count, hemoglobin concentration, hematocrit and reticulocyte percentage in a dose-dependent manner. These findings indicate that anemia in the DBA/2FG-pcy mouse is due to increased fragility of erythrocytes, a deficiency in EPO for the degree of anemia and a decreased number or a decreased response of erythroid progenitor cells. We suggest that the DBA/2FG-pcy mouse is a useful spontaneous model of chronic progressive renal failure.
Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Causey, W. H., Jr.
1977-01-01
A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chih; Huang, Chun-Yuan; Yu, Hsin-Chieh; Su, Yan-Kuin
2012-08-01
The nonvolatile memory thin film transistors (TFTs) using a core/shell CdSe/ZnS quantum dot (QD)-poly(methyl methacrylate) (PMMA) composite layer as the floating gate have been demonstrated, with the device configuration of n+-Si gate/SiO2 insulator/QD-PMMA composite layer/pentacene channel/Au source-drain being proposed. To achieve the QD-PMMA composite layer, a two-step spin coating technique was used to successively deposit QD-PMMA composite and PMMA on the insulator. After the processes, the variation of crystal quality and surface morphology of the subsequent pentacene films characterized by x-ray diffraction spectra and atomic force microscopy was correlated to the two-step spin coating. The crystalline size of pentacene was improved from 147.9 to 165.2 Å, while the degree of structural disorder was decreased from 4.5% to 3.1% after the adoption of this technique. In pentacene-based TFTs, the improvement of the performance was also significant, besides the appearances of strong memory characteristics. The memory behaviors were attributed to the charge storage/discharge effect in QD-PMMA composite layer. Under the programming and erasing operations, programmable memory devices with the memory window (Δ Vth) = 23 V and long retention time were obtained.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... lap belt. The inflatable portion of the restraint system will rely on sensors to electronically... establishing these special conditions. The inflatable restraint system relies on sensors to electronically activate the inflator for deployment. These sensors could be susceptible to inadvertent activation, causing...
77 FR 75590 - Airworthiness Directives; Cessna Aircraft Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
...-1330; Directorate Identifier 2012-CE-006-AD] RIN 2120-AA64 Airworthiness Directives; Cessna Aircraft... Aircraft Company (Cessna) (previously COLUMBIA or LANCAIR) Models LC40-550FG, LC41-550FG, and LC42-550FG airplanes. This proposed AD was prompted by reports that during maximum braking, if the brakes lock up and a...
Nonotte-Varly, C
2016-01-01
Gramineae bee-collected pollen is identified as being at the origin of allergic accidents but the biological potency of Gramineae bee-collected pollen is not well known. Cereal grasses (e.g., Zea) and European wild forage grasses (FG) are contained in bee-collected pollen. In this experiment, Zea-mass and FG-mass were identified in bee pollen mass and the proportion of Zea and of FG was calculated using the bee pollen melissopalynology spectrum. Skin reactivity to Zea and to FG were assessed by measuring wheal diameters (W) from skin prick tests using three serial dilutions of bee-collected pollen on 10 allergic patients to Gramineae, in order to calculate the relationship between Zea mass (Masszea) or FG mass (MassFG) in bee pollen and skin reactivity. The linear function Log10(WFG)=0.24(Log10(MassFG))+0.33 (R=0.99) was established using a bee pollen sample with 0.168mg of FG pollen per mg. The linear function Log10(Wzea)=0.23(Log10(Masszea))+0.14 (R=0.99) was established using a bee pollen sample with 0.983mg of Zea pollen per mg. Gramineae allergens seem to be little altered by bee secretions. Gramineae bee pollen retains its allergenic capacity but it depends on the members of the Gramineae family. To our knowledge this is the first time it has been shown that skin reactivity to Gramineae is proportional to the absolute Gramineae mass contained in the bee-collected pollen and that it depends on the members of the Gramineae family. Copyright © 2015 SEICAP. Published by Elsevier Espana. All rights reserved.
Kim, Paul Y.; Vu, Trang T.; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I.
2014-01-01
Fibrin (Fn) clots formed from γ′-fibrinogen (γ′-Fg), a variant with an elongated γ-chain, are resistant to lysis when compared with clots formed from the predominant γA-Fg, a finding previously attributed to differences in clot structure due to delayed thrombin-mediated fibrinopeptide (FP) B release or impaired cross-linking by factor XIIIa. We investigated whether slower lysis of γ′-Fn reflects delayed plasminogen (Pg) binding and/or activation by tissue plasminogen activator (tPA), reduced plasmin-mediated proteolysis of γ′-Fn, and/or altered cross-linking. Clots formed from γ′-Fg lysed more slowly than those formed from γA-Fg when lysis was initiated with tPA/Pg when FPA and FPB were both released, but not when lysis was initiated with plasmin, or when only FPA was released. Pg bound to γ′-Fn with an association rate constant 22% lower than that to γA-Fn, and the lag time for initiation of Pg activation by tPA was longer with γ′-Fn than with γA-Fn. Once initiated, however, Pg activation kinetics were similar. Factor XIIIa had similar effects on clots formed from both Fg isoforms. Therefore, slower lysis of γ′-Fn clots reflects delayed FPB release, which results in delayed binding and activation of Pg. When clots were formed from Fg mixtures containing more than 20% γ′-Fg, the upper limit of the normal level, the delay in lysis was magnified. These data suggest that circulating levels of γ′-Fg modulate the susceptibility of clots to lysis by slowing Pg activation by tPA and provide another example of the intimate connections between coagulation and fibrinolysis. PMID:25128532
Asscher, Jessica J; Dijkstra, Sharon; Stams, Geert Jan J M; Deković, Maja; Creemers, Hanneke E
2014-02-11
The model of Family group-conferencing (FG-c) for decision making in child welfare has rapidly spread over the world during the past decades. Its popularity is likely to be caused by its philosophy, emphasizing participation and autonomy of families, rather than based on positive research outcomes. Conclusive evidence regarding the (cost) effectiveness of FG-c is not yet available. The aim of this protocol is to describe the design of a study to evaluate the (cost) effectiveness of FG-c as compared to Treatment as Usual. The effectiveness of FG-c will be examined by means of a Randomized Controlled Trial. A multi-informant approach will be used to assess child safety as the primary outcome, and commitment of the social network, perceived control/ empowerment; family functioning and use of professional care as secondary outcomes. Implementation of FG-c, characteristics of family manager and family will be examined as moderators of effectiveness. Studying the effectiveness of Fg-c is crucial now the method is being implemented all over the world as a decision making model in child and youth care. Policy makers should be informed whether the ideals of participation in society and the right for self-determination indeed result in more effective care plans, and the money spent on FG-c is warranted. Dutch Trial Register number NTR4320. The design of this study is approved by the independent Ethical Committee of the Faculty of Social and Behavioral Sciences of The University of Amsterdam (approval number: 2013-POWL-3308). This study is financially supported by a grant from ZonMw, The Netherlands Organization for Health Research and Development, grant number: 70-72900-98-13158.
2014-01-01
Background The model of Family group-conferencing (FG-c) for decision making in child welfare has rapidly spread over the world during the past decades. Its popularity is likely to be caused by its philosophy, emphasizing participation and autonomy of families, rather than based on positive research outcomes. Conclusive evidence regarding the (cost) effectiveness of FG-c is not yet available. The aim of this protocol is to describe the design of a study to evaluate the (cost) effectiveness of FG-c as compared to Treatment as Usual. Method/Design The effectiveness of FG-c will be examined by means of a Randomized Controlled Trial. A multi-informant approach will be used to assess child safety as the primary outcome, and commitment of the social network, perceived control/ empowerment; family functioning and use of professional care as secondary outcomes. Implementation of FG-c, characteristics of family manager and family will be examined as moderators of effectiveness. Discussion Studying the effectiveness of Fg-c is crucial now the method is being implemented all over the world as a decision making model in child and youth care. Policy makers should be informed whether the ideals of participation in society and the right for self-determination indeed result in more effective care plans, and the money spent on FG-c is warranted. Trial registration Dutch Trial Register number NTR4320. The design of this study is approved by the independent Ethical Committee of the Faculty of Social and Behavioral Sciences of The University of Amsterdam (approval number: 2013-POWL-3308). This study is financially supported by a grant from ZonMw, The Netherlands Organization for Health Research and Development, grant number: 70-72900-98-13158. PMID:24517167
Goharian, T S; Andersen, L B; Franks, P W; Wareham, N J; Brage, S; Veidebaum, T; Ekelund, U; Lawlor, D A; Loos, R J F; Grøntved, A
2015-03-01
The aim of the study was to determine whether genetically raised fasting glucose (FG) levels are associated with blood pressure (BP) in healthy children and adolescents. We used 11 common genetic variants of FG discovered in genome-wide association studies (GWAS), including the rs560887 single-nucleotide polymorphism (SNP) located in the G6PC2 locus found to be robustly associated with FG in children and adolescents, as an instrument to associate FG with resting BP in 1506 children and adolescents from the European Youth Heart Study (EYHS). Rs560887 was associated with increased FG levels corresponding to an increase of 0.08 mmol l(-1) (P=2.4 × 10(-8)). FG was associated with BP, independent of other important determinants of BP in conventional multivariable analysis (systolic BP z-score: 0.32 s.d. per increase in mmol l(-1) (95% confidence interval (CI) 0.20-0.44, P=1.9 × 10(-7)), diastolic BP z-score: 0.13 s.d. per increase in mmol l(-1) (95% CI 0.04-0.21, P=3.2 × 10(-3)). This association was not supported by the Mendelian randomization approach, neither from instrumenting FG from all 11 variants nor from the rs560887, where non-significant associations of glucose with BP were observed. The results of this study could not support a causal association between FG and BP in healthy children and adolescents; however, it is possible that rs560887 has pleiotropic effects on unknown factors with a BP lowering effect or that these results were due to a lack of statistical power.
Facilitated aggregation of FG nucleoporins under molecular crowding conditions.
Milles, Sigrid; Huy Bui, Khanh; Koehler, Christine; Eltsov, Mikhail; Beck, Martin; Lemke, Edward A
2013-02-01
Intrinsically disordered and phenylalanine-glycine-rich nucleoporins (FG Nups) form a crowded and selective transport conduit inside the NPC that can only be transited with the help of nuclear transport receptors (NTRs). It has been shown in vitro that FG Nups can assemble into two distinct appearances, amyloids and hydrogels. If and how these phenomena are linked and if they have a physiological role still remains unclear. Using a variety of high-resolution fluorescence and electron microscopic (EM) tools, we reveal that crowding conditions mimicking the NPC environment can accelerate the aggregation and amyloid formation speed of yeast and human FG Nups by orders of magnitude. Aggregation can be inhibited by NTRs, providing a rationale on how the cell might control amyloid formation of FG Nups. The superb spatial resolving power of EM also reveals that hydrogels are enlaced amyloid fibres, and these findings have implications for existing transport models and for NPC assembly.
Facilitated aggregation of FG nucleoporins under molecular crowding conditions
Milles, Sigrid; Huy Bui, Khanh; Koehler, Christine; Eltsov, Mikhail; Beck, Martin; Lemke, Edward A
2013-01-01
Intrinsically disordered and phenylalanine–glycine-rich nucleoporins (FG Nups) form a crowded and selective transport conduit inside the NPC that can only be transited with the help of nuclear transport receptors (NTRs). It has been shown in vitro that FG Nups can assemble into two distinct appearances, amyloids and hydrogels. If and how these phenomena are linked and if they have a physiological role still remains unclear. Using a variety of high-resolution fluorescence and electron microscopic (EM) tools, we reveal that crowding conditions mimicking the NPC environment can accelerate the aggregation and amyloid formation speed of yeast and human FG Nups by orders of magnitude. Aggregation can be inhibited by NTRs, providing a rationale on how the cell might control amyloid formation of FG Nups. The superb spatial resolving power of EM also reveals that hydrogels are enlaced amyloid fibres, and these findings have implications for existing transport models and for NPC assembly. PMID:23238392
Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P
2016-04-08
The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior - a key element for the transport selectivity of the NPC - was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface.
USDA-ARS?s Scientific Manuscript database
Members of the APSES family of fungal proteins regulate morphogenesis and virulence in ascomycetes. We deleted the FgStuA gene in Fusarium graminearum and demonstrate its involvement in several different processes. FgStuA is closely related to FoStuA in F. oxysporum and StuA in Aspergillus. Unlike F...
Real-Time PCR Diagnostics for Detecting and Identifying Potential Bioweapons
2003-11-18
pestis Bacillus cereus Salmonella enteritidis Yersinia pestis Bacillus thurigiensis Serratia odorifera Yersinia pestis Bacillus coagulans Shigella...10fg NTC 100pg-opt 10pg-opt 1pg-opt 100fg-opt 10fg-opt NTC-opt USAMRIID Specificity Organism Organism Organism Acineobacter baumanni Bacillus subtilis...var niger Staphylococcus saprophyticus Bacillus anthracis BA0068 Bacillus bronchiseptica Staphylococcus epidermidis Bacillus anthracis Clostridium
Decoding and disrupting left midfusiform gyrus activity during word reading
Hirshorn, Elizabeth A.; Ward, Michael J.; Fiez, Julie A.; Ghuman, Avniel Singh
2016-01-01
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation. PMID:27325763
Decoding and disrupting left midfusiform gyrus activity during word reading.
Hirshorn, Elizabeth A; Li, Yuanning; Ward, Michael J; Richardson, R Mark; Fiez, Julie A; Ghuman, Avniel Singh
2016-07-19
The nature of the visual representation for words has been fiercely debated for over 150 y. We used direct brain stimulation, pre- and postsurgical behavioral measures, and intracranial electroencephalography to provide support for, and elaborate upon, the visual word form hypothesis. This hypothesis states that activity in the left midfusiform gyrus (lmFG) reflects visually organized information about words and word parts. In patients with electrodes placed directly in their lmFG, we found that disrupting lmFG activity through stimulation, and later surgical resection in one of the patients, led to impaired perception of whole words and letters. Furthermore, using machine-learning methods to analyze the electrophysiological data from these electrodes, we found that information contained in early lmFG activity was consistent with an orthographic similarity space. Finally, the lmFG contributed to at least two distinguishable stages of word processing, an early stage that reflects gist-level visual representation sensitive to orthographic statistics, and a later stage that reflects more precise representation sufficient for the individuation of orthographic word forms. These results provide strong support for the visual word form hypothesis and demonstrate that across time the lmFG is involved in multiple stages of orthographic representation.
Effect of Fasciola gigantica excretory secretory antigen on rat hematological indices
Ganga, G.; Sharma, R. L.
2006-01-01
The present study was undertaken to investigate the effect of Fasciola gigantica excretory secretory antigen (Fg-ESA) on rat hematological indices. Fg-ESA was prepared by keeping thoroughly washed 40 F. gigantica flukes in 100 ml phosphate buffer saline (PBS) for 2 h at 37℃, and centrifuging the supernatant at 12,000 g at 4℃ for 30 min. The protein content of Fg-ESA was adjusted to 1.8 mg/ml. The rats were randomly divided into two groups of six rats each. Rats in group A received 0.5 ml of Fg-ESA intraperitoneally (i.p.) for 7 days, whereas control rats in group B received 0.5 ml of PBS i.p. for 7 days. Hemograms of both groups were studied initially and on days 0, 2, 4, 14 and 21 after the final injection of Fg-ESA or PBS. Progressive and significant (p < 0.01) declines in the values of hemoglobin, hematocrit, and total erythrocyte count were observed without significant (p > 0.05) changes in the values of mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, or mean corpuscular volume in group A. Thus, we conclude that Fg-ESA induces normocytic normochromic anemia in rats. PMID:16645335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulupa, Joan; Rachh, Manas; Tomasini, Michael D.
The phenylalanine-glycine–repeat nucleoporins (FG-Nups), which occupy the lumen of the nuclear pore complex (NPC), are critical for transport between the nucleus and cytosol. Although NPCs differ in composition across species, they are largely conserved in organization and function. Transport through the pore is on the millisecond timescale. Here, to explore the dynamics of nucleoporins on this timescale, we use coarse-grained computational simulations. These simulations generate predictions that can be experimentally tested to distinguish between proposed mechanisms of transport. Our model reflects the conserved structure of the NPC, in which FG-Nup filaments extend into the lumen and anchor along the interiormore » of the channel. The lengths of the filaments in our model are based on the known characteristics of yeast FG-Nups. The FG-repeat sites also bind to each other, and we vary this association over several orders of magnitude and run 100-ms simulations for each value. The autocorrelation functions of the orientation of the simulated FG-Nups are compared with in vivo anisotropy data. We observe that FG-Nups reptate back and forth through the NPC at timescales commensurate with experimental measurements of the speed of cargo transport through the NPC. Our results are consistent with models of transport where FG-Nup filaments are free to move across the central channel of the NPC, possibly informing how cargo might transverse the NPC.« less
Pulupa, Joan; Rachh, Manas; Tomasini, Michael D.; ...
2017-09-08
The phenylalanine-glycine–repeat nucleoporins (FG-Nups), which occupy the lumen of the nuclear pore complex (NPC), are critical for transport between the nucleus and cytosol. Although NPCs differ in composition across species, they are largely conserved in organization and function. Transport through the pore is on the millisecond timescale. Here, to explore the dynamics of nucleoporins on this timescale, we use coarse-grained computational simulations. These simulations generate predictions that can be experimentally tested to distinguish between proposed mechanisms of transport. Our model reflects the conserved structure of the NPC, in which FG-Nup filaments extend into the lumen and anchor along the interiormore » of the channel. The lengths of the filaments in our model are based on the known characteristics of yeast FG-Nups. The FG-repeat sites also bind to each other, and we vary this association over several orders of magnitude and run 100-ms simulations for each value. The autocorrelation functions of the orientation of the simulated FG-Nups are compared with in vivo anisotropy data. We observe that FG-Nups reptate back and forth through the NPC at timescales commensurate with experimental measurements of the speed of cargo transport through the NPC. Our results are consistent with models of transport where FG-Nup filaments are free to move across the central channel of the NPC, possibly informing how cargo might transverse the NPC.« less
NASA Astrophysics Data System (ADS)
Sargentis, Ch.; Giannakopoulos, K.; Travlos, A.; Tsamakis, D.
2007-04-01
Floating gate devices with nanoparticles embedded in dielectrics have recently attracted much attention due to the fact that these devices operate as non-volatile memories with high speed, high density and low power consumption. In this paper, memory devices containing gold (Au) nanoparticles have been fabricated using e-gun evaporation. The Au nanoparticles are deposited on a very thin SiO 2 layer and are then fully covered by a HfO 2 layer. The HfO 2 is a high- k dielectric and gives good scalability to the fabricated devices. We studied the effect of the deposition parameters to the size and the shape of the Au nanoparticles using capacitance-voltage and conductance-voltage measurements, we demonstrated that the fabricated device can indeed operate as a low-voltage memory device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, H. X.; Zhang, T.; Wang, R. X.
