Sample records for floating ice grades

  1. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-01-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  2. Sub-glacier ocean properties and mass balance estimates of Petermann Gletscher's floating tongue in Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Steffen, K.; Huff, R. D.; Cullen, N.; Rignot, E.; Bauder, A.

    2004-12-01

    Petermann Gletscher is the largest and most influential outlet glacier in central northern Greenland. Located at 81 N, 60 W, it drains an area of 71,580 km2, with a discharge of 12 cubic km of ice per year into the Arctic Ocean. We finished a third field season in spring 2004 collecting in situ data on local climate, ice velocity, ice thickness profiles and bottom melt rates of the floating ice tongue. In addition, water properties (salinity and temperature profiles) in large, channel-like bottom cavities beneath the floating ice tongue were measured. The melt rates in these "channels" are in excess of 10 m/y and probably responsible for most of the mass loss of the Petermann Gletscher. The ocean measurements will be discussed in comparison with other ocean-profile soundings in the region. The bottom topography of the floating ice tongue has been mapped for some regions using surface-based ground penetrating radar at 25 MHz frequency and NASA aircraft radar profiles. A new map showing these under-ice features will be presented. GPS tidal motion has been measured over one lunar cycle at the flex zone and on the free floating ice tongue. These results will be compared to historic measurements made at the beginning of last century. A "worm-like" sheer feature of 80 m in height and several km in length has been studied using differential GPS readings. The mean velocity of the floating tongue ice is 1.08 km/y in that region, whereas the ice along the margin has a 30%-reduced flow speed, resulting in this strange looking sheer feature. Finally, the mass balance of the floating ice tongue will be discussed based on in situ measurements, aircraft profiles, satellite data, and model approximations.

  3. Association of ice and river channel morphology determined using ground-penetrationg radar in the Kuparuk River, Alaska

    USGS Publications Warehouse

    Best, Heather; McNamara, J.P.; Liberty, Lee M.

    2005-01-01

    We collected ground-penetrating radar data at 10 sites along the Kuparuk River and its main tributary, the Toolik River, to detect unfrozen water beneath river ice. We used 250 MHz and 500 MHz antennas to image both the ice-water interface and the river channel in late April 2001, when daily high temperatures were consistently freezing and river ice had attained its maximum seasonal thickness. The presence of water below the river ice appears as a strong, horizontal reflection observed in the radar data and is confirmed by drill hole data. A downstream transition occurs from ice that is frozen to the bed, called bedfast ice, to ice that is floating on unfrozen water, called floating ice. This transition in ice type corresponds to a downstream change in channel size that was detected in previously conducted hydraulic geometry surveys of the Kuparuk River. We propose a conceptual model wherein the downstream transition from bedfast ice to floating ice is responsible for an observed step change in channel size due to enhanced bank erosion in large channels by floating ice.

  4. Automatic detection of Floating Ice at Antarctic Continental Margin from Remotely Sensed Image with Object-oriented Matching

    NASA Astrophysics Data System (ADS)

    Zhao, Z.

    2011-12-01

    Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080. The results show that the object-based information extraction algorithm can obtain more precise details of a single object, while the change detection method based on similarity matching can effectively tracking the change of floating ice.

  5. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from autonomous profilers provide insight into the hydrographic state of the Ross Sea at the start of the spring period of sea-ice breakup, and how ocean mixing and sea ice interact to initiate the summer open-water season.

  6. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  7. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  8. Channel-Like Bottom Features and High Bottom Melt Rates of Petermann Gletscher's Floating Tongue in Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Steffen, K.; Huff, R. D.; Cullen, N.; Rignot, E.; Stewart, C.; Jenkins, A.

    2003-12-01

    Petermann Gletscher is the largest and most influential outlet glacier in central northern Greenland. Located at 81 N, 60 W, it drains an area of 71,580 km2, with a discharge of 12 cubic km of ice per year into the Arctic Ocean. We finished a second field season in spring 2003 collecting in situ data on local climate, ice velocity, strain rates, ice thickness profiles and bottom melt rates of the floating ice tongue. Last years findings have been confirmed that large channels of several hundred meters in depth at the underside of the floating ice tongue are running roughly parallel to the flow direction. We mapped these channels using ground penetrating radar at 25 MHz frequency and multi-phase radar in profiling mode over half of the glacier's width. In addition, NASA airborne laser altimeter data was collected along and cross-glacier for accurate assessment of surface topography. We will present a 3-D model of the floating ice tongue and provide hypothesis of the origin and mechanism that caused these large ice channels at the bottom of the floating ice tongue. Multi-phase radar point measurements revealed interesting results of bottom melt rates, which exceed all previous estimates. It is worth mentioned that the largest bottom melt rates were not found at the grounding line, which is common on ice shelves in the Antarctica. In addition, GPS tidal motion has been measured over one lunar cycle at the flex zone and on the free floating ice tongue and the result will be compared to historic measurements made at the beginning of last century. The surface climate has been recorded by two automatic weather stations over a 12 month period, and the local climate of this remote region will be presented.

  9. Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice Zone of the Southern Ocean From Profiling Floats

    NASA Astrophysics Data System (ADS)

    Briggs, Ellen M.; Martz, Todd R.; Talley, Lynne D.; Mazloff, Matthew R.; Johnson, Kenneth S.

    2018-02-01

    Here we present initial findings from nine profiling floats equipped with pH, O2, NO3-, and other biogeochemical sensors that were deployed in the seasonal ice zone (SIZ) of the Southern Ocean in 2014 and 2015 through the Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) project. A large springtime phytoplankton bloom was observed that coincided with sea ice melt for all nine floats. We argue this bloom results from a shoaling of the mixed layer depth, increased vertical stability, and enhanced nutrient and light availability as the sea ice melts. This interpretation is supported by the absence of a springtime bloom when one of the floats left the SIZ in the second year of observations. During the sea ice covered period, net heterotrophic conditions were observed. The rate of uptake of O2 and release of dissolved inorganic carbon (derived from pH and estimated total alkalinity) and NO3- is reminiscent of biological respiration and is nearly Redfieldian for the nine floats. A simple model of mixed layer physics was developed to separate the physical and biological components of the signal in pH and O2 over one annual cycle for a float in the Ross Sea SIZ. The resulting annual net community production suggests that seasonal respiration during the ice covered period of the year nearly balances the production in the euphotic layer of up to 5 mol C m-2 during the ice free period leading to a net of near zero carbon exported to depth for this one float.

  10. Thickening and Thinning of Antarctic Ice Shelves and Tongues and Mass Balance Estimates

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Giovinetto, Mario; Robbins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Previous analysis of elevation changes for 1992 to 2002 obtained from measurements by radar altimeters on ERS-l and 2 showed that the shelves in the Antarctic Peninsula (AP) and along the coast of West Antarctica (WA), including the eastern part of the Ross Ice Shelf, were mostly thinning and losing mass whereas the Ronne Ice shelf also in WA was mostly thickening. The estimated total mass loss for the floating ice shelves and ice tongues from ice draining WA and the AP was 95 Gt/a. In contrast, the floating ice shelves and ice tongues from ice draining East Antarctica (EA), including the Filchner, Fimbul, Amery, and Western Ross, were mostly thickening with a total estimated mass gain of 142 Gt/a. Data from ICESat laser altimetry for 2003-2008 gives new surface elevation changes (dH/dt) with some similar values for the earlier and latter periods, including -27.6 and -26.9 cm a-Ion the West Getz ice shelf and -42.4 and - 27.2 cm/a on the East Getz ice shelf, and some values that indicate more thinning in the latter period, including -17.9 and -36.2 cm/a on the Larsen C ice shelf, -35.5 and -76.0 cm/a on the Pine Island Glacier floating, -60.5 and -125.7 .cm/a on the Smith Glacier floating, and -34.4 and -108.9 cm/a on the Thwaites Glacier floating. Maps of measured dH/dt and estimated thickness change are produced along with mass change estimates for 2003 - 2008.

  11. Grounding line migration through the calving season at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Xie, Surui; Dixon, Timothy H.; Voytenko, Denis; Deng, Fanghui; Holland, David M.

    2018-04-01

    Ice velocity variations near the terminus of Jakobshavn Isbræ, Greenland, were observed with a terrestrial radar interferometer (TRI) during three summer campaigns in 2012, 2015, and 2016. We estimate a ˜ 1 km wide floating zone near the calving front in early summer of 2015 and 2016, where ice moves in phase with ocean tides. Digital elevation models (DEMs) generated by the TRI show that the glacier front here was much thinner (within 1 km of the glacier front, average ice surface is ˜ 100 and ˜ 110 m above local sea level in 2015 and 2016, respectively) than ice upstream (average ice surface is > 150 m above local sea level at 2-3 km to the glacier front in 2015 and 2016). However, in late summer 2012, there is no evidence of a floating ice tongue in the TRI observations. Average ice surface elevation near the glacier front was also higher, ˜ 125 m above local sea level within 1 km of the glacier front. We hypothesize that during Jakobshavn Isbræ's recent calving seasons the ice front advances ˜ 3 km from winter to spring, forming a > 1 km long floating ice tongue. During the subsequent calving season in mid- and late summer, the glacier retreats by losing its floating portion through a sequence of calving events. By late summer, the entire glacier is likely grounded. In addition to ice velocity variation driven by tides, we also observed a velocity variation in the mélange and floating ice front that is non-parallel to long-term ice flow motion. This cross-flow-line signal is in phase with the first time derivative of tidal height and is likely associated with tidal currents or bed topography.

  12. Bearing Capacity of Floating Ice Sheets under Short-Term Loads: Over-Sea-Ice Traverse from McMurdo Station to Marble Point

    DTIC Science & Technology

    2015-01-01

    crafts on floating ice sheets near McMurdo, Antarctica (Katona and Vaudrey 1973; Katona 1974; Vaudrey 1977). To comply with the first criterion, one...Nomographs for operating wheeled aircraft on sea- ice runways: McMurdo Station, Antarctica . In Proceedings of the Offshore Mechanics and Arctic Engineering... Ice Thickness Requirements for Vehicles and Heavy Equipment at McMurdo Station, Antarctica . CRREL Project Report 04- 09, “Safe Sea Ice for Vehicle

  13. Sensitivity analysis of sea level rise contribution depending on external forcing: A case study of Victoria Land, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Park, I. W.; Lee, S. H.; Lee, W. S.; Lee, C. K.; Lee, K. K.

    2017-12-01

    As global mean temperature increases, it affects increase in polar glacier melt and thermal expansion of sea, which contributed to global sea level rise. Unlike large sea level rise contributors in Western Antarctica (e. g. Pine island glacier, Thwaites glacier), glaciers in East Antarctica shows relatively stable and slow ice velocity. However, recent calving events related to increase of supraglacier lake in Nansen ice shelf arouse the questions in regards to future evolution of ice dynamics at Victoria Land, East Antarctica. Here, using Ice Sheet System Model (ISSM), a series of numerical simulations were carried out to investigate ice dynamics evolution (grounding line migration, ice velocity) and sea level rise contribution in response to external forcing conditions (surface mass balance, floating ice melting rate, and ice front retreat). In this study, we used control method to set ice dynamic properties (ice rigidity and friction coefficient) with shallow shelf approximation model and check each external forcing conditions contributing to sea level change. Before 50-year transient simulations were conducted based on changing surface mass balance, floating ice melting rate, and ice front retreat of Drygalski ice tongue and Nansen ice shelf, relaxation was performed for 10 years to reduce non-physical undulation and it was used as initial condition. The simulation results showed that sea level rise contribution were expected to be much less compared to other fast glaciers. Floating ice melting rate was most sensitive parameter to sea level rise, while ice front retreat of Drygalski tongue was negligible. The regional model will be further updated utilizing ice radar topography and measured floating ice melting rate.

  14. Maiden Voyage of the Under-Ice Float

    NASA Astrophysics Data System (ADS)

    Shcherbina, A.; D'Asaro, E. A.; Light, B.; Deming, J. W.; Rehm, E.

    2016-02-01

    The Under-Ice Float (UIF) is a new autonomous platform for sea ice and upper ocean observations in the marginal ice zone (MIZ). UIF is based on the Mixed Layer Lagrangian Float design, inheriting its accurate buoyancy control and relatively heavy payload capability. A major challenge for sustained autonomous observations in the MIZ is detection of open water for navigation and telemetry surfacings. UIF employs the new surface classification algorithm based on the spectral analysis of surface roughness sensed by an upward-looking sonar. A prototype UIF was deployed in the MIZ of the central Arctic Ocean in late August 2015. The main payload of the first UIF was a bio-optical suit consisting of upward- and downward hyperspectral radiometers; temperature, salinity, chlorophyll, turbidity, and dissolved oxygen sensors, and a high-definition photo camera. In the early stages of its mission, the float successfully avoided ice, detected leads, surfaced in open water, and transmitted data and photographs. We will present the analysis of these observations from the full UIF mission extending into the freeze-up season.

  15. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  16. Channelized bottom melting and stability of floating ice shelves

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Steffen, K.

    2008-01-01

    The floating ice shelf in front of Petermann Glacier, in northwest Greenland, experiences massive bottom melting that removes 80% of its ice before calving into the Arctic Ocean. Detailed surveys of the ice shelf reveal the presence of 1-2 km wide, 200-400 m deep, sub-ice shelf channels, aligned with the flow direction and spaced by 5 km. We attribute their formation to the bottom melting of ice from warm ocean waters underneath. Drilling at the center of one of channel, only 8 m above sea level, confirms the presence of ice-shelf melt water in the channel. These deep incisions in ice-shelf thickness imply a vulnerability to mechanical break up and climate warming of ice shelves that has not been considered previously.

  17. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.

    PubMed

    McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability.

  18. Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach

    PubMed Central

    McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.

    2016-01-01

    Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability. PMID:27828967

  19. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  20. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  1. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

    NASA Astrophysics Data System (ADS)

    Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf

    2017-01-01

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at a coarser resolution than currently thought necessary.

  2. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    USGS Publications Warehouse

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  3. Icebreaking Concepts.

    DTIC Science & Technology

    1980-01-01

    Development, Report No 731343 Tests of 102 mm dia milling 160-190 1.1-1.3 Bonz, 1973 cutters 6n floating .ce Tesis of chain saw on floating ice 1430 9.9 tlonz... dia (urcular saws 140 (field) 2 3 Lecourt. I . I W Lewis. I Kotras and I C Roth (1973) Mechan- cutting floating ice 290-32) flab) 20-22 ical ire (utter...8217 3 . NUMBER OF PAGES 21 14. MONITORING AGENCY NAME & ADORESS(II different from Controlling Offlce) 1S. SECURITY CLASS. (of this report) Unclassified

  4. Wave excited motion of a body floating on water confined between two semi-infinite ice sheets

    NASA Astrophysics Data System (ADS)

    Ren, K.; Wu, G. X.; Thomas, G. A.

    2016-12-01

    The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.

  5. Britle failure of non-Newtonian, floating, extensional flows

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy; Worster, Michael

    2011-11-01

    Glacier ice is driven by gravity to flow from the land, where it is under shear, into the ocean, where it floats and extends. Owing to its non-Newtonian rheology, the ice can flow axisymmetrically over the bed but undergo brittle failure once it is floating on the ocean, as observed for example in crevassing of ice shelves. We model this coupled flow as an intrusion of a viscous gravity current into a denser ocean and study it both theoretically and experimentally. We have conducted laboratory experiments using a shear-thinning suspension that represents ice, and a denser inviscid fluid that represents an ocean. The non-Newtonian fluid was released at a constant flux through a cylindrical nozzle over a horizontal plane. The grounded, shear-dominated region of the flow was axisymmetric throughout the experiment, while past the transition line axisymmetry broke down into a seemingly ordered set of finger-like extensions (floating shelves) that demonstrated brittle behaviour. We have found that the width of the fingers as well as their radial extent increase with the flux. We attempt to explain these observations through a fingering instability that is driven by the dynamical differences between the two flow domains and by the material rheology, and we project that analysis to formulate a linkage between the material properties of ice and an upper bound on the width of ice shelves. NERC

  6. Comparison Between Terrestrial Explosion Crater Morphology in Floating Ice and Europan Chaos

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2003-01-01

    Craters created by explosives have been found to serve as valuable analogs to impact craters, within limits. Explosion craters have been created in floating terrestrial ice in experiments related to clearing ice from waterways. Features called chaos occur on the surface of Europa s floating ice shell. Chaos is defined as a region in which the background plains have been disrupted. Common features of chaos include rafted blocks of pre-existing terrain suspended in a matrix of smooth or hummocky material; low surface albedo; and structural control on chaos outline shape by pre-existing lineaments. All published models of chaos formation call on endogenic processes whereby chaos forms through thermal processes. Nonetheless, we note morphological similarities between terrestrial explosion craters and Europan chaos at a range of scales and consider whether some chaos may have formed by impact. We explore these similarities through geologic and morphologic mapping.

  7. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  8. Seasonal variability in ice-front position, glacier speed, and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016

    NASA Astrophysics Data System (ADS)

    Kehrl, L. M.; Joughin, I. R.; Shean, D. E.

    2016-12-01

    Marine-terminating glaciers can be very sensitive to changes in ice-front position, depending on their geometry. If a nearly grounded glacier retreats into deeper water, the glacier typically must speed up to produce the additional longitudinal and lateral stress gradients necessary to restore force balance. This speedup often causes thinning, which can increase the glacier's susceptibility to further retreat. In this study, we combine satellite observations and numerical modeling (Elmer/Ice) to investigate how seasonal changes in ice-front position affect glacier speed and surface elevation at Helheim Glacier, SE Greenland, from 2010-2016. Helheim's calving front position fluctuated about a mean position from 2010-2016. During 2010/11, 2013/14, and 2015/16, Helheim seasonally retreated and advanced along a reverse bed slope by > 3 km. During these years, the glacier retreated from winter/spring to late summer and then readvanced until winter/spring. During the retreat, Helheim sped up by 20-30% and thinned by 20 m near its calving front. This thinning caused the calving front to unground, and a floating ice tongue was then able to readvance over the following winter with limited iceberg calving. The advance, which continued until the glacier reached the top of the bathymetric high, caused the glacier to slow and thicken. During years when Helheim likely did not form a floating ice tongue, iceberg calving continued throughout the winter. Consequently, the formation of this floating ice tongue may have helped stabilize Helheim after periods of rapid retreat and dynamic thinning. Helheim's rapid retreat from 2001-2005 also ended when a floating ice tongue formed and readvanced over the 2005/06 winter. These seasonal retreat/advance cycles may therefore be important for understanding Helheim's long-term behavior.

  9. Getting around Antarctica: New High-Resolution Mappings of the Grounded and Freely-Floating Boundaries of the Antarctic Ice Sheet Created for the International Polar Year

    NASA Technical Reports Server (NTRS)

    Bindschadler, R.; Choi, H.; Wichlacz, A.; Bingham, R.; Bohlander, J.; Brunt, K.; Corr, H.; Drews, R.; Fricker, H.; Hall, M.; hide

    2011-01-01

    Two ice-dynamic transitions of the Antarctic ice sheet - the boundary of grounded ice features and the freely-floating boundary - are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from +/- 52m for the land and open-ocean terminating segments to +/- 502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of +/-3.6, +/-9.6, +/-11.4, +/-30 and +/-100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2+/-71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice boundary only weakly matches a prediction based on beam theory. The mapped products along with the customized software to generate them and a variety of intermediate products are available from the National Snow and Ice Data Center.

  10. Impacts of Recent Warming on a Floating Ice Tongue in Northern Greenland

    NASA Astrophysics Data System (ADS)

    Cullen, N. J.; Huff, R.; Steffen, K.; Rignot, E.

    2004-12-01

    The recent collapse of ice shelves in West Antarctica and to the Ward Hunt Ice Shelf, Ellesmere Island, Canada, has been interpreted as evidence of accelerated climate change in the high latitudes. To improve our understanding of the stability of glaciers in northern Greenland a combination of field data, remote sensing observations and modeling is used to investigate both bottom and surface melt processes on the Petermann Gletscher (81 N, 60 W). The Petermann Gletscher is similar to other more well-known ice shelves because it has a large floating section, or ice tongue, that is 20-km wide by 70-km long. This purpose of this work is to describe in detail the surface climate of the Petermann Gletscher from automatic weather station (AWS) data. Emphasis in placed on describing surface energy exchanges that have controlled ablation over the 3 most recent summer seasons (2002-4). Projection of ablation over the entire surface of the ice tongue using a degree-day model shows that surface lowering of the ice tongue in 2002-3 is 50 percent higher than a 53-year proxy melt record established from AWS measurements at nearby Alert, Ellesmere Island. If this warming trend continues the increased thinning rate is likely to yield enhanced calving rates at the ice front of the Petermann Gletscher, which could ultimately weaken and fracture the floating ice tongue.

  11. Improving Altimetry Height-change Retrieval on the Fringes of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Nilsson, J.; Gardner, A. S.

    2017-12-01

    Projections of sea-level change over the next century are highly uncertain, in part, due to insufficient understanding of ice-sheet sensitivity to changes in oceanic and atmospheric circulation. This limitation is, to a large degree, related to the lack of long and continuous observational records covering critical regions along the ice-sheet margins where the ice interacts with the ocean. Of particular importance are accurate records of changes in ice thickness that provide information on how mass fluctuates on the floating extensions of ice streams and glaciers through which the ice-sheet drains. These changes can modify the stability of the grounded ice sheet through changing back-stress, for example, through loss of ice-shelf buttressing. Here, we synthetize 25+ years of satellite altimetry observations to extend the time span and improve the resolution and accuracy of the existing record of Antarctic floating ice thickness. We incorporate data from ESA's ERS-1, ERS-2, Envisat and Cryosat-2 radar altimeters (1992-present) and NASA's ICESat laser altimeter (2003-2009) and Operation IceBridge surveys (2009-present); with plans to include ICESat-2 data soon after its launch in September 2018. Towards this effort, we revisit some of the main corrections applied to altimeter data, such as minimization of the difference between measurements from radar and laser systems; and we improve the approach for the synthesis of heterogeneous measurements of ice-surface topography and uncertainty estimation. We report on our progress in constructing this long-term and homogeneous record, with a particular focus on the floating ice shelves.

  12. Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1949-01-01

    The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.

  13. The Autumn of break-ups: When Jakobshavn Isbrae lost its floating tongue

    NASA Astrophysics Data System (ADS)

    Aschwanden, A.; Fahnestock, M. A.; Truffer, M.; Motyka, R. J.

    2015-12-01

    Capturing the temporal variability in outlet glacier flow remains one of the holy grails in ice sheet modeling. Here we demonstrate progress using the three-dimensional Parallel Ice Sheet Model. Using a first-order calving law and prescribed subshelf basal melt rates, we performed high-resolution (<1km) hindcasts of the Greenland Ice Sheet of the 1989-2012 period. These hindcasts allow us to study the processes governing ice-shelf thinning, break-up, and subsequent speed-ups and dynamic thinning. Focussing our analysis on the Jakobshavn basin we show that our simulations are able to capture the thinning of the floating tongue resulting from increased subshelf basal melt rates. Furthermore, our simulations capture both the magnitude and the timing of the dynamic thinning associated with the loss of the floating tongue, as well as the speed-up. We find little seasonal variations in surface speeds prior to 1995, and strong variations thereafter, in good agreement with observations of Echelmeyer and Harrison (1991) and Joughin et al (2012).

  14. When ice meets water: Sub-aqueous melt and its relevance in various settings

    NASA Astrophysics Data System (ADS)

    Truffer, M.; Motyka, R. J.

    2014-12-01

    The largest glacier changes are primarily observed in settings where ice flows into a proglacial water body. However, the responses to this interaction are not uniform. Rapidly retreating glaciers can occur in close vicinity to advancing ones. Calving styles and glacier morphologies vary greatly as well. Temperate lake-calving glaciers frequently exhibit floating tongues; but this is rarely observed on temperate tidewater glaciers. Calving styles range from mostly sub-aerial calving to full-thickness calving to slow detachment of large ice bergs. In addition to the more obvious mechanical calving, glaciers lose mass at their termini through sub-aqueous melting. Melt rates of submerged ice have been shown to vary over several orders of magnitudes, and can range up to several meters per day. This large range is a consequence of different proglacial water temperatures, and of different modes of water transport. Water convection in proglacial water bodies can be driven by winds and tides, but subglacial water discharge is commonly the strongest and most variable driver. Here we attempt to relate the variability of forcings and melt rates to the various morphologies and calving styles of different water-terminating glaciers. The highest melt rates are observed at low-latitude tidewater glaciers, where ocean water can be warm (7 - 10 deg C) and subglacial discharge high. In such settings, sub-aqueous melt can reach the same magnitude as ice flux delivered to the terminus and it can control ice terminus position. Polar tidewater glaciers, such as those in Greenland, often exhibit floating tongues. Although melt rates are likely much lower, they can have a large effect under a floating tongue because of the much larger exposure of ice to water. Changes in melt rates can therefore affect the stability of such floating tongues. Low melt rates occur at some ice shelves at high latitudes, where the temperature and freshwater forcings are small. This situation can also occur at temperate lake-calving glaciers, which often flow into lakes of near freezing temperatures. Due to the very small density differences between subglacial discharge and ambient lake water, convection below the floating tongue is minor or non-existent.. This is in great contrast to fresh water entering a saline environment.

  15. Large Fluctuations in Speed on Jakobshavn Isbrae, Greenland

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Abdalati, Waleed; Fahnestock, Mark

    2003-01-01

    We have assembled an 18-year velocity record for Jakobshavn Isbrae, Greenland. From a 1985 speed of approx. 7000 m/yr, the glacier had slowed by approx. 1000 m/ yr in 1992, which coincided with independently observed thickening in the early 1990s . The glacier then sped up by approx. 4000 m/yr between 1997 and 2000, during which time other measurements show rapid thinning . From 2000 to 2003, the glacier s floating ice tongue almost entirely disintegrated, as speed increased to 12,600 m/yr. If the retreat of the ice tongue caused the acceleration, then similar losses of floating ice tongues since the Little Ice Age may explain the current rapid thinning observed for many of Greenland s outlet glaciers.

  16. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  17. Observing Physical and Biological Drivers of pH and O2 in a Seasonal Ice Zone in the Ross Sea Using Profiling Float Data

    NASA Astrophysics Data System (ADS)

    Briggs, E.; Martz, T. R.; Talley, L. D.; Mazloff, M. R.

    2015-12-01

    Ice cover has strong influence over gas exchange, vertical stability, and biological production which are critical to understanding the Southern Ocean's central role in oceanic biogeochemical cycling and heat and carbon uptake under a changing climate. However the relative influence of physical versus biological processes in this hard-to-study region is poorly understood due to limited observations. Here we present new findings from a profiling float equipped with biogeochemical sensors in the seasonal ice zone of the Ross Sea capturing, for the first time, under-ice pH profile data over a two year timespan from 2014 to the present. The relative influence of physical (e.g. vertical mixing and air-sea gas exchange) and biological (e.g. production and respiration) drivers of pH and O2 within the mixed layer are explored during the phases of ice formation, ice cover, and ice melt over the two seasonal cycles. During the austral fall just prior to and during ice formation, O2 increases as expected due to surface-layer undersaturation and enhanced gas exchange. A small increase in pH is also observed during this phase, but without a biological signal in accompanying profiling float chlorophyll data, which goes against common reasoning from both a biological and physical standpoint. During the phase of ice cover, gas exchange is inhibited and a clear respiration signal is observed in pH and O2 data from which respiration rates are calculated. In the austral spring, ice melt gives rise to substantial ice edge phytoplankton blooms indicated by O2 supersaturation and corresponding increase in pH and large chlorophyll signal. The influence of the duration of ice cover and mixed layer depth on the magnitude of the ice edge blooms is explored between the two seasonal cycles.

  18. Ice sheet radar altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The surface topography of the Greenland and Antarctic ice sheets between 72 degrees north and south was mapped using radar altimetry data from the U.S. Navy GEOSAT. The glaciological objectives of this activity were to study the dynamics of the ice flow, changes in the position of floating ice-shelf fronts, and ultimately to measure temporal changes in ice surface elevation indicative of ice sheet mass balance.

  19. Ice Engineering - study of Related Properties of Floating Sea-Ice Sheets and Summary of Elastic and Viscoelastic Analyses

    DTIC Science & Technology

    1977-12-01

    Ice Plate Example. To demonstrate the capability of the visco- elastic finite-element computer code (5), the structural response of an infinite ... sea -ice plate on a fluid foundation is investigated for a simulated aircraft loading condition and, using relaxation functions, is determined

  20. An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization

    DTIC Science & Technology

    2015-09-30

    2015) Characterizing the behavior of gravity wave propagation into a floating or submerged viscous layer , 2015 AGU Joint Assembly Meeting, May 3–7...are the PI and a PhD student. Task 1: Use an analytical method to determine the propagation of waves through a floating viscoelastic mat for a wide...and Ben Holt. 2 Task 3: Assemble all existing laboratory and field data of wave propagation in ice covers. Task 4: Determine if all existing

  1. Ice-Cliff Failure via Retrogressive Slumping

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Holland, D.

    2016-12-01

    The magnitude and rate of future sea-level rise from warming-induced ice-sheet shrinkage remain notably uncertain. Removal of most of an ice sheet by surface melting alone requires centuries to millennia. Oceanic warming may accelerate loss by removing buttressing ice shelves and thereby speeding flow of non-floating ice into the ocean, but, until recently, modeled timescales for major dynamic ice-sheet shrinkage were centuries or longer. Beyond certain thresholds, however, observations show that warming removes floating ice shelves, leaving grounded ice cliffs from which icebergs break off directly. Cliffs higher than some limit experience rapid structural failure. Recent parameterization of this process in a comprehensive ice-flow model produced much faster sea-level rise from future rapid warming than in previous modeling studies, through formation and retreat of tall ice cliffs. Fully physical representations of this process are not yet available, however. Here, we use modeling guided by terrestrial radar data from Helheim Glacier, Greenland to show that cliffs will fail by slumping and trigger rapid retreat at a threshold height that, in crevassed ice with surface melting, may be only slightly above the 100-m maximum observed today, but may be roughly twice that (180-275 m) in mechanically-competent ice under well-drained or low-melt conditions.