A nano-floating gate memory structure based on Ni nanocrystals (NCs) embedded HfO{sub x} film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfO{sub x} matrix. Pt/Ni-NCs embedded HfO{sub x}/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 10{sup 12} electrons/cm{sup 2}, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 10{sup 4} cycles and excellent retention performance of 10{sup 5} s, fulfilling themore » requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.« less
Optimization of a PCRAM Chip for high-speed read and highly reliable reset operations
NASA Astrophysics Data System (ADS)
Li, Xiaoyun; Chen, Houpeng; Li, Xi; Wang, Qian; Fan, Xi; Hu, Jiajun; Lei, Yu; Zhang, Qi; Tian, Zhen; Song, Zhitang
2016-10-01
The widely used traditional Flash memory suffers from its performance limits such as its serious crosstalk problems, and increasing complexity of floating gate scaling. Phase change random access memory (PCRAM) becomes one of the most potential nonvolatile memories among the new memory techniques. In this paper, a 1M-bit PCRAM chip is designed based on the SMIC 40nm CMOS technology. Focusing on the read and write performance, two new circuits with high-speed read operation and highly reliable reset operation are proposed. The high-speed read circuit effectively reduces the reading time from 74ns to 40ns. The double-mode reset circuit improves the chip yield. This 1M-bit PCRAM chip has been simulated on cadence. After layout design is completed, the chip will be taped out for post-test.
Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials.
Zhou, Li; Mao, Jingyu; Ren, Yi; Han, Su-Ting; Roy, Vellaisamy A L; Zhou, Ye
2018-03-01
Following the trend of miniaturization as per Moore's law, and facing the strong demand of next-generation electronic devices that should be highly portable, wearable, transplantable, and lightweight, growing endeavors have been made to develop novel flexible data storage devices possessing nonvolatile ability, high-density storage, high-switching speed, and reliable endurance properties. Nonvolatile organic data storage devices including memory devices on the basis of floating-gate, charge-trapping, and ferroelectric architectures, as well as organic resistive memory are believed to be favorable candidates for future data storage applications. In this Review, typical information on device structure, memory characteristics, device operation mechanisms, mechanical properties, challenges, and recent progress of the above categories of flexible data storage devices based on organic nanoscaled materials is summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Charge storage and tunneling mechanism of Ni nanocrystals embedded HfOx film
NASA Astrophysics Data System (ADS)
Zhu, H. X.; Zhang, T.; Wang, R. X.; Zhang, Y. Y.; Li, L. T.; Qiu, X. Y.
2016-05-01
A nano-floating gate memory structure based on Ni nanocrystals (NCs) embedded HfOx film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfOx matrix. Pt/Ni-NCs embedded HfOx/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 1012 electrons/cm2, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 104 cycles and excellent retention performance of 105 s, fulfilling the requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.
CMOS Image Sensor Using SOI-MOS/Photodiode Composite Photodetector Device
NASA Astrophysics Data System (ADS)
Uryu, Yuko; Asano, Tanemasa
2002-04-01
A new photodetector device composed of a lateral junction photodiode and a metal-oxide-semiconductor field-effect-transistor (MOSFET), in which the output of the diode is fed through the body of the MOSFET, has been investigated. It is shown that the silicon-on-insulator (SOI)-MOSFET amplifies the junction photodiode current due to the lateral bipolar action. It is also shown that the presence of the electrically floating gate enhances the current amplification factor of the SOI-MOSFET. The output current of this composite device linearly responds by four orders of illumination intensity. As an application of the composite device, a complementary-metal-oxide-semiconductor (CMOS) line sensor incorporating the composite device is fabricated and its operation is demonstrated. The output signal of the line sensor using the composite device was two times larger than that using the lateral photodiode.
Valderhaug, Tone G; Sharma, Archana; Kravdal, Gunnhild; Rønningen, Reidun; Nermoen, Ingrid
2017-11-01
In spite of increased vigilance of undiagnosed type 2 diabetes (DM2), the prevalence of unknown DM2 in subjects with morbid obesity is not known. To assess the prevalence of undiagnosed DM2 and compare the performance of glycated A1c (HbA1c) and fasting glucose (FG) for the diagnosis of DM2 and prediabetes (preDM) in patients with morbid obesity. We measured fasting glucose and HbA1c in 537 consecutive patients with morbid obesity without previously known DM2. A total of 49 (9%) patients with morbid obesity had unknown DM2 out of which 16 (33%) fulfilled both the criteria for HbA1c and FG. Out of 284 (53%) subjects with preDM, 133 (47%) fulfilled both the criteria for HbA1c and FG. Measurements of agreement for FG and HbA1c were moderate for DM2 (κ = 0.461, p < .001) and fair for preDM (κ = 0.317, p < .001). Areas under the curve for FG and HbA1c in predicting unknown DM2 were 0.970 (95% CI 0.942, 0.998) and 0.894 (95% CI 0.837, 0.951) respectively. The optimal thresholds to identify unknown DM2 were FG ≥6.6 mmol/L and HbA1c ≥ 6.1% (43 mmol/mol). The prevalence of DM2 remains high and both FG and HbA1c identify patients with unknown DM2. FG was slightly superior to HbA1c in predicting and separating patients with unknown DM2 from patients without DM2. We suggest that an FG ≥6.6 mmol/L or an HbA1c ≥6.1% (43 mmol/mol) may be used as primary cut points for the identification of unknown DM2 among patients with morbid obesity.
Tibbetts, Yoi; Priniski, Stacy J; Hecht, Cameron A; Borman, Geoffrey D; Harackiewicz, Judith M
2018-01-01
First-generation (FG) college students (students for whom neither parent has a 4-year degree) face a number of challenges as they attempt to obtain a post-secondary degree. They are more likely to come from working-class backgrounds or poverty (Reardon, 2011) and attend lower quality high schools (Warburton et al., 2001) while not benefiting from the guidance of a parent who successfully navigated the path to higher education. FG college students also contend with belonging or "fitting in" concerns due a perceived mismatch between their own values and the values implicit in institutions of higher education (Stephens et al., 2012a). Specifically, prior research has demonstrated that FG college students face an unseen disadvantage that can be attributed to the fact that middle-class norms of independence reflected in American institutions of higher education can be experienced as threatening by many FG students who have been socialized with more interdependent values commonly espoused in working-class populations. The present research examines this theory (cultural mismatch theory) in the understudied context of 2-year colleges and tests if a values-affirmation intervention (i.e., an intervention that has shown promise in addressing identity threats and belonging concerns) can be effective for FG college students at these 2-year campuses. By considering the tenets of cultural mismatch theory in the creation of the values-affirmation interventions we were able to vary different aspects of the intervention in order to examine how its effectiveness may depend on the nature and magnitude of a perceived cultural mismatch. Results from surveying faculty and students at 2-year colleges indicated that compared to traditional 4-year institutions, the norms of 2-year colleges and the motivations of FG students may be different. That is, FG student motives may be more consistent (and thus less mismatched) with the cultural context of 2-year colleges which could result in fewer belonging concerns when compared to FG students at 4-year institutions. This may carry implications for the efficacy of values-affirmation interventions and could help explicate why FG students in the current sample perceived a greater match with their college when they reflected on their interdependent values.
A feed-forward spiking model of shape-coding by IT cells
Romeo, August; Supèr, Hans
2014-01-01
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders. PMID:24904494
The molecular mechanism of nuclear transport revealed by atomic-scale measurements
Hough, Loren E; Dutta, Kaushik; Sparks, Samuel; Temel, Deniz B; Kamal, Alia; Tetenbaum-Novatt, Jaclyn; Rout, Michael P; Cowburn, David
2015-01-01
Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI: http://dx.doi.org/10.7554/eLife.10027.001 PMID:26371551
Effects of Phospholipase C on Fusarium graminearum Growth and Development.
Zhu, Qili; Zhou, Benguo; Gao, Zhengliang; Liang, Yuancun
2015-12-01
Phospholipase C (PLC) plays important roles in regulating various biological processes in eukaryotes. Currently, little is known about the function of PLC in filamentous fungi, especially the plant pathogenic fungi. Fusarium graminearum is the causal agent of Fusarium head blight in many cereal crops. BLAST search revealed that Fusarium genome contains six FgPLC genes. Using quantitative RT-PCR, different FgPLC gene expressions in mycelia were analyzed. To investigate the role of FgPLC in F. graminearum biology, a pharmacological study using a known inhibitor of PLC (U73122) was conducted. Results showed that inhibition of FgPLC resulted in significant alterations of mycelial growth, conidiation, conidial germination, perithecium formation, and expressions of Tri5 and Tri6 genes. As expected, the treatment of F. graminearum with U73343, an inactive analog of U73122, showed no effect on F. graminearum biology. Our results suggested strongly that FgPLC plays important roles in F. graminearum growth and development.
Zahn, Raphael; Osmanović, Dino; Ehret, Severin; Araya Callis, Carolina; Frey, Steffen; Stewart, Murray; You, Changjiang; Görlich, Dirk; Hoogenboom, Bart W; Richter, Ralf P
2016-01-01
The permeability barrier of nuclear pore complexes (NPCs) controls bulk nucleocytoplasmic exchange. It consists of nucleoporin domains rich in phenylalanine-glycine motifs (FG domains). As a bottom-up nanoscale model for the permeability barrier, we have used planar films produced with three different end-grafted FG domains, and quantitatively analyzed the binding of two different nuclear transport receptors (NTRs), NTF2 and Importin β, together with the concomitant film thickness changes. NTR binding caused only moderate changes in film thickness; the binding isotherms showed negative cooperativity and could all be mapped onto a single master curve. This universal NTR binding behavior – a key element for the transport selectivity of the NPC – was quantitatively reproduced by a physical model that treats FG domains as regular, flexible polymers, and NTRs as spherical colloids with a homogeneous surface, ignoring the detailed arrangement of interaction sites along FG domains and on the NTR surface. DOI: http://dx.doi.org/10.7554/eLife.14119.001 PMID:27058170
Narcolepsy: regional cerebral blood flow during sleep and wakefulness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, F.; Meyer, J.S.; Karacan, I.
Serial measurements of regional cerebral blood flow were made by the 135Xe inhalation method during the early stages of sleep and wakefulness in eight normal volunteers and 12 patients with narcolepsy. Electroencephalogram, electro-oculogram, and submental electromyogram were recorded simultaneously. In normals, mean hemispheric gray matter blood flow (Fg) during stages I and II sleep was significantly less than waking values. Maximum regional blood flow decreases during sleep occurred in the brainstem-cerebellar, right inferior temporal, and bilateral frontal regions. In patients with narcolepsy, mean hemispheric Fg while awake was 80.5 +- 13 ml per 100 gm brain per minute. During REMmore » sleep, mean hemispheric Fg increased concurrently with large increases in brainstem-cerebellar region flow. During stages I and II sleep without REM, there were significant increases in mean hemispheric Fg and brainstem-cerebellar Fg, just the opposite of changes in normals. In narcolepsy, there appears to be a reversal of normal cerebral deactivation patterns, particularly involving the brainstem, during stages I and II sleep.« less
Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG.
Dong, Haohao; Zhang, Zhengyu; Tang, Xiaodi; Paterson, Neil G; Dong, Changjiang
2017-08-09
The cell surface of most Gram-negative bacteria contains lipopolysaccharide that is essential for their viability and drug resistance. A 134-kDa protein complex LptB 2 FG is unique among ATP-binding cassette transporters because it extracts lipopolysaccharide from the external leaflet of the inner membrane and propels it along a filament that extends across the periplasm to directly deliver lipopolysaccharide into the external leaflet of the outer membrane. Here we report the crystal structure of the lipopolysaccharide transporter LptB 2 FG from Klebsiella pneumoniae, in which both LptF and LptG are composed of a β-jellyroll-like periplasmic domain and six α-helical segments in the transmembrane domain. LptF and LptG form a central cavity containing highly conserved hydrophobic residues. Structural and functional studies suggest that LptB 2 FG uses an alternating lateral access mechanism to extract lipopolysaccharide and traffic it along the hydrophobic cavity toward the transporter's periplasmic domains.Lipopolysaccharides (LPS) are synthesized at the periplasmic side of the inner membrane of Gram-negative bacteria and are then extracted by the LptB 2 FG complex during the first step of LPS transport to the outer membrane. Here the authors present the LptB 2 FG structure, which supports an alternating lateral access mechanism for LPS extraction.
Mohedano, M. Luz; Overweg, Karin; de la Fuente, Alicia; Reuter, Mark; Altabe, Silvia; Mulholland, Francis; de Mendoza, Diego; López, Paloma; Wells, Jerry M.
2005-01-01
The YycFG two-component system, originally identified in Bacillus subtilis, is highly conserved among gram-positive bacteria with low G+C contents. In Streptococcus pneumoniae, the YycF response regulator has been reported to be essential for cell growth, but the signal to which it responds and the gene members of the regulon remain unclear. In order to investigate the role of YycFG in S. pneumoniae, we increased the expression of yycF by using a maltose-inducible vector and analyzed the genome-wide effects on transcription and protein expression during the course of yycF expression. The induction of yycF expression increased histidine kinase yycG transcript levels, suggesting an autoregulation of the yycFG operon. Evidence from both proteomic and microarray transcriptome studies as well as analyses of membrane fatty acid composition indicated that YycFG is involved in the regulation of fatty acid biosynthesis pathways and in determining fatty acid chain lengths in membrane lipids. In agreement with recent transcriptome data on pneumococcal cells depleted of YycFG, we also identified several other potential members of the YycFG regulon that are required for virulence and cell wall biosynthesis and metabolism. PMID:15774879
NASA Astrophysics Data System (ADS)
Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu
2018-04-01
Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.
NASA Astrophysics Data System (ADS)
Klinger, Emmanuel; Sargsyan, Armen; Tonoyan, Ara; Hakhumyan, Grant; Papoyan, Aram; Leroy, Claude; Sarkisyan, David
2017-08-01
Magnetic field-induced giant modification of the probabilities of five transitions of 5S1 / 2,Fg = 2 → 5P3 / 2,Fe = 4 of 85Rb and three transitions of 5S1 / 2,Fg = 1 → 5P3 / 2,Fe = 3 of 87Rb forbidden by selection rules for zero magnetic field has been observed experimentally and described theoretically for the first time. For the case of excitation with circularly-polarized (σ+) laser radiation, the probability of Fg = 2,mF = - 2 → Fe = 4,mF = - 1 transition becomes the largest among the seventeen transitions of 85Rb Fg = 2 → Fe = 1,2,3,4 group, and the probability of Fg = 1, mF = - 1 → Fe = 3,mF = 0 transition becomes the largest among the nine transitions of 87Rb Fg = 1 → Fe = 0,1,2,3 group, in a wide range of magnetic field 200-1000 G. Complete frequency separation of individual Zeeman components was obtained by implementation of derivative selective reflection technique with a 300 nm-thick nanocell filled with Rb, allowing formation of narrow optical resonances. Possible applications are addressed. The theoretical model is well consistent with the experimental results.
Rectal cancer and Fournier’s gangrene - current knowledge and therapeutic options
Bruketa, Tomislav; Majerovic, Matea; Augustin, Goran
2015-01-01
Fournier’s gangrene (FG) is a rapid progressive bacterial infection that involves the subcutaneous fascia and part of the deep fascia but spares the muscle in the scrotal, perianal and perineal region. The incidence has increased dramatically, while the reported incidence of rectal cancer-induced FG is unknown but is extremely low. Pathophysiology and clinical presentation of rectal cancer-induced FG per se does not differ from the other causes. Only rectal cancer-specific symptoms before presentation can lead to the diagnosis. The diagnosis of rectal cancer-induced FG should be excluded in every patient with blood on digital rectal examination, when urogenital and dermatological causes are excluded and when fever or sepsis of unknown origin is present with perianal symptomatology. Therapeutic options are more complex than for other forms of FG. First, the causative rectal tumor should be removed. The survival of patients with rectal cancer resection is reported as 100%, while with colostomy it is 80%. The preferred method of rectal resection has not been defined. Second, oncological treatment should be administered but the timing should be adjusted to the resolution of the FG and sometimes for the healing of plastic reconstructive procedures that are commonly needed for the reconstruction of large perineal, scrotal and lower abdominal wall defects. PMID:26290629
Sheng, Xiu-Zhen; Wang, Mu; Xing, Jing; Zhan, Wen-Bin
2012-08-13
In previous research using co-immunoprecipitation, a 27.8 kDa protein in flounder Paralichthys olivaceus gill (FG) cells was found to bind lymphocystis disease virus (LCDV). In this paper, 13 hybridomas secreting monoclonal antibodies (MAbs) against the 27.8 kDa protein were obtained, and 2 MAbs designated as 2G11 and 3D9 were cloned by limiting dilution. Analyzed by indirect enzyme-linked immunosorbent assay (ELISA) and western blotting, the MAbs specifically reacted with the 27.8 kDa protein of FG cells. Confocal fluorescence microscopy and immunogold electron microscopy (IEM) provided evidence that the epitopes recognized by these MAbs were located primarily on the cell membrane and occasionally in the cytoplasm near the cell membrane of FG cells. The MAbs could block LCDV binding after MAbs were pre-incubated with isolated membrane proteins of FG cells in a blocking ELISA, and MAbs also could inhibit LCDV infection of FG cells in culture. Moreover, several target tissues of LCDV in flounder, including gill, stomach, intestine and liver, displayed the presence of the LCDV receptor-27.8 kDa. These results strongly supported the possibility that the 27.8 kDa protein is the putative receptor specific for LCDV infection of FG cells in flounder.
Graf, Brittany; Rojo, Leonel E.; Delatorre-Herrera, Jose; Poulev, Alexander; Calfio, Camila; Raskin, Ilya
2015-01-01
BACKGROUND Little is known about varietal differences in the content of bioactive phytoecdysteroids (PE) and flavonoid glycosides (FG) from quinoa (Chenopodium quinoa Willd.). The aim of this study was to determine the variation in PE and FG content among seventeen distinct quinoa sources and identify correlations to genotypic (highland vs. lowland) and physicochemical characteristics (seed color, 100-seed weight, protein content, oil content). RESULTS PE and FG concentrations exhibited over 4-fold differences across quinoa sources, ranging from 138 ± 11 μg/g to 570 ± 124 μg/g total PE content and 192 ± 24 μg/g to 804 ± 91 μg/g total FG content. Mean FG content was significantly higher in highland Chilean varieties (583.6 ± 148.9 μg/g) versus lowland varieties (228.2 ± 63.1 μg/g) grown under the same environmental conditions (P = 0.0046; t-test). Meanwhile, PE content was positively and significantly correlated with oil content across all quinoa sources (r = 0.707, P = 0.002; Pearson correlation). CONCLUSION FG content may be genotypically regulated in quinoa. PE content may be increased via enhancement of oil content. These findings may open new avenues for the improvement and development of quinoa as a functional food. PMID:25683633
Walker, Jennifer N; Flores-Mireles, Ana L; Pinkner, Chloe L; Schreiber, Henry L; Joens, Matthew S; Park, Alyssa M; Potretzke, Aaron M; Bauman, Tyler M; Pinkner, Jerome S; Fitzpatrick, James A J; Desai, Alana; Caparon, Michael G; Hultgren, Scott J
2017-10-10
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual's susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus -positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA-Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB - strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host's robust immune response.
Simpson, Brent W.; Owens, Tristan W.; Orabella, Matthew J.; Davis, Rebecca M.; May, Janine M.; Trauger, Sunia A.
2016-01-01
ABSTRACT The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB2FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB2FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. PMID:27795402
Walker, Jennifer N.; Flores-Mireles, Ana L.; Pinkner, Chloe L.; Schreiber, Henry L.; Joens, Matthew S.; Park, Alyssa M.; Potretzke, Aaron M.; Bauman, Tyler M.; Pinkner, Jerome S.; Fitzpatrick, James A. J.; Desai, Alana; Caparon, Michael G.