  2. Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, M.O.

    1992-08-01

    Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding ofmore » these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.« less

  3. Observations of upper ocean stability and heat fluxes in the Antarctic from under-ice Argo float profile data.

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Riser, S.

    2016-12-01

    Sea ice growth around Antarctica is intimately linked to the stability and thermohaline structure of the underlying ocean. As sea ice grows, the resulting brine triggers convective instabilities that deepen the mixed layer and entrain warm water from the weakly stratified pycnocline. The heat released from this process acts as a strong negative feedback to ice growth which, under the right scenarios, can exceed the initial atmospheric heat loss. Much of our current understanding of this ice-ocean interaction comes from a handful of relatively short field campaigns in the Weddell Sea. Here, we supplement those observations with an analysis of over 9000 under-ice Argo float profiles, collected between 2006-2015. These profiles provide an unprecedented view of the temporal and spatial variability of the upper ocean structure throughout the Antarctic region. With these observations and a theoretical understanding of the coupled ice-ocean system, we assess the ocean's potential to limit thermodynamic ice growth as well as its susceptibility to deep convection in different regions. Using these results, we infer how recent climatic changes may influence Antarctic sea ice growth and deep ocean ventilation in the near future.

  4. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    NASA Technical Reports Server (NTRS)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  5. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    USGS Publications Warehouse

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  6. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  7. Object-Based Image Classification of Floating Ice Used as Habitat for Harbor Seals in a Tidewater Glacier Fjord in Alaska

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.

    2014-12-01

    Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the spatio-temporal distribution of seals and ice. OBIA is a powerful method of habitat classification and offers an effective approach to compare the spatio-temporal distribution and availability of glacial ice habitats for harbor seals in tidewater glacial fjords.

  8. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously, increased water input may cause lake level in rifts to rise resulting in faster rift propagation and spreading. Similar formation and disintegration of floating tongues are expected to occur in the glacier's future, as the ice divide lies below the current lake level. In addition to calving retreat, Yakutat Glacier is rapidly thinning, which lowers its surface and therefore exposes the ice to warmer air temperatures causing increased thinning. Even under a constant climate, this positive feedback mechanism would force Yakutat Glacier to quickly retreat and mostly disappear. Simulations of future mass loss were run for two scenarios, keeping the current climate and forcing it with a projected warming climate. Results showed that over 95% of the glacier ice will have disappeared by 2120 or 2070 under a constant vs projected climate, respectively. For the first few decades, the glacier will be able to maintain its current thinning rate by retreating and thus losing areas of lowest elevation. However, once higher elevations have thinned substantially, the glacier cannot compensate any more to maintain a constant thinning rate and transfers into an unstable run-away situation. To stop this collapse and transform Yakutat Glacier into equilibrium in its current geometry, air temperatures would have to drop by 1.5 K or precipitation would have to increase by more than 50%. An increase in precipitation alone is unlikely to lead to a stable configuration, due to the very small current accumulation area.

  9. Impact of Basal Hydrology Near Grounding Lines: Results from the MISMIP-3D and MISMIP+ Experiments Using the Community Ice Sheet Model

    NASA Astrophysics Data System (ADS)

    Leguy, G.; Lipscomb, W. H.; Asay-Davis, X.

    2017-12-01

    Ice sheets and ice shelves are linked by the transition zone, the region where the grounded ice lifts off the bedrock and begins to float. Adequate resolution of the transition zone is necessary for numerically accurate ice sheet-ice shelf simulations. In previous work we have shown that by using a simple parameterization of the basal hydrology, a smoother transition in basal water pressure between floating and grounded ice improves the numerical accuracy of a one-dimensional vertically integrated fixed-grid model. We used a set of experiments based on the Marine Ice Sheet Model Intercomparison Project (MISMIP) to show that reliable grounding-line dynamics at resolutions 1 km is achievable. In this presentation we use the Community Ice Sheet Model (CISM) to demonstrate how the representation of basal lubrication impacts three-dimensional models using the MISMIP-3D and MISMIP+ experiments. To this end we will compare three different Stokes approximations: the Shallow Shelf Approximation (SSA), a depth-integrated higher-order approximation, and the Blatter-Pattyn model. The results from our one-dimensional model carry over to the 3-D models; a resolution of 1 km (and in some cases 2 km) remains sufficient to accurately simulate grounding-line dynamics.

  10. An integrated approach to the remote sensing of floating ice

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  11. NASA Spacecraft Images One of Earth Iceberg Incubators

    NASA Image and Video Library

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  12. Sea ice off western Alaska

    NASA Image and Video Library

    2015-02-20

    On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea ice off of western Alaska. In this true-color image, the snow and ice covered land appears bright white while the floating sea ice appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. Ice overlying oceans contains more water, and increasing water decreases reflectivity of ice, resulting in duller colors. Thinner ice is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with ice, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark area, loosely covered with floating sea ice, marks a persistent polynya – an area of open water surrounded by more frozen sea ice. Due to the prevailing winds, which blow the sea ice away from the coast in this location, the area rarely completely freezes. The ice-covered areas in this image, as well as the Beaufort Sea, to the north, are critical areas for the survival of the ringed seal, a threatened species. The seals use the sea ice, including ice caves, to rear their young, and use the free-floating sea ice for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. 36 CFR 327.30 - Shoreline Management on Civil Works Projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Development Areas for ski jumps, floats, boat moorage facilities, duck blinds, and other private floating recreation facilities when they will not create a safety hazard and inhibit public use or enjoyment of project waters or shoreline. A Corps permit is not required for temporary ice fishing shelters or duck...

  14. 36 CFR 327.30 - Shoreline Management on Civil Works Projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Development Areas for ski jumps, floats, boat moorage facilities, duck blinds, and other private floating recreation facilities when they will not create a safety hazard and inhibit public use or enjoyment of project waters or shoreline. A Corps permit is not required for temporary ice fishing shelters or duck...

  15. Finger rafting: a generic instability of floating elastic sheets.

    PubMed

    Vella, Dominic; Wettlaufer, J S

    2007-02-23

    Colliding ice floes are often observed to form a series of interlocking fingers. We show that this striking phenomenon is not a result of some peculiar property of ice but rather a general and robust mechanical phenomenon reproducible in the laboratory with other floating materials. We determine the theoretical relationship between the width of the resulting fingers and the material's mechanical properties and present experimental results along with field observations to support the theory. The generality of this "finger rafting" suggests that analogous processes may be responsible for creating the large-scale structures observed at the boundaries between Earth's convergent tectonic plates.

  16. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. SOCCOM Biogeochemical Profiling Floats: Representativeness and Deployment Strategies Utilizing GO-SHIP/Argo Observations and SOSE/Hycom Model Output

    NASA Astrophysics Data System (ADS)

    Talley, L. D.; Riser, S.; Johnson, K. S.; Wang, J.; Kamenkovich, I. V.; Rosso, I.; Mazloff, M. R.; Ogle, S.; Sarmiento, J. L.

    2016-12-01

    Biogeochemical profiling floats are being deployed in the Southern Ocean south of 30°S, including within the seasonal sea ice zone, as part of the SOCCOM project. The floats carry oxygen, nitrate, pH, fluorescence and backscatter sensors, in addition to standard T/S measurements that contribute to the Argo program. The total array size over the expected 6 years of deployment will be 180 to 200 floats. At the conclusion of Year 2 (2015-2016), 58 floats had been deployed and 50 were still active (see figure from http://soccom.princeton.edu). In order to calibrate the biogeochemical sensors using shipboard measurements, deployment takes place from research ships. As the ship tracks are dictated by other programs, care is taken prior to deployment to maximize the probability that the floats sample varied oceanographic regimes, and that all important regimes present along a deployment track are seeded with at least one float. Prior GO-SHIP hydrographic sections are used to locate water mass regimes that are targeted for deployments, yielding a background description of the oceanography along each of these sections. Simulations of Argo floats in the Southern Ocean State Estimate (SOSE) and data-assimilating HYCOM model and previous Argo trajectories are used to predict ensemble float trajectories. Trajectories and water mass regimes from floats after deployment have generally agreed well with those projected prior to deployment. The exercise of examining this suite of information prior to the deployment cruises provides valuable regional information for interpreting the actual SOCCOM float profiles and trajectories. Particularly useful are demarcation of the major frontal regimes and their relation to sea ice and topography, regions of upwelling from the deep ocean to the surface, and upper ocean mode water regions associated with both the Subantarctic and Polar Fronts.

  18. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  19. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  20. Satellite-derived submarine melt rates and mass balance (2011-2015) for Greenland's largest remaining ice tongues

    NASA Astrophysics Data System (ADS)

    Wilson, Nat; Straneo, Fiammetta; Heimbach, Patrick

    2017-12-01

    Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues - Nioghalvfjerdsbræ (79 North Glacier, 79N), Ryder Glacier (RG), and Petermann Glacier (PG). Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a-1 w.e., water equivalent) exceeds the inflow of ice (10.2 ± 0.59 km3 a-1 w.e.), indicating present thinning of the ice tongue.

  1. JPRS Report, East Europe.

    DTIC Science & Technology

    1988-06-07

    barriers have been abolished, the franchising terms have been revised, a floating rate and increasingly realistic rate of exchange—though in my opinion...also be accorded permits for the establishment of private ice cream stands and ice cream parlors, snack and beer providers, fish stands, bakeries

  2. 36 CFR § 327.30 - Shoreline Management on Civil Works Projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Development Areas for ski jumps, floats, boat moorage facilities, duck blinds, and other private floating recreation facilities when they will not create a safety hazard and inhibit public use or enjoyment of project waters or shoreline. A Corps permit is not required for temporary ice fishing shelters or duck...

  3. A 70-year record of outlet glacier retreat in northern Greenland

    NASA Astrophysics Data System (ADS)

    Hill, Emily; Carr, Rachel; Stokes, Chris; Gudmundsson, Hilmar

    2017-04-01

    Over the past two decades, the Greenland Ice Sheet (GrIS) has undergone accelerated mass loss increasing its contribution to sea level rise. This is partly attributed to increased mass loss from dynamic marine-terminating outlet glaciers. Despite marine-terminating outlet glaciers in northern Greenland draining 40% of the ice sheet by area, they are comparatively less well-studied than other regions of the ice sheet (e.g. central west or south-east). This region could be susceptible to marine-ice sheet instability due to large proportions of the bedrock rested below sea level and is also unique in the presence of large floating ice tongues. Here, we use a range of satellite imagery sources, accompanied by historical maps, to examine multi-decadal front position changes at 21 outlet glaciers in northern Greenland between 1948 and 2016. We accompany these terminus changes, with annual records of ice velocity, climate-ocean forcing data, and glacier-specific factors (e.g. fjord-width and basal topography) to understand the dominant forcing on glacier dynamics in the region. Over the last 70 years, there has been a clear pattern of glacier retreat in northern Greenland. This is particularly notable during the last two decades, where 62% of our study glaciers showed accelerated retreat. This was most notable at Humboldt, Tracy, Hagen Brae, C. H. Ostenfeld and Petermann Glaciers, and in the case of the latter three glaciers, this involved substantial retreat of their floating ice tongues (> 10 km). Alongside retreat, several study glaciers underwent simultaneous velocity increases. However, the collapse of floating ice tongues did not always result in increased velocity. Similar to other regions of the ice sheet, recent glacier retreat in the northern regions of the Greenland Ice Sheet could be linked to climatic-oceanic forcing, but at this stage this remains largely unknown. This response to external forcing is further complicated by the presence of glacier-surging recorded at several of our study glaciers. As northern Greenland is predicted to undergo greater warming due to Arctic amplification during the 21st century, we conclude that the region could become an increasingly important source of mass loss.

  4. Exploding Water Drops

    ERIC Educational Resources Information Center

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly…

  5. Ocean observations from below Petermann Gletscher

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Nicholls, K. W.; Heuzé, C.; Wahlin, A.; Mix, A. C.

    2015-12-01

    Petermann Gletscher drains 4% of the Greenland ice sheet via a floating ice shelf that has shrunk from 1,300 to 900 km^2 in area via two calving events in 2010 and 2012. The glacier is thinning by about 10 vertical meters per year when integrated over 45 km from the grounding zone to the terminus. Most of this mass loss is caused by ocean melting, but only a single vertical ocean profile taken in 2002 exists. The fjord was mostly free of sea ice in August when we visited in 2003, 2006, 2007, 2009, and 2012 and noticed a small warming trend of bottom waters. During a 2-day survey of Petermann Fjord and adjacent Nares Strait in 2012 we documented a large intrusion of warmer Atlantic waters spilling over the 400 m deep sill and sinking to more than 800 m depth. These waters fill the deep basin of the fjord and move towards the grounding zone of glacier at 550 m below the sea surface. In August 2015 the Swedish icebreaker I/B Oden is scheduled to enter Nares Strait and Petermann Fjord to support field work on land, on water, and on the floating glacier. We here report preliminary results from both ocean surveys and ice shelf moorings. The moored observations from under the ice shelf extend synoptic survey data from Oden. The ice shelf moorings are designed to resolve tidal to interannual variations of water properties under the floating glacier. More specifically, we plan to install a total 13 discrete sensors to measure ocean temperature, salinity, and pressure at five locations distributed both along and across the floating glacier. Hot water drilling provides the holes through the 200 to 500 m thick glacier ice to collect sediment cores, take a profile of temperature and salinity, and deploy two to five cabled sensors per mooring. If successful, data from these cabled instruments will be distributed via surface Iridium connections and posted on the web in near real time. We will discuss successes and failures of this ambitious and high risk program that was facilitated by a bottom-up collaboration of British, Swedish, and US investigators and their respective funding agencies all working on very short and tense schedules. Figure: Sketch of mooring placement on a map (left panel) with 2014 flight tracks and glacier profiles (right panel) obtained from laser altimeter data along the tracks.

  6. Ice shelf thickness change from 2010 to 2017

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Shepherd, A.; Gilbert, L.; Muir, A. S.

    2017-12-01

    Floating ice shelves fringe 74 % of Antarctica's coastline, providing a direct link between the ice sheet and the surrounding oceans. Over the last 25 years, ice shelves have retreated, thinned, and collapsed catastrophically. While change in the mass of floating ice shelves has only a modest steric impact on the rate of sea-level rise, their loss can affect the mass balance of the grounded ice-sheet by influencing the rate of ice flow inland, due to the buttressing effect. Here we use CryoSat-2 altimetry data to map the detailed pattern of ice shelf thickness change in Antarctica. We exploit the dense spatial sampling and repeat coverage provided by the CryoSat-2 synthetic aperture radar interferometric mode (SARIn) to investigate data acquired between 2010 to the present day. We find that ice shelf thinning rates can exhibit large fluctuations over short time periods, and that the improved spatial resolution of CryoSat-2 enables us to resolve the spatial pattern of thinning with ever greater detail in Antarctica. In the Amundsen Sea, ice shelves at the terminus of the Pine Island and Thwaites glaciers have thinned at rates in excess of 5 meters per year for more than two decades. We observe the highest rates of basal melting near to the ice sheet grounding line, reinforcing the importance of high resolution datasets. On the Antarctic Peninsula, in contrast to the 3.8 m per decade of thinning observed since 1992, we measure an increase in the surface elevation of the Larsen-C Ice-Shelf during the CryoSat-2 period.

  7. On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale simulations of the Greenland and Antarctic ice sheets

    DOE PAGES

    Tezaur, Irina K.; Tuminaro, Raymond S.; Perego, Mauro; ...

    2015-01-01

    We examine the scalability of the recently developed Albany/FELIX finite-element based code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis on the performance of two possible preconditioners for the iterative solution of the sparse linear systems that arise from the discretization of the governing equations: (1) a preconditioner based on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid (AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number of processor cores, the AMG preconditionermore » results in faster linear solve times but the ILU preconditioner exhibits better scalability. In addition, a weak scalability study is performed on a realistic, moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating ice shelves, making it fundamentally different from the Greenland ice sheet problem. We show that as the problem size increases, the performance of the ILU preconditioner deteriorates whereas the AMG preconditioner maintains scalability. This is because the linear systems are extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a greater negative effect on the ILU preconditioner than on the AMG preconditioner.« less

  8. Rapid bottom melting widespread near Antarctic ice sheet grounding lines

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Jacobs, S.

    2002-01-01

    As continental ice from Antartica reaches the grounding line and begins to float, its underside melts into the ocean. Results obtained with satellite radar interferometry reveal that bottom melt rates experienced by large outlet glaciers near their grounding lines are far higher than generally assumed.

  9. Acoustic Communications and Navigation for Mobile Under-Ice Sensors

    DTIC Science & Technology

    2017-02-04

    From- To) 04/02/2017 Final Report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Acoustic Communications and Navigation for Mobile Under-Ice Sensors...development and fielding of a new acoustic communications and navigation system for use on autonomous platforms (gliders and profiling floats) under the...contact below the ice. 15. SUBJECT TERMS Arctic Ocean, Undersea Workstations & Vehicles, Signal Processing, Navigation, Underwater Acoustics 16

  10. Post-LGM grounding line and calving front translations of the West Antarctic Ice Sheet in the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    McGlannan, A. J.; Bart, P. J.; Chow, J.

    2016-12-01

    A large-area (2500 km2) multibeam survey of the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica was acquired during NBP1502B. This sector of the continental shelf is important as it was covered by grounded and floating ice, which drained the central part of an expanded West Antarctic Ice Sheet (WAIS) during the last glacial cycle. The seafloor geomorphology shows a well-defined cluster of four back stepping grounding zone wedges (GZWs) that were deposited in a partly overlapping fashion on the middle continental shelf during WAIS retreat. These observations permit two end-member possibilities for how the WAIS grounding line and calving front vacated the trough. In the first scenario, each GZW represents successive landward shifts of the grounding line and calving front. In the second scenario, each GZW represents a large-scale retreat and re-advance of grounded and floating ice. To determine which of these two end-member scenarios most accurately describes WAIS retreat from this sector of Ross Sea, we evaluated a grid of kasten and piston cores. The core stations were selected on the basis of backstepping GZWs along the trough axis. Our core data analyses included an integration of visual core descriptions, x-ray images, grain size, water content, total organic carbon, shear strengths, and diatom assemblage data. Core data reveal a single transgressive succession from proximal diamict overlain by sub-ice-shelf and/or open-marine sediments. These data strongly support the first scenario, suggesting that an ice shelf remained continuously intact during the time that the grounding line successively moved from the shelf edge to the middle shelf by small-scale landward translations until the end of the fourth grounding event. Sedimentologic and diatom-assemblage data from the inner shelf show that only the last middle shelf grounding event ended with a long-distance retreat of grounded and then floating ice to south of the modern calving front.

  11. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  12. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  13. Thurston Island Calving

    NASA Image and Video Library

    2014-11-10

    A sea of icebergs float near the Thurston Island calving front off of western Antarctica as seen on the IceBridge flight on Nov. 5, 2014. Image Credit: NASA/Jim Yungel NASA’s Operation IceBridge collected some rare images on a flight out of Punta Arenas, Chile on Nov. 5, 2014, on a science flight over western Antarctica dubbed Ferrigno-Alison-Abbott 01. The crew snapped a few shots of a calving front of the Antarctic ice sheet. This particular flight plan was designed to collect data on changes in ice elevation along the coast near the Ferrigno and Alison ice streams, on the Abbot Ice Shelf, and grounded ice along the Eights Coast.

  14. On ice rifts and the stability of non-Newtonian extensional flows on a sphere

    NASA Astrophysics Data System (ADS)

    Sayag, Roiy

    2017-11-01

    Rifts that form at the fronts of floating ice shelves that spread into the ocean can trigger major calving events in the ice. The deformation of ice can be modeled as a thin viscous film driven by buoyancy. The front of such a viscous film that propagates over a flat surface with no-slip basal conditions is known to have stable axisymmetric solutions. In contrast, when the fluid propagates under free-slip conditions at the substrate, the front can become unstable to small perturbations if the fluid is sufficiently strain-rate softening. Consequently, the front will develop tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Here we investigate the stability of a spherical sheet of power-law fluids under free-slip basal conditions. The fluid is discharged at constant flux and axisymmetrically with respect to the pole, and propagates towards the equator. The propagating front in such a situation may become unstable due to its failure to sustain large extensional forces, resulting in the formation of rifts. This study has implications to understanding the cause of patterns that are observed on shells of floating ice in a range of planetary objects, and whether open rifts that sustain life were feasible in snowball earth. Israel Science Foundation 1368/16.

  15. Does It Sink or Float?

    ERIC Educational Resources Information Center

    McDonald, Judith Richards

    2012-01-01

    This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging…

  16. Calving Geometry of Thwaites Glacier Linked to Semi-brittle Ice Dynamics

    NASA Astrophysics Data System (ADS)

    Logan, L. C.; Lavier, L.; Choi, E.; Tan, E.; Catania, G. A.; Holt, J.

    2016-12-01

    In the coming decades the linkage between ice dynamics, basal melt, and calving will play a central role in the flow of Thwaites Glacier, which has undergone vast and recent retreat. We explore this connection using a 3D, transient, thermomechanical ice flow model under different basal melt scenarios. Our use of a semi-brittle ice rheology enables the time-dependent development and tracking of surface and basal crevasses that determine the calving rate at this location. With the use of adaptive re-meshing, we are able to simulate the glacier's retreat response to different boundary forcings. We show that the resulting characteristic pinch-and-swell model geometries in the floating tongue compare well with airborne radar data acquired across the grounding line and floating tongue of Thwaites Glacier. These geometric features may be reproduced using this semi-brittle rheology, and further, are linked directly to the calving rate of Thwaites Glacier (and others). The use of semi-brittle rheology on decadal time scales may help provide constraints on the near-term future behavior of glaciers vulnerable to ocean-induced retreat, as this rheology targets the complex interaction of ice failure, basal melt, and flow.

  17. The Petermann Glacier Experiment, NW Greenland

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; Jakobsson, M.; Andrews, J. T.; Jennings, A. E.; Mayer, L. A.; Marcott, S. A.; Muenchow, A.; Stoner, J. S.; Andresen, C. S.; Nicholls, K. W.; Anderson, S. T.; Brook, E.; Ceperley, E. G.; Cheseby, M.; Clark, J.; Dalerum, F.; Dyke, L. M.; Einarsson, D.; Eriksson, B.; Frojd, C.; Glueder, A.; Hedman, U.; Heirman, K.; Heuzé, C.; Hogan, K.; Holden, R.; Holm, C.; Jerram, K.; Krutzfeldt, J.; Nicolas, L.; Par, L.; Lomac-MacNair, K.; Madlener, S.; McKay, J. L.; Meijer, T.; Meiton, A.; Brian, M.; Mohammed, R.; Molin, M.; Moser, C.; Normark, E.; Padman, J.; Pecnerova, P.; Reilly, B.; Reusche, M.; Ross, A.; Stranne, C.; Trinhammer, P.; Walczak, M. H.; Walczak, P.; Washam, P.; Karasti, M.; Anker, P.

    2016-12-01

    The Petermann Glacier Experiment is a comprehensive study on land, ocean, and ice in Northwest Greenland, staged from Swedish Icebreaker Oden in 2015 as a collaboration between the US, Sweden, UK, and Denmark. This talk introduces the strategic goals of the experiment and connects the various scientific results. Petermann Glacier drains a significant marine-based sector of the northern Greenland Ice Sheet and terminates in a floating ice tongue, one of the largest remaining systems of its kind in the northern hemisphere. Records of the modern state of Petermann Glacier and its past variations are of interest to understand the sensitivity of marine terminating outlet glaciers to change, and to constrain the rates and extent of changes that have actually occurred. With this case study we are learning the rules of large scale dynamics that cannot be understood from modern observations alone. Although past behavior is not an simple analog for the future, and no single system captures all possible behaviors, insights from these case studies can be applied through models to better project how similar systems may change in the future. The Petermann Expedition developed the first comprehensive bathymetric maps of the region, drilled through the floating ice tongue to obtain sub-shelf sediment cores near the grounding line and to monitor sub-ice conditions, recovered a broad array of sediment cores documenting changing oceanic conditions in Petermann Fjord, Hall Basin, and Nares Strait, measured watercolumn properties to trace subsurface watermasses that bring heat from the Arctic Ocean into deep Petermann Fjord to melt the base of the floating ice tongue, developed a detailed record of relative sealevel change on land to constrain past ice loads, and recovered pristine boulders for cosmogenic exposure dating of areal ice retreat on land. Together, these studies are shedding new light on the dynamics of past glaciation in Northwest Greenland, and contributing to fundamental understanding of large marine-terminating outlet glacier systems, which are threatened by global warming and poised to contribute to global sealevel rise in the future. Further information in the Petermann Glacier Experiment is available at https://petermannsglacialhistory.wordpress.com

  18. Theory Building and Modeling in a Sinking and Floating Unit: A Case Study of Third and Fourth Grade Students' Developing Epistemologies of Science

    ERIC Educational Resources Information Center

    Kawasaki, Keiko; Rupert Herrenkohl, Leslie; Yeary, Sherry

    2004-01-01

    The purpose of this paper is to carefully examine the evolution of students' theory building and modeling, critical components of scientific epistemologies, over a unit of study on sinking and floating in one third/fourth grade classroom. The study described in this paper follows in the tradition of Design Experiments ( Brown 1992 , Collins 1990 )…

  19. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    USGS Publications Warehouse

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  20. Earth Observation taken by the Expedition 20 crew

    NASA Image and Video Library

    2009-09-06

    ISS020-E-039083 (6 Sept. 2009) --- Glacier outlet in the Southern Patagonian Ice Field of Chile is featured in this image photographed by an Expedition 20 crew member on the International Space Station. The Southern Patagonian Ice Field of Chile and Argentina hosts a spectacular array of glaciers and associated glacial features within the southern Andes Mountains. Glaciers flowing downhill on the eastern side of the mountains have outlets into several large freshwater lakes. On the western side of the mountains, glaciers release ice into the Pacific Ocean via an intricate network of fjords. Fjords are steep valleys originally cut by glaciers during periods of lower sea level that are now inundated. As glaciers flow into the fjord, ice at the front of the glacier begins to break off and form icebergs that can float out to sea ? a process known as calving. This detailed photograph shows the merged outlet of Penguin Glacier and HPS 19 into a fjord carved into the snow-covered mountains of the southern Andes. The designation HPS stands for Hielo Patagonico Sur (e.g. Southern Patagonian Ice field) and is used to identify glaciers that have no other geographic name. Ice flowing into the fjord begins to break up at center, forming numerous icebergs ? the largest visible in this image is approximately 2 kilometers in width. The large ice masses visible at center have a coarse granular appearance due to variable snow cover, and mixing and refreezing of ice fragments prior to floating free.

  1. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  2. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE PAGES

    Smith, J. A.; Andersen, T. J.; Shortt, M.; ...

    2016-11-23

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  3. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier [Sub-ice shelf sediments record 20 th century retreat history of Pine Island Glacier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. A.; Andersen, T. J.; Shortt, M.

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreatmore » is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.« less

  4. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  5. Theory Building and Modeling in a Sinking and Floating Unit: A Case Study of Third and Fourth Grade Students' Developing Epistemologies of Science. Research Report

    ERIC Educational Resources Information Center

    Kawasaki, Keiko; Herrenkohl, Leslie Rupert; Yeary, Sherry A.

    2004-01-01

    The purpose of this paper is to carefully examine the evolution of students' theory building and modeling, critical components of scientific epistemologies, over a unit of study on sinking and floating in one third/fourth grade classroom. The study described in this paper follows in the tradition of Design Experiments (Brown 1992, Collins 1990)…

  6. Ice911: Developing an Effective Response to Climate Change in Earth's Cryosphere using High Albedo Materials

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Wadhams, P.; Root, T.; Chetty, S.; Kammen, D. M.; Venkatesh, S.; van der Heide, D.; Baum, E.

    2012-12-01

    We are developing a localized surface albedo modification technique which shows promise for preserving ice and snow using inexpensive and environmentally benign floating materials. The approach has been developed with aims including preservation of polar and glacial ice, snow, permafrost and polar habitat,and keeping water cooler, using a localized and ecologically respectful "planetary band-aid" that can be deployed quickly and can be removed once it is no longer needed. The method has been tested at small scale using various material sets over several years, including four Winter/Spring seasons at sites including California's San Francisco Bay Area and Sierra Nevada Mountains, and a Canadian lake. The materials can passively float and in granular form can be easily deployed as a "monolayer" and/or corralled in the desired locations. They have been shown to reduce solar heat absorption in the underlying water in small test pools by nearly 200 Watts/m2 in California summer daytime conditions, and 2 to 11 degree-C reductions in water temperatures have been logged over the course of a day. The materials have a cost of roughly of $11.15/kW-hour (of reflected solar energy that would otherwise have heated the underlying water) for one day. Over a two-month summer period, the materials cost would be roughly eighteen cents/kW-hour of reflected solar energy, and work is ongoing to reduce costs further. Material deployments in a sheet form were used on a California mountain lake in Winter/Spring 2010-2011 to successfully demonstrate over a larger scale that properly engineered materials are effective in aiding snow and ice retention. Over the course of several days during the melting season, we typically observed differences of 70 cm greater snow retention under a Teslin sheet compared to the uncovered control areas. However, sheets tend to act as sails, requiring special measures to remain stable. The most recent season's experimentation saw further evolution in the material and deployment approach. Small deployments were once again made on a California mountain lake, using granular biodegradable food-grade materials or glass-based materials placed in large-mesh containers. The deployments successfully shielded underlying snow and ice from melting, and remained stable in the face of the strong winds in the area. It may also be possible to select materials that are readily incorporated in new ice as it forms in the winter season. Young, or thin, ice tends to have a relatively low albedo, and the higher albedo of ice so formed with these materials incorporated could be advantageous in retaining young or thin ice. We speculate that once a critical amount of ice (or snow, permafrost, etc.) is preserved, the balance may be tipped back sufficiently to slow the overall melting rate of the cryosphere, and further intervention may not be required. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes, enhance the preservation of threatened species, ensure more predictable availability of drinking water, and perhaps bring about a reduction in the Ice-Albedo Feedback Effect, thus slowing some of the effects of climate change in the earth's icy regions and beyond.

  7. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  8. RTopo-2: A global high-resolution dataset of ice sheet topography, ice shelf cavity geometry and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Schaffer, Janin

    2016-04-01

    The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.

  9. Tidal Flexure, Ice Velocities, and Ablation Rates of Peterman Gletscher, Greenland

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1996-01-01

    Over the floating section of a tide-water glacier, single radar intererograms are difficult to use because the long-term steady motion of the ice is intermixed with the tidal vertical motion of the glacier. With multiple interferograms, it is however possible to isolate the tidal signal and remove it from the single interferograms to estimate the ice velocities. The technique is applied to ERS-1 synthetic aperture radar (SAR) images of Petermann Gletscher, north Greenland.

  10. South Greenland, North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This spectacular north looking view of south Greenland (62.0N, 46.0W) shows numerous indentations along the coastline, many of which contain small settlements. These indentations are fiords carved by glaciers of the last ice age. Even today, ice in the center of Greenland is as much as 10,000 ft. thick and great rivers of ice continuously flow toward the sea, where they melt or break off as icebergs - some of which may be seen floating offshore.

  11. South Greenland, North Atlantic Ocean

    NASA Image and Video Library

    1992-04-02

    This spectacular north looking view of south Greenland (62.0N, 46.0W) shows numerous indentations along the coastline, many of which contain small settlements. These indentations are fiords carved by glaciers of the last ice age. Even today, ice in the center of Greenland is as much as 10,000 ft. thick and great rivers of ice continuously flow toward the sea, where they melt or break off as icebergs - some of which may be seen floating offshore.

  12. Sliding Rocks on Racetrack Playa, Death Valley National Park: First Observation of Rocks in Motion

    PubMed Central

    Lorenz, Ralph D.; Ray, Jib; Jackson, Brian

    2014-01-01

    The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved >60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, “windowpane” ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of ∼4–5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2–5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice. PMID:25162535

  13. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  14. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  15. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  16. Role of ice-ocean interaction on glacier instability: Results from numerical modeling applied to Petermann Glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Nick, F.; Hubbard, A.; Vieli, A.; van der Veen, C. J.; Box, J. E.; Bates, R.; Luckman, A. J.

    2009-12-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modeling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.

  17. Role of ice-ocean interaction on glacier instability: Results from numerical modelling applied to Petermann Glacier

    NASA Astrophysics Data System (ADS)

    Nick, Faezeh M.; Hubbard, Alun; van der Veen, Kees; Vieli, Andreas

    2010-05-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its 16 km wide and 80 km long floating tongue, experiences massive bottom melting. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as bottom melting, sea ice or sikkusak disintegration, surface run off and iceberg calving to the mass balance and instability of Petermann Glacier and its ice shelf. Our modelling study provides insights into the role of ice-ocean interaction, and on how to incorporate calving in ice sheet models, improving our ability to predict future ice sheet change.

  18. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    USGS Publications Warehouse

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  19. Brinicles as a case of inverse chemical gardens.

    PubMed

    Cartwright, Julyan H E; Escribano, Bruno; González, Diego L; Sainz-Díaz, C Ignacio; Tuval, Idan

    2013-06-25

    Brinicles are hollow tubes of ice from centimeters to meters in length that form under floating sea ice in the polar oceans when dense, cold brine drains downward from sea ice to seawater close to its freezing point. When this extremely cold brine leaves the ice, it freezes the water it comes into contact with: a hollow tube of ice-a brinicle-growing downward around the plume of descending brine. We show that brinicles can be understood as a form of the self-assembled tubular precipitation structures termed chemical gardens, which are plantlike structures formed on placing together a soluble metal salt, often in the form of a seed crystal, and an aqueous solution of one of many anions, often silicate. On one hand, in the case of classical chemical gardens, an osmotic pressure difference across a semipermeable precipitation membrane that filters solutions by rejecting the solute leads to an inflow of water and to its rupture. The internal solution, generally being lighter than the external solution, flows up through the break, and as it does so, a tube grows upward by precipitation around the jet of internal solution. Such chemical-garden tubes can grow to many centimeters in length. In the case of brinicles, on the other hand, in floating sea ice we have porous ice in a mushy layer that filters out water, by freezing it, and allows concentrated brine through. Again there is an osmotic pressure difference leading to a continuing ingress of seawater in a siphon pump mechanism that is sustained as long as the ice continues to freeze. Because the brine that is pumped out is denser than the seawater and descends rather than rises, a brinicle is a downward-growing tube of ice, an inverse chemical garden.

  20. Grounding line migration of Petermann Gletscher, north Greenland, detected using satellite radar interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1997-01-01

    Ice Sheet grounding lines are sensitive indicator of changes in ice thickness, sea level or elevation of the sea bed. Here, we use the synthetic-aperture radar interferometry technique to detect the migration of thel imit of tidal flexing, or hinge line, of Petermann Gletscher, a major outlet glacier of north Greenland which develops an extensive floating tongue.

  1. Petermann Glacier, North Greenland: massive calving in 2010 and the past half century

    NASA Astrophysics Data System (ADS)

    Johannessen, O. M.; Babiker, M.; Miles, M. W.

    2011-01-01

    Greenland's marine-terminating glaciers drain large amounts of solid ice through calving of icebergs, as well as melting of floating glacial ice. Petermann Glacier, North Greenland, has the Northern Hemisphere's long floating ice shelf. A massive (~270 km2) calving event was observed from satellite sensors in August 2010. In order to understand this in perspective, here we perform a comprehensive retrospective data analysis of Petermann Glacier calving-front variability spanning half a century. Here we establish that there have been at least four massive (100+ km2) calving events over the past 50 years: (1) 1959-1961 (~153 km2), (2) 1991 (~168 km2), (3) 2001 (~71 km2) and (4) 2010 (~270 km2), as well as ~31 km2 calved in 2008. The terminus position in 2010 has retreated ~15 km beyond the envelope of previous observations. Whether the massive calving in 2010 represents natural episodic variability or a response to global and/or ocean warming in the fjord remains speculative, although this event supports the contention that the ice shelf recently has become vulnerable due to extensive fracturing and channelized basal melting.

  2. Buttressing and stability of marine Ice sheets

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Holland, D. M.; Schoof, C.

    2009-04-01

    The West Antarctic Ice Sheet is marine in nature, meaning most of its base is below sea level. At the grounding line (where it becomes thin enough to float), its outlet streams flow into large ice shelves. Gravitational stress in the shelf is transmitted back to the grounding line, and largely balanced by basal friction in the transition zone. The details of this force balance control the evolution of both the thickness and grounded extent of the ice sheet, and can lead to Weertman's (1974) Marine Instability for a foredeepened bedrock (one that deepens inland). However, the presence of rigid sidewalls and locally grounded regions in the shelf can reduce the longitudinal stresses felt at the grounding line (a phenomenon called buttressing). Thomas (1979) and others pointed out that Marine Instability may be lessened or reversed by ice shelf buttressing. When modelling marine ice sheets numerically, the physics of the grounded-to-floating transition must be represented and the associated small length scales must be resolved (Schoof, 2007). Failing to do so can result in nonphysical or numerically inconsistent behavior (Vieli and Payne, 2005). While several methods have been developed to treat these issues (Vieli and Payne, 2005; Pattyn et al, 2006; Schoof, 2007) they are limited to flowline models. We present a model that represents the physics of the grounded-to-floating transition in a time-dependent three-dimensional marine ice sheet, using mesh adaption to resolve the transition zone. We show that in the special case of a two-dimensional sheet our model reproduces the theoretical results of the MISMIP experiments, and that it produces robust results when both horizontal dimensions are resolved. In idealized experiments in a channel with rigid sidewalls and a foredeepened bed, we narrow the channel to determine whether buttressing is sufficient to reverse instability. We find that for strong beds (high friction coefficients), while the timescales and dynamics are affected greatly by buttressing, true stability reversal is still not seen even as the channel becomes quite narrow. However, for weaker beds, stability is seen, though it can be shown that sufficient ocean melting can still cause collapse. Experiments with more complicated bed topography show that locally grounded areas (ice rises) have similar dynamic effects to rigid sidewalls.

  3. Warm water and life beneath the grounding zone of an Antarctic outlet glacier

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro

    2013-04-01

    Ice-ocean interaction plays a key role in rapidly changing Antarctic ice sheet margins. Recent studies demonstrated that warming ocean is eroding floating part of the ice sheet, resulting in thinning, retreat and acceleration of ice shelves and outlet glaciers. Field data are necessary to understand such processes, but direct observations at the interface of ice and the ocean are lacking, particularly beneath the grounding zone. To better understand the interaction of Antarctic ice sheet and the ocean, we performed subglacial measurements through boreholes drilled in the grounding zone of Langhovde Glacier, an outlet glacier in East Antarctica. Langhovde Glacier is located at 69°12'S, 39°48'E, approximately 20 km south of a Japanese research station Syowa. The glacier discharges ice into Lützow-holm Bay through a 3-km-wide floating terminus at a rate of 130 m a-1. Fast flowing feature is confined by bedrock to the west and slow moving ice to the east, and it extends about 10 km upglacier from the calving front. In 2011/12 austral summer season, we operated a hot water drilling system to drill through the glacier at 2.5 and 3 km from the terminus. Inspections of the boreholes revealed the ice was underlain by a shallow saline water layer. Ice and water column thicknesses were found to be 398 and 24 m at the first site, and 431 and 10 m at the second site. Judging from ice surface and bed elevations, the drilling sites were situated at within a several hundred meters from the grounding line. Sensors were lowered into the boreholes to measure temperature, salinity and current within the subglacial water layer. Salinity and temperature from the two sites were fairly uniform (34.25±0.05 PSU and -1.45±0.05°C), indicating vertical and horizontal mixing in the layer. The measured temperature was >0.7°C warmer than the in-situ freezing point, and very similar to the values measured in the open ocean near the glacier front. Subglacial current was up to 3 cm/s, which is sufficient to carry coastal water to the study sites within several days. A video camera suspended in the boreholes captured a crustacean and krill beneath the grounding zone. Subglacial water samples contained abundant phytoplankton, which were most likely transported from the open ocean and served as trophic resources to the animals living under >400 m thick glacier. Our observations indicate that warm coastal water is actively transported to the grounding zone by subshelf current, and efficiently melting the floating ice bottom. It is also implied that changes in the ocean would immediately reach and influence physical and biological environment beneath the grounding zone.

  4. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  5. Ice-front change and iceberg behaviour along Oates and George V Coasts, Antarctica, 1912-96

    USGS Publications Warehouse

    Frezzotti, M.; Cimbelli, A.; Ferrigno, J.G.

    1998-01-01

    Ice-front change may well be a sensitive indicator of regional climate change. We have studied the western Oates Coast from Cape Kinsey (158??50'E, 69??19'S) to Cape Hudson (153??45'E, 68??20'S) and the entire George V Coast, from Cape Hudson to Point Alden (142??02'E, 66??48'S). The glaciers here drain part of the Dome Charlie and Talos Dome areas (640 000 km2). A comparison between various documents, dated several years apart, has allowed an estimate of the surficial ice discharge, the ice-front fluctuation and the iceberg-calving flux during the last 50 years. The ice-front discharge of the studied coast has been estimated at about 90??12 km3 a-1 in 1989-91, 8.5 km3 a-1 for western Oates Coast and 82 km3 a-1 for George V Coast. From 1962-63 to 1973-74 the floating glaciers underwent a net reduction that continued from 1973-74 to 1989-91. On the other hand, from 1989-91 to 1996 the area of floating glaciers increased. Ninnis Glacier Tongue and the western part of Cook Ice Shelf underwent a significant retreat after 1980 and 1947, respectively. Satellite-image analysis of large icebergs has provided information about ice-ocean interaction and the existence of an 'iceberg trap' along George V Coast. A first estimate of the mass balance of the drainage basin of Mertz and Ninnis Glaciers shows a value close to zero or slightly negative.

  6. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    USGS Publications Warehouse

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for <1%. Identification of smaller landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  7. Thermal Effects on the "Ice-Cube Puzzle"

    ERIC Educational Resources Information Center

    Lima, F. M. S.; Monteiro, F. F.

    2012-01-01

    When an ice cube floating on water in a container melts, it is said in some textbooks that the water level does not change. However, as pointed out by Lan in a recent work, when the buoyant force from a less dense fluid resting above the waterline is taken into account, one should expect a detectable "increase" in the volume of water. Here in this…

  8. Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.

    2016-12-01

    An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.

  9. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice and difficult to access. Some innovative methods are being used to acquire these data, including airborne deployment of ALAMO profiling floats which we tested in the Ross Sea as part of the ROSETTA-Ice project. Combining these altimeter datasets and in situ ocean datasets will allow us to examine processes causing basal melting in the sub-ice-shelf cavities.

  10. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  11. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Vermillion, M.; Ball, D.; Stoudt, C. A.; Geiger, C. A.; Woods, J. E.; Samluk, J.; Deliberty, T. L.

    2013-12-01

    During March of 2013, the Naval Research Laboratory, the University of Delaware and the US Naval Academy collected an integrated set of measurements over the largely floating, but land-fast ice near the coast of Barrow, AK. The purpose of the collection was to compare airborne remote sensing methods of collection to in-situ ground-truth measurements. Airborne measurements include scanning LiDAR (Riegl Q 680i), digital photogrammetry (Applanix DSS-439) and a short-pulse (~ 1 nsec) 10 GHz radar altimeter. The LiDAR measures total freeboard (ice + snow) referenced to leads in the ice. The radar measures approximate ice freeboard with the difference with the LiDAR providing an estimate of snow thickness. The freeboard measurements are aimed at estimating ice thickness via estimates of densities and isostasy. The photogrammetry was used to measure ice motion over free-floating sea-ice, but provided only a velocity calibration and general situational awareness over the land-fast ice. Ground measurements were collected along a transect, and included boreholes, snow-thickness (Magnaprobe), and ice thickness (EM31). Airborne data were collected on six overflights of this transect over a three week period. LiDAR swath widths ranged from 200-300m (depending on altitude) and encompassed three grounded ridges which remained essentially stationary over the collection period, that together with the shoreline, provided fixed reference points to compare the heights of the floating ice that varied with the tide (and to some extent the snow conditions). Sampling size or 'footprint' plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Boreholes are point measurements and are difficult enough to obtain, that only a limited number are practical during a survey period. EM31 and Magnaprobe instrumentation allows collection of snow and ice thickness along one-dimensional profiles, and several adjacent profiles can be collected to approximate a two-dimensional swath, assuming that the spacing between profiles does not lead to unacceptable aliasing. For this project we collected two em31 profiles roughly 3-5m apart and two profiles of Magnaprobe snow thickness with separation varying from 1-20 m. The radar footprint is ~ 10-15m at our survey altitudes, and at least somewhat comparable. The LiDAR had a ground point spacing of ~25 cm and so easily encompassed the EM31, Magnaprobe and radar data. Measured snow thickness was minimal, averaging 9 cm on the date of the first collection and 12 cm on the second. Airborne radar data were compared to the LiDAR by applying a circular, weighted kernel to the LiDAR measurements surrounding the radar profile and commensurate in diameter to the radar footprint. Estimated snow thickness is then obtained from the difference of the radar and averaged LiDAR. Ice thickness was then calculated from the freeboard measurements and compared to the boreholes. Using these data sets we hope to address important questions such as: How can we improve co-registration between ground and airborne campaigns by taking advantage of land-fast ice as a non-moving ice field? How can we improve co-registration on drift ice by building from such activities? Is there spatial aliasing of sea ice at different resolutions and if so, what is the impact on sea ice volume and ice thickness distribution?

  12. Investigating role of ice-ocean interaction on glacier dynamic: Results from numerical modeling applied to Petermann Glacier

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; van der Veen, C. J.; Vieli, A.; Pattyn, F.; Hubbard, A.; Box, J. E.

    2010-12-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its ~17 km wide and ~ 60 km long floating ice-shelf is experiencing high rates of bottom melting. The recent partial disintegration of its shelf (in August 2010) presents a natural experiment to investigate the dynamic response of the ice sheet to its shelf retreat. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as shelf disintegration, bottom melting, sea ice or sikkusak disintegration and surface run off to the mass balance of Petermann Glacier and assess its stability. Our modeling study provides insights into the role of ice-ocean interaction, and on response of Petermann Glacier to its recent massive ice loss.

  13. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    PubMed Central

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. PMID:26778247

  14. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change.

  15. Fatigue analysis of assembled marine floating platform for special purposes under complex water environments

    NASA Astrophysics Data System (ADS)

    Ma, Guang-ying; Yao, Yun-long

    2018-03-01

    In this paper, the fatigue lives of a new type of assembled marine floating platform for special purposes were studied. Firstly, by using ANSYS AQWA software, the hydrodynamic model of the platform was established. Secondly, the structural stresses under alternating change loads were calculated under complex water environments, such as wind, wave, current and ice. The minimum fatigue lives were obtained under different working conditions. The analysis results showed that the fatigue life of the platform structure can meet the requirements

  16. The impact of a pressurized regional sea or global ocean on stresses on Enceladus

    NASA Astrophysics Data System (ADS)

    Johnston, Stephanie A.; Montési, Laurent G. J.

    2017-06-01

    Liquid water is likely present in the interior of Enceladus, but it is still debated whether this water forms a global ocean or a regional sea and whether the present-day situation is stable. As the heat flux of Enceladus exceeds most heat source estimates, the liquid water is likely cooling and crystallizing, which results in expansion and pressurization of the sea or ocean. We determine, using an axisymmetric Finite Element Model, the tectonic patterns that pressurization of a regional sea or global ocean might produce at the surface of Enceladus. Tension is always predicted above where the ice is thinnest and generates cracks that might be at the origin of the Tiger Stripes. Tectonic activity is also expected in an annulus around the sea if the ice shell is in contact with but slips freely along the rocky core of the satellite. Cracks at the north pole are expected if the shell slips along the core or if there is a global ocean with thin ice at the pole. Water is likely injected along the base of the ice when the shell is grounded, which may lead to cycles of tectonic activity with the shell alternating between floating and grounded states and midlatitude faulting occurring at the transition from a grounded to a floating state.

  17. Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Snow, K.; Holland, P.; Jordan, J. R.; Campin, J.-M.; Heimbach, P.; Arthern, R.; Jenkins, A.

    2018-05-01

    Synchronous coupling is developed between an ice sheet model and a z-coordinate ocean model (the MITgcm). A previously-developed scheme to allow continuous vertical movement of the ice-ocean interface of a floating ice shelf ("vertical coupling") is built upon to allow continuous movement of the grounding line, or point of floatation of the ice sheet ("horizontal coupling"). Horizontal coupling is implemented through the maintenance of a thin layer of ocean ( ∼ 1 m) under grounded ice, which is inflated into the real ocean as the ice ungrounds. This is accomplished through a modification of the ocean model's nonlinear free surface evolution in a manner akin to a hydrological model in the presence of steep bathymetry. The coupled model is applied to a number of idealized geometries and shown to successfully represent ocean-forced marine ice sheet retreat while maintaining a continuous ocean circulation.

  18. Bathymetry in Petermann fjord from Operation IceBridge aerogravity

    NASA Astrophysics Data System (ADS)

    Tinto, Kirsty J.; Bell, Robin E.; Cochran, James R.; Münchow, Andreas

    2015-07-01

    Petermann Glacier is a major glacier in northern Greenland, maintaining one of the few remaining floating ice tongues in Greenland. Monitoring programs, such as NASA's Operation IceBridge have surveyed Petermann Glacier over several decades and have found it to be stable in terms of mass balance, velocity and grounding-line position. The future vulnerability of this large glacier to changing ocean temperatures and climate depends on the ocean-ice interactions beneath its floating tongue. These cannot currently be predicted due to a lack of knowledge of the bathymetry underneath the ice tongue. Here we use aerogravity data from Operation IceBridge, together with airborne radar and laser data and shipborne bathymetry-soundings to model the bathymetry beneath the Petermann ice tongue. We find a basement-cored inner sill at 540-610 m depth that results in a water cavity with minimum thickness of 400 m about 25 km from the grounding line. The sill is coincident with the location of the melt rate minimum. Seaward of the sill the fjord is strongly asymmetric. The deepest point occurs on the eastern side of the fjord at 1150 m, 600 m deeper than on the western side. This asymmetry is due to a sedimentary deposit on the western side of the fjord. A 350-410 m-deep outer sill, also mapped by marine surveys, marks the seaward end of the fjord. This outer sill is aligned with the proposed Last Glacial Maximum (LGM) grounding-line position for Petermann Glacier. The inner sill likely provided a stable pinning point for the grounding line in the past, punctuating the retreat of Petermann Glacier since the LGM.

  19. Endmembers of Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after observing a pond and river reemerge after apparently freezing during the 2016-17 melt season. Using the ponds/rivers endmember scheme helps us to constrain the role storage and transport play on stabilizing ice shelves. By extending this analysis to other ice tongues and shelves we can better understand their vulnerability to a warming world.

  20. Petermann Glacier, North Greenland: Large Ice-Discharge Episodes from 20 Years of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Babiker, M.; Johannessen, O. M.; Miles, M. W.; Miles, V. V.

    2009-12-01

    The major marine-terminating outlet glaciers of Greenland can undergo large mass losses through calving of icebergs and bottom melting from floating ice tongues. Recent observations of outlet glaiers around Greenland have shown that large and rapid changes in solid-ice fluxes are possible. The Petermann glacier in remote northern Greenland is the region’s largest floating-tongue glacier (~70 km by 10 km). In summer 2008 a large calving event was observed, as well as large cracks upstream of the remaining calving front, portending a more massive near-term loss. These observations may herald extraordinary and unprecedented change. However, the long-term variability of calving events and ice velocities are poorly known. Our research goal here is to identify the temporal variability and possible trends in solid-ice flux indicators - variability of the calving front and ice velocity - for Petermann glacier. The methodological approach is observational, based primarily on analysis of 20 years of repetitive satellite data over a period starting from 1990, together with sporadic earlier observations. The multisensor data range from high-resolution optical images from Landsat, SPOT and Terra ASTER and high-resolution synthetic aperture radar (SAR) images from ERS and ENVISAT. These disparate data have been imported, geo-registered and analysed within a Geographic Information System. The following measurements are made: (1) delineating changes in the calving front, (2) estimating the area of glacial ice loss during calving events, and (3) estimating the ice-surface velocity using sequential satellite images. We find evidence of a number of previous calving episodes of similar magnitude to the summer 2008. The ice-velocity estimates compare well with other estimates for particular years, and moreover are relatively consistent during the 20-year period. These findings suggest business-as-usual for Petermann glacier; however, a near-term calving event exceeding those observed over the past 20 years cannot be ruled out.

  1. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    USGS Publications Warehouse

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p < 0.001) to this lake regime shift. To understand how and to what extent sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  2. Can Thermal Bending Fracture Ice Shelves?

    NASA Astrophysics Data System (ADS)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  3. Worldwide Emerging Environmental Issues Affecting the U.S. Military. March 2007 Report

    DTIC Science & Technology

    2007-03-01

    some existent climate regions (mainly in tropical mountain areas, Amazon and Indonesian rainforests , and towards the poles) and the prospects of...ice sheets and floating sea ice. Military Implications: In view of the increasing importance of the Arctic in military planning and the oil reserves...95080 4.2 Malacca Straits Need Increased Protection from Various Security Threats The Malacca Strait, one of the most important shipping lanes in the

  4. Viscous grounding lines

    NASA Astrophysics Data System (ADS)

    Worster, Grae; Huppert, Herbert; Robison, Rosalyn; Nandkishore, Rahul; Rajah, Luke

    2008-11-01

    We have used simple laboratory experiments with viscous fluids to explore the dynamics of grounding lines between Antarctic marine ice sheets and the freely floating ice shelves into which they develop. Ice sheets are shear-dominated gravity currents, while ice shelves are extensional gravity currents with zero shear to leading order. Though ice sheets have non-Newtonian rheology, fundamental aspects of their flow can be explored using Newtonian fluid mechanics. We have derived a mathematical model of this flow that incorporates a new dynamic boundary condition for the position of the grounding line, where the gravity current loses contact with the solid base. Good agreement between our theoretical predictions and our experimental measurements, made using gravity currents of syrup flowing down a rigid slope into a deep, dense salt solution, gives confidence in the fundamental assumptions of our model, which can be incorporated into shallow-ice models to make important predictions regarding the dynamical stability of marine ice sheets.

  5. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what observed in previous models. This transient effect did not significantly propagate upstream towards the inner parts of ice sheet, and rapidly decayed with time. The process was also accompanied by significant ice thinning. Models results suggest that the ice sheet is almost unaffected by flow perturbations induced by ice shelf collapse, unless other processes (e.g., grounding line instability induced by warm water penetration) are involved.

  6. Sediment features at the grounding zone and beneath Ekström Ice Shelf, East Antarctica, imaged using on-ice vibroseis.

    NASA Astrophysics Data System (ADS)

    Smith, Emma C.; Eisen, Olaf; Hofstede, Coen; Lambrecht, Astrid; Mayer, Christoph

    2017-04-01

    The grounding zone, where an ice sheet becomes a floating ice shelf, is known to be a key threshold region for ice flow and stability. A better understanding of ice dynamics and sediment transport across such zones will improve knowledge about contemporary and palaeo ice flow, as well as past ice extent. Here we present a set of seismic reflection profiles crossing the grounding zone and continuing to the shelf edge of Ekström Ice Shelf, East Antarctica. Using an on-ice vibroseis source combined with a snowstreamer we have imaged a range of sub-glacial and sub-shelf sedimentary and geomorphological features; from layered sediment deposits to elongated flow features. The acoustic properties of the features as well as their morphology allow us to draw conclusions as to their material properties and origin. These results will eventually be integrated with numerical models of ice dynamics to quantify past and present interactions between ice and the solid Earth in East Antarctica; leading to a better understanding of future contributions of this region to sea-level rise.

  7. Ice sheet-ocean interactions and sea level change

    NASA Astrophysics Data System (ADS)

    Heimbach, Patrick

    2014-03-01

    Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.

  8. Chacterization of Teleseismic Earthquakes Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2016-12-01

    Broadband seismographs deployed atop large tabular icebergs and ice shelves record a rich superposition of atmospheric, oceanic, and solid earth signals. We characterize these signals, including body and surface wave arrivals from approximately 200 global earthquakes, using a 34-station broadband array spanning the Ross Ice Shelf, Antarctica. Teleseismic earthquake arrivals are essential for constructing models of crustal and upper mantle structure, and observations on the ice shelf are key to resolving the structure of the underlying West Antarctic Rift System. To test the plausibility of passive imaging in this unique environment, we examine seasonal and spatial dependence of signal-to-noise ratios of body wave arrivals and the impact of ice shelf dynamics on surface wave dispersion. We also note unusual phase mechanics arising from the floating platform geometry.

  9. 2017 Rapid Retreat Of Thwaites Glacier

    NASA Astrophysics Data System (ADS)

    Milillo, P.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.

    2017-12-01

    We employ data from the second generation of SAR systems e.g. the Italian COSMO- SkyMed (CSK) constellation and the German TanDEM-X (TDX) formation to monitor grounding line retreat using short repeat-time interferometry and accurate InSAR DEM on Thwaites glacier in the Amundsen Sea Embayment (ASE), West Antarctica. The ASE is a marine-based ice sheet with a retrograde bed containing enough ice to raise global sea level by 120 cm. Several studies have inferred the mechanical properties of portions of ASE using observationally constrained numerical models, but these studies offer only temporal snapshots of basal mechanics owing to a dearth of observational time series. Prior attempts of grounding lines mapping have been limited because few space-borne SAR missions offer the short-term repeat pass capability required to map the differential vertical displacement of floating ice at tidal frequencies with sufficient detail to resolve grounding line boundaries in areas of fast ice deformation. Using 1-day CSK repeat pass data and TDX DEMs, we collected frequent, high-resolution grounding line measurements of Thwaites glaciers spanning 2015-2017. We compare the results with ERS data spanning 1996-2011, and Sentinel-1a 2014-2015 data. Between 2011 and 2017 we observe a maximum retreat of 5-7 km across the main Thwaites glacier tongue and Thwaites Eastern ice shelf (TEIS) corresponding to an increased retreat rate of 0.5 km/yr. Grounding line retreat has been fueled by the enhanced intrusion of warm, salty, subsurface ocean water of circumpolar deep water origin onto the continental shelf, beneath the floating ice shelf, to reach the glacier grounding zone and melt it from below at rates varying from 50 to 150 m/yr. The retreat rate varies depending on the magnitude of ice melt by the ocean, the rate of ice thinning and the shape of the glacier surface and bed topography.

  10. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel

    2016-10-01

    The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF), and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at doi:10.1594/PANGAEA.856844.