2017-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual’s susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus-positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus. Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA–Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB− strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host’s robust immune response. PMID:28973850
NASA Astrophysics Data System (ADS)
Ghadiri, Majid; Soltanpour, Mahdi; Yazdi, Ali; Safi, Mohsen
2016-05-01
Free transverse vibration of a size-dependent cracked functionally graded (FG) Timoshenko nanobeam resting on a polymer elastic foundation is investigated in the present study. Also, all of the surface effects: surface density, surface elasticity and residual surface tension are studied. Moreover, satisfying the balance condition between the nanobeam and its surfaces was discussed. According to the power-law distribution, it is supposed that the material properties of the FG nanobeam are varying continuously across the thickness. Considering the small-scale effect, the Eringen's nonlocal theory is used; accounting the effect of polymer elastic foundation, the Winkler model is proposed. For this purpose, the equations of motion of the FG Timoshenko nanobeam and boundary conditions are obtained using Hamilton's principle. To find the analytical solutions for equations of motion of the FG nanobeam, the separation of variables method is employed. Two cases of boundary conditions, i.e., simply supported-simply supported (SS) and clamped-clamped (CC) are investigated in the present work. Numerical results are demonstrating a good agreement between the results of the present study and some available cases in the literature. The emphasis of the present study is on investigating the effect of various parameters such as crack severity, crack position, gradient index, mode number, nonlocal parameter, elastic foundation parameter and nanobeam length. It is clearly revealed that the vibrational behavior of a FG nanobeam is depending significantly on these effects. Also, these numerical results can be serving as benchmarks for future studies of FG nanobeams.
Wagoner, Amanda L; Allen, Matthew J; Zindl, Claudia; Litsky, Alan; Orsher, Robert; Ben-Amotz, Ron
2018-04-16
Various materials are used to construct splints for mid-diaphyseal tibial fracture stabilization. The objective of this study was to compare construct stiffness and inter-fragmentary bone motion when fibreglass (FG) or thermoplastic (TP) splints are applied to either the lateral or cranial aspect of the tibia in a mid-diaphyseal fracture model. A coaptation bandage was applied to eight cadaveric canine pelvic limbs, with a custom-formed splint made of either FG or TP material applied to either the lateral or cranial aspect of the osteotomized tibia. Four-point bending tests were performed to evaluate construct stiffness and inter-fragmentary motion in both frontal and sagittal planes. For a given material, FG or TP, construct stiffness was not affected by splint location. Construct stiffness was significantly greater with cranial FG splints than with cranial TP splints ( p < 0.05), but this difference was not significant when comparing splints applied laterally ( p = 0.15). Inter-fragmentary motions in the sagittal and frontal planes were similar across splint types for cranial splints, but for lateral splints there was a 64% reduction in frontal plane motion when FG was used as the splint material ( p = 0.03). FG produces a stiffer construct, but the difference is not reflected in a reduction in inter-fragmentary motion. For lateral splints, FG splints are associated with reduced inter-fragmentary motion as compared with TP and may therefore have slight superiority for this application. Schattauer GmbH Stuttgart.
Son, Moonil; Lee, Kyung-Mi; Yu, Jisuk; Kang, Minji; Park, Jin Man; Kwon, Sun-Jung
2013-01-01
The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus. PMID:23864619
Zheng, Bao-Qiang; Zou, Long-Hai; Li, Kui; Wan, Xiao; Wang, Yan
2017-01-01
Cypripedium tibeticum, a subalpine orchid species, inhabits various habitats of subalpine forests, mainly including the forest edge (FE), forest gap (FG), and understory (UST), which have significantly different light intensities (FE > FG > UST). However, the ecological and physiological influences caused by different light regimes in this species are still poorly understood. In the present study, photosynthetic, morphological, and reproductive characteristics were comprehensively studied in plants of C. tibeticum grown in three types of habitats. The photosynthetic capacities, such as the net photosynthetic rate, light-saturated photosynthesis (Pmax), and dry mass per unit leaf area (LMA), were higher in FE and FG than in UST according to light availability. Compared with FG, the populations in FE and UST suffer from excessively strong and inadequate radiation, respectively, which was further corroborated by the low Fv/Fm in FE and high apparent quantum yield (AQY) in FG. The leaves of the orchids had various proportions of constituents, such as the leaf area, thickness and (or) epidermal hair, to reduce damage from high radiation (including ultraviolet-b radiation) in FE and capture more light in FG and UST. Although the flower rate (FR) was positively correlated to both Pmax and the daily mean PAR, fruit-set only occurred in the populations in FG. The failures in FE and UST might be ascribed to changes in the floral functional structure and low biomass accumulation, respectively. Moreover, analysis of the demographic statistics showed that FG was an advantageous habitat for the orchid. Thus, C. tibeticum reacted to photosynthetic and morphological changes to adapt to different subalpine forest habitats, and neither full (under FE) nor low (UST) illumination was favorable for population expansion. These findings could serve as a guide for the protection and reintroduction of C. tibeticum and emphasize the importance of specific habitats for Cypripedium spp.
Liu, Xiaoyan; Cao, Guanjun; Zhou, Jinglong; Yao, Xuan; Fang, Binghu
2017-07-01
In order to evaluate the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and non-fermented G. biloba (NFG) on abdominal fat deposition and meat quality, 270 female Peking ducks were randomly assigned to the following experimental groups: a control group (fed a basal diet), an NFG group (fed a basal diet + 0.3% NFG), and an FG group (fed a basal diet + 0.3% FG). Body weight and feed intake were recorded weekly, and feed conversion ratio was calculated to assess growth performance. After 6 wk, 18 ducks from each group were killed. Abdominal fat ratio and pH (at 45 min and 24 h postmortem), color parameters (lightness, redness, and yellowness), water-holding capacity, cooking loss, shear force, and intramuscular fat and fatty acid contents were measured. Six more ducks were killed to isolate RNA from their abdominal fat tissue for measurements of peroxisome proliferator-activated receptor-γ (PPARγ), obese (leptin), and adiponectin (ADP) expression using real-time polymerase chain reaction. The results revealed that body weight gain was higher in the FG group than in the control and NFG groups, whereas feed conversion ratio was lower (P < 0.05). The abdominal fat contents were lower in the NFG and FG groups than in the control group (P < 0.05). The NFG and FG groups had lower levels of saturated fatty acids (mainly palmitic acid) and higher levels of polyunsaturated fatty acids (mainly linoleic acid and arachidonic acid) than the control group. The mRNA expressions of PPARγ, leptin, and ADP in abdominal fat tissue were significantly increased in the NFG and FG groups, and the mRNA expression of PPARγ was higher in the FG group than in the NFG group (P < 0.05). These results suggest that fermenting G. biloba reduces the deposition of abdominal fat and improves the fatty acid profile of Peking duck meat. © 2017 Poultry Science Association Inc.
Adamec, R E
1998-01-01
The findings of this study support the hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate the initiation of long-term potentiation (LTP) and behavioral changes induced by the anxiogenic beta-carboline, FG-7142. Unlike previous work, this study examined the effects of FG-7142 on LTP of amygdala efferents in both hemispheres. 7-amino-phosphono-heptanoic acid (AP7), a competitive NMDA receptor blocker, given prior to administration of FG-7142, prevented LTP in amygdala efferent transmission to the medial hypothalamus and periacqueductal gray (PAG). When given FG-7142 alone, cats showed lasting behavioral changes accompanied by LTP in all pathways studied. Duration of LTP, and its relationship to behavioral change, depended on the pathway and the hemisphere of the pathway. Correlation and covariance analyses indicate that LTP in the left amygdalo-ventromedial hypothalamic pathway mediates initiation, but not maintenance, of increased defensiveness. This finding replicates previous work. A new finding is that increased local excitability in the right basal amygdala (reduced threshold for evoked response), and LTP in the right amygdalo-PAG pathway, may be important for maintenance of increases in defensive behavior. Furthermore, the effects of flumazenil, a benzodiazepine receptor antagonist, on behavior and physiology single out the importance of right amygdalo-PAG LTP as a critical mediator of increased defensiveness. Flumazenil reversed the increase in defensiveness produced by FG-7142 in a drug-dependent manner as described in Adamec (1998a). Moreover, flumazenil reversed LTP only in the right amygdalo-PAG pathway. The findings of the present study suggest that response to FG-7142 may be a useful model of the effects of traumatic stressors on limbic system function in anxiety, especially in view of the recent data in humans implicating right hemispheric function in persisting negative affective states.
NASA Astrophysics Data System (ADS)
Yu, Liping; Mai, Bixian; Meng, Xiangzhou; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo; Peng, Ping'an
A short-term sampling scheme was devised to determine the levels of particle-bound polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) in Guangzhou atmosphere and to evaluate the impact of PCDD/Fs on the lives of the inhabitants in Guangzhou. Samples were collected from four different districts of Guangzhou City, and the results indicated that industrial activities had tremendous influence on the levels of atmospheric PCDD/Fs in these districts. The mean PCDD/Fs concentrations (mean I-TEQ values) for Huadu, Liwan, Tianhe and Huangpu districts were 3815 fg m -3 (104.6 fg I-TEQ m -3), 12 777 fg m -3 (430.5 fg I-TEQ m -3), 6963 fg m -3 (163.7 fg I-TEQ m -3) and 10 953 fg m -3 (769.3 fg I-TEQ m -3), respectively, which were higher than the concentration ranges for other cities in the world. The mean concentrations of particulate organic carbon (OC) and elemental carbon (EC) were 17.61±0.94 and 3.17±0.21 μg m -3 for Huadu district, 44.18±2.29 and 13.32±0.75 μg m -3 for Liwan district, 33.53±1.72 and 9.89±0.56 μg m -3 for Tianhe district, and 29.52±1.53 and 8.87±0.53 μg m -3 for Huangpu district, respectively. The relationship between PCDD/Fs concentrations and OC and EC concentrations demonstrated that EC could be a better predictor for the concentration of PCDD/Fs. Detailed source analysis indicated that the PCDD/Fs in Guangzhou were derived from small diffuse combustion sources, e.g., traffic sources, domestic burning of fossil fuels, non-industrial combustion sources and industrial combustion sources. Results of daily intake of PCDD/Fs by inhaling air suggested that the inhalation exposure of PCDD/Fs by the inhabitants in Liwan district is relatively high.
Bedini, Andrea; Baiula, Monica; Gentilucci, Luca; Tolomelli, Alessandra; De Marco, Rossella; Spampinato, Santi
2010-11-01
We previously described a novel cyclic endomorphin-1 analog c[Tyr-D-Pro-D-Trp-Phe-Gly] (c[YpwFG]), acting as a mu-opioid receptor (MOR) agonist. This study reports that c[YpwFG] is more lipophilic and resistant to enzymatic hydrolysis than endomorphin-1 and produces preemptive antinociception in a mouse visceral pain model when injected intraperitoneally (i.p.) or subcutaneously (s.c.) before 0.6% acetic acid, employed to evoke abdominal writhing (i.p. ED(50)=1.24 mg/kg; s.c. ED(50)=2.13 mg/kg). This effect is reversed by the selective MOR antagonist β-funaltrexamine and by a high dose of the mu(1)-opioid receptor-selective antagonist naloxonazine. Conversely, the kappa-opioid receptor antagonist nor-binaltorphimine and the delta-opioid receptor antagonist naltrindole are ineffective. c[YpwFG] produces antinociception when injected i.p. after acetic acid (ED(50)=4.80 mg/kg), and only at a dose of 20mg/kg did it elicit a moderate antinociceptive response in the mouse, evaluated by the tail flick assay. Administration of a lower dose of c[YpwFG] (10mg/kg i.p.) apparently produces a considerable part of antinociception on acetic acid-induced writhes through peripheral opioid receptors as this action is fully prevented by i.p. naloxone methiodide, which does not readily cross the blood-brain barrier; whereas this opioid antagonist injected intracerebroventricularly (i.c.v.) is not effective. Antinociception produced by a higher dose of c[YpwFG] (20mg/kg i.p.) is partially reversed by naloxone methiodide i.c.v. administered. Thus, only at the dose of 20mg/kg c[YpwFG] can produce antinociception through both peripheral and central opioid receptors. In conclusion, c[YpwFG] displays sufficient metabolic stability to be effective after peripheral administration and demonstrates the therapeutic potential of endomorphin derivatives as novel analgesic agents to control visceral pain. Copyright © 2010 Elsevier Inc. All rights reserved.
Tibbetts, Yoi; Priniski, Stacy J.; Hecht, Cameron A.; Borman, Geoffrey D.; Harackiewicz, Judith M.
2018-01-01
First-generation (FG) college students (students for whom neither parent has a 4-year degree) face a number of challenges as they attempt to obtain a post-secondary degree. They are more likely to come from working-class backgrounds or poverty (Reardon, 2011) and attend lower quality high schools (Warburton et al., 2001) while not benefiting from the guidance of a parent who successfully navigated the path to higher education. FG college students also contend with belonging or “fitting in” concerns due a perceived mismatch between their own values and the values implicit in institutions of higher education (Stephens et al., 2012a). Specifically, prior research has demonstrated that FG college students face an unseen disadvantage that can be attributed to the fact that middle-class norms of independence reflected in American institutions of higher education can be experienced as threatening by many FG students who have been socialized with more interdependent values commonly espoused in working-class populations. The present research examines this theory (cultural mismatch theory) in the understudied context of 2-year colleges and tests if a values-affirmation intervention (i.e., an intervention that has shown promise in addressing identity threats and belonging concerns) can be effective for FG college students at these 2-year campuses. By considering the tenets of cultural mismatch theory in the creation of the values-affirmation interventions we were able to vary different aspects of the intervention in order to examine how its effectiveness may depend on the nature and magnitude of a perceived cultural mismatch. Results from surveying faculty and students at 2-year colleges indicated that compared to traditional 4-year institutions, the norms of 2-year colleges and the motivations of FG students may be different. That is, FG student motives may be more consistent (and thus less mismatched) with the cultural context of 2-year colleges which could result in fewer belonging concerns when compared to FG students at 4-year institutions. This may carry implications for the efficacy of values-affirmation interventions and could help explicate why FG students in the current sample perceived a greater match with their college when they reflected on their interdependent values. PMID:29695986
Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang
2018-05-28
The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.
Amaral, Jackeline G; Freire, Isabelle R; Valle-Neto, Eduardo F R; Cunha, Robson F; Martinhon, Cleide C R; Delbem, Alberto C B
2014-10-01
This study aimed to evaluate the fluoride concentration in the fingernails and toenails of children aged 18-30 months during use of fluoride-containing toothpastes supplemented with calcium glycerophosphate (CaGP) or sodium trimetaphosphate (TMP). According to the toothpaste used, children (n = 56) were randomly assigned into three groups: 500 μg F/g with 1% TMP, 500 μg F/g with 0.25% CaGP, and 1100 μg F/g. Fingernails and toenails were collected monthly over a period of 330 days, from the beginning of toothpaste use. Fluoride concentration in the water consumed by the volunteers and fluoride intake from diet and toothpaste were also determined. Fluoride analyses were performed with the electrode after hexamethyldisiloxane-facilitated diffusion or by the direct method, according to the samples. Data passed normality and homoscedasticity tests and were analyzed by 2-way analysis of variance (anova) and 1-way anova followed by Student-Newman-Keuls test (P < 0.05). Fluoride levels in the fingernails and toenails as well as fluoride intake from toothpaste were similar for the groups treated with 500 μg F/g with 1% TMP and 500 μg F/g with 0.25% CaGP toothpastes, but significantly lower than the 1100 μg F/g group (P < 0.05). No significant differences were noted among the groups regarding fluoride intake from diet and that by water consumed by the volunteers (P > 0.05). The results of the longitudinal study suggest that the level of fluoride present in nails was lower with the use of toothpastes with a low fluoride concentration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Waller, Travis; Marcus, Ian M; Walker, Sharon L
2018-06-04
Engineered nanomaterials (ENMs) are commonly incorporated into food and consumer applications to enhance a specific product aspect (i.e., optical properties). Life cycle analyses revealed ENMs can be released from products during usage and reach wastewater treatment plants (WWTPs), with titanium dioxide (TiO 2 ) accounting for a large fraction. As such, food grade (FG) TiO 2 , a more common form of TiO 2 in wastewater, was used in this study. Nanomaterials in WWTPs have been well characterized, although the problematic septic system has been neglected. Elution and bioaccumulation of TiO 2 ENMs from WTTPs in downriver sediments and microorganisms has been observed; however, little is known about mechanisms governing the elution of FG TiO 2 from the septic drainage system. This study characterized the transport behavior and mechanisms of FG TiO 2 particles in porous media conditions after septic waste treatment. FG and industrial grade (IG) TiO 2 (more commonly studied) were introduced to septic tank effluent and low-ionic strength electrolyte solutions prior to column transport experiments. Results indicate that FG TiO 2 aggregate size (200-400 nm) remained consistent across solutions. Additionally, elution of FG and IG TiO 2 was greatest in septic effluent at the higher nanoparticle concentration (100 ppm). FG TiO 2 was well retained at the low (2 ppm) concentration in septic effluent, suggesting that particles that escape the septic system may still be retained in drainage field before reaching the groundwater system, although eluted particles are highly stabilized. Findings provide valuable insight into the significance of the solution environment at mediating differences observed between uniquely engineered nanomaterials. Graphical abstract.
NASA Astrophysics Data System (ADS)
Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong
2017-02-01
Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.
Jacquot, Blake C; Muñoz, Nini; Branch, Darren W; Kan, Edwin C
2008-05-15
Electronic detection of the binding event between biotinylated bovine serum albumen (BSA) and streptavidin is demonstrated with the chemoreceptive neuron MOS (CnuMOS) device. Differing from the ion-sensitive field-effect transistors (ISFET), CnuMOS, with the potential of the extended floating gate determined by both the sensing and control gates in a neuromorphic style, can provide protein detection without requiring analyte reference electrodes. In comparison with the microelectrode arrays, measurements are gathered through purely capacitive, non-Faradaic interactions across insulating interfaces. By using a (3-glycidoxypropyl)trimethoxysilane (3-GPS) self-assembled monolayer (SAM) as a simple covalent link for attaching proteins to a silicon dioxide sensing surface, a fully integrated, electrochemical detection platform is realized for protein interactions through monotone large-signal measurements or small-signal impedance spectroscopy. Calibration curves were created to coordinate the sensor response with ellipsometric measurements taken on witness samples. By monitoring the film thickness of streptavidin capture, a sensitivity of 25ng/cm2 or 2A of film thickness was demonstrated. With an improved noise floor the sensor can detect down to 2ng/(cm2mV) based on the calibration curve. AC measurements are shown to significantly reduce long-term sensor drift. Finally, a noise analysis of electrochemical data indicates 1/f(alpha) behavior with a noise floor beginning at approximately 1Hz.