  11. Ocean Observations Below Petermann Gletscher Ice Shelf, Greenland From a Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Nicholls, K. W.; Padman, L.; Washam, P.

    2016-12-01

    Petermann Gletscher in North Greenland features the second largest floating ice shelf by area in the northern hemisphere. In August of 2015 we drilled three holes through the ice shelf and deployed ocean sensors between 5 and 700 m below the glacier-ocean interface. The sensors are controlled by data loggers at the surface that also support a weather station and GPS. All data are transmitted near real-time via a satellite communication link that allowed data downloads and software uploads until February 2016. The system provided gap-free hourly data through the polar night with air temperatures dropping below -48 °C. Mean glacier speeds in winter (Nov.-Feb) were 1180±18 m/year; these values are 12±5% larger than previously reported winter speeds at this location. Hourly ocean observations revealed large bi-monthly pulses within 30 m of the glacier-ocean interface and amplitudes that exceed 1 °C in temperature and 1 psu in salinity. We posit that episodic discharge of glacial meltwater, modulated by the spring-neap tidal cycle thickens the boundary layer under the ice shelf at the location of our measurements. All data are posted at http://ows.udel.edu . A site visit is planned for August 2016 to fix communication failures, retrieve locally stored data, add sensors, and evaluate sustainability of this first cabled observatory on a floating and rapidly melting Greenland glacier.

  12. Sea-level response to ice sheet evolution: An ocean perspective

    NASA Technical Reports Server (NTRS)

    Jacobs, Stanley S.

    1991-01-01

    The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.

  13. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions

    PubMed Central

    Hillenbrand, Claus-Dieter; Smith, James A.; Hodell, David A.; Greaves, Mervyn; Poole, Christopher R.; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E.; Klages, Johann P.; Roberts, Stephen J.; Gohl, Karsten; Larter, Robert D.; Kuhn, Gerhard

    2017-01-01

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) upwelling onto the West Antarctic continental shelf causes melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet loss today. Here we present the first multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the last 11,000 years. The chemical composition of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector both until 7,500 years ago, when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream, and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models. PMID:28682333

  14. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.

    PubMed

    Hillenbrand, Claus-Dieter; Smith, James A; Hodell, David A; Greaves, Mervyn; Poole, Christopher R; Kender, Sev; Williams, Mark; Andersen, Thorbjørn Joest; Jernas, Patrycja E; Elderfield, Henry; Klages, Johann P; Roberts, Stephen J; Gohl, Karsten; Larter, Robert D; Kuhn, Gerhard

    2017-07-05

    Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago-when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream-and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.

  15. Antarctic Ice Shelf Loss Comes From Underneath

    NASA Image and Video Library

    2017-12-08

    Calving front of an ice shelf in West Antarctica. The traditional view on ice shelves, the floating extensions of seaward glaciers, has been that they mostly lose ice by shedding icebergs. A new study by NASA and university researchers has found that warm ocean waters melting the ice sheets from underneath account for 55 percent of all ice shelf mass loss in Antarctica. This image was taken during the 2012 Antarctic campaign of NASA's Operation IceBridge, a mission that provided data for the new ice shelf study. Read more: www.nasa.gov/topics/earth/features/earth20130613.html Credit: NASA/GSFC/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Hinge-line Migration of Petermann Gletscher, North Greenland, Detected Using Satellite Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1998-01-01

    The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.

  17. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method could be deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change. Test site at man-made lake in Minnesota 2013

  18. The safety band of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  19. Effects of Instructional Support within Constructivist Learning Environments for Elementary School Students' Understanding of "Floating and Sinking"

    ERIC Educational Resources Information Center

    Hardy, Ilonca; Jonen, Angela; Moller, Komelia; Stern, Elsbeth

    2006-01-01

    In a repeated measures design (pretest, posttest, 1-year follow-up) with 161 3rd-grade students, the authors compared 2 curricula on floating and sinking within constructivist learning environments, varying in instructional support. The 2 curricula differed in the sequencing of content and the teacher's cognitively structuring statements. At the…

  20. Ice shelf breaking and increase velocity of glacier: the view from analogue experiment

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Iandelli, Irene

    2013-04-01

    Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if ice sheet discharge, highlighting that these processes may strongly destabilize large ice masses speeding up the plateau discharge toward the sea. Parameters such as ice thickness, valley width and slope, ice pack dimensions may contribute to modulate the effect of increase in ice flow velocity following the removal of ice. We analyze this process through scale analogue models, aimed at reproducing the flow of ice from a plateau into the sea through a narrow valley. The ice is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the ice, PDMS floats on water and simulate the ice-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of ice pack. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in ice velocity.

  1. Deep Space Detection of Oriented Ice Crystals

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Varnai, T.; Kostinski, A. B.

    2017-12-01

    The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.

  2. Extension of NHWAVE to Couple LAMMPS for Modeling Wave Interactions with Arctic Ice Floes

    DTIC Science & Technology

    2015-09-30

    Modelling, in press. Orzech, M., Shi, F., Veeramony, J., Bateman , S., Calantoni, J., and Kirby, J. T., 2015, “Incorporating floating surface...objects into a fully dispersive surface wave model”, Ocean Modelling, submitted. Bateman , S. Shi, F., Orzech, M., Veeramony, J., and Calantoni, J., 2014...Orzech, M., Shi, F., Calantoni, J., Bateman , S., and Veeramony, J., “Small-scale modeling of waves and floes in the Marginal Ice Zone”, 2014 Fall Meeting of the American Geophysical Union.

  3. A note on the evolution equations from the area fraction and the thickness of a floating ice cover

    NASA Astrophysics Data System (ADS)

    Schulkes, R. M. S. M.

    1995-03-01

    In this paper, two sets of evolution equations for the area fraction and the ice thickness are investigated. First of all, a simplified alternative derivation of the evolution equations as presented by Gray and Morland (1994) is given. In addition, it is shown that with proper identification of ridging functions, there is a close connection between the derived equations and the thickness distribution model introduced by Thorndike et al. (1975).

  4. Implementing SPRINTT [Student Polar Research with IPY National(and International)Teacher Training] in 5th Grade Science

    NASA Astrophysics Data System (ADS)

    Glass, D. S.

    2009-12-01

    I implemented the new NSF-funded SPRINTT (Student Polar Research with IPY National (and International) Teacher Training) curriculum with a 5th grade science class. SPRINTT, developed at U.S. Satellite Laboratory, Inc., is a 5-8 week science program teaching 5th through 10th graders to investigate climate change using polar data. The program includes perspectives of both Western scientists and the indigenous Northern population. The course contains three phases: Phase 1 includes content, data interpretation, and hands-on experiments to study Frozen Water, Frozen Land, and Food; Phase 2 (optional) includes further content on specific polar topics; and Phase 3 is a scaffolded research investigation. Before the course, teachers were trained via live webinars. This curriculum capitalizes on children’s innate fascination with our planet’s final frontier and combines it with the politically and scientifically relevant topic of climate change. In 2009, I used SPRINTT with 23 heterogeneous fifth grade students at National Presbyterian School in Washington DC for an environmental science unit. Overall, it was a success. The students met most of the learning objectives and showed enthusiasm for the material. I share my experiences to help other educators and curriculum developers. The Phase 1 course includes earth science (glaciers, sea ice, weather and climate, greenhouse gases, seasons, and human impacts on environments), life science (needs of living things, food and energy transfer, adaptations, and ecosystems and biomes) and physical science (phases of matter). Tailoring the program, I focused on Phase 1, the most accessible material and content, while deemphasizing the more cumbersome Phase 3 online research project. Pre-assessments documented the students’ misconceptions and informed instruction. The investigations were appropriately educational and interesting. For example, students enjoyed looking at environmental factors and their impact on the people in the tale of “Mr. Gambell’s First Winter.” However, some of the online lessons and video clips were boring or presented technical difficulties. Otherwise, the lessons were paced appropriately, followed a coherent progression, and were sensibly organized into the themes of Frozen Water, Frozen Land, and Food. The three hands-on experiments in Phase 1 (melting ice, permafrost model, and looking at food’s origins) were effective. For example, when comparing ice blocks floating in water (sea ice model) or sitting on a rock above water (glacial ice model), students were eager to describe the shape of each block and competed to guess which ice would melt fastest. They took good notes on the procedure, documented their results and summarized a reasonable conclusion. These activities enlivened the curriculum and taught important lessons about experimental design, data collection, models, and classification. Using traditional knowledge as a formal tool for science is another intriguing component of the SPRINTT program. During Phase 3, the research investigation, students collaborated on a series of online authentic research activities (choosing from several high-interest options) then summarized their findings in a web-based formal report. I share the challenges and successes of using SPRINTT.

  5. First Observation of Rock Motion on Racetrack Playa, Death Valley National Park—Role of a Persistent Pool, Sun, Zephyrs, Windowpane Ice, and Tugboats

    NASA Astrophysics Data System (ADS)

    Norris, R. D.; Norris, J. M.

    2014-12-01

    Trails in the mud-cracked surface of Racetrack Playa have been scored by hundreds of rocks up to 320 kg, but the mechanism of movement is debated. In Winter 2013-2014, we observed rocks in motion associated with a transient pool formed by winter precipitation. The pond was 7 cm deep on the southern edge of the playa, tapering to a mud flat to the north. Freezing during cold winter nights formed floating "windowpane" ice 3-5 mm thick. Rocks repeatedly moved on sunny days under light winds of 3-5 m/second, as the ice broke up near midday and was set into motion by wind stress on melt pools and the ice surface. Ice panels shoved rocks along the mud like a tugboat, sometimes forming moving imbricated ice piles upstream of the rocks and in other cases moving faster than the rocks and forming brash-filled leads downstream. GPS units mounted in experimental rocks recorded a creeping pace of 2-6 m/minute, a speed that made it difficult to observe trail formation visually. The 2013-2014 pond formed on November 20-24 and persisted through early February 2014. During this time rocks were observed moving at least five times, and studies of "stiz marks" formed by rocks at the ends of trail segments show that there were likely 3-5 additional move events. Observed travel times ranged from a few seconds to 16 minutes. In one event, two experimental rocks 153 m apart began moving simultaneously and traveled 64.1 and 65.6 m respectively, ultimately moving 157-162 m in subsequent events. Rock motion depends on the creation of winter pools sufficiently deep to allow the formation of floating ice and exposed to the light winds and sun needed for ice breakup. The combination of these events is extremely rare, leading to highly episodic trail formation. Our observations differ from previous hypotheses in that the rocks were moved by thinner ice, at slower speeds, and by lighter winds than predicted.

  6. Simulating Ice-Flow and Calving on Store Glacier, West Greenland, with a 3D Full Stokes Model

    NASA Astrophysics Data System (ADS)

    Todd, J.; Christoffersen, P.; Zwinger, T.; Luckman, A. J.; Benn, D.

    2015-12-01

    The mass balance and long-term stability of the ice sheets in Greenland and Antarctica depend heavily on the dynamics of their ice-ocean margins. Iceberg calving accounts for the majority of the net annual loss of ice in Antarctica and around half of that from Greenland. Furthermore, climate driven changes to dynamics at these calving margins can be transmitted far inland. Thus, predicting future sea level contribution from the cryosphere requires an improved understanding of calving, and the processes which link it to climate and ice-sheet flow. We present results from a new 3D calving model coupled to a full-Stokes, time evolving glacier dynamic model, implemented for Store Glacier, a 5-km-wide calving glacier in the Uummannaq region of West Greenland, which flows at a rate of 20 m/day at its terminus. The model is developed using the open source finite element package Elmer/Ice, with the criterion that calving occurs when surface and basal crevasses meet. Crevasses open in response to tensile stresses near the terminus and water pressure at the bed. When the model was applied in 2D for the central flowline of Store Glacier, we found that basal topography exerts overarching control on the long term position of the calving front, while ice mélange buttressing allows the seasonal extension of a floating tongue, which collapses in early summer. New results emerging from implementation of calving in a 3D model indicate significant spatial heterogeneity in calving dynamics because the northern half of the terminus is grounded whereas the southern half is floating. This contrasting setting affects calving dynamics, further underlining the importance of geometry and basal topography, and suggesting that lower dimensional calving models may miss important aspects of calving dynamics. Our results also suggest that implementing grounding line dynamics is important for modelling calving, even for glaciers which are, for the most part, firmly grounded.

  7. Interactions of the Greenland Petermann Glacier with the ocean: An initial perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Falkner, K. K.; Johnson, H. L.; Melling, H.; Muenchow, A.; Samelson, R. M.; Friends Of Petermann

    2010-12-01

    Petermann Glacier is major outlet glacier that drains 6% of the area of the Greenland Ice Sheet in western North Greenland. It is one of four major outlet glaciers on Greenland with a grounding line substantially below sea level (about 500m) and one of two such glaciers to retain a substantial floating tongue. The floating ice tongue of Petermann glacier is thought to lose at least 80% of its mass through ocean interaction. Based on three opportunistic ocean surveys in Petermann Fjord, we present an overview of circulation at the fjord mouth, hydrographic structure beneath the ice tongue, oceanic heat delivered to the under-ice cavity and the fate of the resulting melt water. We also present an historical perspective on the August 2010 major calving event. The 1100m-deep fjord is separated from neighboring Hall Basin by a sill that is inferred to lie between 350m and 450m deep. Hall Basin is a section of Nares Strait that connects the Arctic Ocean (at the Lincoln Sea proceeding southward through Robeson Channel, Hall Basin, Kennedy Channel, Kane Basin and Smith Sound) to Baffin Bay. Sills in the Lincoln Sea (290m) and in Kane Basin (220m) restrict communication with the Arctic Ocean and Baffin Bay. The net flux of seawater through Nares Strait is southward and relatively fresh, conditioned by sources and processes within the Arctic Ocean and locally. Within Petermann Fjord, glacial melt water appears on the northeast side at 200-600m. A cyclonic gyre occurs within the fjord mouth, with outflow on the northeast side. Oceanic heat fluxes into the fjord are sufficient to account for the observed rate of basal melting. Cold, low salinity water intrudes far under the ice and likely limits basal melting to the inland half of the tongue. The recent major calving event resulted in a loss of 300 km2 or about 20% of the total area of the floating tongue, most of which remained intact as an ice island that garnered much media attention. Available observations show calving to be sporadic on a decadal timescale. Multiple factors likely contribute to calving events. These include the geometry of the fjord, absence of sea ice, preconditioning of the glacier by crevassing and melt related cracking and occurrence of strong katabatic or orographically channeled winds. The recent event falls within the realm of previously documented calving rates but the remaining tongue length is the shortest ever directly observed. Gaps in the 134 year record preclude final judgment about whether the recent calving is entirely unprecedented. Rising surface temperature trends and changed sea ice and ocean circulation patterns in the Arctic could render the tongue susceptible to collapse. As this could contribute to accelerated ice mass flux from Greenland, it is important to continue to observe and clarify processes operative in this system.

  8. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Plant, Joshua N.; Dunne, John P.; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    Annual nitrate cycles have been measured throughout the pelagic waters of the Southern Ocean, including regions with seasonal ice cover and southern hemisphere subtropical zones. Vertically resolved nitrate measurements were made using in situ ultraviolet spectrophotometer (ISUS) and submersible ultraviolet nitrate analyzer (SUNA) optical nitrate sensors deployed on profiling floats. Thirty-one floats returned 40 complete annual cycles. The mean nitrate profile from the month with the highest winter nitrate minus the mean profile from the month with the lowest nitrate yields the annual nitrate drawdown. This quantity was integrated to 200 m depth and converted to carbon using the Redfield ratio to estimate annual net community production (ANCP) throughout the Southern Ocean south of 30°S. A well-defined, zonal mean distribution is found with highest values (3-4 mol C m-2 yr-1) from 40 to 50°S. Lowest values are found in the subtropics and in the seasonal ice zone. The area weighted mean was 2.9 mol C m-2 yr-1 for all regions south of 40°S. Cumulative ANCP south of 50°S is 1.3 Pg C yr-1. This represents about 13% of global ANCP in about 14% of the global ocean area.Plain Language SummaryThis manuscript reports on 40 annual cycles of nitrate observed by chemical sensors on SOCCOM profiling floats. The annual drawdown in nitrate concentration by phytoplankton is used to assess the spatial variability of annual net community production in the Southern Ocean. This ANCP is a key component of the global carbon cycle and it exerts an important control on atmospheric carbon dioxide. We show that the results are consistent with our prior understanding of Southern Ocean ANCP, which has required decades of observations to accumulate. The profiling floats now enable annual resolution of this key process. The results also highlight spatial variability in ANCP in the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C53B..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C53B..03M"><span>Ice-Ocean Interactions to the North-West of Greenland: Glaciers, Straits, Ice Bridges, and the Rossby Radius (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muenchow, A.; Falkner, K. K.; Melling, H.; Johnson, H. L.; Huntley, H. S.; Ryan, P.; Friends Of Petermann</p> <p>2010-12-01</p> <p>Petermann Glacier at 81 N latitude is a major outlet glacier adjacent to Nares Strait. It terminates in a long (70 km), narrow (16 km) and thin (50 m) floating tongue and has a grounding line more than 500 m below sea level. A calving event in 2010 reduced the floating area by 25% and produced a single 240 km2 ice island currently moving south in Nares Strait where it will likely interact with island to potentially create a temporary polynya in Nares Strait. The 2010 calving from Petermann Glacier contributes <10% to its mass balance as more than 80% is lost due to basal melting by the ocean. Hence the largely unexplored physics at the ice-ocean interface determine how a changing climate impacts this outlet glacier. Conducting exploratory surveys inside Petermann Fjord in 2003, 2007, and 2009, we find a 1100 m deep fjord connected to Nares Strait via a sill at 350-450 m depth. The fjord receives about 3 times the amount of heat required for the basal melt rates. Furthermore, limited data and analytical modeling suggests a 3-dimensional circulation over the upper 300-m of the water column with a coastally trapped buoyant outflow. We integrate these findings with more complete oceanic time series data from an array moored in Nares Strait from 2003 through 2009 near 80.5 N. In the past Nares Strait and Petermann Fjord were covered by land fast sea ice during the 9-10 month long winter season. Archeological and remotely sensed records indicate that an ice bridge formed regularly at the southern end of Nares Strait creating the North-Water polynya near 79 N latitude. Since 2006 this ice bridge has largely failed to form, leading, perhaps, to the occasional formation of a secondary ice bridge 300 km to the north where Nares Strait connects to the Arctic Ocean. However, this ice bridge appears to form for shorter periods only. Consequently Arctic sea ice can now exit the Arctic in winter via pathways to the west of Greenland all year. We speculate that this changed ocean and sea ice regime in Nares Strait and the Arctic Ocean may contribute to the recently observed calving events in Petermann Fjord.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC33A1268F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC33A1268F"><span>ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.</p> <p>2015-12-01</p> <p>Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping bodies of water cooler using these floating materials could help avoid scenarios like the overheated lakes and streams that led to millions of fish killed this summer in Washington State. Third, Ice911's materials can later be removed if no longer needed, and could be repurposed to another area in need.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3580D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3580D"><span>Samarium-Neodymium model age and Geochemical (Sr-Nd) signature of a bedrock inclusion from lake Vostok accretion ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delmonte, B.; Petit, J. R.; Michard, A.; Basile-Doelsch, I.; Lipenkov, V.</p> <p>2003-04-01</p> <p>We investigated properties of the basal ice from Vostok ice core as well as the sediment inclusions within the accreted ice. The Vostok ice core preserves climatic information for the last 420 kyrs down to 3310m depth, but below this depth the horizontal layers of the climatic record are disrupted by the glacier dynamics. From 3450 m to 3538 m depth thin bedrock particles, as glacial flour, are entrapped. Glacial flour is released in the northern area lake, where glacier mostly melts and contributes to sediment accumulation. In the southern area, close to Vostok station, the lake water freezes and the upstream glacial flour does not contribute to sedimentation. The accreted ice contains visible sediment inclusions down to 3608 m (accretion ice 1), while below this depth and likely down to the water interface (˜3750 m), the ice is clear (accretion ice 2). The fine inclusions (1-2mm in diameter) from Accretion Ice 1 mostly consist of fine clays and quartz aggregates and we suggest they are entrained into ice as the glacier floats over shallow depth bay then it grounds against a relief rise. Afterward the glacier freely floats over the deep lake before reaching Vostok, and accreted ice 2 is clean. Sm-Nd dating of one of two inclusions at 3570 m depth gives 1.88 (+/-0.13)Ga (DM model age), corresponding to 1.47 Ga (TCHUR), suggesting a Precambrian origin. Also the isotopic signature of such inclusion (87Sr/86Sr= 0.8232 and eNd= -16) and that of a second one (87Sr/86Sr= 0.7999 and eNd= -15) are coherent with the nature of an old continental shield. Sediments that may initially accumulate in the shallow bay prior the Antarctic glaciation, should have been eroded and exported out of the lake by the glacier movement, this assuming processes for ice accretion and for sediment entrapping operate since a long time. As the glacial flour from upstream does not contribute to sedimentation, sediments need to be renewed at the surface of the bedrock rising question about the way of clay and quartz production. Among hypothesis, a tectonic and hydrothermal circulation appears a possible scenario. Local tectonic affecting deep faults may produce rock crushing and the tinny produced material might be conveyed through faults by hydrothermal circulation up to their vents at the surface where there are swept by glacier and included in accreted ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatGe...7..497B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatGe...7..497B"><span>Deformation, warming and softening of Greenland’s ice by refreezing meltwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.</p> <p>2014-07-01</p> <p>Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChOE...32..169G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChOE...32..169G"><span>Experimental Investigation of the Resistance Performance and Heave and Pitch Motions of Ice-Going Container Ship Under Pack Ice Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Chun-yu; Xie, Chang; Zhang, Jin-zhao; Wang, Shuai; Zhao, Da-gang</p> <p>2018-04-01</p> <p>In order to analyze the ice-going ship's performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2543S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2543S"><span>Ice shelf fracture parameterization in an ice sheet model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun</p> <p>2017-11-01</p> <p>Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51B0969B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51B0969B"><span>Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.</p> <p>2017-12-01</p> <p>Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatPh..14..569S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatPh..14..569S"><span>Doping-induced disappearance of ice II from water's phase diagram</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shephard, Jacob J.; Slater, Ben; Harvey, Peter; Hart, Martin; Bull, Craig L.; Bramwell, Steven T.; Salzmann, Christoph G.</p> <p>2018-06-01</p> <p>Water and the many phases of ice display a plethora of complex physical properties and phase relationships1-4 that are of paramount importance in a range of settings including processes in Earth's hydrosphere, the geology of icy moons, industry and even the evolution of life. Well-known examples include the unusual behaviour of supercooled water2, the emergent ferroelectric ordering in ice films4 and the fact that the `ordinary' ice Ih floats on water. We report the intriguing observation that ice II, one of the high-pressure phases of ice, disappears in a selective fashion from water's phase diagram following the addition of small amounts of ammonium fluoride. This finding exposes the strict topologically constrained nature of the ice II hydrogen-bond network, which is not found for the competing phases. In analogy to the behaviour of frustrated magnets5, the presence of the exceptional ice II is argued to have a wider impact on water's phase diagram, potentially explaining its general tendency to display anomalous behaviour. Furthermore, the impurity-induced disappearance of ice II raises the prospect that specific dopants may not only be able to suppress certain phases but also induce the formation of new phases of ice in future studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12442178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12442178"><span>Evaluation of functional outcome of the floating knee injury using multivariate analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yokoyama, Kazuhiko; Tsukamoto, Tatsuro; Aoki, Shinichi; Wakita, Ryuji; Uchino, Masataka; Noumi, Takashi; Fukushima, Nobuaki; Itoman, Moritoshi</p> <p>2002-11-01</p> <p>The objective of this study is to evaluate significant contributing factors affecting the functional prognosis of floating knee injuries using multivariate analysis. A total of 68 floating knee injuries (67 patients) were treated at Kitasato University Hospital from 1986 to 1999. Both the femoral fractures and the tibial fractures were managed surgically by various methods. The functional results of these injuries were evaluated using the grading system of Karlström and Olerud. Follow-up periods ranged from 2 to 19 years (mean 50.2 months) after the original injury. We defined satisfactory (S) outcomes as those cases with excellent or good results and unsatisfactory (US) outcomes as those cases with acceptable or poor results. Logistic regression analysis was used as a multivariate analysis, and the dependent variables were defined as a satisfactory outcome or as an unsatisfactory outcome. The explanatory variables were predicting factors influencing the functional outcome such as age at trauma, gender, severity of soft-tissue injury in the femur and the tibia, AO fracture grade in the femur and the tibia, Fraser type (type I or type II), Injury Severity Score (ISS), and fixation time after injury (less than 1 week or more than 1 week) in the femur and the tibia. The final functional results were as follows: 25 cases had excellent results, 15 cases good results, 16 cases acceptable results, and 12 cases poor results. The predictive logistic regression equation was as follows: Log 1-p/p = 3.12-1.52 x Fraser type - 1.65 x severity of soft-tissue injury in the tibia - 1.31 x fixation time after injury in the tibia - 0.821 x AO fracture grade in the tibia + 1.025 x fixation time after injury in the femur - 0.687 x AO fracture grade in the femur ( p=0.01). Among the variables, Fraser type and the severity of soft-tissue injury in the tibia were significantly related to the final result. The multivariate analysis showed that both the involvement of the knee joint and the severity grade of soft-tissue injury in the tibia represented significant risk factors of poor outcome in floating knee injuries in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/p1386a/pdf/pp1386a-1-web.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/p1386a/pdf/pp1386a-1-web.pdf"><span>State of the Earth’s cryosphere at the beginning of the 21st century : glaciers, global snow cover, floating ice, and permafrost and periglacial environments: Chapter A in Satellite image atlas of glaciers of the world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.</p> <p>2012-01-01</p> <p>This chapter is the tenth in a series of 11 book-length chapters, collectively referred to as “this volume,” in the series U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World. In the other 10 chapters, each of which concerns a specific glacierized region of Earth, the authors used remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, in order to analyze that glacierized region and to monitor changes in its glaciers. Landsat images, acquired primarily during the period 1972 through 1981, were used by an international team of glaciologists and other scientists to study the various glacierized regions and (or) to discuss related glaciological topics. In each glacierized region, the present distribution of glaciers within its geographic area is compared, wherever possible, with historical information about their past areal extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of an expanding international scientific effort to measure global environmental change on the Earth’s surface. However, this chapter differs from the other 10 in its discussion of observed changes in all four elements of the Earth’s cryosphere (glaciers, snow cover, floating ice, and permafrost) in the context of documented changes in all components of the Earth System. Human impact on the planet at the beginning of the 21st century is pervasive. The focus of Chapter A is on changes in the cryosphere and the importance of long-term monitoring by a variety of sensors carried on Earth-orbiting satellites or by a ground-based network of observatories in the case of permafrost. The chapter consists of five parts. The first part provides an introduction to the Earth System, including the interrelationships of the geosphere (cryosphere, hydrosphere, lithosphere, and atmosphere), the biosphere, climate processes, biogeochemical cycles, and the critically important hydrologic cycle, in which glacier ice is the second largest reservoir of water after the oceans. The second part assesses the state of glaciers in all of the glacierized regions of the planet, primarily as drawn in the other 10 chapters. It includes sections on ice cores and the climate record they contain, volumetric changes in glaciers, harnessing spaceborne sensors to measure changes in glaciers, and related topics. The third part summarizes trends in global snow cover. The fourth part summarizes long-term changes in area and thickness of floating ice, including polar sea ice and freshwater (lake and river) ice. The fifth part assesses the loss of permafrost and changes in periglacial environments at high latitudes and high altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914888H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914888H"><span>Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heorton, Harry; Feltham, Daniel; Tsamados, Michel</p> <p>2017-04-01</p> <p>The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P34A..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P34A..05S"><span>Breaking Ice: Fracture Processes in Floating Ice on Earth and Elsewhere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scambos, T. A.</p> <p>2016-12-01</p> <p>Rapid, intense fracturing events in the ice shelves of the Antarctic Peninsula reveal a set of processes that were not fully appreciated prior to the series of ice shelf break-ups observed in the late 1990s and early 2000s. A series of studies have uncovered a fascinating array of relationships between climate, ocean, and ice: intense widespread hydrofracture; repetitive hydrofracture induced by ice plate bending; the ability for sub-surface flooded firn to support hydrofracture; potential triggering by long-period wave action; accelerated fracturing by trapped tsunamic waves; iceberg disintegration, and a remarkable ice rebound process from lake drainage that resembles runaway nuclear fission. The events and subsequent studies have shown that rapid regional warming in ice shelf areas leads to catastrophic changes in a previously stable ice mass. More typical fracturing of thick ice plates is a natural consequence of ice flow in a complex geographic setting, i.e., it is induced by shear and divergence of spreading plate flow around obstacles. While these are not a result of climate or ocean change, weather and ocean processes may impact the exact timing of final separation of an iceberg from a shelf. Taking these terrestrial perspectives to other ice-covered ocean worlds, cautiously, provides an observational framework for interpreting features on Europa and Enceladus.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8...53R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8...53R"><span>The far reach of ice-shelf thinning in Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reese, R.; Gudmundsson, G. H.; Levermann, A.; Winkelmann, R.</p> <p>2018-01-01</p> <p>Floating ice shelves, which fringe most of Antarctica's coastline, regulate ice flow into the Southern Ocean1-3. Their thinning4-7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this `tele-buttressing' enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner-Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10-12, stressing Antarctica's vulnerability to changes in its surrounding ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910017263','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910017263"><span>Late Wisconsin and early holocene glacial history, inner Ross Embayment, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Denton, George H.; Bockheim, James G.; Wilson, Scott C.; Stuiver, Minze</p> <p>1991-01-01</p> <p>Lateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore, Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and younger (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000 to 13,000 yr B.P. Outlet glacier profiles from these drifts constrain late Wisconsin ice sheet surface elevations. Within these constraint, two extreme late Wisconsin reconstructions are given of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment, one reconstruction shows floating shelf ice, where as the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600 to 6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-002278&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAntarctic%2Bicebergs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-002278&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAntarctic%2Bicebergs"><span>The Weddell Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Several large, irregularly shaped icebergs are floating in the Weddell Sea, east of the Antarctic Peninsula, in this true-color MODIS image from February 17, 2002. The location of several of the bergs has changed little over the last three months. Compared to an image acquired on November 13, 2001, the berg at the upper right of the image has spun around, but is still hanging around in the same general location. Similar slow-movers can be seen just to the east of the Larsen Ice Shelf, which hugs the eastern coast of the Peninsula. The northernmost of those two bergs is designated A38b; the southernmost one is A38a. These bergs were once part of an iceberg greater than 2,700 square miles that broke off the Ronne Ice Shelf (to the south) back in 1998. While the waters of the Weddell Sea in the area ought to be deep enough to float those bergs, it is possible that they have run aground on a topographic high, or ridge, in the sea floor. However, little is known about the underwater topography of that region, and it is also possible that the bergs are simply so massive that they resist being moved by surface wind or ocean currents. While four years might seem like a long time for an iceberg to hang around, these are certainly no record holders. A berg that broke off the Ross Ice Shelf (on the other side of Antarctica) drifted north and went aground south of Australia. That berg calved in 1987, and hasn't really moved in ten years. While the big bergs have not moved much in the span of time between these images, there is a big difference in the amount of sea ice present in the two images. In general, the rounder chunks of ice are more likely to be seasonal sea ice that forms from the freezing of sea water, while the larger, jagged-edged pieces of ice are more likely to be bergs that broke off an ice shelf at the margin of the continent. It's the height of summer in Antarctica in the February image, and much of the sea ice has melted or drifted away, leaving a relatively large expanse of clear ocean. Credit:</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8208G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8208G"><span>Characterization of icebergs and floating sea ice in the Yung Sund fjord in Greenland from satellite radar and optical images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guillaso, Stephane; Gay, Michel; Gervaise, Cedric</p> <p>2017-04-01</p> <p>At the Zackenberg site, sea ice starts to move between June and September resulting in icebergs flowing freely on the sea. Splitting into smaller parts, they reduce in size. Icebergs represent a risk for maritime transport and needs to be studied. In order to determine iceberg density per surface unit, size distribution, and movement of icebergs, we need to observe, detect, range and track them. The use of SAR images is particularly well adapted in regions where cloud cover is very present. We focused our study on the Yung Sund fjord in Greenland, where lots of icebergs and sea ice are generated during the summer. In the beginning of July, sea ice breaks up first, followed by icebergs created by the different glaciers based in the ocean. During our investigation, we noticed that the iceberg and sea ice were drifting very fast and thus, we needed to adapt our methodology. To achieve our goal, we collected all remote sensing data available in the region, principally Sentinel 1/2 and LandSAT 8 during one ice free season (from July 1st 2016 to September 30th, 2016). We developed an original approach in order to detect, characterize and track icebergs and sea ice independently from data. The iceberg detection was made using a watershed technique. The advantage of this technique is that it can be applied to both optical and radar images. For the latter, calibrated intensity is transformed into an image using a scaling function, in order to make ice brighter. Land data is masked using a topographic map. When data is segmented, a statistical test derived from the CFAR approach is performed to isolate an iceberg and floating sea ice from the ocean. Finally, a method, such SIFT or BRISK is used to identify and track the different segmented object. These approaches give a representation of the object and make the tracking easier and independent of the scale and rotation, which can occur because icebergs are dependent on ocean currents and wind. Finally, to fill in the gap between acquisition, mainly due to cloud cover or no image available, we use an ocean current and wind models to estimate the position of some icebergs. The used models are constrained using observation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92..117F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92..117F"><span>Context for the Recent Massive Petermann Glacier Calving Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falkner, Kelly K.; Melling, Humfrey; Münchow, Andreas M.; Box, Jason E.; Wohlleben, Trudy; Johnson, Helen L.; Gudmandsen, Preben; Samelson, Roger; Copland, Luke; Steffen, Konrad; Rignot, Eric; Higgins, Anthony K.</p> <p>2011-04-01</p> <p>On 4 August 2010, about one fifth of the floating ice tongue of Petermann Glacier (also known as “Petermann Gletscher”) in northwestern Greenland calved (Figure 1). The resulting “ice island” had an area approximately 4 times that of Manhattan Island (about 253±17 square kilometers). The ice island garnered much attention from the media, politicians, and the public, who raised concerns about downstream implications for shipping, offshore oil and gas operations, and possible connections to Arctic and global warming. Does this event signal a change in the glacier's dynamics? Or can it be characterized as part of the glacier's natural variability? Understanding the known historical context of this event allows scientists and the public to judge its significance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA103733','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA103733"><span>On the Buckling Force of Floating Ice Plates,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-06-01</p> <p>the derivations in Kappus phenomena is beyond the scope of the present report. (1939) or Kerr (1972), using Lagrange coordinates and Therefore, in the...eq 36 and w,(x, 0) in eq 24, we obtain LITERATURE CITED Pee(0) = L- YB2 (42) Kappus , R. (1939) Zur Elastizitatstheorie endlicher Verschie- 28 bungen</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.G12A..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.G12A..06T"><span>Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.</p> <p>2011-12-01</p> <p>The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of Petermann Glacier include parallel flow lines, allowing new constraints on the bathymetry under its floating ice to be more reliably modelled. This work is a preliminary review of the fjord axes surveyed by Operation IceBridge and presents models of representative fjords. The surveys include major features, such as the fjord in front of Kangerdlugssuaq Glacier and under the the floating ice in front of Petermann, 79 N and Zachariae Glaciers and results identify the limits and applications of IceBridge aerogravity in the Greenland fjords.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060019296','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060019296"><span>The Beauty and Complexity of the Brunt Ice Shelf from MOA and ICESat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Humbert, Angelika; Shuman, Christopher A.</p> <p>2005-01-01</p> <p>Beginning in February 2003, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) has determined surface elevations from approx. 86degN to 86degS latitude. To date, altimetry data have been acquired in a series of observation periods in repeated track patterns using all three Geoscience Laser Altimeter System (GLAS) lasers. This paper will focus on ice shelf elevation data that were obtained in 2003 across the Brunt Ice Shelf and the Stancomb-Wills Ice Tongue. Integrating the altimetry with the recently available MODIS Mosaic of Antarctica (MOA), quantifies the relative accuracy and precision of the resulting ice shelf elevations. Furthermore, the elevation data was processed onto an elevation grid, by regional interpolation across the area s complex glacial features only. Ice thickness estimation from the altimetry of the floating ice is discussed. ICESat operates at 40Hz and its elevation data is obtained every 172m along track. These elevations have a relative accuracy of about 14cm based on the standard deviation of low-slope crossover differences and a precision of close to 2cm for the Laser 2a, Release 21, GLA12 data used here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4278F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4278F"><span>Grounding line dynamics inferred from a 3D full-Stokes model solving the contact problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Favier, Lionel; Gagliardini, Olivier; Durand, Gael; Zwinger, Thomas</p> <p>2010-05-01</p> <p>The mass balance of marine ice-sheets, such as the West Antarctic Ice Sheet, is mostly controlled by their grounding line dynamics. Most numerical models simulating marine ice-sheets involve simplifications and do not include all the stress gradients. First results obtained with a 3D full-Stokes model for the grounded ice-sheet / floating ice-shelf transition, using the finite-element code Elmer/Ice, are presented. The initial geometry, which takes into account a dome and a calving front, has been laterally extruded from a previously investigated 2D flowline geometry. The grounding line migration is computed by solving the contact problem between the ice and the rigid downward sloping bedrock, where a non linear friction law is applied in the two horizontal directions. The evolutions of the sea-air and sea-ice interfaces are determined by the solution of a local transport equation. The consistency between the 3D model and the analogous results of the flowline model is shown by comparing the results in the basic extruded case, with no normal flux through lateral boundaries. Thereafter, spatially non uniform perturbations are introduced, to simulate the grounding line dynamics under fully three-dimensional perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060010996&hterms=chaos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dchaos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060010996&hterms=chaos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dchaos"><span>Topographic variations in chaos on Europa: Implications for diapiric formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schenk, Paul M.; Pappalardo, Robert T.</p> <p>2004-01-01</p> <p>Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Cam et al., 1998; Greenberg et al., 19991, or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 20001. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GeoRL..3116703S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GeoRL..3116703S"><span>Topographic variations in chaos on Europa: Implications for diapiric formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schenk, Paul M.; Pappalardo, Robert T.</p> <p>2004-08-01</p> <p>Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Carr et al., 1998; Greenberg et al., 1999], or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 2000]. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23A1203B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23A1203B"><span>Reconstruction of Jakobshavn Isbrae's calving dynamics from 1985 to 2017 and sensitivity to future ocean forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bondzio, J. H.; Morlighem, M.; Seroussi, H. L.</p> <p>2017-12-01</p> <p>Oceanic forcing is likely to have triggered the breakup of Jakobshavn Isbræ's floating ice tongue in the late 1990s, which led to ongoing dynamic changes such as widespread flow acceleration and mass loss. Our understanding of the link between ice dynamics, oceanic forcing, and calving is limited, yet crucial for prognostic simulations of Jakobshavn Isbræ. Here, we first reconstruct Jakobshavn's calving dynamics from 1985 to 2017, by relying on the model from Bondzio et al. 2017, but with a freely evolving ice front. We test different calving rate parameterizations implemented in the Ice Sheet System Model (ISSM) and determine the best law by comparing the modeled retreat to observations. We then identify the controls on calving rate and ice front retreat by varying the submarine melting rate and frontal melt rates as a function of subglacial water discharge and ocean thermal forcing. This sensitivity analysis is an important step toward performing prognostic simulations of JI and provides pathways for future data acquisition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.8419K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.8419K"><span>Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keitzl, T.; Mellado, J. P.; Notz, D.</p> <p>2016-12-01</p> <p>The heat exchange between floating ice and the underlying ocean is determined by the interplay of diffusive fluxes directly at the ice-ocean interface and turbulent fluxes away from it. In this study, we examine this interplay through direct numerical simulations of free convection. Our results show that an estimation of the interface flux ratio based on direct measurements of the turbulent fluxes can be difficult because the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across the boundary layer. This approach allows us to reconcile previous estimates of the ice-ocean interface conditions. We find that the ratio of heat and salt fluxes directly at the interface is 83-100 rather than 33 as determined by previous turbulence measurements in the outer layer. This can cause errors in the estimated ice-ablation rate from field measurements of up to 40% if they are based on the three-equation formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1573J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1573J"><span>Coupled ice sheet-ocean modelling to investigate ocean driven melting of marine ice sheets in Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jong, Lenneke; Gladstone, Rupert; Galton-Fenzi, Ben</p> <p>2017-04-01</p> <p>Ocean induced melting below the ice shelves of marine ice sheets is a major source of uncertainty for predictions of ice mass loss and Antarctica's resultant contribution to future sea level rise. The floating ice shelves provide a buttressing force against the flow of ice across the grounding line into the ocean. Thinning of these ice shelves due to an increase in melting reduces this force and can lead to an increase in the discharge of grounded ice. Fully coupled modelling of ice sheet-ocean interactions is key to improving understanding the influence of the Southern ocean on the evolution of the Antarctic ice sheet, and to predicting its future behaviour under changing climate conditions. Coupling of ocean and ice sheet models is needed to provide more realistic melt rates at the base of ice shelves and hence make better predictions of the behaviour of the grounding line and the shape of the ice-shelf cavity as the ice sheet evolves. The Framework for Ice Sheet - Ocean Coupling (FISOC) has been developed to provide a flexible platform for performing coupled ice sheet - ocean modelling experiments. We present preliminary results using FISOC to couple the Regional Ocean Modelling System (ROMS) with Elmer/Ice in idealised experiments Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP). These experiments use an idealised geometry motivated by that of Pine Island glacier and the adjacent Amundsen Sea in West Antarctica, a region which has shown shown signs of thinning ice and grounding line retreat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C22A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C22A..02N"><span>Response of major Greenland outlet glaciers to oceanic and atmospheric forcing: Results from numerical modeling on Petermann, Jakobshavn and Helheim Glacier.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nick, F. M.; Vieli, A.; Pattyn, F.; Van de Wal, R.</p> <p>2011-12-01</p> <p>Oceanic forcing has been suggested as a major trigger for dynamic changes of Greenland outlet glaciers. Significant melting near their calving front or beneath the floating tongue and reduced support from sea ice or ice melange in front of their calving front can result in retreat of the terminus or the grounding line, and an increase in calving activities. Depending on the geometry and basal topography of the glacier, these oceanic forcing can affect the glacier dynamic differently. Here, we carry out a comparison study between three major outlet glaciers in Greenland and investigate the impact of a warmer ocean on glacier dynamics and ice discharge. We present results from a numerical ice-flow model applied to Petermann Glacier in the north, Jakobshavn Glacier in the west, and Helheim Glacier in the southeast of Greenland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRF..118.1342S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRF..118.1342S"><span>Basal channels on ice shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergienko, O. V.</p> <p>2013-09-01</p> <p>Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000190.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000190.html"><span>Arctic Sea Ice Is Losing Its Bulwark Against Warming Summers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Arctic sea ice, the vast sheath of frozen seawater floating on the Arctic Ocean and its neighboring seas, has been hit with a double whammy over the past decades: as its extent shrunk, the oldest and thickest ice has either thinned or melted away, leaving the sea ice cap more vulnerable to the warming ocean and atmosphere. “What we’ve seen over the years is that the older ice is disappearing,” said Walt Meier, a sea ice researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This older, thicker ice is like the bulwark of sea ice: a warm summer will melt all the young, thin ice away but it can’t completely get rid of the older ice. But this older ice is becoming weaker because there’s less of it and the remaining old ice is more broken up and thinner, so that bulwark is not as good as it used to be.” Read more: go.nasa.gov/2dPJ9zT NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C21B0673W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C21B0673W"><span>Damage Mechanics in the Community Ice Sheet Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitcomb, R.; Cathles, L. M. M., IV; Bassis, J. N.; Lipscomb, W. H.; Price, S. F.</p> <p>2016-12-01</p> <p>Half of the mass that floating ice shelves lose to the ocean comes from iceberg calving, which is a difficult process to simulate accurately. This is especially true in the large-scale ice dynamics models that couple changes in the cryosphere to climate projections. Damage mechanics provide a powerful technique with the potential to overcome this obstacle by describing how fractures in ice evolve over time. Here, we demonstrate the application of a damage model to ice shelves that predicts realistic geometries. We incorporated this solver into the Community Ice Sheet Model, a three dimensional ice sheet model developed at Los Alamos National Laboratory. The damage mechanics formulation that we use comes from a first principles-based evolution law for the depth of basal and surface crevasses and depends on the large scale strain rate, stress state, and basal melt. We show that under idealized conditions it produces ice tongue lengths that match well with observations for a selection of natural ice tongues, including Erebus, Drygalski, and Pine Island in Antarctica, as well as Petermann in Greenland. We also apply the model to more generalized ideal ice shelf geometries and show that it produces realistic calving front positions. Although our results are preliminary, the damage mechanics model that we developed provides a promising first principles method for predicting ice shelf extent and how the calving margins of ice shelves respond to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073504','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073504"><span>Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walter, Fabian; O'Neel, Shad; McNamara, Daniel; Pfeffer, W.T.; Bassis, Jeremy N.; Fricker, Helen Amanda</p> <p>2010-01-01</p> <p>The terminus of Columbia Glacier, Alaska, unexpectedly became ungrounded in 2007 during its prolonged retreat. Visual observations showed that calving changed from a steady release of low-volume bergs, to episodic flow-perpendicular rifting, propagation, and release of very large icebergs - a style reminiscent of calving from ice shelves. Here, we compare passive seismic and photographic observations through this transition to examine changes in calving. Mechanical changes accompany the visible changes in calving style post flotation: generation of seismic energy during calving is substantially reduced. We propose this is partly due to changes in source processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27078452','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27078452"><span>Rotation of melting ice disks due to melt fluid flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B</p> <p>2016-03-01</p> <p>We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..3810502T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..3810502T"><span>Accelerating ice loss from the fastest Greenland and Antarctic glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.</p> <p>2011-05-01</p> <p>Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets - Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG)- continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km a-1 by 2015, with velocities on PIG increasing to >10 km a-1 after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea-level rise would average about 1.5 mm a-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013765&hterms=pig&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dpig','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013765&hterms=pig&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dpig"><span>Accelerating Ice Loss from the Fastest Greenland and Antarctic Glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, R.; Frederick, E.; Li, J.; Krabill, W.; Manizade, S.; Paden, J.; Sonntag, J.; Swift, R.; Yungel, J.</p> <p>2011-01-01</p> <p>Ice discharge from the fastest glaciers draining the Greenland and Antarctic ice sheets . Jakobshavn Isbrae (JI) and Pine Island Glacier (PIG). continues to increase, and is now more than double that needed to balance snowfall in their catchment basins. Velocity increase probably resulted from decreased buttressing from thinning (and, for JI, breakup) of their floating ice tongues, and from reduced basal drag as grounding lines on both glaciers retreat. JI flows directly into the ocean as it becomes afloat, and here creep rates are proportional to the cube of bed depth. Rapid thinning of the PIG ice shelf increases the likelihood of its breakup, and subsequent rapid increase in discharge velocity. Results from a simple model indicate that JI velocities should almost double to >20 km/a by 2015, with velocities on PIG increasing to >10 km/a after breakup of its ice shelf. These high velocities would probably be sustained over many decades as the glaciers retreat within their long, very deep troughs. Resulting sea ]level rise would average about 1.5 mm/a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019615','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019615"><span>Quaternary history of sea ice and paleoclimate in the Amerasia Basin, Arctic Ocean, as recorded in the cyclical strata of Northwind Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, R.L.; Grantz, A.