NASA Astrophysics Data System (ADS)
Amani, Matin; Burke, Robert A.; Proie, Robert M.; Dubey, Madan
2015-03-01
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >107 and field effect mobilities as high as 16.4 cm2 V-1 s-1. Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W-1. Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Amani, Matin; Burke, Robert A; Proie, Robert M; Dubey, Madan
2015-03-20
Two-dimensional materials, such as graphene and its analogues, have been investigated by numerous researchers for high performance flexible and conformal electronic systems, because they offer the ultimate level of thickness scaling, atomically smooth surfaces and high crystalline quality. Here, we use layer-by-layer transfer of large area molybdenum disulphide (MoS2) and graphene grown by chemical vapor deposition (CVD) to demonstrate electronics on flexible polyimide (PI) substrates. On the same PI substrate, we are able to simultaneously fabricate MoS2 based logic, non-volatile memory cells with graphene floating gates, photo-detectors and MoS2 transistors with tunable source and drain contacts. We are also able to demonstrate that these flexible heterostructure devices have very high electronic performance, comparable to four point measurements taken on SiO2 substrates, with on/off ratios >10(7) and field effect mobilities as high as 16.4 cm(2) V(-1) s(-1). Additionally, the heterojunctions show high optoelectronic sensitivity and were operated as photodetectors with responsivities over 30 A W(-1). Through local gating of the individual graphene/MoS2 contacts, we are able to tune the contact resistance over the range of 322-1210 Ω mm for each contact, by modulating the graphene work function. This leads to devices with tunable and multifunctional performance that can be implemented in a conformable platform.
Plane Symmetric Solutions in f(G) Gravity
NASA Astrophysics Data System (ADS)
Shamir, M. Farasat; Saeed, Atrooba
2017-12-01
The purpose of this document is to investigate the universe in f(G) gravity. A wgeneral static plane symmetric space-time is chosen and exact solutions are explored using a viable f(G) gravity model. In particular, power and exponential law solutions are discussed. In addition, the physical relevance of the solutions with Taub's metric and anti-deSitter space-time is shown. Graphical analysis of energy density and pressure of the universe is done to substantiate the study.
Reid, Korey M; Sunanda, Punnepalli; Raghothama, S; Krishnan, V V
2017-11-01
Intrinsically disordered proteins (IDP) lack a well-defined 3D-structure under physiological conditions, yet, the inherent disorder represented by an ensemble of conformation plays a critical role in many cellular and regulatory processes. Nucleoporins, or Nups, are the proteins found in the nuclear pore complex (NPC). The central pore of the NPC is occupied by Nups, which have phenylalanine-glycine domain repeats and are intrinsically disordered, and therefore are termed FG-Nups. These FG-domain repeats exhibit differing cohesiveness character and differ from least (FG) to most (GLFG) cohesive. The designed FG-Nup is a 25 AA model peptide containing a noncohesive FG-motif flanked by two cohesive GLFG-motifs (WT peptide). Complete NMR-based ensemble characterization of this peptide along with a control peptide with an F>A substitution (MU peptide) are discussed. Ensemble characterization of the NMR-determined models suggests that both the peptides do not have consistent secondary structures and continue to be disordered. Nonetheless, the role of cohesive elements mediated by the GLFG motifs is evident in the WT ensemble of structures that are more compact than the MU peptide. The approach presented here allows an alternate way to investigate the specific roles of distinct amino acid motifs that translate into the long-range organization of the ensemble of structures and in general on the nature of IDPs. © 2017 Wiley Periodicals, Inc.
Soyol-Erdene, Tseren-Ochir; Huh, Youngsook; Hong, Sungmin; Hur, Soon Do
2011-07-15
Antarctic snow preserves an atmospheric archive that enables the study of global atmospheric changes and anthropogenic disturbances from the past. We report atmospheric deposition rates of platinum group elements (PGEs) in Antarctica during the last ∼ 50 years based on determinations of Pt, Ir, and Rh in snow samples collected from Queen Maud Land, East Antarctica to evaluate changes in the global atmospheric budget of these noble metals. The 50-year average PGE concentrations in Antarctic snow were 17 fg g(-1) (4.7-76 fg g(-1)) for Pt, 0.12 fg g(-1) (<0.05-0.34 fg g(-1)) for Ir, and 0.71 fg g(-1) (0.12-8.8 fg g(-1)) for Rh. The concentration peaks for Pt, Ir, and Rh were observed at depths corresponding to volcanic eruption periods, indicating that PGEs can be used as a good tracer of volcanic activity in the past. A significant increase in concentrations and crustal enrichment factors for Pt and a slight enhancement in enrichment factors for Rh were observed after the 1980s. This suggests that there has been large-scale atmospheric pollution for Pt and probably for Rh since the 1980s, which may be attributed to the increasing emissions of these metals from anthropogenic sources such as automobile catalysts and metal production processes.
NASA Astrophysics Data System (ADS)
Rahmani, O.; Mohammadi Niaei, A.; Hosseini, S. A. H.; Shojaei, M.
2017-01-01
In the present study, free vibration model of a cantilever functionally graded (FG) nanobeam with an attached mass at tip and under various thermal loading and two types of material distribution is introduced. The vibration performance is considered using nonlocal Euler-Bernoulli beam theory. Two types of thermal loading, namely, uniform and nonlinear temperature rises through the thickness direction are considered. Thermo-mechanical properties of FG nano mass sensor are supposed to vary smoothly and continuously throughout the thickness based on power-law and Mori Tanaka distributions of material properties. Eringen non-local elasticity theory is exploited to describe the size dependency of FG nanobeam. The governing equations of the system with both axial and transverse displacements are derived based on Hamilton's principle and solved utilizing the differential transformation method (DTM) to find the non-dimensional natural frequencies. The results have good agreements with those discussing in the literature. After validation of the present model, the effect of various parameters such as mass and position of the attached nano particle, FG power-law exponent, thermal load type, material distribution type and nonlocal parameter on the frequency of nano sensor are studied. It is shown that the present model produces results of high accuracy, and it can be used as a benchmark in future studies of the free vibration of FG Nano-Mass Sensors.
Thermal oxidation of Si/SiGe heterostructures for use in quantum dot qubits
NASA Astrophysics Data System (ADS)
Neyens, Samuel F.; Foote, Ryan H.; Knapp, T. J.; McJunkin, Thomas; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A.
Here we demonstrate dry thermal oxidation of a Si/SiGe heterostructure at 700°C and use a Hall bar device to measure the mobility after oxidation to be 43,000 cm2V-1s-1 at a carrier density of 4.1 ×1011 cm-2. Surprisingly, we find no significant reduction in mobility compared with an Al2O3 device made with atomic layer deposition on the same heterostructure, indicating thermal oxidation can be used to process Si/SiGe quantum dot devices. This result provides a path for investigating improvements to the gate oxide in Si/SiGe qubit devices, whose performance is believed to be limited by charge noise in the oxide layer. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.
Evaluation of the FIR Example using Xilinx Vivado High-Level Synthesis Compiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Finkel, Hal; Yoshii, Kazutomo
Compared to central processing units (CPUs) and graphics processing units (GPUs), field programmable gate arrays (FPGAs) have major advantages in reconfigurability and performance achieved per watt. This development flow has been augmented with high-level synthesis (HLS) flow that can convert programs written in a high-level programming language to Hardware Description Language (HDL). Using high-level programming languages such as C, C++, and OpenCL for FPGA-based development could allow software developers, who have little FPGA knowledge, to take advantage of the FPGA-based application acceleration. This improves developer productivity and makes the FPGA-based acceleration accessible to hardware and software developers. Xilinx Vivado HLSmore » compiler is a high-level synthesis tool that enables C, C++ and System C specification to be directly targeted into Xilinx FPGAs without the need to create RTL manually. The white paper [1] published recently by Xilinx uses a finite impulse response (FIR) example to demonstrate the variable-precision features in the Vivado HLS compiler and the resource and power benefits of converting floating point to fixed point for a design. To get a better understanding of variable-precision features in terms of resource usage and performance, this report presents the experimental results of evaluating the FIR example using Vivado HLS 2017.1 and a Kintex Ultrascale FPGA. In addition, we evaluated the half-precision floating-point data type against the double-precision and single-precision data type and present the detailed results.« less
Li, Xiaomei; Luo, Lan; Cai, Ying; Yang, Wenjiao; Lin, Lisha; Li, Zi; Gao, Na; Purcell, Steven W; Wu, Mingyi; Zhao, Jinhua
2017-10-25
Edible sea cucumbers are widely used as a health food and medicine. A fucosylated glycosaminoglycan (FG) was purified from the high-value sea cucumber Stichopus herrmanni. Its physicochemical properties and structure were analyzed and characterized by chemical and instrumental methods. Chemical analysis indicated that this FG with a molecular weight of ∼64 kDa is composed of N-acetyl-d-galactosamine, d-glucuronic acid (GlcA), and l-fucose. Structural analysis clarified that the FG contains the chondroitin sulfate E-like backbone, with mostly 2,4-di-O-sulfated (85%) and some 3,4-di-O-sulfated (10%) and 4-O-sulfated (5%) fucose side chains that link to the C3 position of GlcA. This FG is structurally highly regular and homogeneous, differing from the FGs of other sea cucumbers, for its sulfation patterns are simpler. Biological activity assays indicated that it is a strong anticoagulant, inhibiting thrombin and intrinsic factor Xase. Our results expand the knowledge on structural types of FG and illustrate its biological activity as a functional food material.
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M.; Dutta, Kaushik; Karp, Jerome M.; Cabana, Christina M.; Rout, Michael P.; Cowburn, David
2018-01-01
Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe–Gly nucleoporins (FG Nups) that contain multiple phenylalanine–glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy–entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG–TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of “fuzzy” interactions involving IDPs. PMID:29374059
Wang, Luan; He, Hao; Wang, Shuangchao; Chen, Xiaoguang; Qiu, Dewen; Kondo, Hideki; Guo, Lihua
2018-05-01
Here we describe a novel (-)ssRNA mycovirus, Fusarium graminearum negative-stranded RNA virus 1 (FgNSRV-1), isolated from Fusarium graminearum strain HN1. The genome of FgNSRV-1 is 9072 nucleotides in length, with five discontinuous but linear ORFs (ORF I-V). Phylogenetic analysis based on entire L polymerase sequences indicated that FgNSRV-1 is related to the (-)ssRNA mycovirus Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), and other mycoviruses. Our data suggest that FgNSRV-1 can be classified into the family Mymonaviridae, order Mononegavirales. Putative enveloped virion-like structures with filamentous morphology similar to SsNSRV-1 were observed in virion preparation samples. The L proteins of FgNSRV-1, and other fungal mononegaviruses, were found to be related to L protein-like sequences in some fungal genome, supporting the hypothesis that there is coevolution occurring between mycoviruses and fungi. Besides, clearing the virus from the infected host fungus resulted in no discernable phenotypic change. Copyright © 2018 Elsevier Inc. All rights reserved.
Improved anti-tumor efficacy via combination of oxaliplatin and fibrin glue in colorectal cancer
Hu, Yuzhu; Yu, Ting; Liu, Xiaoxiao; He, Yihong; Deng, Lihong; Guo, Jiajuan; Hua, Yuanqi; Luo, Ting; Gao, Xiang
2018-01-01
Colorectal cancer is very common worldwide and advanced colorectal cancer exhibited very poor clinical outcome. Oxaliplatin (OXP) is one of the principal chemotherapeutic agents in colorectal cancer treatment presenting impressive anti-tumor ability, limited by adverse effect in clinical practice. Fibrin glue (FG) is a biocompatible formulation made of fibrinogen and thrombin, extensively used in surgery for hemostasis, tissue adhesion and sealing. In this study, FG was innovatively applied as OXP delivery system and results showed enhanced anti-tumor performance in subcutaneous model and abdominal metastasis model of murine colorectal cancer compared with that of OXP used alone. It is revealed that combination of OXP and FG could increase activated CD8+ T cells, reduce regulatory T (Treg) cells and increase interferon-γ (IFN-γ). Furthermore, results showed promoted tumor apoptosis, decreased proliferation and inhibited tumor angiogenesis by OXP and FG combination. No obvious systemic toxicity was observed in this study. Finally, our findings provided basis for promising application of OXP and FG combination in colorectal cancer treatment. PMID:29416788
Atomic magnetometer-based ultra-sensitive magnetic microscopy
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Savukov, Igor
2016-03-01
An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.
Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin
2016-04-01
Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN < 0.5 mg/L, NO2(-) < 0.1 mg/L), which demonstrated that both the NA and FG could provide non-toxic water environment for fish culture. Nitrous oxide conversion ratio of the control, NA, and FG were 0.8, 1.2, and 1.7%, respectively, indicating that media-based aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics.
A Low-Cost CMOS Programmable Temperature Switch
Li, Yunlong; Wu, Nanjian
2008-01-01
A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature Tth can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature Tth variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 μm CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature Tths from 45—120°C with a 5°C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm2 and power consumption is 3.1 μA at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis. PMID:27879871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication andmore » kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.« less
Spin switches for compact implementation of neuron and synapse
NASA Astrophysics Data System (ADS)
Quang Diep, Vinh; Sutton, Brian; Behin-Aein, Behtash; Datta, Supriyo
2014-06-01
Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
Kink effect in ultrathin FDSOI MOSFETs
NASA Astrophysics Data System (ADS)
Park, H. J.; Bawedin, M.; Choi, H. G.; Cristoloveanu, S.
2018-05-01
Systematic experiments demonstrate the presence of the kink effect even in FDSOI MOSFETs. The back-gate bias controls the kink effect via the formation of a back accumulation channel. The kink is more or less pronounced according to the film thickness and channel length. However, in ultrathin (<10 nm) and/or very short transistors (L < 50 nm), the kink is totally absent as a consequence of super-coupling effect. For the first time, thanks to the availability of body contacts, the body potential is probed to evidence the impact of majority carrier accumulation and drain pulse duration on the kink effect onset. He is currently working toward the Ph.D. degree in FDSOI device characterization and simulation at a laboratory of IMEP-lahc, Université Grenoble Alpes, Minatec, Grenoble, France. His research interests include residual floating body effects, electrical characterization, and device simulation for ultra FDSOI MOSFETs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, David Patrick
This report briefly summaries the work performed at KNMI under DOE Grant DE-FG02-06ER64160 which, in turn was conducted in support of DOE Grant DE-FG02-90ER61071 lead by E. Clothieux of Penn. State U. The specific work at KNMI revolved around the development and application of the EarthCARE simulator to ground-based multi-sensor simulations.
An anxiogenic benzodiazepine receptor ligand induces learned helplessness.
Drugan, R C; Maier, S F; Skolnick, P; Paul, S M; Crawley, J N
1985-07-31
Rats treated with the anxiogenic beta-carboline, N-methyl-beta-carboline-3-carboxamide (FG-7142), failed to acquire an escape response 24 h after treatment. Administration of FG-7142 resulted in a behavioral effect equivalent to a session of inescapable tailshock in this paradigm of learned helplessness. Pretreatment of rats with the selective benzodiazepine receptor antagonist Ro15-1788 blocked the development of learned helplessness elicited by FG-7142. These findings suggest that 'anxiety' may be a major factor in the development of learned helplessness.
Genetics Home Reference: FG syndrome
... inheritance is that fathers cannot pass X-linked traits to their sons. Related Information What does it ... Opitz JO. Behavior phenotype of FG syndrome: cognition, personality, and behavior in eleven affected boys. Am J ...
A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter
NASA Astrophysics Data System (ADS)
Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.
2014-03-01
We report a new magnetic-resonance-imaging (MRI) based nanocomposite Fricke gel (NC-FG) dosimeter system, which is free from two main drawbacks of conventional Fricke gel dosimeters, namely, the diffusion of the radiation products and the linear-energy-transfer (LET) dependence of the radiation sensitivity when used for ion beams. The NC-FG dosimeter was prepared by incorporating 1% (w/w) clay nanoparticles into deaerated Fricke gel. We have dosimetrically characterized the NC-FG by using MRI measurements after irradiation with a monoenergetic 290 MeV/nucleon carbon beam. No diffusion of the radiation products was observed during nine days after the irradiation. Moreover, its response faithfully reproduced the depth-dose distribution measured by an ionization chamber, which indicates the absence of the LET dependence. Also, the NC-FG dosimeter exhibited a good linearity up to 800 Gy.
Influence of Ficoll on urea induced denaturation of fibrinogen
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Kamatchi; Meenakshisundaram, N.
2016-03-01
Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.
Hernán García, M; Gutiérrez Cuadra, J L; Lineros González, C; Ruiz Barbosa, C; Rabadán Asensio, A
2002-10-31
To report the opinions of practitioners at health centers on dimensions of quality that affect user satisfaction. Cross-sectional study of focus groups (FG). Bahía de Cádiz and La Janda health centers in southwestern Spain. We studied 4 FG whose participants were staff members of the two health centers: FG1, physicians; FG2, user satisfaction service staff; FG3, social workers; FG4, nurses. The groups were based on the different functions of staff at the two centers. The analysis was based on variables in the SERCAL model (an adaptation of the SERVQUAL model for the Spanish health care system) of opinions regarding service quality: access, comfort (tangibles), personalized service (courtesy), competence, and loyalty. The data were analyzed with version N-Vivo of the NUDIST program. All dimensions of the theoretical model were identified by practitioners as constructs of users' perceptions of service quality. Users' and practitioners' views contrasted with and complemented each other to generate a model that could be validated. Access, personalized service and problem-solving (responsiveness) were key variables. Practitioners' opinions provided information of use in improving the quality model. Differences in opinion between users and practitioners merit further study based on an understanding of these groups' values and interests, and on the care provision context. Practitioners identified access, personalized service and problem-solving as features that influenced users' opinions of the quality of the health center.
NASA Astrophysics Data System (ADS)
Xu, Qinzeng; Zhang, Libin; Zhang, Tao; Zhang, Xuelei; Yang, Hongsheng
2017-01-01
Artificial reef is considered as a useful tool to remodel habitats in coastal and estuarine area. Some artificial reefs (ARs) were conducted in Shandong Peninsula for sea cucumber Apostichopus japonicus integrated multi-trophic aquaculture (IMTA). Little is known about the main feeding type and food resources of living organisms in this IMTA ecosystem. Neither is the information about other animals competing food with A. japonicus. Functional group (FG) and their food resources of mobile organisms and epifauna in ARs area were investigated. There were three types of food resources and five FGs within two trophic levels in studied area. Particle organic matter (POM), seaweed detritus and sediment were considered to be the main food resources. The first three FGs were primary consumers and were mainly epifauna, while the other two FGs were secondary consumers. FG 1 species were filter feeders, and group 2 was all deposit feeders and A. japonicus was in this group. FG 2 contained few species and this indicated that A. japonicus had few food competitors. FG 3 contained most epifauna species which were detritus feeders and this result implied that the artificial oyster shell reed can retain detritus effectively. The food sources of group 4 were complex. Species of group 5, mostly fish, occupied the top trophic level and fed primarily on species of FG 1 and FG 2. This kind of ARs can retain detritus effectively and provide suitable habitat to epifauna and surrounding natural fauna community.
Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki
2015-04-01
This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.
Wu, Xujun; Wang, Yuru; Zhu, Cancan; Tong, Xiaowen; Yang, Ming; Yang, Li; Liu, Zhang; Huang, Weihong; Wu, Feng; Zong, Honghai; Li, Huaifang; He, Hongbing
2016-01-01
Synthetic and biological materials are commonly used for pelvic floor reconstruction. In this study, host tissue response and biomechanical properties of mesh fabricated from co-electrospun poly(l-lactide-co-caprolactone) (PLCL) and fibrinogen (Fg) were compared with those of polypropylene mesh (PPM) in a canine abdominal defect model. Macroscopic, microscopic, histological, and biomechanical evaluations were performed over a 24-week period. The results showed that PLCL/Fg mesh had similar host tissue responses but better initial vascularization and graft site tissue organization than PPM. The efficacy of the PLCL/Fg mesh was further examined in human pelvic floor reconstruction. Operation time, intraoperative blood loss, and pelvic organ prolapse quantification during 6-month follow-up were compared for patients receiving PLCL/Fg mesh versus PPM. According to the pelvic organ prolapse quantification scores, the anterior vaginal wall 3 cm proximal to the hymen point (Aa point), most distal edge of the cervix or vaginal cuff scar point (C point), and posterior fornix point (D point) showed significant improvement (P<0.01) at 1, 3, and 6 months for both groups compared with preoperatively. At 6 months, improvements at the Aa point in the PLCL/Fg group were significantly more (P<0.005) than the PPM group, indicating that, while both materials improve the patient symptoms, PLCL/Fg mesh resulted in more obvious improvement. PMID:26893556
Huggins, L G; Lennarz, W J
2001-08-01
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.
Döll, Katharina; Karlovsky, Petr; Deising, Holger B.; Wirsel, Stefan G. R.
2013-01-01
Fusarium graminearum is a plant pathogen infecting several important cereals, resulting in substantial yield losses and mycotoxin contamination of the grain. Triazole fungicides are used to control diseases caused by this fungus on a worldwide scale. Our previous microarray study indicated that 15 ABC transporter genes were transcriptionally upregulated in response to tebuconazole treatment. Here, we deleted four ABC transporter genes in two genetic backgrounds of F. graminearum representing the DON (deoxynivalenol) and the NIV (nivalenol) trichothecene chemotypes. Deletion of FgABC3 and FgABC4 belonging to group I of ABC-G and to group V of ABC-C subfamilies of ABC transporters, respectively, considerably increased the sensitivity to the class I sterol biosynthesis inhibitors triazoles and fenarimol. Such effects were specific since they did not occur with any other fungicide class tested. Assessing the contribution of the four ABC transporters to virulence of F. graminearum revealed that, irrespective of their chemotypes, deletion mutants of FgABC1 (ABC-C subfamily group V) and FgABC3 were impeded in virulence on wheat, barley and maize. Phylogenetic context and analyses of mycotoxin production suggests that FgABC3 may encode a transporter protecting the fungus from host-derived antifungal molecules. In contrast, FgABC1 may encode a transporter responsible for the secretion of fungal secondary metabolites alleviating defence of the host. Our results show that ABC transporters play important and diverse roles in both fungicide resistance and pathogenesis of F. graminearum. PMID:24244413
Anderson, Ericka L; Cole, Jason N; Olson, Joshua; Ryba, Bryan; Ghosh, Partho; Nizet, Victor
2014-02-07
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.
Experimental Study on the Viscosity and Adhesive Performance of Exogenous Liquid Fibrin Glue
HAYASHI, Takuro; HASEGAWA, Mitsuhiro; INAMASU, Joji; ADACHI, Kazuhide; NAGAHISA, Shinya; HIROSE, Yuichi
2014-01-01
Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast®, BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal®, BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance. PMID:25367586
Experimental study on the viscosity and adhesive performance of exogenous liquid fibrin glue.
Hayashi, Takuro; Hasegawa, Mitsuhiro; Inamasu, Joji; Adachi, Kazuhide; Nagahisa, Shinya; Hirose, Yuichi
2014-01-01
Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast(®), BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal(®), BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance.
Wang, Junping; Kong, Decong; Zhang, Shengwei; Jiang, Hua; Zheng, Yuling; Zang, Yating; Hao, Huaijie; Jiang, Yongqiang
2015-01-01
Muramidase-released protein (MRP) is as an important virulence marker of Streptococcus suis (S. suis) serotype 2. Our previous works have shown that MRP can bind human fibrinogen (hFg); however, the function of this interaction in S. suis meningitis is not known. In this study, we found that the deletion of mrp significantly impairs the hFg-mediated adherence and traversal ability of S. suis across human cerebral microvascular endothelial cells (hCMEC/D3). Measurement of the permeability to Lucifer yellow in vitro and Evans blue extravasation in vivo show that the MRP-hFg interaction significantly increases the permeability of the blood–brain barrier (BBB). In the mouse meningitis model, wild type S. suis caused higher bacterial loads in the brain and more severe histopathological signs of meningitis than the mrp mutant at day 3 post-infection. Western blot analysis and immunofluorescence observations reveal that the MRP-hFg interaction can destroy the cell adherens junction protein p120-catenin of hCMEC/D3. These results indicate that the MRP-hFg interaction is important in the development of S. suis meningitis. PMID:26441928
NASA Astrophysics Data System (ADS)
Rohmawati, L.; Setyarsih, W.; Nurjannah, T.
2018-03-01
Sweep rate of the process voltammetry cyclic characterization is very influential towards the electrode capacitance value, especially on activated carbon electrodes/PVDF. A simple method of this research by use a mixing for electrode activated carbon/10 wt. % PVDF and the separator is made of a polymer electrolyte (PVA/H3PO4) by a sol gel method. The prototype supercapacitor is made in the form of a sandwich with a separator placed between two electrodes. Electrodes and separators are arranged in layers at a pressure of 1500 psi, then heated at 50°C for 10 minutes. Next done cyclic voltammetry in a potential range of -1 V to 1 V with a sweep rate of 5 mV/s, 10 mV/s, 20 mV/s, 25 mV/s and 50 mV/s. This results of curves voltammogram is reversible, the most wide curve on the sweep rate of 5 mV/s and most narrow curve on a sweep rate of 50 mV/s. Supercapacitor capacitance values obtained by 86 F/g, 43 F/g, 21 F/g, 16 F/g, and 8 F/g.
Fluorographene based Ultrasensitive Ammonia Sensor
Tadi, Kiran Kumar; Pal, Shubhadeep; Narayanan, Tharangattu N.
2016-01-01
Single molecule detection using graphene can be brought by tuning the interactions via specific dopants. Electrostatic interaction between the most electronegative element fluorine (F) and hydrogen (H) is one of the strong interactions in hydrogen bonding, and here we report the selective binding of ammonia/ammonium with F in fluorographene (FG) resulting to a change in the impedance of the system. Very low limit of detection value of ~0.44 pM with linearity over wide range of concentrations (1 pM–0.1 μM) is achieved using the FG based impedance sensor, andthisscreen printed FG sensor works in both ionized (ammonium) and un-ionized ammonia sensing platforms. The interaction energies of FG and NH3/NH4+ are evaluated using density functional theory calculations and the interactions are mapped. Here FGs with two different amounts of fluorinecontents −~5 atomic% (C39H16F2) and ~24 atomic% (C39H16F12) - are theoretically and experimentally studied for selective, high sensitive and ultra-low level detection of ammonia. Fast responding, high sensitive, large area patternable FG based sensor platform demonstrated here can open new avenues for the development of point-of-care devices and clinical sensors. PMID:27142522
Cook, Heather; Brennan, Kathleen; Azziz, Ricardo
2011-01-01
Objective To determine whether assessing the extent of terminal hair growth in a subset of the traditional 9 areas included in the modified Ferriman-Gallwey (mFG) score can serve as a simpler predictor of total body hirsutism when compared to the full scoring system, and to determine if this new model can accurately distinguish hirsute from non-hirsute women. Design Cross-sectional analysis Setting Two tertiary care academic referral centers. Patients 1951 patients presenting for symptoms of androgen excess. Interventions History and physical examination, including mFG score. Main Outcome Measures Total body hirsutism. Results A regression model using all nine body areas indicated that the combination of upper abdomen, lower abdomen and chin was the best predictor of the total full mFG score. Using this subset of three body areas is accurate in distinguishing true hirsute from non-hirsute women when defining true hirsutism as mFG>7. Conclusion Scoring terminal hair growth only on the chin and abdomen can serve as a simple, yet reliable predictor of total body hirsutism when compared to full body scoring using the traditional mFG system. PMID:21924716
Formaldehyde gas exposure increases inflammation in an in vitro model of dry eye.
Vitoux, Michael-Adrien; Kessal, Karima; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Achard, Sophie; Brignole-Baudouin, Françoise
2018-05-31
Dry eye (DE) is a multifactorial ocular surface disease whose incidence continues to rise. Various environmental stresses such as low air humidity and pollution are known to be involved in epithelial alterations inducing ocular discomfort. However, no experimental study assessing the combined effects of dry air and polluted atmospheres has been conducted so far. Formaldehyde (FA) is a ubiquitous pollutant present in the living spaces where humans spend most of their time. Using an in vitro DE model, we evaluated the cytotoxic and inflammatory responses of a conjunctival cell line exposed at the air-liquid interface (ALI) conditions to various controlled atmospheres combining low humidity (LH), airflow (AF) and formaldehyde gas (FG). Conjunctiva-derived cells grown onto transwell inserts were directly exposed to LH conditions without AF, with AF or with FG flow at 100 or 1200 µg/m3 for 15-30 min. Cell viability assays revealed an increase in cell death after a 15-min exposure to FG at 100 or 1200 µg/m3, whatever the recovery period. After a 1-h recovery period, an increase in IL-6 and CXCL8/IL-8 gene expression was observed with the 15-min exposure at 100 µg/m3 FG and with 30 min of exposure at 1200 µg/m3 FG. After 24 h of recovery, we also noted increased secretion of the pro-inflammatory cytokine MIF with 100 µg/m3 FG exposure and CXCL8/IL-8 at 1200 µg/m3, for both exposure periods. Together, these findings suggest that the exposure to FG at environmental levels aggravates cell death and inflammation observed in dry air conditions. This in vitro model of DE seems to be a relevant tool to study and explain the inflammatory responses observed in dry eye patients when exposed to combined environmental disturbances such as low humidity, airflow, and the presence of airborne pollutants.
Ishiguro, H; Takashima, S; Yoshimura, K; Yano, I; Yamamoto, T; Niimi, M; Yamashiro, H; Ueno, T; Takeuchi, M; Sugie, T; Yanagihara, K; Toi, M; Fukushima, M
2012-09-01
Frozen gloves (FG) are effective in preventing docetaxel-induced nail toxicity (DNT), but uncomfortable. The preventive effect of FG for DNT was compared using a standard (-25 to -30°C) or more comfortable (-10 to -20°C) preparation. Breast cancer patients receiving docetaxel were eligible. Each patient wore an FG (prepared at -10 to -20°C for 90 min) for 60 min without replacement on the right hand. The left hand was protected by standard methods (FG prepared at -25 to -30°C overnight and worn for 90 min with replacement at 45 min). The primary endpoint was DNT occurrence at 5 months. Secondary endpoints included docetaxel exposure [cumulative dose and area under the blood concentration time curve (AUC)] until DNT occurrence and discomfort from FG. The pharmacokinetics of docetaxel was assessed. From 23 patients enrolled between December 2006 and June 2010, seven who received docetaxel for less than 5 months were excluded from evaluation. The median accumulated docetaxel dose was 700 mg/m(2) (340-1430 mg/m(2)). Within 5 months of FG use, none developed protocol-defined DNT in either hand. Two patients (13%) developed DNT at 7.2 and 7.3 months, respectively, both at -10 to -20°C. In the control hand (-25 to -30°C), discomfort occurred in 92% of the cycles, compared to 15% in the experimental hand (-10 to -20°C). Five patients (22%) experienced pain at -25 to -30°C, but none did at -10 to -20°C. The degree of docetaxel exposure was not related to DNT occurrence in our study. A convenient preparation of FG at -10 to -20°C is almost as effective as a standard preparation at -25 to -30°C, with significantly less discomfort.
FFT swept filtering: a bias-free method for processing fringe signals in absolute gravimeters
NASA Astrophysics Data System (ADS)
Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel; Val'ko, Miloš
2018-05-01
Absolute gravimeters, based on laser interferometry, are widely used for many applications in geoscience and metrology. Although currently the most accurate FG5 and FG5X gravimeters declare standard uncertainties at the level of 2-3 μGal, their inherent systematic errors affect the gravity reference determined by international key comparisons based predominately on the use of FG5-type instruments. The measurement results for FG5-215 and FG5X-251 clearly showed that the measured g-values depend on the size of the fringe signal and that this effect might be approximated by a linear regression with a slope of up to 0.030 μGal/mV . However, these empirical results do not enable one to identify the source of the effect or to determine a reasonable reference fringe level for correcting g-values in an absolute sense. Therefore, both gravimeters were equipped with new measuring systems (according to Křen et al. in Metrologia 53:27-40, 2016. https://doi.org/10.1088/0026-1394/53/1/27 applied for FG5), running in parallel with the original systems. The new systems use an analogue-to-digital converter HS5 to digitize the fringe signal and a new method of fringe signal analysis based on FFT swept bandpass filtering. We demonstrate that the source of the fringe size effect is connected to a distortion of the fringe signal due to the electronic components used in the FG5(X) gravimeters. To obtain a bias-free g-value, the FFT swept method should be applied for the determination of zero-crossings. A comparison of g-values obtained from the new and the original systems clearly shows that the original system might be biased by approximately 3-5 μGal due to improperly distorted fringe signal processing.
Claes, Jorien; Ditkowski, Bartosz; Liesenborghs, Laurens; Veloso, Tiago Rafael; Entenza, Jose M; Moreillon, Philippe; Vanassche, Thomas; Verhamme, Peter; Hoylaerts, Marc F; Heying, Ruth
2018-06-17
Adhesion of Staphylococcus aureus to endothelial cells (ECs) is paramount in infective endocarditis. Bacterial proteins such as clumping factor A (ClfA) and fibronectin binding protein A (FnbpA) mediate adhesion to EC surface molecules and (sub)endothelial matrix proteins including fibrinogen (Fg), fibrin, fibronectin (Fn) and von Willebrand factor (vWF). We studied the influence of shear flow and plasma on the binding of ClfA and FnbpA (including its sub-domains A, A 16+ , ABC, CD) to coverslip-coated vWF, Fg/fibrin, Fn or confluent ECs, making use of Lactococcus lactis , expressing these adhesins heterologously. Global adherence profiles were similar in static and flow conditions. In the absence of plasma, L. lactis-clfA binding to Fg increased with shear forces, whereas binding to fibrin did not. The degree of adhesion of L. lactis-fnbpA to EC-bound Fn and of L. lactis-clfA to EC-bound Fg, furthermore, was similar to that of L. lactis-clfA to coated vWF domain A1, in the presence of vWF-binding protein (vWbp). Yet, in plasma, L. lactis-clfA adherence to activated EC-vWF/vWbp dropped over 10 minutes by 80% due to vWF-hydrolysis by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 and that of L. lactis-fnbpA likewise by > 70% compared to the adhesion in absence of plasma. In contrast, plasma Fg supported high L. lactis-clfA binding to resting and activated ECs. Or, in plasma S. aureus adhesion to active endothelium occurs mainly via two complementary pathways: a rapid but short-lived vWF/vWbp pathway and a stable integrin-coupled Fg-pathway. Hence, the pharmacological inhibition of ClfA-Fg interactions may constitute a valuable additive treatment in infective endocarditis. Schattauer GmbH Stuttgart.
14 CFR 27.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
14 CFR 29.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces
Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.
2011-01-01
We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481
NASA Astrophysics Data System (ADS)
Yang, Run-Qiu; Niu, Chao; Zhang, Cheng-Yong; Kim, Keun-Young
2018-02-01
We compute the time-dependent complexity of the thermofield double states by four different proposals: two holographic proposals based on the "complexity-action" (CA) conjecture and "complexity-volume" (CV) conjecture, and two quantum field theoretic proposals based on the Fubini-Study metric (FS) and Finsler geometry (FG). We find that four different proposals yield both similarities and differences, which will be useful to deepen our understanding on the complexity and sharpen its definition. In particular, at early time the complexity linearly increase in the CV and FG proposals, linearly decreases in the FS proposal, and does not change in the CA proposal. In the late time limit, the CA, CV and FG proposals all show that the growth rate is 2 E/(πℏ) saturating the Lloyd's bound, while the FS proposal shows the growth rate is zero. It seems that the holographic CV conjecture and the field theoretic FG method are more correlated.
Yang, Wen; Zhu, Jin-Yong; Lu, Kai-Hong; Wan, Li; Mao, Xiao-Hua
2014-06-01
Appropriate schemes for classification of freshwater phytoplankton are prerequisites and important tools for revealing phytoplanktonic succession and studying freshwater ecosystems. An alternative approach, functional group of freshwater phytoplankton, has been proposed and developed due to the deficiencies of Linnaean and molecular identification in ecological applications. The functional group of phytoplankton is a classification scheme based on autoecology. In this study, the theoretical basis and classification criterion of functional group (FG), morpho-functional group (MFG) and morphology-based functional group (MBFG) were summarized, as well as their merits and demerits. FG was considered as the optimal classification approach for the aquatic ecology research and aquatic environment evaluation. The application status of FG was introduced, with the evaluation standards and problems of two approaches to assess water quality on the basis of FG, index methods of Q and QR, being briefly discussed.
40 CFR 65.45 - External floating roof converted into an internal floating roof.
Code of Federal Regulations, 2010 CFR
2010-07-01
... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...
Bi, Xu; Li, Yanyan; Qiu, Zhipeng; Liu, Chao; Zhou, Tong; Zhuo, Shuping; Zhou, Jin
2018-06-25
Fluorinated graphene (FG) has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C⁻N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g −1 and a discharge plateau of 2.35 V at a current density of 10 mA g −1 , corresponding to a high energy density of 1485 Wh kg −1 .
Blyakhman, Felix A; Buznikov, Nikita A; Sklyar, Tatyana F; Safronov, Alexander P; Golubeva, Elizaveta V; Svalov, Andrey V; Sokolov, Sergey Yu; Melnikov, Grigory Yu; Orue, Iñaki; Kurlyandskaya, Galina V
2018-03-15
Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels. The properties of biomimetic ferrogels for multifunctional biosensor applications can be set up by synthesis. The properties of these biomimetic ferrogels can be thoroughly controlled in a physical experiment environment which is much less demanding than biotests. Two series of ferrogels (soft and dense) based on polyacrylamide (PAAm) with different chemical network densities were synthesized by free-radical polymerization in aqueous solution with N , N '-methylene-diacrylamide as a cross-linker and maghemite Fe₂O₃ MNPs fabricated by laser target evaporation as a filler. Their mechanical, electrical and magnetic properties were comparatively analyzed. We developed a giant magnetoimpedance (MI) sensor prototype with multilayered FeNi-based sensitive elements deposited onto glass or polymer substrates adapted for FG studies. The MI measurements in the initial state and in the presence of FG with different concentrations of MNPs at a frequency range of 1-300 MHz allowed a precise characterization of the stray fields of the MNPs present in the FG. We proposed an electrodynamic model to describe the MI in multilayered film with a FG layer based on the solution of linearized Maxwell equations for the electromagnetic fields coupled with the Landau-Lifshitz equation for the magnetization dynamics.
Lin, Zhixiong; Riniker, Sereina; van Gunsteren, Wilfred F
2013-03-12
Atomistic molecular dynamics simulations of peptides or proteins in aqueous solution are still limited to the multi-nanosecond time scale and multi-nanometer range by computational cost. Combining atomic solutes with a supramolecular solvent model in hybrid fine-grained/coarse-grained (FG/CG) simulations allows atomic detail in the region of interest while being computationally more efficient. We used enveloping distribution sampling (EDS) to calculate the free enthalpy differences between different helical conformations, i.e., α-, π-, and 310-helices, of an atomic level FG alanine deca-peptide solvated in a supramolecular CG water solvent. The free enthalpy differences obtained show that by replacing the FG solvent by the CG solvent, the π-helix is destabilized with respect to the α-helix by about 2.5 kJ mol(-1), and the 310-helix is stabilized with respect to the α-helix by about 9 kJ mol(-1). In addition, the dynamics of the peptide becomes faster. By introducing a FG water layer of 0.8 nm around the peptide, both thermodynamic and dynamic properties are recovered, while the hybrid FG/CG simulations are still four times more efficient than the atomistic simulations, even when the cutoff radius for the nonbonded interactions is increased from 1.4 to 2.0 nm. Hence, the hybrid FG/CG model, which yields an appropriate balance between reduced accuracy and enhanced computational speed, is very suitable for molecular dynamics simulation investigations of biomolecules.