</p> <p>1997-01-01</p> <p>The 19 middle-early Pleistocene to Holocene bipartite lithostratigraphic cycles observed in high-resolution piston cores from Northwind Ridge in the Amerasia Basin of the Arctic Ocean, provide a detailed record of alternating glacial and interglacial climatic and oceanographic conditions and of correlative changes in the character and thickness of the sea-ice cover in the Amerasia Basin. Glacial conditions in each cycle are represented by gray pelagic muds that are suboxic, laminated, and essentially lacking in microfossils, macrofossils, trace fossils, and generally in glacial erratics. Interglacial conditions are represented by ochre pelagic muds that are oxic and bioturbated and contain rare to abundant microfossils and abundant glacial erratics. The synglacial laminated gray muds were deposited when the central Amerasia Basin was covered by a floating sheet of sea ice of sufficient thickness and continuity to reduce downwelling solar irradiance and oxygen to levels that precluded photosynthesis, maintenance of a biota, and strong oxidation of the pelagic sediment. Except during the early part of 3 of the 19 synglacial episodes, when it was periodically breached by erratic-bearing glacial icebergs, the floating Arctic Ocean sea-ice sheet was sufficiently thick to block the circulation of icebergs over Northwind Ridge and presumably other areas of the central Arctic Ocean. Interglacial conditions were initiated by abrupt thinning and breakup of the floating sea-ice sheet at the close of glacial time, which permitted surges of glacial erratic-laden ice-bergs to reach Northwind Ridge and the central Arctic Ocean, where they circulated freely and deposited numerous, and relatively thick, erratic clast-rich beds. Breakup of the successive synglacial sea-ice sheets initiated deposition of the interglacial ochre mud units under conditions that allowed sunlight and increased amounts of oxygen to enter the water column, resulting in photosynthesis and biologic productivity, and strong oxidization of the pelagic sediment. The lithostratigraphy of Northwind Ridge suggests that during at least late Pleistocene time, glacial conditions in the Arctic Ocean were initiated abruptly and continued unabated until terminated, also abruptly, by onset of the succeeding interglacial warming. Variations in abundance of glacial erratics within the interglacial units of the late Pleistocene indicate that during at least most interglacial episodes northern North America was glaciated, but with generally diminishing severity, until onset of the succeeding continental glaciation. Magnetostratigraphy suggests that the glacial-interglacial cycles on Northwind Ridge had an average periodicity of approximately 93.5 k.y. during the Brunhes normal and approximately 105 k.y. during the latter part of the Matuyama reverse polarity zone. These average periodicities are close to the 100 k.y. temperature cycles found in North Atlantic deep-water sediments of the Brunhes normal polarity chron, which have been ascribed to forcing by a Milankovitch eccentricity cycle. They are also close, however, to the average interval (101 k.y.) between the aperiodic glacial terminations in the 500 k.y. Pleistocene continental climate record from Devil's Hole, Nevada, which have been ascribed to nonlinear feedbacks within the Earth's atmosphere-ice sheet-ocean system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28694490','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28694490"><span>Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk; K Ehn, Jens; Boone, Wieter; Galindo, Virginie; Hu, Yu-Bin; Dmitrenko, Igor A; Kirillov, Sergei A; Kjeldsen, Kristian K; Kristoffersen, Yngve; G Barber, David; Rysgaard, Søren</p> <p>2017-07-10</p> <p>Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28436421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28436421"><span>Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xin; Shu, Jiapei; Chen, Qing</p> <p>2017-04-24</p> <p>Gas-liquid-solid phase transition behaviour of water is studied with environmental scanning electron microscopy for the first time. Abnormal phenomena are observed. At a fixed pressure of 450 Pa, with the temperature set to -7 °C, direct desublimation happens, and ice grows continuously along the substrate surface. At 550 Pa, although ice is the stable phase according to the phase diagram, metastable liquid droplets first nucleate and grow to ~100-200 μm sizes. Ice crystals nucleate within the large sized droplets, grow up and fill up the droplets. Later, the ice crystals grow continuously through desublimation. At 600 Pa, the metastable liquid grows quickly, with some ice nuclei floating in it, and the liquid-solid coexistence state exists for a long time. By lowering the vapour pressure and/or increasing the substrate temperature, ice sublimates into vapour phase, and especially, the remaining ice forms a porous structure due to preferential sublimation in the concave regions, which can be explained with surface tension effect. Interestingly, although it should be forbidden for ice to transform into liquid phase when the temperature is well below 0 °C, liquid like droplets form during the ice sublimation process, which is attributed to the surface tension effect and the quasiliquid layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C34B..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C34B..02B"><span>Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.</p> <p>2017-12-01</p> <p>The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41B1212K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41B1212K"><span>Impact of calving and ocean regime on the speed of Kangilerngata Sermia, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kane, E.; Rignot, E. J.; Mouginot, J.; Fahnestock, M. A.</p> <p>2017-12-01</p> <p>Iceberg calving from Greenland glaciers is an important process of mass ablation that is poorly understood at present, mostly due to a lack of detailed observations. Realistic projections of sea level rise however hinge on precise parameterization of iceberg calving. In this work, we utilize ground portable radar interferometry (GPRI) to collect the high temporal and spatial resolution observations of a calving front to analyze changes preceding, surrounding and following calving events. A 3-week field campaign took place at Kangilerngata Sermia, Greenland, a marine-terminating glacier that has undergone rapid retreat in 2002-2010. The GPRI was deployed at 100 m elevation, 3 km from the ice front, to scan the glacier every 3 minutes. Calving events include simple shedding of ice along the ice face and larger events that detach a large piece of ice from the glacier. Two such large events were observed, one in a section of the glacier that is nearly afloat and with large subglacial discharge; another over the grounded part of the glacier. We find that the calving in the floating part of the glacier generated no disturbance on the ice flow, whereas the other event generated an immediate speed increase of 35% that lasted 5 hours and extended 0.55 km upstream of the calving event. The section of ice removed was 120 m in length and 800 m in width. We posit that the removal of basal drag from that detached piece of grounded ice was responsible for the acceleration, whereas in the case of the floating extension, there was no change in force balance of the glacier. In conjunction with these measurements, we analyzed time series of CTD data taken in front of the glacier from 2008 to 2016, in addition to output products from the JPL/ECCO project to document the impact of ice ocean interaction, especially glacial undercutting, in triggering the retreat of the glacier in deeper waters. We also analyze how the glacier may evolve in the future based on the BedMachine topography and projections of change in ocean temperature and subglacial discharge. This work was funded by a grant from NASA Cryosphere Science and by the UC Irvine Donald Bren fund.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23B1218P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23B1218P"><span>Simple model of melange and its influence on rapid ice retreat in a large-scale Antarctic ice sheet model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pollard, D.; Deconto, R. M.</p> <p>2017-12-01</p> <p>Theory, modeling and observations point to the prospect of runaway grounding-line retreat and marine ice loss from West Antarctica and major East Antarctic basins, in response to climate warming. These rapid retreats are associated with geologic evidence of past high sea-level stands, and pose a threat of drastic sea-level rise in the future.Rapid calving of ice from deep grounding lines generates substantial downstream melange (floating ice debris). It is unknown whether this melange has a significant effect on ice dynamics during major Antarctic retreats, through clogging of seaways and back pressure at the grounding line. Observations in Greenland fjords suggest that melange can have a significant buttressing effect, but the lateral scales of Antarctic basins are an order of magnitude larger (100's km compared to 10's km), with presumably much less influence of confining margins.Here we attempt to include melange as a prognostic variable in a 3-DAntarctic ice sheet-shelf model. Continuum mechanics is used as aheuristic representation of discrete particle physics. Melange is createdby ice calving and cliff failure. Its dynamics are treated similarly to ice flow, but with little or no resistance to divergence. Melange providesback pressure where adjacent to grounded tidewater ice faces or ice-shelf edges. We examine the influence of the new melange component during rapid Antarctic retreat in warm-Pliocene and future warming scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DokPh..57..202I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DokPh..57..202I"><span>Formation of a wave on an ice-sheet above the dipole, moving in a fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Il'ichev, A. T.; Savin, A. A.; Savin, A. S.</p> <p>2012-05-01</p> <p>Theory of wave motions of a fluid with an ice-sheet was developed due to the necessity of solving of a number of problems of marine and land physics. The main attention in these investigations was focused on propagation and interaction of free waves, and also on appearance of waves under action of different loadings on the ice-sheet. From the other side, the problems dealing with waves on the fluid surface, free from the ice due to motion in the mass of the fluid of rigid bodies, has the known solutions. In this connection, it seems natural to disserminate the formulation and methods of such problems to the case of the fluid with the ice-sheet. In the present note we describe the character of formation of waves from the singularity, localized in the fluid of infinite depth beneath the ice-sheet. We use the example of the dipole, which models a cylinder in the infinite mass of the fluid. The character of the formation does not depend on the type of singularity. The ice-sheet is considered as a thin elastic plate of a constant width, floating on the water surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5197M"><span>Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshak, Alexander; Várnai, Tamás.; Kostinski, Alexander</p> <p>2017-05-01</p> <p>The Deep Space Climate Observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sunlit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We construct a yearlong time series of flash latitudes, scattering angles, and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice platelets floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo. These glint observations also support proposals for detecting starlight glints off faint companions in our search for habitable exoplanets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001454&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica"><span>Breakup of the Larsen Ice Shelf, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and Ice Data Center revealed that the northern section of the Larsen B ice shelf, a large floating ice mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered ice formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. Ice shelves are thick plates of ice, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of ice flow and sediment thickness beneath the ice shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of ice released in this short time is 720 billion tons--enough ice for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by ice shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven ice shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and Ice Data Center (NSIDC) at University of Colorado, and a team of collaborating investigators developed a theory of how the ice disintegrates. The theory is based on the presence of ponded melt water on the surface in late summer as the climate has warmed in the area. Meltwater acts to enhance fracturing of the shelf by filling smaller cracks. The weight of the meltwater forces the cracks through the thickness of the ice. The idea was suggested in model form by other researchers in the past (Weertman, 1973; Hughes, 1983); satellite images have provided substantial observational proof that it is in fact the main process responsible for the peninsula shelf disintegration. Christina Hulbe of Portland State University and Mark Fahnestock of University of Maryland collaborated with Scambos on the research. For more information see: Antarctic Ice Shelf Collapses Image courtesy Ted Scambos, National Snow and Ice Data Center, University of Colorado, Boulder, based on data from MODIS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22538614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22538614"><span>Antarctic ice-sheet loss driven by basal melting of ice shelves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L</p> <p>2012-04-25</p> <p>Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13C0848C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13C0848C"><span>Large basal crevasses as a proxy for historic subglacial flooding events on Byrd Glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Child, S. F.; Stearns, L. A.; van der Veen, C. J.; Hamilton, G. S.</p> <p>2016-12-01</p> <p>Active networks of subglacial lakes have recently been found beneath the Antarctic Ice Sheet. On Byrd Glacier, East Antarctica, a subglacial lake outburst event in 2005/07 led to a short-lived glacier acceleration. Due to the sparse record of historical observations, it is unclear how frequently these outburst events occur, and the role they play in the dynamics of Antarctic outlet glaciers. Crevasses form when the tensile stress is greater than the fracture strength of ice. High extensional strain rates often exist at the grounding line where grounded ice begins to float. We hypothesize that the formation of anomalously large basal crevasses coincides with the higher strain rates observed during flooding events. In this study, we use the location of large basal crevasses ( 330 m tall), located along the floating portion of the Byrd Glacier flowline, to create a timeline of past flooding events. We first model crevasse formation to demonstrate that basal crevasses likely form at the grounding line. To do this, we use linear elastic fracture mechanics (LEFM) to estimate crevasse heights based on strain rates during known flood (300-350 m) and non-flood (100-150 m) time periods at Byrd Glacier's grounding line. Basal crevasse locations and heights are determined directly from radar echograms (2011/12 CReSIS radar data and 1974/75 SPRI NSF TUD radar data) along the Byrd Glacier flowline. We also use the locations of large surface depressions to infer the presence of basal crevasses. When crevasses penetrate a threshold proportion of the ice column, the overlying ice is no longer supported and a surface depression forms. We identify 22 large basal crevasses through these combined methods; the oldest crevasse likely formed 600 years ago. This research provides a framework of Antarctic subglacial flooding frequency and the effects that subglacial water drainage events have on outlet glacier dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.2711H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.2711H"><span>Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herman, Agnieszka</p> <p>2017-11-01</p> <p>In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid <q>grains</q> floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C43B0741F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C43B0741F"><span>The effect of under-ice melt ponds on their surroundings in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feltham, D. L.; Smith, N.; Flocco, D.</p> <p>2016-12-01</p> <p>In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..147..148C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..147..148C"><span>An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan</p> <p>2016-09-01</p> <p>A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030010291&hterms=alien&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dalien','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030010291&hterms=alien&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dalien"><span>Oceans, Ice Shells, and Life on Europa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schenk, Paul</p> <p>2002-01-01</p> <p>The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic field consistent with a conductor inside Europa. The most likely conductor: a somewhat salty ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P34A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P34A..06B"><span>Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.</p> <p>2016-12-01</p> <p>Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP21E..08A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP21E..08A"><span>Ice dynamics of Heinrich events: Insights and implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.</p> <p>2017-12-01</p> <p>Physical understanding of ice flow provides important constraints on Heinrich (H) events, which in turn provide lessons for ice dynamics and future sea-level change. Iceberg-rafted debris (IRD), the defining feature of H events, is a complex indicator; however, in cold climates with extensive marine-ending ice, increased IRD flux records ice-shelf loss. Ice shelves fed primarily by inflow from grounded ice experience net basal melting, giving sub-ice-sedimentation rather than open-ocean IRD. Ice-shelf loss has been observed recently in response to atmospheric warming increasing surface meltwater that wedged open crevasses (Larsen B), but also by break-off following thinning from warming of waters reaching the grounding line (Jakobshavn). The H events consistently occurred during cold times resulting from reduced North Atlantic overturning circulation ("conveyor"), but as argued by Marcott et al. (PNAS 2011), this was accompanied by delayed warming at grounding-line depths of the Hudson Strait ice stream, the source of the Heinrich layers, implicating oceanic control. As shown in a rich literature, additional considerations involving thermal state of the ice-stream bed, isostasy and probably other processes influenced why some reduced-conveyor events triggered H-events while others did not. Ice shelves, including the inferred Hudson Strait ice shelf, typically exist in high-salinity, cold waters produced by brine rejection from sea-ice formation, which are the coldest abundant waters in the world ocean. Thus, almost any change in air or ocean temperature, winds or currents can remove ice shelves, because "replacement" water masses are typically warmer. And, because ice shelves almost invariably slow flow of non-floating ice into the ocean, climatic perturbations to regions with ice shelves typically lead to sea-level rise, with important implications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA079954','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA079954"><span>Underwater Sound Scattering by Marine Organisms. A Review,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1979-08-01</p> <p>play the dominant scattering role in different seasons . 2.2 Correlation of Acoustic Reverberation Measurements with the Geographic Distribution of...to scattering beneath a floating ice station on the Beaufort Sea. Plankton net hauls indicated that accumulations of the thecostomatous pteropod ...and in the combined upper layer at night. Of these, the siphonophore, Ablyopsis tetragona, pteropod Cymbulia sp.,euphausiids, Thysanopoda sp. and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12...25R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12...25R"><span>Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rees Jones, David W.; Wells, Andrew J.</p> <p>2018-01-01</p> <p>The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C11E..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C11E..01K"><span>Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.</p> <p>2017-12-01</p> <p>The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1551S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1551S"><span>A new digital elevation model of Antarctica derived from CryoSat-2 altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slater, Thomas; Shepherd, Andrew; McMillan, Malcolm; Muir, Alan; Gilbert, Lin; Hogg, Anna E.; Konrad, Hannes; Parrinello, Tommaso</p> <p>2018-05-01</p> <p>We present a new digital elevation model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 × 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2, and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells north of 88° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 × 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope, especially where elevation measurements were acquired in low-resolution mode; taking this into account, we estimate the average accuracy to be 9.5 m - a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG44B2003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG44B2003M"><span>On the pattern of WAIS retreat in eastern Ross Sea based on a regional synthesis of new geophysical and geological data acquired during NBP1502</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGlannan, A. J.; Bart, P. J.; Anderson, J. B.</p> <p>2016-02-01</p> <p>New multibeam and seismic data acquired during NBP1502 reveal that a series of backstepping grounding zone wedges (GZWs) were constructed on the middle shelf as the West Antarctic Ice Sheet (WAIS) retreated from the Whales Deep paleo-ice stream trough. The geomorphological information provided by these geophysical data were used to acquire a regional grid of jumbo-piston and kasten cores. Here, we present our regional synthesis of the new geophysical and geological data. The distributions of upcore transitions from diamict to sub-ice-shelf facies on the outer-most shelf demonstrate that as the grounded ice retreated in four discrete backsteps, the calving front remained in the vicinity of the shelf edge, approximately 50 kilometers to the north. In contrast, the upcore transition at the fourth backstep shows GZW diamict directly overlain by open-marine facies. We interpret this to indicate that a major retreat of both grounded and floating ice was associated with the termination of the middle-shelf grounding event. The minimum retreat distance was greater than 100 kilometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4444847','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4444847"><span>Characterizing the size and shape of sea ice floes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gherardi, Marco; Lagomarsino, Marco Cosentino</p> <p>2015-01-01</p> <p>Monitoring drift ice in the Arctic and Antarctic regions directly and by remote sensing is important for the study of climate, but a unified modeling framework is lacking. Hence, interpretation of the data, as well as the decision of what to measure, represent a challenge for different fields of science. To address this point, we analyzed, using statistical physics tools, satellite images of sea ice from four different locations in both the northern and southern hemispheres, and measured the size and the elongation of ice floes (floating pieces of ice). We find that (i) floe size follows a distribution that can be characterized with good approximation by a single length scale , which we discuss in the framework of stochastic fragmentation models, and (ii) the deviation of their shape from circularity is reproduced with remarkable precision by a geometric model of coalescence by freezing, based on random Voronoi tessellations, with a single free parameter expressing the shape disorder. Although the physical interpretations remain open, this advocates the parameters and as two independent indicators of the environment in the polar regions, which are easily accessible by remote sensing. PMID:26014797</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23B1224J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23B1224J"><span>NASA-ISRO synthetic aperture radar (NISAR) for temporal tracking of iceberg calving events in the Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jawak, S. D.; Luis, A. J.</p> <p>2017-12-01</p> <p>Estimating mass loss of the Antarctic ice sheet caused by iceberg calving is a challenging job. Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. It is possible to monitor surface structures on the continental ice and the ice shelves as well as calved icebergs using NASA-ISRO synthetic aperture radar (NISAR) satellite images in future. The NISAR, which is planned to be launched in 2020, can be used as an all-weather and all-season system to classify the coastline of Antarctica to map patterns of surface structures close to the calving front. Additionally, classifying patterns and density of surface structures distributed over the ice shelves and ice tongues can be a challenging research where NISAR can be of a great advantage. So this work explores use of NISAR to map surface structures visible on ice shelves which can provide advisories to field teams. The ice shelf fronts has been categorized into various classes based on surface structures relative to the calving front within a 30 km-wide seaward strip. The resulting map of the classified calving fronts around Antarctica and their description would provide a detailed representation of crevasse formation and dominant iceberg in the southern ocean which pose a threat to navigation of Antarctic bound ships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22C..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22C..03R"><span>Isostasy as a Driver of Paleo Retreat of the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, A.; Tabone, I.; Alvarez-Solas, J.; Montoya, M.</p> <p>2016-12-01</p> <p>During glacial times, the Greenland ice sheet (GrIS) extended onto the continental shelf, and thus was much more directly affected by changing ocean temperatures through basal melt of the marine ice margins than it is today. The larger glacial ice sheet also induced lithospheric depression of several hundred meters in regions that are near sea level today. As the ice sheet retreated inland under interglacial climatic forcing, the regions significantly affected by local isostatic changes in elevation were exposed to much higher basal melt rates than they would have been given the present-day topography. Here we explore this effect using a hybrid ice sheet model that represents both grounded and floating ice, as well as local isostatic effects, and is driven by both atmospheric and oceanic temperature anomalies. We find that when transient oceanic forcing is included in the model, isostasy plays an important role in allowing oceanic melting to drive GrIS retreat in some regions. During the last interglacial, for example, this effect can account for a significant additional sea-level contribution, as well as an increase in the rate of sea-level rise. Our results highlight the importance of accounting for ice-ocean-lithosphere interactions in the past, in order to be able to properly reconstruct the evolution of the ice sheet, and for estimating its sensitivity to potential changes in climate in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG44B2004D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG44B2004D"><span>New Constraints on Post-LGM WAIS Retreat from the Whales Deep Paleo-ice-stream Trough in Eastern Ross Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeCesare, M.; Bart, P. J.; Rosenheim, B. E.</p> <p>2016-02-01</p> <p>New multibeam and seismic data acquired during NBP1502 show that a back-stepping cluster containing at least four grounding zone wedges (GZWs) define a bathymetric saddle on the middle shelf of the Whales Deep paleo-ice-stream trough in eastern Ross Sea. Our synthesis of geophysical data with jumbo piston/kasten cores show that we penetrated diamict, sub-ice shelf and open marine sediments associated with four temporally distinct grounding events. A high number of well-preserved benthic and planktonic foraminifera were found in sediments we interpret to have been deposited in sub-ice shelf and open marine environments. A low number of similarly well-preserved benthic foraminifera were recovered from the underlying ice proximal diamict that was deposited on the GZW foreset. We tentatively propose that the pristine foraminifera are in situ and that these specimens provide a unique opportunity to constrain the retreat of grounded and floating ice from the eastern Ross Sea outer continental shelf. Our ongoing synthesis of new radiocarbon dates, stable isotope (δ18O and δ13C) and element/calcium ratios (e.g., Mg/Ca, B/Ca) will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53H..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53H..01G"><span>Remote Characterization of Ice Shelf Surface and Basal Processes: Examples from East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenbaum, J. S.; Blankenship, D. D.; Grima, C.; Schroeder, D. M.; Soderlund, K. M.; Young, D. A.; Kempf, S. D.; Siegert, M. J.; Roberts, J. L.; Warner, R. C.; van Ommen, T. D.</p> <p>2017-12-01</p> <p>The ability to remotely characterize surface and basal processes of ice shelves has important implications for conducting systematic, repeatable, and safe evaluations of their stability in the context of atmospheric and oceanic forcing. Additionally, techniques developed for terrestrial ice shelves can be adapted to orbital radar sounding datasets planned for forthcoming investigations of icy moons. This has been made possible through recent advances in radar signal processing that enable these data to be used to test hypotheses derived from conceptual and numerical models of ice shelf- and ice shell-ocean interactions. Here, we present several examples of radar sounding-derived characterizations of surface and basal processes underway on ice shelves in East Antarctica. These include percolation of near-surface meltwater in warm austral summers, brine infiltration along ice shelf calving fronts, basal melt rate and distribution, and basal freeze distribution. On Europa, near-surface brines and their migration may impact local geological variability, while basal processes likely control the distribution of melt and freeze. Terrestrially, we emphasize radar-sounding records of the Totten Glacier Ice Shelf which hosts each of these processes as well as the highest known density of basal melt channels of any terrestrial ice shelf. Further, with a maximum floating ice thickness of over 2.5 km, the pressure at Totten's basal interface may be similar to that at Europa's ice-ocean interface; therefore, evaluating surface and basal processes of Totten Glacier and other ice shelves could serve as analogs for understanding melting processes of Europa's ice shell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171513','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171513"><span>Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; Mcgrath, Daniel; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A.H.</p> <p>2015-01-01</p> <p>The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr−1) is caused by both ice loss (0.28 ± 0.18 m yr−1) and firn-air loss (0.037 ± 0.026 m yr−1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000074257&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAntarctic%2Bicebergs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000074257&hterms=Antarctic+icebergs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DAntarctic%2Bicebergs"><span>Glacier and Ice Shelves Studies Using Satellite SAR Interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rignot, Eric</p> <p>1999-01-01</p> <p>Satellite radar interferometry is a powerful technique to measure the surface velocity and topography of glacier ice. On ice shelves, a quadruple difference technique separates tidal motion from the steady creep flow deformation of ice. The results provide a wealth of information about glacier grounding lines , mass fluxes, stability, elastic properties of ice, and tidal regime. The grounding line, which is where the glacier detaches from its bed and becomes afloat, is detected with a precision of a few tens of meters. Combining this information with satellite radar altimetry makes it possible to measure glacier discharge into the ocean and state of mass balance with greater precision than ever before, and in turn provide a significant revision of past estimates of mass balance of the Greenland and Antarctic Ice Sheets. Analysis of creep rates on floating ice permits an estimation of basal melting at the ice shelf underside. The results reveal that the action of ocean water in sub-ice-shelf cavities has been largely underestimated by oceanographic models and is the dominant mode of mass release to the ocean from an ice shelf. Precise mapping of grounding line positions also permits the detection of grounding line migration, which is a fine indicator of glacier change, independent of our knowledge of snow accumulation and ice melting. This technique has been successfully used to detect the rapid retreat of Pine Island Glacier, the largest ice stream in West Antarctica. Finally, tidal motion of ice shelves measured interferometrically provides a modern, synoptic view of the physical processes which govern the formation of tabular icebergs in the Antarctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JSV...293..888S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JSV...293..888S"><span>In-service tests of the effectiveness of vibration control measures on the BART rail transit system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saurenman, Hugh; Phillips, James</p> <p>2006-06-01</p> <p>This paper presents results of a number of vibration measurements of the different track forms used on the current San Francisco Bay Area Rapid Transit (BART) system including floating slab, resiliently supported half-ties and high-resilience direct fixation fasteners in subway and one section of floating slab used on at-grade track. The goal was to obtain data that would improve the predictions of future vibration levels and perhaps lead to more cost effective vibration mitigation strategies for the proposed BART extension to San Jose. The tests show that the floating slabs are performing much as designed, the resiliently supported half-ties are less effective than expected, and the high resilience track fasteners are probably performing as expected although the results are clouded because of severe rail corrugation in the area where the new fasteners were installed. One unanticipated result is the apparent interaction of the floating slab resonance, the wheel rotation frequency, the bogie dynamics, and vibration propagation characteristics of the ground.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19519191','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19519191"><span>Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 3(2) full factorial design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swain, Kalpana; Pattnaik, Satyanarayan; Mallick, Subrata; Chowdary, Korla Appana</p> <p>2009-01-01</p> <p>In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h. Theophylline release from the polymeric matrix system followed non-Fickian anomalous transport. Multiple regression analysis revealed that both viscosity and content of HPMC had statistically significant influence on all dependent variables but the effect of these variables found to be nonlinear above certain threshold values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27251278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27251278"><span>Vigorous convection as the explanation for Pluto's polygonal terrain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M</p> <p>2016-06-02</p> <p>Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29899456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29899456"><span>Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kingslake, J; Scherer, R P; Albrecht, T; Coenen, J; Powell, R D; Reese, R; Stansell, N D; Tulaczyk, S; Wearing, M G; Whitehouse, P L</p> <p>2018-06-01</p> <p>To predict the future contributions of the Antarctic ice sheets to sea-level rise, numerical models use reconstructions of past ice-sheet retreat after the Last Glacial Maximum to tune model parameters 1 . Reconstructions of the West Antarctic Ice Sheet have assumed that it retreated progressively throughout the Holocene epoch (the past 11,500 years or so) 2-4 . Here we show, however, that over this period the grounding line of the West Antarctic Ice Sheet (which marks the point at which it is no longer in contact with the ground and becomes a floating ice shelf) retreated several hundred kilometres inland of today's grounding line, before isostatic rebound caused it to re-advance to its present position. Our evidence includes, first, radiocarbon dating of sediment cores recovered from beneath the ice streams of the Ross Sea sector, indicating widespread Holocene marine exposure; and second, ice-penetrating radar observations of englacial structure in the Weddell Sea sector, indicating ice-shelf grounding. We explore the implications of these findings with an ice-sheet model. Modelled re-advance of the grounding line in the Holocene requires ice-shelf grounding caused by isostatic rebound. Our findings overturn the assumption of progressive retreat of the grounding line during the Holocene in West Antarctica, and corroborate previous suggestions of ice-sheet re-advance 5 . Rebound-driven stabilizing processes were apparently able to halt and reverse climate-initiated ice loss. Whether these processes can reverse present-day ice loss 6 on millennial timescales will depend on bedrock topography and mantle viscosity-parameters that are difficult to measure and to incorporate into ice-sheet models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/29212','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/29212"><span>Experimental study of various techniques to protect ice-rich cut slopes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-08-01</p> <p>Cut slopes are usually required to achieve roadway design grades in the ice-rich permafrost areas in Alaska. However, excavation and exposure of a cut slope destroy the existing thermal balance and result in degradation of ice-rich permafrost. Enviro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC13A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC13A..01S"><span>The Seasonal Cycle of Carbon in the Southern Pacific Ocean Observed from Biogeochemical Profiling Floats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarmiento, J. L.; Gray, A. R.; Johnson, K. S.; Carter, B.; Riser, S.; Talley, L. D.; Williams, N. L.</p> <p>2016-02-01</p> <p>The Southern Ocean is thought to play an important role in the ocean-atmosphere exchange of carbon dioxide and the uptake of anthropogenic carbon dioxide. However, the total number of observations of the carbonate system in this region is small and heavily biased towards the summer. Here we present 1.5 years of biogeochemical measurements, including pH, oxygen, and nitrate, collected by 11 autonomous profiling floats deployed in the Pacific sector of the Southern Ocean in April 2014. These floats sampled a variety of oceanographic regimes ranging from the seasonally ice-covered zone to the subtropical gyre. Using an algorithm trained with bottle measurements, alkalinity is estimated from salinity, temperature, and oxygen and then used together with the measured pH to calculate total carbon dioxide and pCO2 in the upper 1500 dbar. The seasonal cycle in the biogeochemical quantities is examined, and the factors governing pCO2 in the surface waters are analyzed. The mechanisms driving the seasonal cycle of carbon are further investigated by computing budgets of heat, carbon, and nitrogen in the mixed layer. Comparing the different regimes sampled by the floats demonstrates the complex and variable nature of the carbon cycle in the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122..167M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122..167M"><span>Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.</p> <p>2017-01-01</p> <p>To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.1637W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.1637W"><span>Increased future ice discharge from Antarctica owing to higher snowfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winkelmann, Ricarda; Levermann, Anders; Martin, Maria A.; Frieler, Katja</p> <p>2013-04-01</p> <p>Anthropogenic climate change is likely to cause continuing global sea-level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500, show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010097733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010097733"><span>Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)</p> <p>2001-01-01</p> <p>Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C54A..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C54A..07G"><span>Crevasse Migration in Southern Greenland as inferred from ICESat-1 Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grigsby, S.; Abdalati, W.; Colgan, W. T.</p> <p>2017-12-01</p> <p>In an increasingly warm world, more and more of the Greenland ice sheet is susceptible to melt during the summer, raising the possibility of greater contributions to sea level rise from ice melt. However, meltwater deep within the interior of the ice sheet must still find a way to the ocean, otherwise it will simply refreeze within the firn or on top of the ice without impacting sea level rise. One way that water can make it off the ice sheet and into the ocean is via crevasses that allow water to access the bed beneath the ice sheet, where the water will float the ice above it and eventually drain to the coast. It is therefore essential to understand how the Greenland crevasse system is evolving in time, both for understanding meltwater inputs to the englacial hydrological system, and to understand how these inputs are impacting glacial stability. We utilize three years (2004—2006) of ICESat-1 waveform data processed by machine learning to establish a 100m resolution baseline grid of crevassed probability over the ice sheet, then compare against present day crevasses mapped from optical imagery at sites in Southwest and Southeast Greenland. Inland migration of crevasses strongly suggests that increasing meltwater inputs provide positive reinforcement to additional upslope crevassing and access to progressively greater drainage catchments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23235878','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23235878"><span>Increased future ice discharge from Antarctica owing to higher snowfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Winkelmann, R; Levermann, A; Martin, M A; Frieler, K</p> <p>2012-12-13</p> <p>Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AHEEM..64...87S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AHEEM..64...87S"><span>Modeling of Waves Propagating in Water with a Crushed Ice Layer on the Free Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szmidt, Kazimierz</p> <p>2017-12-01</p> <p>A transformation of gravitational waves in fluid of constant depth with a crushed ice layer floating on the free fluid surface is considered. The propagating waves undergo a slight damping along their path of propagation. The main goal of the study is to construct an approximate descriptive model of this phenomenon.With regard to small displacements of the free surface, a viscous type model of damping is considered, which corresponds to a continuous distribution of dash-pots at the free surface of the fluid. A constant parameter of the dampers is assumed in advance as known parameter of damping. This parameter may be obtained by means of experiments in a laboratory flume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6091444','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6091444"><span>Arctic ice islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.</p> <p>1988-01-01</p> <p>The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C11A0757G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C11A0757G"><span>Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.</p> <p>2016-12-01</p> <p>The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C34A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C34A..01A"><span>Inspiration & Insight - a tribute to Niels Reeh</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahlstrom, A. P.; Vieli, A.</p> <p>2009-12-01</p> <p>Niels Reeh was highly regarded for his contributions to glaciology, specifically through his rigorous combination of numerical modelling and field observations. In 1966 he began his work on the application of beam mechanics to floating glaciers and ice shelves and throughout his life, Niels retained a strong interest in modelling glacier dynamics. In the early 1980s Niels developed a 3D-model for ice sheets and in the late 1980s an advanced flow-line model. Niels Reeh also took part in the early ice-core drilling efforts in Greenland and later pioneered the concept of retrieving similar records from the surface of the ice-sheet margin. Mass balance of glaciers and ice sheets was another theme in Niels Reeh’s research, with a number of important contributions and insights still used when teaching the subject to students. Niels developed elegant models for ablation and snow densification, notable for their applicability in large-scale ice-sheet models and studied the impact of climate change on ice sheets and glaciers. Niels also took his interest in ice-dynamics and mass balance into remote sensing and worked successfully on methods to utilize radar and laser data from airborne surveys and satellites in glaciology. In this, he pioneered the combination of field experiments, satellite observations and numerical modelling to solve problems on the Greenland Ice Sheet. In this presentation we will attempt to provide an overview of Niels Reeh’s many-facetted career in acknowledgement of his contributions to the field of glaciology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024786','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024786"><span>Diffusion model validation and interpretation of stable isotopes in river and lake ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.</p> <p>2002-01-01</p> <p>The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRC..11211013D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRC..11211013D"><span>Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dinniman, Michael S.; Klinck, John M.; Smith, Walker O.</p> <p>2007-11-01</p> <p>Satellite imagery shows that there was substantial variability in the sea ice extent in the Ross Sea during 2001-2003. Much of this variability is thought to be due to several large icebergs that moved through the area during that period. The effects of these changes in sea ice on circulation and water mass distributions are investigated with a numerical general circulation model. It would be difficult to simulate the highly variable sea ice from 2001 to 2003 with a dynamic sea ice model since much of the variability was due to the floating icebergs. Here, sea ice concentration is specified from satellite observations. To examine the effects of changes in sea ice due to iceberg C-19, simulations were performed using either climatological ice concentrations or the observed ice for that period. The heat balance around the Ross Sea Polynya (RSP) shows that the dominant term in the surface heat budget is the net exchange with the atmosphere, but advection of oceanic warm water is also important. The area average annual basal melt rate beneath the Ross Ice Shelf is reduced by 12% in the observed sea ice simulation. The observed sea ice simulation also creates more High-Salinity Shelf Water. Another simulation was performed with observed sea ice and a fixed iceberg representing B-15A. There is reduced advection of warm surface water during summer from the RSP into McMurdo Sound due to B-15A, but a much stronger reduction is due to the late opening of the RSP in early 2003 because of C-19.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002041.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002041.html"><span>Ice Island calves off Petermann Glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-08-09</p> <p>NASA image acquired August 5, 2010 On August 5, 2010, an enormous chunk of ice, roughly 97 square miles (251 square kilometers) in size, broke off the Petermann Glacier, along the northwestern coast of Greenland. The Canadian Ice Service detected the remote event within hours in near real-time data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. The Peterman Glacier lost about one-quarter of its 70-kilometer (40-mile) long floating ice shelf, said researchers who analyzed the satellite data at the University of Delaware. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured these natural-color images of Petermann Glacier 18:05 UTC on August 5, 2010 (top), and 17:15 UTC on July 28, 2010 (bottom). The Terra image of the Petermann Glacier on August 5 was acquired almost 10 hours after the Aqua observation that first recorded the event. By the time Terra took this image, skies were less cloudy than they had been earlier in the day, and the oblong iceberg had broken free of the glacier and moved a short distance down the fjord. Icebergs calving off the Petermann Glacier are not unusual. Petermann Glacier’s floating ice tongue is the Northern Hemisphere’s largest, and it has occasionally calved large icebergs. The recently calved iceberg is the largest to form in the Arctic since 1962, said the University of Delaware. To read more and or to download the high res go here: www.nasa.gov/topics/earth/features/petermann-calve.html or Click here to see more images from NASA Goddard’s Earth Observatory NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using data obtained from the Goddard Level 1 and Atmospheric Archive and Distribution System (LAADS). Caption by Holli Riebeek and Michon Scott. Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/22800','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/22800"><span>Evaluation of deicer applications on open graded pavements : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2006-04-01</p> <p>The Oregon Department of Transportation (ODOT) winter maintenance practices include plowing, sanding, and applying winter anti-icing/deicing liquids. These activities are performed on dense-graded as well as open-graded pavements. During the winters ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=food+AND+colorings&pg=2&id=EJ572533','ERIC'); return false;" href="https://eric.ed.gov/?q=food+AND+colorings&pg=2&id=EJ572533"><span>Making an Ice Core.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kopaska-Merkel, David C.</p> <p>1995-01-01</p> <p>Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912173D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912173D"><span>Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi</p> <p>2017-04-01</p> <p>Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of seismic profiles collected over the floating ice shelves and the grounded ice sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918765S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918765S"><span>Under-ice melt ponds in the Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Naomi; Flocco, Daniela; Feltham, Daniel</p> <p>2017-04-01</p> <p>In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002002.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002002.html"><span>Ice Island Calves off Petermann Glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired August 11, 2010. After breaking off the Petermann Glacier on August 5, 2010, a massive ice island floated slowly down the fjord toward the Nares Strait. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this false-color image of the ice island on August 11, 2010. In this image, ice is light blue, water is nearly black, and clouds are nearly white. Although a bank of thin clouds hovers over the fjord, the southernmost margin of the ice island is still visible. Toward the north, the leading edge of the ice island retains the same shape it had days earlier, at the time of the initial calving. NASA Earth Observatory image created by Jesse Allen, using data provided courtesy of NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Michon Scott. Instrument: Terra - ASTER To see more images from of the glacier go to: earthobservatory.nasa.gov/NaturalHazards/event.php?id=45116 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23850279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23850279"><span>Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fillinger, Laura; Janussen, Dorte; Lundälv, Tomas; Richter, Claudio</p> <p>2013-07-22</p> <p>Over 30% of the Antarctic continental shelf is permanently covered by floating ice shelves, providing aphotic conditions for a depauperate fauna sustained by laterally advected food. In much of the remaining Antarctic shallows (<300 m depth), seasonal sea-ice melting allows a patchy primary production supporting rich megabenthic communities dominated by glass sponges (Porifera, Hexactinellida). The catastrophic collapse of ice shelves due to rapid regional warming along the Antarctic Peninsula in recent decades has exposed over 23,000 km(2) of seafloor to local primary production. The response of the benthos to this unprecedented flux of food is, however, still unknown. In 2007, 12 years after disintegration of the Larsen A ice shelf, a first biological survey interpreted the presence of hexactinellids as remnants of a former under-ice fauna with deep-sea characteristics. Four years later, we revisited the original transect, finding 2- and 3-fold increases in glass sponge biomass and abundance, respectively, after only two favorable growth periods. Our findings, along with other long-term studies, suggest that Antarctic hexactinellids, locked in arrested growth for decades, may undergo boom-and-bust cycles, allowing them to quickly colonize new habitats. The cues triggering growth and reproduction in Antarctic glass sponges remain enigmatic. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS31A1996C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS31A1996C"><span>Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.</p> <p>2016-12-01</p> <p>New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910017262','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910017262"><span>Terrestrial geophysics in the SeaRISE project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bentley, C. R.</p> <p>1991-01-01</p> <p>Some areas of research in the SeaRISE project are briefly discussed. They are as follows: (1) Radar Sounding serves multiple purposes. The most general and obvious is mapping ice thickness and the surface and bedrock topography of the ice sheet. (2) The purpose of Seismic Shooting, in addition to water depth measurements on floating ice, is to provide information about the internal physical characteristics of the ice sheet, the rock beneath it, and the interface between the two. (3) Passive Seismic monitoring of microearthquakes can be used to study brittle fracture within the ice or the rock beneath it. Common parameters available from these studies are fault location, orientation, and displacement, as well as the size of the rupture area, stress drop, and energy released. (4) There is a large contrast in Electrical Resistivity between ice or permafrost on the one hand and liquid water or wet rock on the other hand. Thus, electrical resistivity profiles have the ability of revealing the depth to the melting point, whether it is found at the base of the ice or in the subglacial rock. (5) Gravity anomalies, especially combined with seismic measurements, are an effective tool for determining deeper crustal structure. Anomalies averaged over extensive areas are useful also for their potential to reveal isostatic imbalance, which is a measure of average glacial change over the last several hundred years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Natur.534...79T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Natur.534...79T"><span>Vigorous convection as the explanation for Pluto’s polygonal terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trowbridge, A. J.; Melosh, H. J.; Steckloff, J. K.; Freed, A. M.</p> <p>2016-06-01</p> <p>Pluto’s surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum’s polygons and the dimensions of the ‘floating mountains’ (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S"><span>Ice Floe Breaking in Contemporary Third Generation Operational Wave Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.</p> <p>2016-02-01</p> <p>The dynamical zone observed at the edge of the consolidated ice area where are found the wave-fractured floes (i.e. marginal ice zone or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this zone. Few attempts have been made to embed wave-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface waves by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of wave-ice dynamics in contemporary third generation operational wave models. A simple waves-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, wave scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected wave amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial wave and ice conditions. The effects of the wave-ice coupling over the incident wave spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice zone with maximum ice floe diameter that progressively increases with distance from the ice edge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ice+AND+cream&pg=3&id=EJ116576','ERIC'); return false;" href="https://eric.ed.gov/?q=ice+AND+cream&pg=3&id=EJ116576"><span>Let's Make Metric Ice Cream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zimmerman, Marianna</p> <p>1975-01-01</p> <p>Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815778H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815778H"><span>3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.</p> <p>2016-04-01</p> <p>Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks suggesting the transition between grounded ice and a glacimarine setting. The back-stepping scarps are suggestive of slide scars that were created as a result of mass movement induced by instabilities along the NW slope. The buried section contains morphologies indicating an asymmetric feature with a steeper side facing south. It comprises a thickness of c. 100 m and a length of c. 28 km. The detailed surface observations and seismic geometries suggest that the northern area represents a relict grounding-zone wedge (GZW). The wedge is covered by stratified deposits suggesting that it was at least occasionally submarine after its formation and may have served as pinning-point for floating ice shelves during periods of the Late TMF Stage. Important implications of the study are the intermittent development of floating ice shelves during the course of the Late Stage of TMF development and the presence of shelf-edge terminating grounded Late Weichselian ice outside of the troughs. Hofmann, J.C., Knutz, P.C., Nielsen, T., Kuijpers, A., submitted. Seismic architecture and evolution of the Disko Bay trough-mouth fan, central West Greenland margin. Quaternary Science Reviews.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARF40007Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARF40007Z"><span>From Glaciers to Icebergs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wendy</p> <p></p> <p>I will describe works from a collaboration between physics and glaciology that grew out of interactions at the Computations in Science seminar Leo Kadanoff organized at the University of Chicago. The first project considers the interaction between ocean waves and Antarctic ice shelves, large floating portions of ice formed by glacial outflows. Back-of-envelop calculation and seismic sensor data suggest that crevasses may be distributed within an ice shelf to shield it from wave energy. We also examine numerical scenarios in which changes in environmental forcing causes the ice shelf to fail catastrophically. The second project investigates the aftermath of iceberg calving off glacier terminus in Greenland using data recorded via time-lapse camera and terrestrial radar. Our observations indicate that the mélange of icebergs within the fjord experiences widespread jamming during a calving event and therefore is always close to being in a jammed state during periods of terminus quiescence. Joint work with Jason Amundson, Ivo R. Peters, Julian Freed Brown, Nicholas Guttenberg, Justin C Burton, L. Mac Cathles, Ryan Cassotto, Mark Fahnestock, Kristopher Darnell, Martin Truffer, Dorian S. Abbot and Douglas MacAyeal. Kadanoff Session DCMP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26PSL.399...52S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26PSL.399...52S"><span>Active water exchange and life near the grounding line of an Antarctic outlet glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru</p> <p>2014-08-01</p> <p>The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11D0538D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11D0538D"><span>Greenland ice sheet outlet glacier front changes: comparison of year 2008 with past years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Decker, D. E.; Box, J.; Benson, R.</p> <p>2008-12-01</p> <p>NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) imagery are used to calculate inter-annual, end of summer, glacier front area changes at 10 major Greenland ice sheet outlets over the 2000-2008 period. To put the recent 8 end of summer net annual changes into a longer perspective, glacier front position information from the past century are also incorporated. The largest MODIS-era area changes are losses/retreats; found at the relatively large Petermann Gletscher, Zachariae Isstrom, and Jakobshavn Isbrae. The 2007-2008 net ice area losses were 63.4 sq. km, 21.5 sq. km, and 10.9 sq. km, respectively. Of the 10 largest Greenland glaciers surveyed, the total net cumulative area change from end of summer 2000 to 2008 is -536.6 sq km, that is, an area loss equivalent with 6.1 times the area of Manhattan Is. (87.5 sq km) in New York, USA. Ice front advances are evident in 2008; also at relatively large and productive (in terms of ice discharge) glaciers of Helheim (5.7 sq km), Store Gletscher (4.9 sq km), and Kangerdlugssuaq (3.4 sq km). The largest retreat in the 2000-2008 period was 54.2 sq km at Jakobshavn Isbrae between 2002 and 2003; associated with a floating tongue disintegration following a retreat that began in 2001 and has been associated with thinning until floatation is reached; followed by irreversible collapse. The Zachariae Isstrom pro-glacial floating ice shelf loss in 2008 appears to be part of an average ~20 sq km per year disintegration trend; with the exception of the year 2006 (6.2 sq km) advance. If the Zachariae Isstrom retreat continues, we are concerned the largest ice sheet ice stream that empties into Zachariae Isstrom will accelerate, the ice stream front freed of damming back stress, increasing the ice sheet mass budget deficit in ways that are poorly understood and could be surprisingly large. By approximating the width of the surveyed glacier frontal zones, we determine and present effective glacier normalized length (L') changes that also will be presented at the meeting. The narrow Ingia Isbrae advanced in L' the most in 2006-2007 by 9.2 km. Jakobshavn decreased in L' the most in 2002-2003 by 8.0 km. Petermann decreased in length the most in 2000-2001, that is, L' = -5.3 km and again by L' = -3.9 km in 2007-2008. Helheim Gl. retreated in 2004-2005 by L' = -4.6 km and advanced 2005-2006 by L' = 4.4 km. The 10 glacier average L' change from end of summer 2000 end of summer 2008 was 0.6 km. Results from a growing list of glaciers will be presented. We attempt to interpret the observed glacier changes using glaciological theory and regional climate observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008E%26PSL.265..246N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008E%26PSL.265..246N"><span>Conditions for a steady ice sheet ice shelf junction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowicki, S. M. J.; Wingham, D. J.</p> <p>2008-01-01</p> <p>This paper investigates the conditions under which a marine ice sheet may adopt a steady profile. The ice is treated as a linear viscous fluid caused to flow from a rigid base to and over water, treated as a denser but inviscid fluid. The solutions in the region around the point of flotation, or 'transition' zone, are calculated numerically. In-flow and out-flow conditions appropriate to ice sheet and ice shelf flow are applied at the ends of the transition zone and the rigid base is specified; the flow and steady free surfaces are determined as part of the solutions. The basal stress upstream, and the basal deflection downstream, of the flotation point are examined to determine which of these steady solutions satisfy 'contact' conditions that would prevent (i) the steady downstream basal deflection contacting the downstream base, and (ii) the upstream ice commencing to float in the event it was melted at the base. In the case that the upstream bed is allowed to slide, we find only one mass flux that satisfies the contact conditions. When no sliding is allowed at the bed, however, we find a range of mass fluxes satisfy the contact conditions. The effect of 'backpressure' on the solutions is investigated, and is found to have no affect on the qualitative behaviour of the junctions. To the extent that the numerical, linearly viscous treatment may be applied to the case of ice flowing out over the ocean, we conclude that when sliding is present, Weertman's 'instability' hypothesis holds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029435','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029435"><span>Local response of a glacier to annual filling and drainage of an ice-marginal lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.</p> <p>2006-01-01</p> <p>Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020082883','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020082883"><span>Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scambos, Ted</p> <p>2002-01-01</p> <p>Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41C1229S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41C1229S"><span>Simulating Ice Dynamics in the Amundsen Sea Sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwans, E.; Parizek, B. R.; Morlighem, M.; Alley, R. B.; Pollard, D.; Walker, R. T.; Lin, P.; St-Laurent, P.; LaBirt, T.; Seroussi, H. L.</p> <p>2017-12-01</p> <p>Thwaites and Pine Island Glaciers (TG; PIG) exhibit patterns of dynamic retreat forced from their floating margins, and could act as gateways for destabilization of deep marine basins in the West Antarctic Ice Sheet (WAIS). Poorly constrained basal conditions can cause model predictions to diverge. Thus, there is a need for efficient simulations that account for shearing within the ice column, and include adequate basal sliding and ice-shelf melting parameterizations. To this end, UCI/NASA JPL's Ice Sheet System Model (ISSM) with coupled SSA/higher-order physics is used in the Amundsen Sea Embayment (ASE) to examine threshold behavior of TG and PIG, highlighting areas particularly vulnerable to retreat from oceanic warming and ice-shelf removal. These moving-front experiments will aid in targeting critical areas for additional data collection in ASE as well as for weighting accuracy in further melt parameterization development. Furthermore, a sub-shelf melt parameterization, resulting from Regional Ocean Modeling System (ROMS; St-Laurent et al., 2015) and coupled ISSM-Massachusetts Institute of Technology general circulation model (MITgcm; Seroussi et al., 2017) output, is incorporated and initially tested in ISSM. Data-guided experiments include variable basal conditions and ice hardness, and are also forced with constant modern climate in ISSM, providing valuable insight into i) effects of different basal friction parameterizations on ice dynamics, illustrating the importance of constraining the variable bed character beneath TG and PIG; ii) the impact of including vertical shear in ice flow models of outlet glaciers, confirming its role in capturing complex feedbacks proximal to the grounding zone; and iii) ASE's sensitivity to sub-shelf melt and ice-front retreat, possible thresholds, and how these affect ice-flow evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0703P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0703P"><span>Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paolo, F. S.; Fricker, H. A.; Padman, L.</p> <p>2015-12-01</p> <p>Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcMod..82...28H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcMod..82...28H"><span>Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.</p> <p>2014-10-01</p> <p>Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0698B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0698B"><span>Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, R. E.</p> <p>2015-12-01</p> <p>Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between the two IceBridge lines located 47 km apart. The ROSETTA-ICE program will begin a systematic mapping of the Ross Ice Shelf and sub-ice topography using the IcePod system beginning in 2015. Together the new gravity-derived bathymetry and the mapping of the ice shelf structure will provide key insights into the stability of the ice shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740014367','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740014367"><span>Skylab 3 and 4 science demonstrations: Preliminary report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bannister, T. C.</p> <p>1974-01-01</p> <p>Twelve science demonstrations were accomplished on the Skylab 3 and 4 missions. These were defined in response to crew requests for time-gap fillers and were designed to be accomplished using onboard equipment. The following 12 are described and the preliminary results are given: liquid floating zone; diffusion in liquids; ice melting; immiscible liquids; liquid films; gyroscope; Rochelle salt growth; deposition of silver crystals; fluid mechanics series; neutron environment; orbital mechanics; and charged particle mobility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoJI.166..991W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoJI.166..991W"><span>Geodetic observations of ice flow velocities over the southern part of subglacial Lake Vostok, Antarctica, and their glaciological implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wendt, Jens; Dietrich, Reinhard; Fritsche, Mathias; Wendt, Anja; Yuskevich, Alexander; Kokhanov, Andrey; Senatorov, Anton; Lukin, Valery; Shibuya, Kazuo; Doi, Koichiro</p> <p>2006-09-01</p> <p>In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00ma-1 +/- 0.01ma-1. Along the flowline of Vostok Station an extension rate of about 10-5a-1 (equivalent to 1cm km-1 a-1) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4mma-1 along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53A0703C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53A0703C"><span>Seismic Events and Tidal Forces near the Grounding Line of Beardmore Glacier, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooley, J.; Winberry, J. P.; Conway, H.; Koutnik, M. R.</p> <p>2016-12-01</p> <p>Ice shelves are floating extensions of large ice sheets. Weakening or break-up of these ice shelves allow ice upstream to move off the continent at increased rates, contributing to sea level rise. One prominent mechanism by which shelves are weakened is through crevasse formation. Icequakes are small magnitude seismic events that occur within a volume of ice which reveal areas where crevasses on an ice shelf might form, providing insight into ice shelf stability. The processes that drive these crevassing events are not well-understood, but past research on icequakes near the grounding line has found a correlation with tide. During high tide, there is a large mass of water pushing against the ice shelf, compressing it. As the tide falls, so does this pressure, allowing the ice shelf to stretch. This creates an enormous amount of stress, released as crevasses, near the grounding line. Preliminary examination of data taken over a three week period in the austral summer of 2013/14 at Beardmore Glacier also reveals a tidal correlation, but with rising tide playing a bigger role than previously thought. I aim to find a pattern in the physical locations of events which separates those that occur during rising tide from those that occur during falling tide, to take steps in understanding what constraint rising tide could have on the creation of crevasses. Research methods involve programming scripts to automate counting of events, locating the epicenters with beamforming, calculating the local magnitudes of the events, and utilizing processed GPS data to correlate the events to ocean tide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42A..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42A..02G"><span>Channelized melting drives thinning under Dotson ice shelf, Western Antarctic Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourmelen, N.; Goldberg, D.; Snow, K.; Henley, S. F.; Bingham, R. G.; Kimura, S.; Hogg, A.; Shepherd, A.; Mouginot, J.; Lenaerts, J.; Ligtenberg, S.; Van De Berg, W. J.</p> <p>2017-12-01</p> <p>The majority of meteoric ice that forms in West Antarctica leaves the ice sheet through floating ice shelves, many of which have been thinning substantially over the last 25 years. A significant proportion of ice-shelf thinning has been driven by submarine melting facilitated by increased access of relatively warm (>0.6oC) modified Circumpolar Deep Water to sub-shelf cavities. Ice shelves play a significant role in stabilising the ice sheet from runaway retreat and regulating its contribution to sea level change. Ice-shelf melting has also been implicated in sustaining high primary productivity in Antarctica's coastal seas. However, these processes vary regionally and are not fully understood. Under some ice shelves, concentrated melting leads to the formation of inverted channels. These channels guide buoyant melt-laden outflow, which can lead to localised melting of the sea ice cover. The channels may also potentially lead to heightened crevassing, which in turn affects ice-shelf stability. Meanwhile, numerical studies suggest that buttressing loss is sensitive to the location of ice removal within an ice-shelf. Thus it is important that we observe spatial patterns, as well as magnitudes, of ice-shelf thinning, in order to improve understanding of the ocean drivers of thinning and of their impacts on ice-shelf stability. Here we show from high-resolution altimetry measurements acquired between 2010 to 2016 that Dotson Ice Shelf, West Antarctica, thins in response to basal melting focussed along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. The coupled effect of geostrophic circulation and ice-shelf topography leads to the observed concentration of basal melting. Analysis of previous datasets suggests that this process has been ongoing for at least the last 25 years. If focused thinning continues at present rates, the channel would melt through within 40-50 years, almost two centuries before it is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=heat+AND+concrete&id=EJ091916','ERIC'); return false;" href="https://eric.ed.gov/?q=heat+AND+concrete&id=EJ091916"><span>Elements of Warfare in the Sixth- and Seventh-Grade Physics Course</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Enokhovich, A. S.</p> <p>1973-01-01</p> <p>Mechanical movement, pressure, floating bodies, heat phenomena, electrical phenomena, when applied to military problems "for the patriotic edification and military instruction of the children" excite interest and place theory on concrete foundations. Examples of applied physical concepts follow in this article. (Author/JH)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PolSc..10..132A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PolSc..10..132A"><span>Observations of vertical tidal motions of a floating iceberg in front of Shirase Glacier, East Antarctica, using a geodetic-mode GPS buoy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aoyama, Yuichi; Kim, Tae-Hee; Doi, Koichiro; Hayakawa, Hideaki; Higashi, Toshihiro; Ohsono, Shingo; Shibuya, Kazuo</p> <p>2016-06-01</p> <p>A dual-frequency GPS receiver was deployed on a floating iceberg downstream of the calving front of Shirase Glacier, East Antarctica, on 28 December 2011 for utilizing as floating buoy. The three-dimensional position of the buoy was obtained by GPS every 30 s with a 4-5-cm precision for ca. 25 days. The height uncertainty of the 1-h averaged vertical position was ∼0.5 cm, even considering the uncertainties of un-modeled ocean loading effects. The daily evolution of north-south (NS), east-west (EW), and up-down (UD) motions shows periodic UD variations sometimes attaining an amplitude of 1 m. Observed amplitudes of tidal harmonics of major constituents were 88%-93% (O1) and 85%-88% (M2) of values observed in the global ocean tide models FES2004 and TPXO-8 Atlas. The basal melting rate of the iceberg is estimated to be ∼0.6 m/day, based on a firn densification model and using a quasi-linear sinking rate of the iceberg surface. The 30-s sampling frequency geodetic-mode GPS buoy helps to reveal ice-ocean dynamics around the calving front of Antarctic glaciers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51B0989T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51B0989T"><span>Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.</p> <p>2017-12-01</p> <p>Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C11D..08O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C11D..08O"><span>Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.</p> <p>2015-12-01</p> <p>The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000638.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000638.html"><span>Warming Seas and Melting Ice Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrEaS...5..107M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrEaS...5..107M"><span>Estimating spring terminus submarine melt rates at a Greenlandic tidewater glacier using satellite imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moyer, Alexis N.; Nienow, Peter W.; Gourmelen, Noel; Sole, Andrew J.; Slater, Donald A.</p> <p>2017-12-01</p> <p>Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting, estimates of melt rates are uncertain. Here we estimate submarine melt rate by examining freeboard changes in the seasonal ice tongue of Kangiata Nunaata Sermia at the head of Kangersuneq Fjord, southwest Greenland. We calculate melt rates for March and May 2013 by differencing along-fjord surface elevation, derived from high-resolution TanDEM-X digital elevation models, in combination with ice velocities derived from offset tracking applied to TerraSAR-X imagery. Estimated steady state melt rates reach up to 1.4 ± 0.5 m d^-1 near the glacier grounding line, with mean values of up to 0.8 ± 0.3 and 0.7 ± 0.3 m d^1 for the eastern and western parts of the ice tongue, respectively. Melt rates decrease with distance from the ice front and vary across the fjord. This methodology reveals spatio-temporal variations in submarine melt rates at tidewater glaciers which develop floating termini, and can be used to improve our understanding of ice-ocean interactions and submarine melting in glacial fjords.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33C0833S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33C0833S"><span>Flexural-gravity Wave Attenuation in a Thick Ice Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephen, R. A.; Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Wiens, D.; Aster, R. C.; Nyblade, A.</p> <p>2016-12-01</p> <p>A thirty-four station broadband seismic array was deployed on the Ross Ice Shelf, Antarctica from November 2014 to November 2017. Analyses indicate that phase speeds of infra-gravity wave and tsunami excitation in the 0.003 to 0.02 Hz band are 70 m/s, corresponding to the low frequency limit of flexural-gravity waves. Median spectral amplitudes in this band decay exponentially with distance from the shelf edge in a manner consistent with intrinsic attenuation. Seismic Q is typically 7-9, with an RMS amplitude decay of 0.04-0.05dB/km and an e-folding distance of 175-220 km. Amplitudes do not appear to drop crossing crevasse fields. Vertical and horizontal acceleration levels at stations on the floating ice shelf are 50 dB higher than those on grounded ice. Horizontal accelerations are about 15 dB higher than vertical accelerations. Median spectral levels at 0.003 Hz are within 6 dB for stations from 2 to 430 km from the shelf edge. In contrast, the levels drop by 90 dB at 0.02 Hz. Ocean gravity wave excitation has been proposed as a mechanism that can weaken ice shelves and potentially trigger disintegration events. These measurements indicate that the propensity for shelf weakening and disintegration decays exponentially with distance from the ice front for gravity waves in the 0.003 to 0.02Hz band.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51B0985C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51B0985C"><span>Grounding line processes on the Totten Glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, S.; Watson, C. S.; Galton-Fenzi, B.; Peters, L. E.; Coleman, R.</p> <p>2017-12-01</p> <p>The Totten Glacier has been an area of recent interest due to its large drainage basin, much of which is grounded below sea level and has a history of large scale grounding line movement. Reports that warm water reaches the sub-ice shelf cavity have led to speculation that it could be vulnerable to future grounding line retreat. Over the Antarctic summer 2016/17 an array of 6 GPS and autonomous phase-sensitive radar (ApRES) units were deployed in the grounding zone of the Totten Glacier. These instruments measure changes in ice velocity and thickness which can be used to investigate both ice dynamics across the grounding line, and the interaction between ice and ocean in the subglacial cavity. Basal melt rates calculated from the ApRES units on floating ice range from 1 to 17 m/a. These values are significantly lower than previous estimates of basal melt rate produced by ocean modelling of the subglacial cavity. Meanwhile, GPS-derived velocity and elevation on the surface of the ice show a strong tidal signal, as does the vertical strain rate within the ice derived from internal layering from the ApRES instruments. These results demonstrate the significance of the complex grounding pattern of the Totten Glacier. The presence of re-grounding points has significant implications for the dynamics of the glacier and the ocean circulation within the subglacial cavity. We discuss what can be learned from our in situ measurements, and how they can be used to improve models of the glacier's future behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013TCD.....7.2153H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013TCD.....7.2153H"><span>Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Habermann, M.; Truffer, M.; Maxwell, D.</p> <p>2013-06-01</p> <p>Ice-sheet outlet glaciers can undergo dynamic changes such as the rapid speed-up of Jakobshavn Isbræ following the disintegration of its floating ice tongue. These changes are associated with stress changes on the boundary of the ice mass. We investigate the basal conditions throughout a well-observed period of rapid change and evaluate parameterizations currently used in ice-sheet models. A Tikhonov inverse method with a Shallow Shelf Approximation forward model is used for diagnostic inversions for the years 1985, 2000, 2005, 2006 and 2008. Our ice softness, model norm, and regularization parameter choices are justified using the data-model misfit metric and the L-curve method. The sensitivity of the inversion results to these parameter choices is explored. We find a lowering of basal yield stress in the first 7 km of the 2008 grounding line and no significant changes higher upstream. The temporal evolution in the fast flow area is in broad agreement with a Mohr-Coulomb parameterization of basal shear stress, but with a till friction angle much lower than has been measured for till samples. The lowering of basal yield stress is significant within the uncertainties of the inversion, but it cannot be ruled out that there are other significant contributors to the acceleration of the glacier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA627450','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA627450"><span>Effect of Surface Omniphobicity on Drying by Forced Convection (Briefing Charts)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-08-01</p> <p>Lesson Plan • This lesson plan is directed for 9th-12th grade students. • Reading about ice - cream . • Learning to make ice - cream through a DOE...average of different ice - creams . 15DISTRIBUTION A: Approved for public release; distribution unlimited. AFRL Public Affairs Clearance # Future...optimization. • The three factors are different weight percent of salt per ice , fat content in dairy and shaking time. • Measured output will be rating and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51A0959A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51A0959A"><span>Twenty-three years of height changes on Antarctic Peninsula ice shelves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adusumilli, S.; Siegfried, M. R.; Paolo, F. S.; Fricker, H. A.; Padman, L.</p> <p>2017-12-01</p> <p>Over the past few decades, several ice shelves in the Antarctic Peninsula (AP), the northernmost region of Antarctica, have collapsed or undergone significant retreat. While the disintegration of these ice shelves appears to be linked primarily to hydrofracture initiated by widespread surface melting, it has also been proposed that some of these ice shelves could have weakened prior to collapse due to increased basal melt rates induced by thermal ocean forcing. To determine the long-term evolution of ice shelves in this region, we compiled data from four radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2) spanning twenty-three years (1994-2017). Over Larsen C, the largest AP ice shelf, a surface lowering of around 1 m between 1992 and 2009 has been partially offset by a height increase of around 0.75 m between 2009 and 2017. We use four independent, repeat airborne laser altimetry surveys from NASA's Operation IceBridge to confirm the recent height increase, and a firn densification model (IMAU-FDM) forced by a regional atmospheric model (RACMO), to show that the recent height increase is primarily due to density changes in the firn column. In contrast, George VI Ice Shelf in the Bellingshausen Sea remains in a state of continuous thinning through excess basal melting attributed to higher fluxes of ocean heat under the ice shelf. Changes such as these, which can occur on seasonal to decadal timescales, can potentially impact the dynamics of the grounded ice sheet behind the floating ice shelves, consequently affecting sea-level rise. Therefore, it is vital to continue the long-term, uninterrupted monitoring of ice shelves through the modern satellite and airborne altimetry missions, and lengthen our existing time series to investigate the climate drivers causing changes in the ice shelves from above (accumulation and density changes) and below (basal melting).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0687M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0687M"><span>Decadal-Scale Response of the Antarctic Ice sheet to a Warming Ocean using the POPSICLES Coupled Ice Sheet-Ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.</p> <p>2015-12-01</p> <p>We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..327T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..327T"><span>Antarctic icebergs distributions 1992-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.