Chen, Ying; Lin, Li
2017-07-01
Preeclampsia is a relatively common complication of pregnancy and considered to be associated with different degrees of coagulation dysfunction. This study was developed to evaluate the potential value of coagulation parameters for suggesting preeclampsia during the third trimester of pregnancy. Data from 188 healthy pregnant women, 125 patients with preeclampsia in the third trimester and 120 age-matched nonpregnant women were analyzed. Prothrombin time, prothrombin activity, activated partial thromboplastin time, fibrinogen (Fg), antithrombin, platelet count, mean platelet volume, platelet distribution width and plateletcrit were tested. All parameters, excluding prothrombin time, platelet distribution width and plateletcrit, differed significantly between healthy pregnant women and those with preeclampsia. Platelet count, antithrombin and Fg were significantly lower and mean platelet volume and prothrombin activity were significantly higher in patients with preeclampsia (P < 0.001). Among these parameters, the largest area under the receiver operating characteristic curve for preeclampsia was 0.872 for Fg with an optimal cutoff value of ≤2.87g/L (sensitivity = 0.68 and specificity = 0.98). For severe preeclampsia, the area under the curve for Fg reached up to 0.922 with the same optimal cutoff value (sensitivity = 0.84, specificity = 0.98, positive predictive value = 0.96 and negative predictive value = 0.93). Fg is a biomarker suggestive of preeclampsia in the third trimester of pregnancy, and our data provide a potential cutoff value of Fg ≤ 2.87g/L for screening preeclampsia, especially severe preeclampsia. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad
2016-10-18
The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the cytoplasmic membrane prior to transport to the cell surface. How ATP hydrolysis is coupled with LPS release from the membrane is not understood. We have identified residues at the interface between the ATPase and the transmembrane domains of this heteromeric ABC complex that are important for LPS transport, some of which coordinate ATPase activity with LPS release. Copyright © 2016 Simpson et al.
EPA's National Dioxin Air Monitoring Network (NDAMN): Design, implementation, and final results
NASA Astrophysics Data System (ADS)
Lorber, Matthew; Ferrario, Joseph; Byrne, Christian
2013-10-01
The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m-3 with dl-PCBs contributing 0.8 fg TEQ m-3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra - through hexa PCDD/PCDF congeners, with elevations in four congeners - a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these categories were: urban = 15.9 fg TEQ m-3, rural = 13.9 fg TEQ m-3, and remote = 1.2 fg TEQ m-3. Rural sites showed elevations during the fall or winter months when compared to the spring or summer months, and the same might be said for urban sites, but the remote sites appear to show little variation over time. The four highest individual moment measurements were 847, 292, 241, and 132 fg TEQ m-3. For the 847 and 292 fg TEQ m-3 samples, the concentrations of all congeners were elevated over their site averages, but for the 241 and 132 fg TEQ m-3 measurements, only the PCDD congeners were elevated while PCDF and dl-PCB concentrations were similar to the site averages.
Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim
2016-01-01
Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.
Stability of calcium sulfate base course in a wet environment.
DOT National Transportation Integrated Search
2006-07-01
Blended Calcium Sulfate (BCS) is fluorogypsum (FG), an industrial by-product, blended with lime or limestone. Approximately 90,000 metric tons (100,000 tons) of FG are generated annually in the United States, posing a serious problem for environmenta...
Antibiotic-primed fibrin gel improves outcome in contaminated splenic injury.
Ing, R D; Saxe, J; Hendrick, S; Bailey, J; Diebel, L N; Dulchavsky, S A; Brown, W
1992-07-01
Fibrin gel (FG) has recently been shown to be bactericidal in the management of contaminated hepatic injury; antibiotic loading of fibrin gel (AFG) may augment this effect. We evaluated the antimicrobial properties of FG and AFG in a rat model of contaminated splenic injury. Fibrin gel was made from centrifuged plasma of separate donor rats and bovine thrombin. Antibiotic fibrin gel was similarly produced following intravenous injection of 70 mg/kg ticarcillin. Male Holtzman rats (250-300 g) were anesthetized and a laparotomy done. The abdomen was contaminated with 1 x 10(7) Bacteroides fragilis and the spleen transected in the midportion. Treatment consisted of splenorrhaphy (S) (n = 7), FG application (n = 7), or AFG (n = 7). The animals were autopsied at 1 week to evaluate abscess formation and abdominal adhesions (grade I = none, grade II = mild, grade III = severe). Antibiotic/fibrin gel significantly decreased abscess formation following splenic injury when compared with S (2 of 7 vs. 7 of 7; p less than 0.05 by ANOVA) without an increase in adhesions. Fibrin gel also decreased abscess formation but not significantly (4 of 7 vs. 7 of 7). Histologic analysis confirmed the beneficial effect of FG and AFG on wound healing. The bactericidal effect of FG is improved by antibiotic loading in contaminated intraabdominal injury.
Investigating the Features of the M170 in Congenital Prosopagnosia
Rivolta, Davide; Palermo, Romina; Schmalzl, Laura; Williams, Mark A.
2012-01-01
Face perception generates specific neural activity as early as 170 ms post-stimulus onset, termed the M170 when measured with Magnetoencephalography (MEG). We examined the M170 in six people with congenital prosopagnosia (CP) and 11 typical controls. Previous research indicates that there are two neural generators for the M170 (one within the right lateral occipital area – rLO and one within the right fusiform gyrus – rFG), and in the current study we explored whether these sources reflect the processing of different types of information. Individuals with CP showed face-selective M170 responses within the rLO and right rFG, which did not differ in magnitude to those of the controls. To examine possible links between neural activity and behavior we correlated the CPs’ MEG activity generated within rLO and rFG with their face perception skills. The rLO-M170 correlated with holistic/configural face processing, whereas the rFG-M170 correlated with featural processing. Hence, the results of our study demonstrate that individuals with CP can show an M170 that is within the normal range, and that the M170 in the rLO and rFG are involved in different aspects of face processing. PMID:22416228
Butta, Nora; Larrucea, Susana; Gonzalez-Manchon, Consuelo; Alonso, Sonia; Parrilla, Roberto
2004-12-01
This work reports the functional studies of CHO cells coexpressing alpha-adrenergic (alphaAR) and human fibrinogen (Fg) receptors (integrin alphaIIbbeta3). Stimulation of these cells with alpha-agonists produced a transient rise in the free cytosolic calcium (Ca(++)) accompanied by enhanced binding to soluble Fg, and these effects were prevented by specific alphaAR antagonists. The alpha-adrenergic-induced activation of alphaIIbbeta3 in CHO-alphaIIbbeta3-alphaAR increased the rate of adhesion and extension of cells onto Fg coated plates, and also induced a soluble Fg- and alphaIIbbeta3-dependent formation of cell aggregates, whereas no effects were observed by the stimulation of CHO-alphaIIbbeta3 cells. alpha-Adrenergic antagonists, the ligand mimetic peptide RGDS, pertussis toxin (PTX), or EDTA, they all prevented the alpha-adrenergic stimulation of adhesion and aggregation. However, inhibition of PKC prevented the alpha-adrenergic stimulation of cell adherence, whereas blocking the intracellular Ca(++) mobilization impeded the stimulation of cell aggregation. The alpha-adrenergic activation was associated with phosphorylation of a protein of approximately 100 kDa and proteins of the MAPK family. The former was selectively phosphorylated by alpha-adrenergic stimulation whereas the latter were phosphorylated by the binding of cells to Fg and markedly intensified by alpha-adrenergic stimulation.
Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin.
Hosseini, Seyed Fakhreddin; Javidi, Zahra; Rezaei, Masoud
2016-11-01
Multi-layer film structures of poly(lactic acid) (PLA) and fish gelatin (FG), prepared using the solvent casting technique, were studied in an effort to produce bio-based films with low oxygen (OP) and water vapor permeability (WVP). The scanning electron microscopy (SEM) images of triple-layer film showed that the outer PLA layers are being closely attached to the inner FG layer to make continuous film. The OP of multi-layer film (5.02cm 3 /m 2 daybar) decreased more than 8-fold compared with that of the PLA film, and the WVP of multi-layer film (0.125gmm/kPah m 2 ) also decreased 11-fold compared with that of the FG film. Lamination with PLA profoundly increased the water resistance of the bare gelatin film. Meanwhile, the tensile strength of the triple-layer film (25±2.13MPa) was greater than that of FG film (7.48±1.70MPa). At the same time, the resulting film maintains high optical clarity. Differential scanning calorimetry (DSC) analysis also revealed that the materials were compatible showing only one T g which decreased with FG deposition. This material exhibits an environmental-friendliness potential and a high versatility in food packaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Zanella, Aline Margioti; Nakazone, Marcelo Arruda; Pinhel, Marcela Augusta Souza; Souza, Dorotéia Rossi Silva
2011-03-01
To evaluate whether lipid profile (LP), apolipoprotein A-1 (apo A-I) and malondialdehyde (MDA) have any relationship with physical exercise by comparing the groups of footballers (FG) with sedentary individuals (CG) and their relatives (RFG and RCG). Twenty individuals from FG and CG, 60 from RFG, and 57 from RCG were studied. FG showed lower levels of total cholesterol (119.5 ± 37.9 mg/dL), LDL-cholesterol fraction (53.6 ± 30.3), apo A-I (116.7 ± 11.9), and higher level of HDL-cholesterol fraction (HDLc) (49.7 ± 8.5) compared to RFG (148.3 ± 36.9, P = 0.02; 82.4 ± 37.7, P < 0.01; 124.6 ± 10.2, P = 0.03; and 42.7 ± 7.7, P < 0.01; respectively). Moreover, FG had reduced levels of MDA (101.0 ± 77.0 ng/mL) compared to CG (290.0 ± 341.0, P = 0.03) and RFG (209.9 ± 197.5, P = 0.04). These results suggest an association between physical exercise and lower levels of MDA in FG. Physical activity seems to promote beneficial effects on the LP regardless of the genetic influence considering HDLc levels.
Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro
2015-10-21
Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0-0 mass %, 0.4-0 mass %, and 0.2-0 mass % TiH₂ were selected as the amounts of TiH₂ relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH₂ addition) layer and shifted to the low-porosity (without TiH₂ addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH₂ ( i.e. , the combination of pore structures), can be fabricated.
Haga, Satoshi; Ishizaki, Hiroshi; Nakano, Miwa; Nakao, Seiji; Hirano, Kiyoshi; Yamamoto, Yoshito; Kitagawa, Miya; Sasaki, Hiroyuki; Kariya, Yoshihiro
2014-02-01
Blood total antioxidant capacity (TAC) has become a key bio-marker for animal health. Forest-grazing cattle are known to forage various native plants that have high TAC. This study evaluated differences of plasma TAC between forest-grazing (FG) and pasture-grazing cattle (PG). Experiment 1 monitored the plasma TAC levels of 32 Japanese Black cattle. The level in PG did not change throughout the grazing period. However, that in FG, which increased from summer, was significantly higher than that in PG through fall (P < 0.05). In experiment 2, we used nine Japanese Black heifers and investigated their blood antioxidant parameters and the TAC in plants that the cattle consumed in late June and September. The plasma TAC levels in FG were significantly higher than those in PG in both periods (P < 0.05). Plasma levels of lipid peroxidation in FG tended to be lower than that in PG (P = 0.098). Furthermore, the TAC levels in various species of shrubs and trees consumed by FG were higher than those in pasture grasses. Results of this study show that plasma TAC of grazing Japanese Black cattle in forestland increase from summer through fall. © 2013 Japanese Society of Animal Science.
Neural Correlates of Covert Face Processing: fMRI Evidence from a Prosopagnosic Patient
Liu, Jiangang; Wang, Meiyun; Shi, Xiaohong; Feng, Lu; Li, Ling; Thacker, Justine Marie; Tian, Jie; Shi, Dapeng; Lee, Kang
2014-01-01
Brains can perceive or recognize a face even though we are subjectively unaware of the existence of that face. However, the exact neural correlates of such covert face processing remain unknown. Here, we compared the fMRI activities between a prosopagnosic patient and normal controls when they saw famous and unfamiliar faces. When compared with objects, the patient showed greater activation to famous faces in the fusiform face area (FFA) though he could not overtly recognize those faces. In contrast, the controls showed greater activation to both famous and unfamiliar faces in the FFA. Compared with unfamiliar faces, famous faces activated the controls', but not the patient's lateral prefrontal cortex (LPFC) known to be involved in familiar face recognition. In contrast, the patient showed greater activation in the bilateral medial frontal gyrus (MeFG). Functional connectivity analyses revealed that the patient's right middle fusiform gyrus (FG) showed enhanced connectivity to the MeFG, whereas the controls' middle FG showed enhanced connectivity to the LPFC. These findings suggest that the FFA may be involved in both covert and overt face recognition. The patient's impairment in overt face recognition may be due to the absence of the coupling between the right FG and the LPFC. PMID:23448870
Yang, Wei; Alanne, Aino-Liisa; Liu, Pengzhan; Kallio, Heikki; Yang, Baoru
2015-10-28
Flavonol glycosides (FG) were analyzed in the leaves of six currant cultivars (Ribes spp.) with HPLC-DAD, HPLC-MS/MS, and NMR. The average amounts of the 12 major, identified FG constituted 86-93% (9.6-14.1 mg/g DW) of the total of 27 FG found. Quercetin and kaempferol were the major aglycones with trace amounts of myricetin. Quercetin-3-O-(2,6-α-dirhamnopyranosyl-β-glucopyranoside), quercetin-3-O-(2-β-xylopyranosyl-6-α-rhamnopyranosyl-β-glucopyranoside), and kaempferol-3-O-(3,6-α-dirhamnopyranosyl-β-glucopyranoside) were identified for the first time in currant leaves and existed in a white currant cultivar 'White Dutch' only. Kaempferol-3-O-β-(6'-malonyl)glucopyranoside was also a new compound existing in abundance in five cultivars but not in the white one. The results show the primary importance of the genetic background of the cultivars. The content of malonylated FG of special importance in cardiovascular health decreased regularly during summer. Time of collection and leaf position were more prominent factors affecting the composition than were the year of harvest or the growth latitude. Randomly collected leaves differed in their FG profiles from those collected from the middle position of new branches.
Huh, Eugene; Lim, Soonmin; Kim, Hyo Geun; Ha, Sang Keun; Park, Ho-Young; Huh, Youngbuhm; Oh, Myung Sook
2018-01-24
Ginger, which has been widely used for dietary condiment, has been reported to improve memory dysfunction in an animal model of Alzheimer's disease (AD). Recently, a few trials have been carried out to enhance the effects of ginger by improving the bioavailability of its relevant components via fermentation. Some reports have suggested that the fermented ginger has the ability to affect the AD in vitro systems; however, its anti-amnesic effects on an in vivo model still remain to be investigated. In the present study, we aimed to investigate the neuroprotective effects of ginger fermented with Schizosaccharomyces pombe (FG) in the in vivo models of AD. The neuroprotective effects were investigated by employing behavioral, western blotting, and immunohistochemical assays. The administration of FG improved recognition memory, impaired by scopolamine injection, than that of non-fermented ginger. In addition, FG ameliorated memory impairment in amyloid beta 1-42 (Aβ 1-42 ) plaque-injected mice via protecting neuronal cells in the CA3 area of the mouse hippocampus. Moreover, FG reinstated the pre- and postsynaptic protein levels decreased by Aβ 1-42 plaque-toxicity. Overall, these data suggest that FG attenuates memory impairment in Aβ 1-42 plaque-induced AD mice through inhibition of neuronal cell loss and synaptic disruption.
Fault tolerant system based on IDDQ testing
NASA Astrophysics Data System (ADS)
Guibane, Badi; Hamdi, Belgacem; Mtibaa, Abdellatif; Bensalem, Brahim
2018-06-01
Offline test is essential to ensure good manufacturing quality. However, for permanent or transient faults that occur during the use of the integrated circuit in an application, an online integrated test is needed as well. This procedure should ensure the detection and possibly the correction or the masking of these faults. This requirement of self-correction is sometimes necessary, especially in critical applications that require high security such as automotive, space or biomedical applications. We propose a fault-tolerant design for analogue and mixed-signal design complementary metal oxide (CMOS) circuits based on the quiescent current supply (IDDQ) testing. A defect can cause an increase in current consumption. IDDQ testing technique is based on the measurement of power supply current to distinguish between functional and failed circuits. The technique has been an effective testing method for detecting physical defects such as gate-oxide shorts, floating gates (open) and bridging defects in CMOS integrated circuits. An architecture called BICS (Built In Current Sensor) is used for monitoring the supply current (IDDQ) of the connected integrated circuit. If the measured current is not within the normal range, a defect is signalled and the system switches connection from the defective to a functional integrated circuit. The fault-tolerant technique is composed essentially by a double mirror built-in current sensor, allowing the detection of abnormal current consumption and blocks allowing the connection to redundant circuits, if a defect occurs. Spices simulations are performed to valid the proposed design.
Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao
2018-01-01
Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designing, producing, and constructing fine-graded hot mix asphalt on Illinois roadways.
DOT National Transportation Integrated Search
2015-04-01
Fine-graded (F-G) asphalt concrete mixtures are composed of an aggregate structure in which the fine fraction controls the : load-carrying capacity of the mix. Other states have reported benefits in using F-G mixtures, including improved compaction, ...
Löffler, Martin; Kessel, Bettina; Ouzunova, Milena; Miedaner, Thomas
2010-03-01
Infection of maize ears with Fusarium graminearum (FG) and Fusarium verticillioides (FV) reduces yield and quality by mycotoxin contamination. Breeding and growing varieties resistant to both Fusarium spp. is the best alternative to minimize problems. The objectives of our study were to draw conclusions on breeding for ear rot resistance by estimating variance components, heritabilities and correlations between resistances to FV and FG severity and to investigate different inoculation methods. In 2007 and 2008, three maturity groups (early, mid-late, late) each comprising about 150 inbred lines were tested in Germany, France, Italy, and Hungary according to their maturity group. They were silk channel inoculated by FG (early) and FV (all groups). In the late maturity group, additionally kernel inoculation was applied in a separate trial. The percentage of mycelium coverage on the ear was rated at harvest (0-100%). Significant (P < 0.01) genotypic variances of ear rot severity were found in all groups. Inoculation was superior to natural infection because of higher disease severities and heritabilities. In early maturing flints and dents, FG caused significantly (P < 0.01) higher ear rot severity than FV (61.7 and 55.1% FG vs. 18.2 and 11.1% FV ear rot severity, respectively). FV inoculation in Southern Europe (mid-late, late) resulted in similar means between 10.3 and 14.0%. Selection is complicated by significant (P < 0.01) genotype x environment interactions. Correlation between FG and FV severity was moderate in flints and dents (r = 0.59 and 0.49, respectively) but lines resistant to both fungi exist. We conclude that chances for selecting improved European elite maize material within the existing germplasms is promising by multi-environmental inoculation trials.
Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B
2017-08-01
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Yang, Yabo; Han, Yang; Wang, Wenjun; Du, Tao; Li, Yu; Zhang, Jianping; Yang, Dongzi; Zhao, Xiaomiao
2016-02-01
To study the distribution and progression of terminal hair growth in pregnant women and to determine the feasibility of a simplified scoring system for assessing hirsutism. Prospective follow-up observational study. Academic hospital. A total of 115 pregnant women (discovery cohort) and 1,159 women with polycystic ovary syndrome (PCOS) (validation cohort). Facial and body terminal hair growth assessed by modified Ferriman and Gallwey score system (mFG score), and total testosterone (TT) level detected by liquid chromatography with tandem mass spectrometry. Degree of facial and body terminal hair growth. The serum TT level and mFG score increased as pregnancy progressed. Both the prospective study and receiver operating characteristics curve indicated that the body areas with the greatest contribution to hirsutism (defined as an mFG score ≥5) with new terminal hair growth were the upper lip, lower back, lower abdomen, and thigh. A simplified mFG scoring system (sFG) was developed, and a cutoff value of ≥3 was defined as hirsutism. Pregnant hirsute women were distinguished from nonhirsute women with an accuracy of 95.2%, sensitivity of 96.8%, and specificity of 94.3% for detecting hirsutism. This was further validated in the PCOS population with a sensitivity, specificity, and positive predictive value of 97.6%, 96.4%, and 96.4%, respectively. This study suggests that the upper lip, lower back, lower abdomen, and thigh may be an effective simplified combination of the mFG system for the evaluation of excess hair growth in Chinese women. ChiCTR-OCH-14005012. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells
Ahmed, Tamer A. E.; Ringuette, Randy; Wallace, Valerie A.; Griffith, May
2015-01-01
The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG) produced by the CryoSeal®FS system in combination with mouse retinal progenitor cells (RPCs) were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD-independent mechanism. The three-dimensional environment and the attachment surface provided by FG was associated with a rapid down-regulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers cone-rod homeobox and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors. PMID:25692127
Russell, Ryan D; Nelson, Arnold G; Kraemer, Robert R
2014-10-01
Family history of diabetes (FH) is associated with impaired cardiometabolic function. Aerobic exercise improves insulin sensitivity, though resistance training studies on fasting glucose (FG) in FH are lacking. This study examined the effects of 7 weeks of high-intensity-resistance-focused training (HIRFT), including circuit, core, and plyometric resistance training on FG in FH and matched controls (CON). We hypothesized that HIRFT would reduce FG levels, with greater reductions in CON. Thirty-eight healthy men and women (23.5 ± 2 years; 171 ± 7.4 cm; 71 ± 14 kg) participated in 7 weeks of HIRFT including full-body, plyometric, and core resistance training on alternate days. Fasting glucose was analyzed before and after the 7-week training before and after workouts. One repetition maximum was calculated for bench press, squat, and deadlift before and after training. Body mass index and resting HR remained unchanged. Fasting glucose declined similarly between groups with training (-0.23 ± 0.08 vs. -0.20 ± 0.07 mmol·L, p < 0.01 for FH and CON, respectively), whereas strength increased (kg) (bench: 8.0 ± 1.8, squat: 19.4 ± 4.6, deadlift: 16.4 ± 3.6, overall mean percent increase: 38.9 ± 9.2, p < 0.001). Ten-minute postexercise glucose decreased (-0.65 mmol·L, p = 0.05) with training, with no differences between groups. Changes in FG and strength increase were inversely correlated (r = -0.519, p = 0.05). Strength increased equally between groups. Data indicate that HIRFT reduces FG concentrations similarly in FH and CON, making it effective for improving FG in FH.
Phase 1 Study of Anti-CTGF Monoclonal Antibody in Patients with Diabetes and Microalbuminuria
Schwartz, Sherwyn; Williams, Mark E.; Arauz-Pacheco, Carlos; Bolton, Warren K.; Lee, Tyson; Li, Dongxia; Neff, Thomas B.; Urquilla, Pedro R.; Sewell, K. Lea
2010-01-01
Background and objectives: This report summarizes the first phase 1 trial treating patients with microalbuminuric diabetic kidney disease (DKD) using FG-3019, a human monoclonal antibody to connective tissue growth factor (CTGF). CTGF is critically involved in processes of progressive fibrosis, including DKD. This phase 1, open-label, dose-escalation trial evaluated safety, pharmacokinetics, and possible therapeutic effects of FG-3019 on albuminuria, proteinuria, and tubular proteins. Design, setting, participants, and measurements: Microalbuminuric subjects (n = 24) with type 2 (79%) or type 1 (21%) diabetes received 3 or 10 mg/kg FG-3019 dosed intravenously every 14 days for four doses. Albuminuria and safety follow-up were to days 62 and 365, respectively. Results: No infusion was interrupted for symptoms, although 5 of 24 subjects had mild infusion-day adverse events thought to be possibly drug-related. No subject developed anti-FG-3019 antibodies. FG-3019 clearance was lower at 10 mg/kg than at 3 mg/kg, suggesting a saturable elimination pathway. Although this study was not designed for efficacy testing, it was notable that urinary albumin/creatinine ratio (ACR) decreased significantly from mean pretreatment ACR of 48 mg/g to mean post-treatment (day 56) ACR of 20 mg/g (P = 0.027) without evidence for a dose-response relationship. Conclusions: Treatment of microalbuminuric DKD subjects using FG-3019 was well tolerated and associated with a decrease in albuminuria. The data demonstrate a saturable pathway for drug elimination, minimal infusion adverse events, and no significant drug-attributable adverse effects over the year of follow-up. Changes in albuminuria were promising but require validation in a prospective, randomized, blinded study. PMID:20522536
Agga, Getahun E; Arthur, Terrance M; Hinkley, Susanne; Bosilevac, Joseph M
2017-04-01
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC), and contaminated beef products are a source of human infections. The U.S. Department of Agriculture Food Safety and Inspection Service declared seven EHEC serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw ground beef. Sampling a large number of animals for EHEC surveillance or evaluations of EHEC-focused preharvest interventions requires a convenient and robust sampling method. We evaluated the diagnostic performance of rectoanal mucosal swab (RAMS) for the detection of the top seven EHEC serogroups. Paired fecal grab (FG) and RAMS samples were collected from 176 beef cattle and tested using the NeoSEEK Shiga toxin-producing E. coli (STEC) confirmation method. The prevalence of virulence-associated genes (stx 1 , stx 2 , stx 2c , eae, and nleB) was higher in RAMS than in FG samples. The results of the two methods had poor agreement, as indicated by kappa statistics, for the detection of the seven serogroups. When FG and RAMS results were combined for comparison, RAMS was more sensitive than FG for the detection of serogroups O103 (82% versus 39%), O157 (75% versus 67%), and O45 (79% versus 73%) with similar sensitivity for the detection of serogroup O145 (67%). Serogroups O111 and O121 were detected from one and two samples, respectively, by FG and were not detected by RAMS. Serogroup O26 was not detected with either method. RAMS appears to be equivalent or superior to FG sampling for detection of the top seven EHEC serogroups in the feces of beef cattle with the NeoSEEK STEC confirmation test.
Anticaries Potential of Low Fluoride Dentifrices Found in The Brazilian Market.
Ortiz, Adriana de Cássia; Tenuta, Livia Maria Andaló; Tabchoury, Cínthia Pereira Machado; Cury, Jaime Aparecido
2016-01-01
Low-fluoride (F) dentifrices (<600 µg F/g) are widely available worldwide, but evidence to recommend the use of such dentifrices, with either regular or improved formulations, is still lacking. Therefore, the aim of this study was to evaluate the anticaries potential of low-F dentifrices found in the Brazilian market, using a validated and tested pH-cycling model. Enamel blocks were selected by surface hardness (SH) and randomized into four treatment groups (n=12): non-F dentifrice (negative control), low-F dentifrice (500 μg F/g), low-F acidulated dentifrice (550 μg F/g) and 1,100 μg F/g dentifrice (positive control). The blocks were subjected to pH-cycling regimen for 8 days and were treated 2x/day with dentifrice slurries prepared in water (1:3, w/v). The pH of the slurries was checked, and only the acidulated one had low pH. After the pH cycling, SH was again determined and the percentage of surface hardness loss was calculated as indicator of demineralization. Loosely- and firmly-bound F concentrations in enamel were also determined. The 1,100 μg F/g dentifrice was more effective than the low-F ones to reduce enamel demineralization and was the only one that differed from the non-F (p<0.05). All F dentifrices formed higher concentration of loosely-bound F on enamel than the non-F (p<0.05), but the 1,100 μg F/g was the only one that differed from the non-F in the ability to form firmly-bound F. The findings suggest that the low-F dentifrices available in the Brazilian market, irrespective of their formulation, do not have anticaries potential.
Cao, Yongjun; Zhou, Xiaomei; Liu, Huihui; Zhang, Yanlin; Yu, Xiaoyan; Liu, Chunfeng
2013-11-01
Recently, the molecular mechanism responsible for the instability of atherosclerotic plaques has gradually become a hot topic among researchers and clinicians. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play an important role in the processes of formation and development of atherosclerosis. In this study, we established and employed the transwell co-culture system of rabbit aortic endothelial cells and smooth muscle cells to explore the relationship between fibrin (Fb), fibrinogen (Fg), and/or their degradation products (FDPs) in relation to the instability of atherosclerotic plaques; meanwhile, we observed the effects of Fg, Fb, and FDPs on the mRNA levels of MMPs and VEGF as well as on the activation of nuclear factor-kappa B (NF-κB). We concluded that Fb, Fg, and FDPs are involved in the progression of the instability of atherosclerotic plaques via increasing the expression of MMPs and VEGF. This effect might be mediated by the NF-кB pathway.
Preparation of Titanium nitride nanomaterials for electrode and application in energy storage
NASA Astrophysics Data System (ADS)
Tang, Shun; Cheng, Qi; Zhao, Jinxing; Liang, Jiyuan; Liu, Chang; Lan, Qian; Cao, Yuan-Cheng; Liu, Jiyan
The Titanium nitride was made by the carbamide and titanic chloride precursors. XRD results indicate that the precursor ratio N:Ti 3:1 leads to higher crystallinity. SEM and EDX demonstrated that Ti and N elements were distributed uniformly with the ratio of 1:1. The TiN used as the electrode material for supercapacitor was also studied. The specific capacities were changed from 407 F.g-1 to 385 F.g-1, 364 F.g-1 and 312 F.g-1, when the current densities were changed from 1 A.g-1 to 2 A.g-1, 5 A.g-1 and 10 A.g-1, respectively. Chronopotentiometry tests showed high coulombic efficiency. Cycling performance of the TiN electrode was evaluated by CV at a scanning rate of 50 mV.s-1 for 20,000 cycles and there was about 9.8% loss. These results indicate that TiN is a promising electrode material for the supercapacitors.
Frey, Steffen; Dwarkasing, Arvind; Versloot, Roderick; van der Giessen, Erik
2018-01-01
Nuclear pore complexes (NPCs) lined with intrinsically disordered FG-domains act as selective gatekeepers for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The underlying physical mechanism of the intriguing selectivity is still under debate. Here, we probe the transport of ions and transport receptors through biomimetic NPCs consisting of Nsp1 domains attached to the inner surface of solid-state nanopores. We examine both wildtype FG-domains and hydrophilic SG-mutants. FG-nanopores showed a clear selectivity as transport receptors can translocate across the pore whereas other proteins cannot. SG mutant pores lack such selectivity. To unravel this striking difference, we present coarse-grained molecular dynamics simulations that reveal that FG-pores exhibit a high-density, nonuniform protein distribution, in contrast to a uniform and significantly less-dense protein distribution in the SG-mutant. We conclude that the sequence-dependent density distribution of disordered proteins inside the NPC plays a key role for its conductivity and selective permeability. PMID:29442997
Investigating molecular crowding within nuclear pores using polarization-PALM
Fu, Guo; Tu, Li-Chun; Zilman, Anton
2017-01-01
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC’s internal organization consists of multiple dynamic environments with different local properties. PMID:28949296
Eisele, Nico B.; Labokha, Aksana A.; Frey, Steffen; Görlich, Dirk; Richter, Ralf P.
2013-01-01
Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport. PMID:24138862
Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.
Onischenko, Evgeny; Tang, Jeffrey H; Andersen, Kasper R; Knockenhauer, Kevin E; Vallotton, Pascal; Derrer, Carina P; Kralt, Annemarie; Mugler, Christopher F; Chan, Leon Y; Schwartz, Thomas U; Weis, Karsten
2017-11-02
Nuclear pore complexes (NPCs) are ∼100 MDa transport channels assembled from multiple copies of ∼30 nucleoporins (Nups). One-third of these Nups contain phenylalanine-glycine (FG)-rich repeats, forming a diffusion barrier, which is selectively permeable for nuclear transport receptors that interact with these repeats. Here, we identify an additional function of FG repeats in the structure and biogenesis of the yeast NPC. We demonstrate that GLFG-containing FG repeats directly bind to multiple scaffold Nups in vitro and act as NPC-targeting determinants in vivo. Furthermore, we show that the GLFG repeats of Nup116 function in a redundant manner with Nup188, a nonessential scaffold Nup, to stabilize critical interactions within the NPC scaffold needed for late steps of NPC assembly. Our results reveal a previously unanticipated structural role for natively unfolded GLFG repeats as Velcro to link NPC subcomplexes and thus add a new layer of connections to current models of the NPC architecture. Copyright © 2017 Elsevier Inc. All rights reserved.
Vaccine potential of recombinant saposin-like protein 2 against Fasciolosis gigantica in mice.
Kueakhai, Pornanan; Changklungmoa, Narin; Riengrojpitak, Suda; Chaichanasak, Pannigan; Meemon, Krai; Chaithirayanon, Kulathida; Chantree, Pathanin; Sansri, Veerawat; Itagaki, Tadashi; Sobhon, Prasert
2013-11-12
Saposin-like protein 2 (SAP-2) is a protein that adult of Fasciola spp. use to lyse plasma membrane of red blood cells, so that their contents can be digested by proteases for the parasites' nutrients. Thus SAP-2 is a plausible target for vaccination against these parasites. Recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was expressed in Escherichia coli BL21 (DE3). A vaccination was performed in ICR mice (n=10) by subcutaneous injection with 50μg of rFgSAP-2 combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 30 F. gigantica metacercariae by oral route. The percentages of protection of rFgSAP-2 vaccine against F. gigantica were estimated to be 76.4-78.5% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The antibodies in immune sera of vaccinated mice were shown by immuno-blotting to react with native FgSAP-2 in the extract of 2- and 4-week-old juvenile parasites. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, it was found that both Th1 and Th2 humoral immune response were significantly increased in rFgSAP-2 immunized group compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rFgSAP-2-immunized group showed no significant difference from those of the non-immunized and infected group, indicating that early juvenile parasites induced liver parenchyma damage, even though the numbers of worm recoveries were significantly different. This study indicates that rFgSAP-2 has a high potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in larger economic animals. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Koloutsou-Vakakis, S.; Rood, M. J.; Lichiheb, N.; Heuer, M.; Myles, L.
2017-12-01
Ammonia (NH3) is a precursor to fine particulate matter (PM) in the ambient atmosphere. Agricultural activities represent over 80% of anthropogenic emissions of NH3 in the United States. The use of nitrogen-based fertilizers contribute > 50% of total NH3 emissions in central Illinois. The U.S. EPA Science Advisory Board has called for improved methods to measure, model, and report atmospheric NH3 concentrations and emissions from agriculture. High uncertainties in the temporal and spatial distribution of NH3 emissions contribute to poor performance of air quality models in predicting ambient PM concentrations. This study reports and compares NH3 flux measurements of differing temporal resolution obtained with two methods: relaxed eddy accumulation (REA) and flux-gradient (FG). REA and FG systems were operated concurrently above a corn canopy at the University of Illinois at Urbana-Champaign (UIUC) Energy Biosciences Institute (EBI) Energy Farm during the 2014 corn-growing season. The REA system operated during daytime, providing average fluxes over four-hour sampling intervals, where time resolution was limited by detection limit of denuders. The FG system employed a cavity ring-down spectrometer, and was operated continuously, reporting 30 min flux averages. A flux-footprint evaluation was used for quality control, resulting in 1,178 qualified FG measurements, 82 of which were coincident with REA measurements. Similar emission trends were observed with both systems, with peak NH3 emission observed one week after fertilization. For all coincident samples, mean NH3 flux was 205 ± 300 ng-N-m2s-1 and 110 ± 256 ng-N-m2s-1 as measured with REA and FG, respectively, where positive flux indicates emission. This is the first reported inter-comparison of REA and FG methods as used for quantifying NH3 fluxes from cropland. Preliminary analysis indicates the improved temporal resolution and continuous sampling enabled by FG allow for the identification of emission pulses not observed using REA, however, the lower cost of equipment for REA makes it an attractive approach for sampling at multiple sites.
Chen, Yunjie; Roux, Benoît
2015-08-11
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.
2015-01-01
Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442
Dynamical evolution and spatial mixing of multiple population globular clusters
NASA Astrophysics Data System (ADS)
Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale
2013-03-01
Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the FG.
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
14 CFR 29.757 - Hull and auxiliary float strength.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
Load assumptions for the landing impact of seaplanes
NASA Technical Reports Server (NTRS)
Taub, Josef
1931-01-01
The formula for the impact of floats must include the enlargement factor itself as well as the type of enlargement. The latter is preferably characterized by the change in surface loading. It is shown that the enlargement of a small seaplane generally results in a changed float (or boat) loading as well as wing loading. The conditions of starting stipulate the retention of the float loading when changing from single-float (boat) to twin-float arrangement. This contingency is followed by an increased impact factor in the twin-float type against the otherwise equivalent single-float type.
Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.
1996-01-01
In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.
Progress on the FIReTIP Diagnostic on NSTX-U
NASA Astrophysics Data System (ADS)
Scott, Evan; Barchfeld, Robert; Riemenschneider, Paul; Muscatello, Chris; Sohrabi, Mohammad; Domier, Calvin; Ren, Yang; Kaita, Robert; Luhmann, Neville, Jr.; NSTX-U Team
2016-10-01
The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system on NSTX-U at the PPPL aims to provide robust, line-averaged electron density measurements. The system consists of three optically-pumped 119 µm methanol lasers, one of which can be tuned via Stark broadening, allowing for uniquely high intermediate frequencies and time resolutions. One of the major goals of FIReTIP is to incorporate it into the NSTX-U plasma control system (PCS) for real-time plasma density feedback control. The front-end optics mounted to Bay G, which shape and position the beam going into the plasma, and internal retroreflector located near Bay B, which facilitates double-pass measurements, are hard-mounted to the NSTX-U vacuum vessel. Because interferometric density measurements are sensitive to vibrational effects, FIReTIP has been upgraded to a two-color interferometer system with the inclusion of a 633 nm laser interferometer for the direct measurement of vibrations and a field programmable gate array (FPGA) for the subsequent subtraction of vibrational effects from the density measurement in real-time. This work is supported by the U.S. Department of Energy Grant DE-FG02-99ER54518.
Nestor, Paul G; Onitsuka, Toshiaki; Gurrera, Ronald J; Niznikiewicz, Margaret; Frumin, Melissa; Shenton, Martha E; McCarley, Robert W
2007-03-01
We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.
Suzuki, Yusuke; Yamada, Kohei; Watanabe, Kentaro; Kochi, Takuya; Ie, Yutaka; Aso, Yoshio; Kakiuchi, Fumitoshi
2017-07-21
A convenient method for the syntheses of dibenzo[h,rst]pentaphenes and dibenzo[fg,qr]pentacenes via the ruthenium-catalyzed chemoselective C-O arylation of 1,4- and 1,5-dimethoxyanthraquinones is described. Dimethoxyanthraquinones reacted selectively with arylboronates at the ortho C-O bonds to give diarylation products. An efficient two-step procedure consisting of a Corey-Chaykofsky reaction and subsequent dehydrative aromatization afforded derivatives of dibenzo[h,rst]pentaphenes and dibenzo[fg,qr]pentacenes. Hole-transporting characteristics were observed for a device with a bottom-contact configuration that was fabricated from one of these polycyclic aromatic hydrocarbons.
DOT National Transportation Integrated Search
2012-09-01
Blended calcium sulfate (BCS) is fl uorogypsum (FG), an industrial byproduct, : blended with lime or limestone. Approximately 90,000 metric tons (100,000 : tons) of FG are generated annually in the United States, posing a serious : problem for enviro...
Lech, Teresa
2011-03-20
Fluoride, of all inorganic substances, is among the least likely to be identified by a routine toxicological analysis. Acute poisonings with salts of hydrofluoric or fluorosilicic acid, however, although relatively uncommon, may occur. Some fluorosilicates, salts of fluorosilicic acid (e.g. Al, Zn, Pb, Mg) are used as stone consolidants, others (e.g. sodium fluorosilicate)--in the production of enamel and milk glass, or as insecticide. In this paper, two fatal cases of poisonings are presented: a suicide involving sodium fluorosilicate of a 39-year-old male who died in his flat, without hospitalization, and an accidental ingestion of zinc fluorosilicate solution (probably due to mistaking it for mineral water) by a 38-year-old male at his workplace (building), who died about 3h after ingestion of the liquid, in spite of intensive care at hospitals. Post-mortem samples were examined by the use of the spectrophotometric method with lanthanum nitrate and alizarin complexone for fluorine (after isolation of fluoride compounds by the microdiffusion method) and using a flame atomic absorption spectrometry method for zinc (after mineralization of biological material by sulfuric and nitric acids). In the first case, the results were: blood--130 μg F/ml, stomach--1150 μg F/g, small intestine content --19.6 μg F/g, kidney--56.0 μg F/g, and urine--1940 μg F/ml. In the second case, the contents of fluorine and zinc in blood and internal organs were the following: blood--6.03 μg F/ml, 23.8 μg Zn/ml; brain--1.39 μg F/g, 7.54 μg Zn/g; stomach--152 μg Zn/g; stomach content--293 μg F/g, 84.4 μg Zn/g; small intestine--37.5 μg Zn/g; small intestine content--63.4 μg F/g, 19.6 μg Zn/g; liver--9.49 μg F/g, 81.0 μg Zn/g; kidney--29.6 μg F/g, 39.2 μg Zn/g; and exceeded the normal levels of these elements in biological material many times. In addition, in stomach and liver large amounts of silica were detected. In the paper, a review of acute intoxications with various fluoride compounds (17 cases) is also presented. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
Strübing, Sandra; Abboud, Tâmara; Contri, Renata Vidor; Metz, Hendrik; Mäder, Karsten
2008-06-01
The purpose of this study was to investigate the mechanism of floating and drug release behaviour of poly(vinyl acetate)-based floating tablets with membrane controlled drug delivery. Propranolol HCl containing tablets with Kollidon SR as an excipient for direct compression and different Kollicoat SR 30 D/Kollicoat IR coats varying from 10 to 20mg polymer/cm2 were investigated regarding drug release in 0.1N HCl. Furthermore, the onset of floating, the floating duration and the floating strength of the device were determined. In addition, benchtop MRI studies of selected samples were performed. Coated tablets with 10mg polymer/cm2 SR/IR, 8.5:1.5 coat exhibited the shortest lag times prior to drug release and floating onset, the fastest increase in and highest maximum values of floating strength. The drug release was delayed efficiently within a time interval of 24 h by showing linear drug release characteristics. Poly(vinyl acetate) proved to be an appropriate excipient to ensure safe and reliable drug release. Floating strength measurements offered the possibility to quantify the floating ability of the developed systems and thus to compare different formulations more efficiently. Benchtop MRI studies allowed a deeper insight into drug release and floating mechanisms noninvasively and continuously.
NASA Astrophysics Data System (ADS)
Mehdikhani, Mehdi; Ghaziof, Sharareh
2018-01-01
In this research, poly-ɛ-caprolactone (PCL), polyethylene glycol (PEG), multi-wall carbon nanotubes (MWCNTs), and nanocomposite scaffolds containing 0.5 and 1% (w/w) MWCNTs coated with fibrin glue (FG) were prepared via solvent casting and freeze-drying technique for cardiac tissue engineering. Scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction were used to characterize the samples. Furthermore, mechanical properties, electrical conductivity, degradation, contact angle, and cytotoxicity of the samples were evaluated. Results showed the uniform distribution of the MWCNTs with some aggregates in the prepared nanocomposite scaffolds. The scaffolds containing 1% (w/w) MWCNTs with and without FG coating illustrated optimum modulus of elasticity, high electrical conductivity, and wettability compared with PCL/PEG and PCL/PEG/0.5%(w/w) MWCNTs' scaffolds. FG coating enhanced electrical conductivity and cell response, and increased wettability of the constructs. The prepared scaffolds were degraded significantly after 60 days of immersion in PBS. Meanwhile, the nanocomposite containing 1% (w/w) MWCNTs with FG coating (S3) showed proper spreading and viability of the myoblasts seeded on it after 1, 4, and 7 days of culture. The scaffold containing 1% (w/w) MWCNTs with FG coating demonstrated optimal properties including acceptable mechanical properties, proper wettability, high electrical conductivity, satisfactory degradation, and excellent myoblasts response to it.
Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
NASA Astrophysics Data System (ADS)
Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan
2016-07-01
This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.
Moussavi-Baygi, R; Mofrad, M R K
2016-07-29
Conformational behavior of intrinsically disordered proteins, such as Phe-Gly repeat domains, alters drastically when they are confined in, and tethered to, nan channels. This has challenged our understanding of how they serve to selectively facilitate translocation of nuclear transport receptor (NTR)-bearing macromolecules. Heterogeneous FG-repeats, tethered to the NPC interior, nonuniformly fill the channel in a diameter-dependent manner and adopt a rapid Brownian motion, thereby forming a porous and highly dynamic polymeric meshwork that percolates in radial and axial directions and features two distinguishable zones: a dense hydrophobic rod-like zone located in the center, and a peripheral low-density shell-like zone. The FG-meshwork is locally disrupted upon interacting with NTR-bearing macromolecules, but immediately reconstructs itself between 0.44 μs and 7.0 μs, depending on cargo size and shape. This confers a perpetually-sealed state to the NPC, and is solely due to rapid Brownian motion of FG-repeats, not FG-repeat hydrophobic bonds. Elongated-shaped macromolecules, both in the presence and absence of NTRs, penetrate more readily into the FG-meshwork compared to their globular counterparts of identical volume and surface chemistry, highlighting the importance of the shape effects in nucleocytoplasmic transport. These results can help our understanding of geometrical effects in, and the design of, intelligent and responsive biopolymer-based materials in nanofiltration and artificial nanopores.
[Effect evaluation of three ELISA kits in detection of fasciolasis].
Ai, Lin; Chen, Mu-Xin; Chen, Shao-Hong; Chu, Yan-Hong; Cai, Yu-Chun; Zhou, Xiao-Nong; Chen, Jia-Xu
2013-04-01
To evaluate the effect of 3 ELISA kits on detection of human fasciolasis. Twenty-six serum samples from patients with fasciolasis, 180 serum samples from patients with other parasitic diseases as well as 26 serum samples from healthy people were detected by ELISA kits which using soluble antigen of Fasciola gigantica, Fasciola hepatica (Fg-ELISA and Fh-ELISA) as well as IgG antigen ELISA detection kits made by DRG company in Germany. The effects of the 3 kits were evaluated. The sensitivities of Fg-ELISA, Fh-ELISA, and DRG-ELISA were 100.0%, 80.8% (95% CI: 65.7%-95.9%) and 100.0%, respectively; the specificities of the three were 87.9% (95% CI: 83.5%-92.4%), 85.0%(95% CI: 80.1%-89.9%) and 83.5% (95% CI: 78.4%-88.6%), respectively, and Youden indexes of them were 0.88, 0.66 and 0.84, respectively. The detection rate of Fg-ELISA (100%) was significantly higher than that of Fh-ELISA (80.8%) (P < 0.05). The A absolute value (A/CO) of Fg-ELISA was 1.70, which was also significantly higher than the value of Fh-ELISA (1.18) (P < 0.000 1). Fg-ELISA has a good detection effect and low cost, and is more suitable than Fh-ELISA and DRG-ELISA for clinical sample tests as well as massive screening in fasciolasis endemic areas in southwest China.
Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang
2016-01-01
The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283–721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis. PMID:27231021
Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang
2016-05-27
The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283-721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis.
On the representability problem and the physical meaning of coarse-grained models
NASA Astrophysics Data System (ADS)
Wagner, Jacob W.; Dama, James F.; Durumeric, Aleksander E. P.; Voth, Gregory A.
2016-07-01
In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables are not directly represented, one can nonetheless identify indirect the CG observables that capture the FG observable's dependence on CG coordinates. Often, in these cases it appears that a CG observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading and significantly undermines the interpretation of both bottom-up and top-down CG models. Such problems emerge especially clearly in the framework of the systematic bottom-up CG modeling, where a direct and transparent correspondence between FG and CG variables establishes precise conditions for consistency between CG observables and underlying FG models. Here we present and investigate these representability challenges and illustrate them via the bottom-up conceptual framework for several simple analytically tractable polymer models. The examples provide special focus on the observables of configurational internal energy, entropy, and pressure, which have been at the root of controversy in the CG literature, as well as discuss observables that would seem to be entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though we investigate these problems in the framework of systematic coarse-graining, the lessons apply to top-down CG modeling also, with crucial implications for simulation at constant pressure and surface tension and for the interpretations of structural and thermodynamic correlations for comparison to experiment.
NASA Astrophysics Data System (ADS)
Saranya, S.; Selvan, R. Kalai; Priyadharsini, N.
2012-03-01
Polyaniline (PAni)/MnWO4 nanocomposite was successfully synthesized by in situ polymerization method under ultrasonication and the MnWO4 was prepared by surfactant assisted ultrasonication method. The thermal stability of PAni was determined by TG/DTA (Thermo Gravimetric/ Differential thermal analysis). The structural and morphological features of PAni, MnWO4 and PAni/MnWO4 composite was analyzed using Fourier transform infrared spectrometry, X-ray diffraction (XRD), scanning electron microscope (SEM) and Transmission electron microscope (TEM) images. The electro-chemical properties of PAni, MnWO4 and its composites with different weight percentage of MnWO4 loading were studied through cyclic voltammetry (CV) for the application of supercapacitors as active electrode materials. From the cyclic voltammogram, 50% of MnWO4 impregnated PAni showed a high specific capacitance (SC) of 481 F/g than their individual counterparts of PAni (396 F/g) and MnWO4 (18 F/g). The galvanostatic charge-discharge studies indicate the in situ polymerized composite shows greater specific capacitance (475 F/g) than the physical mixture (346 F/g) at a constant discharge current of 1 mA/cm2 with reasonable cycling stability. The charge transfer resistance (Rct) of PAni/MnWO4 composite (22 ohm) was calculated using electrochemical impedance spectroscopy (EIS) and compared with its physical mixture (58 ohm).
Wang, Erica T; Kao, Chia-Ning; Shinkai, Kanade; Pasch, Lauri; Cedars, Marcelle I; Huddleston, Heather G
2013-07-01
To determine whether manifestations of polycystic ovary syndrome (PCOS), particularly androgen excess, differ between Caucasian and Asian women in the San Francisco Bay Area. Cross-sectional study. Multidisciplinary PCOS clinic at a tertiary academic center. 121 Caucasian and 28 Asian women, aged 18-44, examined between 2006 and 2011 with PCOS verified by a reproductive endocrinologist and dermatologist according to the Rotterdam criteria. Transvaginal ultrasounds, comprehensive dermatologic exams, and serum testing. Hirsutism defined as a modified Ferriman-Gallwey (mFG) score ≥ 8, acne, androgenic alopecia, and biochemical hyperandrogenism. Caucasian and Asian women had a similar prevalence of all measures of androgen excess. Both groups had similar total mFG scores and site-specific mFG scores, except Asian women had a lower site-specific mFG score for the chest. Although Asian women were more likely to use laser hair removal, the results were unchanged when the women with a history of laser hair removal were excluded. Caucasian and Asian women with PCOS living in the same geographic region had a similar prevalence of hirsutism as well as other markers for androgen excess. Further studies are necessary to evaluate the need for ethnic-specific mFG scores in women with PCOS. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.
2017-04-01
In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.
Wannasan, Anchalee; Khositharattanakool, Pathamet; Chaiwong, Prasong; Piangjai, Somsak; Uparanukraw, Pichart; Morakote, Nimit
2014-11-01
Molecular techniques were used to identify Fasciola species collected from Chiang Mai Thailand. Morphometrically, 65 stained and 45 fresh worms collected from cattle suggested the possible occurrence of both F. gigantica and F. hepatica. Twenty-two worms comprising 15 from cattle and 7 from human patients, were identified subsequently based on three genetic markers: mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1), mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS2). All of them presented the F. gigantica type in maternally inherited mitochondrial sequences (nad1 and cox1), with six types in each sequence (FgNDI-CM1 to FgNDI-CM6 and FgCOI-CM1 to FgCOI-CM6, respectively). Remarkably, the predominant nad1 type, FgNDI-CM6, was identical to that of aspermic Fasciola sp. formerly reported from Thailand, Japan, Korea, China, Vietnam, and Myanmar. ITS2 sequences were analyzed successfully in 20 worms. Fifteen worms showed the F. gigantica type and five (including one worm from a patient) had mixed ITS2 sequences of both F. gigantica and F. hepatica in the same worms, with additional heterogeneity within both ITS2 types. This study revealed the intermediate form of Fasciola coexisting with F. gigantica for the first time in Thailand.
Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro
2015-01-01
Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH2) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition) layer and shifted to the low-porosity (without TiH2 addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures), can be fabricated. PMID:28793626
"What" precedes "which": developmental neural tuning in face- and place-related cortex.
Scherf, K Suzanne; Luna, Beatriz; Avidan, Galia; Behrmann, Marlene
2011-09-01
Although category-specific activation for faces in the ventral visual pathway appears adult-like in adolescence, recognition abilities for individual faces are still immature. We investigated how the ability to represent "individual" faces and houses develops at the neural level. Category-selective regions of interest (ROIs) for faces in the fusiform gyrus (FG) and for places in the parahippocampal place area (PPA) were identified individually in children, adolescents, and adults. Then, using an functional magnetic resonance imaging adaptation paradigm, we measured category selectivity and individual-level adaptation for faces and houses in each ROI. Only adults exhibited both category selectivity and individual-level adaptation bilaterally for faces in the FG and for houses in the PPA. Adolescents showed category selectivity bilaterally for faces in the FG and houses in the PPA. Despite this profile of category selectivity, adolescents only exhibited individual-level adaptation for houses bilaterally in the PPA and for faces in the "left" FG. Children only showed category-selective responses for houses in the PPA, and they failed to exhibit category-selective responses for faces in the FG and individual-level adaptation effects anywhere in the brain. These results indicate that category-level neural tuning develops prior to individual-level neural tuning and that face-related cortex is disproportionately slower in this developmental transition than is place-related cortex.
“What” Precedes “Which”: Developmental Neural Tuning in Face- and Place-Related Cortex
Luna, Beatriz; Avidan, Galia; Behrmann, Marlene
2011-01-01
Although category-specific activation for faces in the ventral visual pathway appears adult-like in adolescence, recognition abilities for individual faces are still immature. We investigated how the ability to represent “individual” faces and houses develops at the neural level. Category-selective regions of interest (ROIs) for faces in the fusiform gyrus (FG) and for places in the parahippocampal place area (PPA) were identified individually in children, adolescents, and adults. Then, using an functional magnetic resonance imaging adaptation paradigm, we measured category selectivity and individual-level adaptation for faces and houses in each ROI. Only adults exhibited both category selectivity and individual-level adaptation bilaterally for faces in the FG and for houses in the PPA. Adolescents showed category selectivity bilaterally for faces in the FG and houses in the PPA. Despite this profile of category selectivity, adolescents only exhibited individual-level adaptation for houses bilaterally in the PPA and for faces in the “left” FG. Children only showed category-selective responses for houses in the PPA, and they failed to exhibit category-selective responses for faces in the FG and individual-level adaptation effects anywhere in the brain. These results indicate that category-level neural tuning develops prior to individual-level neural tuning and that face-related cortex is disproportionately slower in this developmental transition than is place-related cortex. PMID:21257673
14 CFR 23.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehder, J.B.
The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion ofmore » the potential applications of floating hydro power systems in small streams.« less
NASA Astrophysics Data System (ADS)
Ban, Takahiko; Uenuma, Mutsunori; Migita, Shinji; Okamoto, Naofumi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yamamoto, Shin-ichi
2018-06-01
By synthesizing AuS nanoparticles (NPs) with spherical shell protein (ferritin) and using a V-groove, a one-dimensional array of NPs was formed at the bottom of the V-groove. It has been reported that AuS NPs are converted to Au NPs by UV/ozone treatment. Floating gate memory (FGM) was fabricated by applying this one-dimensional array to V-grooved junctionless (JL) FETs, V-grooved nin-like-type FETs, and pip-like-type FETs, which are fine FETs. In JL-FETs, it is considered that conversion occurred because of good charge storage efficiency, and operation in the opposite direction to normal FGM operation was seen. In the nin-like and pip-like types devices, the same operation as in conventional FGM was shown, and the width of the memory window was about the same size as when one electron entered one NP. The one-dimensional arrangement of the metal NPs used in this study is considered to be applicable to various fields of nanotechnology.
A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications
Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui
2015-01-01
This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868
A CMOS pressure sensor tag chip for passive wireless applications.
Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui
2015-03-23
This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.
Cohen, Ariel; Shappir, Joseph; Yitzchaik, Shlomo; Spira, Micha E
2006-12-15
Understanding the mechanisms that generate field potentials (FPs) by neurons grown on semiconductor chips is essential for implementing neuro-electronic devices. Earlier studies emphasized that FPs are generated by current flow between differentially expressed ion channels on the membranes facing the chip surface, and those facing the culture medium in electrically compact cells. Less is known, however, about the mechanisms that generate FPs by action potentials (APs) that propagate along typical non-isopotential neurons. Using Aplysia neurons cultured on floating gate-transistors, we found that the FPs generated by APs in cultured neurons are produced by current flow along neuronal compartments comprising the axon, cell body, and neurites, rather than by flow between the membrane facing the chip substrate and that facing the culture medium. We demonstrate that the FPs waveform generated by non-isopotential neurons largely depends on the morphology of the neuron.
Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Ni, Zhenjie; Zou, Ye; Yang, Jie; Wang, Lifeng; Sun, Yanqiu; Guo, Yunlong; Hu, Wenping; Liu, Yunqi
2017-08-01
Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spin switches for compact implementation of neuron and synapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo
2014-06-02
Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltagesmore » that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.« less