</p> <p>2016-01-01</p> <p>Basal melting of floating ice shelves and iceberg calving constitute the two almost equal paths of freshwater flux between the Antarctic ice cap and the Southern Ocean. The largest icebergs (>100 km2) transport most of the ice volume but their basal melting is small compared to their breaking into smaller icebergs that constitute thus the major vector of freshwater. The archives of nine altimeters have been processed to create a database of small icebergs (<8 km2) within open water containing the positions, sizes, and volumes spanning the 1992-2014 period. The intercalibrated monthly ice volumes from the different altimeters have been merged in a homogeneous 23 year climatology. The iceberg size distribution, covering the 0.1-10,000 km2 range, estimated by combining small and large icebergs size measurements follows well a power law of slope -1.52 ± 0.32 close to the -3/2 laws observed and modeled for brittle fragmentation. The global volume of ice and its distribution between the ocean basins present a very strong interannual variability only partially explained by the number of large icebergs. Indeed, vast zones of the Southern Ocean free of large icebergs are largely populated by small iceberg drifting over thousands of kilometers. The correlation between the global small and large icebergs volumes shows that small icebergs are mainly generated by large ones breaking. Drifting and trapping by sea ice can transport small icebergs for long period and distances. Small icebergs act as an ice diffuse process along large icebergs trajectories while sea ice trapping acts as a buffer delaying melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C51A0640Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C51A0640Y"><span>3D full-Stokes modeling of the grounding line dynamics of Thwaites Glacier, West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, H.; Rignot, E. J.; Morlighem, M.; Seroussi, H. L.</p> <p>2016-12-01</p> <p>Thwaites Glacier (TG) is the broadest and second largest ice stream in the West Antarctica. Satellite observations have revealed rapid grounding line retreat and mass loss of this glacier in the past few decades, which has been attributed to the enhanced basal melting in the Amundsen Sea Embayment. With a retrograde bed configuration, TG is on the verge of collapse according to the marine ice sheet instability theory. Here, we use the UCI/JPL Ice Sheet System Model (ISSM) to simulate the grounding line position of TG to determine its stability, rate of retreat and sensitivity to enhanced basal melting using a three-dimensional full-Stokes numerical model. Simulations with simplified models (Higher Order (HO), and Shelfy-Stream Approximation (SSA)) are also conducted for comparison. We first validate our full Stokes model by conducting MISMIP3D experiments. Then we applied the model to TG using new bed elevation dataset combining IceBridge (OIB) gravity data, OIB ice thickness, ice flow vectors from interferometry and a mass conservation method at 450 m spacing. Basal friction coefficient and ice rheology of floating ice are inferred to match observed surface velocity. We find that the grounding line is capable of retreating at rate of 1km/yr under current forcing and that the glacier's sensitivity to melt is higher in the Stokes model than HO or SSA, which means that projections using SSA or HO might underestimate the future rate of retreat of the glacier. This work has been performed at UC Irvine and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813991B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813991B"><span>Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko</p> <p>2016-04-01</p> <p>Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last interglacial ESL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP43C2299B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP43C2299B"><span>Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, S.; Reerink, T.; Vandewal, R.; Helsen, M.</p> <p>2015-12-01</p> <p>Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. There is few observational estimates of long-term (yrs) sub marine basal melting rates (mbm) for the GIS. Therefore we investigate a range of relationships to constrain the spatial and temporal parameterisation of mbm within IMAU-ice related to changes in paleo water depth, driven by changes in relative sea level and ocean temperature. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Initial results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but the total contribution to LIG ESL is reduced by up to 0.6 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P34A..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P34A..04B"><span>Slush Fund: Modeling the Multiphase Physics of Oceanic Ices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buffo, J.; Schmidt, B. E.</p> <p>2016-12-01</p> <p>The prevalence of ice interacting with an ocean, both on Earth and throughout the solar system, and its crucial role as the mediator of exchange between the hydrosphere below and atmosphere above, have made quantifying the thermodynamic, chemical, and physical properties of the ice highly desirable. While direct observations of these quantities exist, their scarcity increases with the difficulty of obtainment; the basal surfaces of terrestrial ice shelves remain largely unexplored and the icy interiors of moons like Europa and Enceladus have never been directly observed. Our understanding of these entities thus relies on numerical simulation, and the efficacy of their incorporation into larger systems models is dependent on the accuracy of these initial simulations. One characteristic of seawater, likely shared by the oceans of icy moons, is that it is a solution. As such, when it is frozen a majority of the solute is rejected from the forming ice, concentrating in interstitial pockets and channels, producing a two-component reactive porous media known as a mushy layer. The multiphase nature of this layer affects the evolution and dynamics of the overlying ice mass. Additionally ice can form in the water column and accrete onto the basal surface of these ice masses via buoyancy driven sedimentation as frazil or platelet ice. Numerical models hoping to accurately represent ice-ocean interactions should include the multiphase behavior of these two phenomena. While models of sea ice have begun to incorporate multiphase physics into their capabilities, no models of ice shelves/shells explicitly account for the two-phase behavior of the ice-ocean interface. Here we present a 1D multiphase model of floating oceanic ice that includes parameterizations of both density driven advection within the `mushy layer' and buoyancy driven sedimentation. The model is validated against contemporary sea ice models and observational data. Environmental stresses such as supercooling and melting events will be discussed for terrestrial ice. The impact of fluid motion within the mushy layer on nutrient transport and habitability will be discussed. Results from the model's application to icy moon environments will be presented, highlighting ice shell composition, thickness, thermodynamics, and role in potential habitability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..177..314B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..177..314B"><span>High-resolution chronology for deglaciation of the Patagonian Ice Sheet at Lago Buenos Aires (46.5°S) revealed through varve chronology and Bayesian age modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bendle, Jacob M.; Palmer, Adrian P.; Thorndycraft, Varyl R.; Matthews, Ian P.</p> <p>2017-12-01</p> <p>Glaciolacustrine varves offer the potential to construct continuous, annually-resolved chronologies for ice-sheet deglaciation, and improved understanding of glacier retreat dynamics. This paper investigates laminated glaciolacustrine sediments deposited around the waning margins of the Patagonian Ice Sheet, following the local Last Glacial Maximum (LGM). Detailed macro- and microfacies analyses confirm an annual (varve) structure within these sediments. The correlation of annual layers (varves) across five sites in eastern Lago Buenos Aires yields a 994 ± 36 varve-year (vyr) chronology and thickness record. The floating chronology has been anchored to the calendar-year timescale through identification of the Ho tephra (17,378 ± 118 cal a BP) in the varve sequences. Using a Bayesian age model to integrate the new varve chronology with published moraine ages, the onset of deglaciation at 46.5°S is dated to 18,086 ± 214 cal a BP. New age estimates for deglacial events are combined with high-resolution analysis of varve thickness trends, and new lithostratigraphic data on ice-margin position(s), to reconstruct ice-margin retreat rates for the earliest ca. 1000 years of ice-sheet demise. Glacier retreat rates were moderate (5.3-10.3 m yr-1) until 17,322 ± 115 cal a BP, but subsequently accelerated (15.4-18.0 m yr-1). Sustained influxes of ice-rafted debris (IRD) after 17,145 ± 122 cal a BP suggest retreat rates were enhanced by calving after ice contracted into deeper lake waters. Ice persisted in eastern Lago Buenos Aires until at least 16,934 ± 116 cal a BP, after which the glacier started to retreat towards the Patagonian mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP24A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP24A..04C"><span>New marine geophysical and sediment record of the Northeast Greenland Ice Stream.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Callard, L.; Roberts, D. H.; O'Cofaigh, C.; Lloyd, J. M.; Smith, J. A.; Dorschel, B.</p> <p>2017-12-01</p> <p>The NE Greenland Ice Stream (NEGIS) drains 16% of the Greenland Ice Sheet (GrIS) and has a sea-level equivalent of 1.1-1.4 m. Stabilised by two floating ice shelves, 79N and Zachariae Isstrom, until recently it has shown little response to increased atmospheric and oceanic warming. However, since 2010 it has experienced an accelerated rate of grounding line retreat ( 4 km) and significant ice shelf loss that indicates that this sector of the GrIS is now responding to current oceanic and/or climatic change and has the potential to be a major contributor to future global sea-level rise. The project `NEGIS', a collaboration between Durham University and AWI, aims to reconstruct the history of the NE Greenland Ice Stream from the Last Glacial Maximum (LGM) to present using both onshore and offshore geological archives to better understand past ice stream response to a warming climate. This contribution presents results and interpretations from an offshore dataset collected on the RV Polarstern, cruises PS100 and PS109 in 2016 and 2017. Gravity and box cores, supplemented by swath bathymetric and sub-bottom profiler data, were acquired and initial core analysis including x-radiographs and MSCL data logging has been performed. Data collection focused principally in the Norske Trough and the area directly in front of the 79N ice shelf, a sub-ice shelf environment as recently as two years ago. On the outer shelf streamlined subglacial bedforms, grounding-zone wedges and moraines as well as overconsolidated subglacial tills, record an extensive ice sheet advance to the shelf edge. On the inner shelf and in front of the 79N ice shelf, deep, glacially-eroded bedrock basins are infilled with stratified sediment. The stratified muds represent deglacial and Holocene glacimarine sedimentation, and capture the recent transition from sub-ice shelf to shelf free conditions. Multiproxy palaeoenvironmental reconstructions, including foraminifera and diatom analysis, and radiocarbon dating are used to constrain the timing and mechanism of retreat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss013e06947.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss013e06947.html"><span>Earth Observations taken by the Expedition 13 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-04-12</p> <p>ISS013-E-06947 (12 April 2006) --- Viedma Glacier, Argentina is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The ice fields of Patagonia, located at the southern end of South America, are the largest masses of ice in the temperate Southern Hemisphere (approximately 55,000 square kilometers in area). The ice fields contain numerous valley glaciers that terminate in melt-water-fed lakes. These are known as "calving" glaciers, as they lose mass by collapse of large ice chunks from the terminus--or end--of the glacier. These newly separated chunks of ice are then free to float away, much like ice cubes in a punch bowl. The Patagonian glaciers are closely monitored using remotely sensed data as they respond to regional climate change. Visual comparison of time series of images is typically performed to quantify change in ice extent and position. The terminus of the Viedma Glacier, approximately two kilometers across where it enters Lake Viedma, is shown in this image. Moraines are accumulations of soil and rock debris that form along the sides and front of a glacier as it flows across the landscape (much like a bulldozer). Independent valley glaciers can merge together as they flow down-slope, and the moraines become entrained in the center of the new ice mass. These medial moraines are visible as dark parallel lines within the white central mass of the glacier (image center and left). Crevasses - oriented roughly perpendicular to the medial moraines - are also visible in the grey-brown ice along the sides of the glacier. According to scientists, the canyon-like crevasses form as a result of stress between the slower moving ice along the valley sides and the more rapidly moving ice in the center of the glacier. Calving of ice from the southwestern fork of the glacier terminus is visible at image lower left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710084G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710084G"><span>Infill and mire evolution of a typical kettle hole: young ages at great depths (Jackenmoos, Austria)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Götz, Joachim; Salcher, Bernhard</p> <p>2015-04-01</p> <p>Kettle holes are very common features in proglacial environments. Myriads of small, often circular shaped lakes are indicative of dead ice slowly melting out after the collapse of glaciers and subsequent burial of glaciofluvial sediments. Many of these lakes transformed into mires during the Postglacial and the Holocene. Still, little is known about the mechanisms leading to mire formation in such environments. We aim to analyse the shape and the postglacial history of infilling and peat accumulation of a typical dead ice kettle using 2D resistivity surveying, core-drilling, 14C dating and palynologic analyses. The kettle hole mire is located within a small kame delta deposit just south of the LGM extend of the Salzach Piedmont glacier (Austria/Germany). Today, the mire is a spot of exceptional high biodiversity and under protection. Sediment core samples extracted in the deepest (c. 10-14 m) and central part of the kettle directly overly lacustrine fine sediments and yielded young ages covering the subatlantic period only. Young ages are in agreement with palynologic results comprising e.g. pollen of secale (rye) and juglans (walnut). However, these deposits are situated beneath a massive water body (10 m), only covered by a thin floating mat. A second, more distally situated drill core indicates the thinning of this water body at the expense of peat deposits covering the Late Glacial to Middle Holocene. Multiple 2D resistivity data support drilling information and enabled us to reconstruct the shape of the basin. The transition from lacustrine sediments to the water body above is characterised by a sharp increase in resistivity. Furthermore, the resistivity pattern within the entire kettle indicates an increase towards the centre, most probably as a result of the changing nutrient content. The postglacial evolution of the mire is in agreement with the concept of "floating mat terrestrialisation", representing a horizontal growth of the floating mat from the edges toward the lake centre. This concept further includes the deposition of strongly hydrated and loose debris peat formations under the floating mat. The process leads to decreasing basal ages from the edge towards the centre and therefore well explains the age distribution in the studied kettle hole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=automobile+AND+accident&pg=2&id=EJ051463','ERIC'); return false;" href="https://eric.ed.gov/?q=automobile+AND+accident&pg=2&id=EJ051463"><span>The Use of Behavior Therapy Techniques in Crisis-Intervention: A Case Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Balson, Paul M.</p> <p>1971-01-01</p> <p>In the case of a man with an acute onset of stuttering and massive free floating anxiety following an automobile accident, a variety of behavioral techniques, including relaxation training, assertive training, graded rehearsal and modification of behavioral operants were employed, with the complete eradication of the symptoms in five sessions. The…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=How+AND+make+AND+water&pg=3&id=EJ1017718','ERIC'); return false;" href="https://eric.ed.gov/?q=How+AND+make+AND+water&pg=3&id=EJ1017718"><span>Formative Assessment Probes: Using the P-E-O Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Keeley, Page</p> <p>2013-01-01</p> <p>This article describes how observing whether objects sink or float in water using the P-E-O (Predict, Explain, and Observe) technique is an elementary precursor to developing explanations in later grades that involve an understanding of density and buoyancy. Beginning as early as preschool, elementary students engage in activities that encourage…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science+AND+technology+AND+children&pg=6&id=EJ1168277','ERIC'); return false;" href="https://eric.ed.gov/?q=Science+AND+technology+AND+children&pg=6&id=EJ1168277"><span>An Investigation of Singapore Preschool Children's Emerging Concepts of Floating and Sinking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Teo, Tang Wee; Yan, Yaw Kai; Ong, Woei Ling Monica</p> <p>2017-01-01</p> <p>Despite Singapore's excellent science achievements in international benchmark tests such as the Trends in International Mathematics and Science Study (TIMSS) and Programme for International Student Assessment (PISA), little is known about Singaporean children's (aged 4-8) emerging science conceptions as formal science schooling begins at Grade 3…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Maglev&id=EJ787973','ERIC'); return false;" href="https://eric.ed.gov/?q=Maglev&id=EJ787973"><span>Can Trains Really Float?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McCartney, Robin Ward; Deroche, Sarah; Pontiff, Danielle</p> <p>2008-01-01</p> <p>Have you ever heard of a Maglev train? Who would be crazy enough to think that exploring how a high-tech train little known in the United States works with a group of fourth-grade students would yield understandings about the properties of magnetism, force and motion, and inquiry science? Fortunately, the authors--a college methods professor and…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss008e12107.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss008e12107.html"><span>Crew Earth Observations (CEO) taken during Expedition 8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-01-06</p> <p>ISS008-E-12107 (6 January 2004) --- Five year old icebergs near South Georgia Island are featured in this image photographed by an Expedition 8 crewmember onboard the International Space Station (ISS). This photo shows two pieces of a massive iceberg that broke off from the Antarctica Ronne Ice Shelf in October 1998. The pieces of iceberg A-38 have floated relatively close to South Georgia Island. After five years and 3 months, they are approximately 1500 nautical miles from their origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19295608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19295608"><span>Modelling West Antarctic ice sheet growth and collapse through the past five million years.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pollard, David; DeConto, Robert M</p> <p>2009-03-19</p> <p>The West Antarctic ice sheet (WAIS), with ice volume equivalent to approximately 5 m of sea level, has long been considered capable of past and future catastrophic collapse. Today, the ice sheet is fringed by vulnerable floating ice shelves that buttress the fast flow of inland ice streams. Grounding lines are several hundred metres below sea level and the bed deepens upstream, raising the prospect of runaway retreat. Projections of future WAIS behaviour have been hampered by limited understanding of past variations and their underlying forcing mechanisms. Its variation since the Last Glacial Maximum is best known, with grounding lines advancing to the continental-shelf edges around approximately 15 kyr ago before retreating to near-modern locations by approximately 3 kyr ago. Prior collapses during the warmth of the early Pliocene epoch and some Pleistocene interglacials have been suggested indirectly from records of sea level and deep-sea-core isotopes, and by the discovery of open-ocean diatoms in subglacial sediments. Until now, however, little direct evidence of such behaviour has been available. Here we use a combined ice sheet/ice shelf model capable of high-resolution nesting with a new treatment of grounding-line dynamics and ice-shelf buttressing to simulate Antarctic ice sheet variations over the past five million years. Modelled WAIS variations range from full glacial extents with grounding lines near the continental shelf break, intermediate states similar to modern, and brief but dramatic retreats, leaving only small, isolated ice caps on West Antarctic islands. Transitions between glacial, intermediate and collapsed states are relatively rapid, taking one to several thousand years. Our simulation is in good agreement with a new sediment record (ANDRILL AND-1B) recovered from the western Ross Sea, indicating a long-term trend from more frequently collapsed to more glaciated states, dominant 40-kyr cyclicity in the Pliocene, and major retreats at marine isotope stage 31 ( approximately 1.07 Myr ago) and other super-interglacials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRC..116.1003J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRC..116.1003J"><span>Ocean circulation and properties in Petermann Fjord, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, H. L.; Münchow, A.; Falkner, K. K.; Melling, H.</p> <p>2011-01-01</p> <p>The floating ice shelf of Petermann glacier interacts directly with the ocean and is thought to lose at least 80% of its mass through basal melting. Based on three opportunistic ocean surveys in Petermann Fjord we describe the basic oceanography: the circulation at the fjord mouth, the hydrographic structure beneath the ice shelf, the oceanic heat delivered to the under-ice cavity, and the fate of the resulting melt water. The 1100 m deep fjord is separated from neighboring Hall Basin by a sill between 350 and 450 m deep. Fjord bottom waters are renewed by episodic spillover at the sill of Atlantic water from the Arctic. Glacial melt water appears on the northeast side of the fjord at depths between 200 m and that of the glacier's grounding line (about 500 m). The fjord circulation is fundamentally three-dimensional; satellite imagery and geostrophic calculations suggest a cyclonic gyre within the fjord mouth, with outflow on the northeast side. Tidal flows are similar in magnitude to the geostrophic flow. The oceanic heat flux into the fjord appears more than sufficient to account for the observed rate of basal melting. Cold, low-salinity water originating in the surface layer of Nares Strait in winter intrudes far under the ice. This may limit basal melting to the inland half of the shelf. The melt rate and long-term stability of Petermann ice shelf may depend on regional sea ice cover and fjord geometry, in addition to the supply of oceanic heat entering the fjord.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.6951M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.6951M"><span>The effect of basal channels on oceanic ice-shelf melting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millgate, Thomas; Holland, Paul R.; Jenkins, Adrian; Johnson, Helen L.</p> <p>2013-12-01</p> <p>The presence of ice-shelf basal channels has been noted in a number of Antarctic and Greenland ice shelves, but their impact on basal melting is not fully understood. Here we use the Massachusetts Institute of Technology general circulation model to investigate the effect of ice-shelf basal channels on oceanic melt rate for an idealized ice shelf resembling the floating tongue of Petermann Glacier in Greenland. The introduction of basal channels prevents the formation of a single geostrophically balanced boundary current; instead the flow is diverted up the right-hand (Coriolis-favored) side of each channel, with a return flow in the opposite direction on the left-hand side. As the prescribed number of basal channels is increased the mean basal melt rate decreases, in agreement with previous studies. For a small number of relatively wide channels the subice flow is found to be a largely geostrophic horizontal circulation. The reduction in melt rate is then caused by an increase in the relative contribution of weakly melting channel crests and keels. For a larger number of relatively narrow channels, the subice flow changes to a vertical overturning circulation. This change in circulation results in a weaker sensitivity of melt rates to channel size. The transition between the two regimes is governed by the Rossby radius of deformation. Our results explain why basal channels play an important role in regulating basal melting, increasing the stability of ice shelves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1608P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1608P"><span>The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît</p> <p>2017-02-01</p> <p>The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411732F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411732F"><span>Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.</p> <p>2012-04-01</p> <p>As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S52A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S52A..01B"><span>Chilean Tsunami Rocks the Ross Ice Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.</p> <p>2016-12-01</p> <p>The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28095598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28095598"><span>Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger</p> <p>2017-11-01</p> <p>It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0712C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0712C"><span>Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, C.; Rignot, E. J.; Menemenlis, D.</p> <p>2015-12-01</p> <p>Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..795L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..795L"><span>Grounding Lines Detecting Using LANDSAT8 Oli and CRYOSAT-2 Data Fusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, F.; Guo, Y.; Zhang, Y.; Zhang, S.</p> <p>2018-04-01</p> <p>The grounding zone is the region where ice transitions from grounded ice sheet to freely floating ice shelf, grounding lines are actually more of a zone, typically over several kilometers. The mass loss from Antarctica is strongly linked to changes in the ice shelves and their grounding lines, since the variation in the grounding line can result in very rapid changes in glacier and ice-shelf behavior. Based on remote sensing observations, five global Antarctic grounding line products have been released internationally, including MOA, ASAID, ICESat, MEaSUREs, and Synthesized grounding lines. However, the five products could not provide the annual grounding line products of the whole Antarctic, even some products have stopped updating, which limits the time series analysis of Antarctic material balance to a certain extent. Besides, the accurate of single remote-sensing data based grounding line products is far from satisficed. Therefore, we use algorithms to extract grounding lines with SAR and Cryosat-2 data respectively, and combine the results of two kinds of grounding lines to obtain new products, we obtain a mature grounding line extraction algorithm process, so that we can realize the extraction of grounding line of the Antarctic each year in the future. The comparison between fusion results and the MOA product results indicate that there is a maximum deviation of 188.67 meters between the MOA product and the fusion result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013TCry....7.1679H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013TCry....7.1679H"><span>Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Habermann, M.; Truffer, M.; Maxwell, D.</p> <p>2013-11-01</p> <p>Ice-sheet outlet glaciers can undergo dynamic changes such as the rapid speed-up of Jakobshavn Isbræ following the disintegration of its floating ice tongue. These changes are associated with stress changes on the boundary of the ice mass. We invert for basal conditions from surface velocity data throughout a well-observed period of rapid change and evaluate parameterizations currently used in ice-sheet models. A Tikhonov inverse method with a shallow-shelf approximation forward model is used for diagnostic inversions for the years 1985, 2000, 2005, 2006 and 2008. Our ice-softness, model norm, and regularization parameter choices are justified using the data-model misfit metric and the L curve method. The sensitivity of the inversion results to these parameter choices is explored. We find a lowering of effective basal yield stress in the first 7 km upstream from the 2008 grounding line and no significant changes higher upstream. The temporal evolution in the fast flow area is in broad agreement with a Mohr-Coulomb parameterization of basal shear stress, but with a till friction angle much lower than has been measured for till samples. The lowering of effective basal yield stress is significant within the uncertainties of the inversion, but it cannot be ruled out that there are other significant contributors to the acceleration of the glacier.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ASAJ..118R1960S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ASAJ..118R1960S"><span>In-service tests of the effectiveness of vibration control measures on the BART rail transit system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saurenman, Hugh</p> <p>2005-09-01</p> <p>Controlling vibration from new rail transit systems can be quite expensive when the alignment passes through residential areas. However, there is relatively little documented information on how effective different vibration mitigation approaches perform under in-service conditions. This paper presents results of a number of vibration measurements of the different track forms used on the current San Francisco Bay Area Rapid Transit (BART) system including floating slab, resiliently supported half ties, and high-resilience direct fixation fasteners in subways and one section of floating slab used on at-grade tracks. The goal was to obtain data that would improve the predictions of future vibration levels and perhaps lead to more cost effective vibration mitigation strategies for the proposed BART extension to San Jose. The tests show that the floating slabs are performing much as designed, the resiliently supported half ties are less effective than expected, and the high resilience track fasteners are probably performing as expected, although the results are clouded because of severe rail corrugation in the area where the new fasteners were installed. Some unanticipated results are the apparent interaction of the floating slab resonance, the wheel rotation frequency, the bogey dynamics, and vibration propagation characteristics of the ground.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513402T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513402T"><span>Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre</p> <p>2013-04-01</p> <p>Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of significant mean upward motion within the cove strongly suggests that the upwelling takes place within the highly fractured ice along the southern shear margin of the ice shelf. If so, the upwelling water is likely to contribute to both the volume of apparent "basal" melting and to the weakness of that shear margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18603216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18603216"><span>Aircraft loading and freezer enhancements: lessons for medical research in remote communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gagnon, Roy; Gagnon, Faith; Panagiotopoulos, Constadina</p> <p>2008-01-01</p> <p>Type 2 diabetes (T2D) and impaired glucose tolerance (IGT), historically extremely rare in children, is becoming prevalent among First Nations children. In Canada, many of these children live in remote villages accessible only by float plane. Because T2D has many long-term health implications, prevention and early identification are critical. We developed a process for sending a fully equipped endocrinology team to a remote community to screen the children for T2D and IGT. Float plane (sea plane) travel has several unexpected limitations for a medical research team. These include having to travel in good visibility (visual flight rules), limited payload capacity, and restriction against transporting dry ice. The benefits include avoiding the usual security restrictions. We developed and tested a custom-built insulation jacket and system of backup battery packs for the countertop -25 degrees C freezer (in lieu of dry ice) to transport frozen blood samples from the village to our hospital's laboratory. We also ensured that the five-member research team, its equipment, and the consumable supplies stayed within the maximum takeoff weight of the airplane and met center-of-gravity criteria to ensure a safe flight. Using the insulated freezer, sample integrity was maintained throughout the flight, and a safe weight-and-balance trip was achieved for the team and supplies. The team obtained complete T2D screening data on 88% of children in the remote community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21785.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21785.html"><span>Spawning of Massive Antarctic Iceberg Captured by NASA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-07-14</p> <p>Between July 10 and 12, 2017, the Larsen C Ice Shelf in West Antarctica calved one of the largest icebergs in history (named "A-68"), weighing approximately one trillion tons. The rift in the ice shelf that spawned the iceberg has been present on the shelf since at least the beginning of the Landsat era (approximately the 1970s), but remained relatively dormant until around 2012, when it was observed actively moving through a suture zone in the ice shelf (Jansen et al., 2015). Suture zones are wide bands of ice that extend from glacier grounding lines (the boundary between a floating ice shelf and ice resting on bedrock) to the sea comprised of a frozen mixture of glacial ice and sea water, traditionally considered to be stabilizing features in ice shelves. When the Antarctic entered its annual dark period in late April, scientists knew the rift only had a few more miles to go before it completely calved the large iceberg. However, due to the lack of sunlight during the Antarctic winter, visible imagery is generally not available each year between May and August. This frame is from an animation that shows the ice shelf as imaged by the NASA/NOAA satellite Suomi NPP, which features the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument. VIIRS has a day/night panchromatic band capable of collecting nighttime imagery of Earth with a spatial resolution of 2,460 feet (750 meters). An image from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite shows the last cloud-free, daytime image of the ice shelf on April 6; the MODIS thermal imagery band is shown on April 29. The images from May 9 to July 14 show available cloud-free imagery from Suomi NPP. Luckily, despite several cloudy days leading up to the break, the weather mostly cleared on July 11, allowing scientists to see the newly formed iceberg on July 12. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21785</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42A..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42A..05C"><span>Ice shelf melt rates in Greenland and Antarctica using time-tagged digital imagery from World View and TanDEM-X</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charolais, A.; Rignot, E. J.; Milillo, P.; Scheuchl, B.; Mouginot, J.</p> <p>2017-12-01</p> <p>The floating extensions of glaciers, or ice shelves, melt vigorously in contact with ocean waters. Melt is non uniform, with the highest melt taking place in the deepest part of the cavity, where thermal forcing is the greatest because of 1) the pressure dependence of the freezing point of the seawater/ice mixture and 2) subglacial water injects fresh, buoyant, cold melt water to fuel stronger ice-ocean interactions. Melt also forms along preferential channels, which are not stationary, and create lines of weakness in the shelf. Ice shelf melt rates have been successfully measured from space over the entire Antarctic continent and on the ice shelves in Greenland using an Eulerian approach that combines ice thickness, ice velocity vectors, surface mass balance data, and measurements of ice thinning rates. The Eulerian approach is limited by the precision of the thickness gradients, typically of a few km, and requires significant spatial averaging to remove advection effects. A Lagrangian approach has been shown to be robust to advection effects and provides higher resolution details. We implemented a Lagrangian methodology for time-tagged World View DEMs by the Polar Geoscience Center (PGS) at the University of Minnesota and time-tagged TanDEM-X DEMs separated by one year. We derive melt rates on a 300-m grid with a precision of a few m/yr. Melt is strongest along grounding lines and along preferred channels. Channels are non-stationary because melt is not the same on opposite sides of the channels. Examining time series of data and comparing with the time-dependent grounding line positions inferred from satellite radar interferometry, we evaluate the magnitude of melt near the grounding line and even within the grounding zone. A non-zero melt rate in the grounding zone has vast implications for ice sheet modeling. This work is funded by a grant from NASA Cryosphere Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U24B..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U24B..06K"><span>Extension of short-term variation study of Kangilerngata Sermia, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kane, E.; Rignot, E. J.; Mouginot, J.</p> <p>2017-12-01</p> <p>Iceberg calving is an important but not well-understood aspect of predicting future sea level rise, mostly due to lack of observations. In this study a Gamma Portable Radar Interferometer (GPRI) was deployed for three weeks to observe short-term variations at Kangilerngata Sermia, West Greenland, with the goal of increasing observations of calving events and short-term velocity variations. A diurnal velocity cycle was measured and attributed to melt water production increasing basal lubrication. Many iceberg calving events were observed; one of which was immediately followed by a velocity increase of 35% that lasted 5 hours. We propose that this event was grounded ice and that the removal of basal drag associated with the calving allowed for acceleration of the glacier. Other calving from the region of floating ice had no effect on glacier speed. CTD data from 2008-2016 in the glacier fjord is analyzed to investigate ice-ocean interactions and the role of warm Atlantic water in glacial retreat. This work was funded by a grant from NASA Cryosphere Science and by the UC Irvine Donald Bren fund.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4150293','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4150293"><span>Sustaining observations in the polar oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abrahamsen, E. P.</p> <p>2014-01-01</p> <p>Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity–temperature–depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. PMID:25157189</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013TCD.....7.3783S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013TCD.....7.3783S"><span>Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950-2011): radar remote sensing and numerical modeling data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surdu, C. M.; Duguay, C. R.; Brown, L. C.; Fernández Prieto, D.</p> <p>2013-07-01</p> <p>Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, to a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Analysis of available SAR data from 1991-2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18-22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991-2011 period and by 21-38 cm (α = 0.001) from 1950-2011. The longer trend analysis (1950-2011) also shows a decrease in the ice cover duration by ∼24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7-18.6 days (α = 0.001).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C23B1216D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C23B1216D"><span>Damage Mechanics Approach to Penetration of Water-filled Surface Crevasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duddu, R.; Jimenez, S. K.; Bassis, J. N.</p> <p>2017-12-01</p> <p>Iceberg calving is a natural process that occurs when crevasses penetrate the entire thickness of an ice shelf or a glacier leading to the detachment (birth) of icebergs. Calving from marine-terminating glaciers and floating ice shelves accounts for nearly 50% of the mass lost from both the Greenland and Antarctic ice sheets, which can directly or indirectly contribute to sealevel rise. A widely-accepted hypothesis is that crevasses in ice form due to brittle mode I fracture under the action of tensile stresses. Existing theoretical approaches for modeling crevasse propagation based on the above hypothesis include the Nye zero stress and fracture mechanics approaches. These theoretical approaches assume idealized geometry and boundary conditions, and ignore the effects of viscous creep deformations in ice over longer time scales; however, they still produced interesting results that matched well with sparse field observations available. An alternative is to use the continuum damage mechanics approach for modeling crevasse propagation, which is more easily incorporated into numerical ice sheet models that consider realistic geometries, boundary conditions and viscous creep effects. In this presentation, we describe the damage mechanics approach to penetration of dry and water-filled surface crevasses using the principles of poromechanics and compare our results with those from existing theoretical approaches. We investigate the upper limits on crevasse penetration depth in relation to ice thickness, water depth in the surface crevasse, seawater depth at the ice terminus and ice rheology (i.e., elastic vs. viscous). Our studies on idealized glaciers show that the damage mechanics approach is consistent with the fracture mechanics approach when the seawater depth at the ice terminus is low, but is inconsistent with the theoretical approaches when the seawater depth at the ice terminus is high (i.e., near floatation). Our studies also indicate that the upper limit on surface crevasse penetration depth is minimally sensitive to ice rheology when glacier geometry changes are ignored. However, viscous flow can cause geometry changes and induce stresses (e.g., due to bending) leading to deeper crevasse penetration in numerical ice sheet models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C53B0303S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C53B0303S"><span>Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schroeder, D. M.; Grima, C.; Blankenship, D. D.</p> <p>2014-12-01</p> <p>The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C51A0639C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C51A0639C"><span>Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.</p> <p>2016-12-01</p> <p>Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1559G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1559G"><span>Morphological evidence and direct estimates of rapid melting beneath Totten Glacier Ice Shelf, East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenbaum, Jamin; Schroeder, Dustin; Grima, Cyril; Habbal, Feras; Dow, Christine; Roberts, Jason; Gwyther, David; van Ommen, Tas; Siegert, Martin; Blankenship, Donald</p> <p>2017-04-01</p> <p>Totten Glacier drains at least 3.5 meters of eustatic sea level potential from marine-based ice in the Aurora Subglacial Basin (ASB) in East Antarctica, more than the combined total of all glaciers in West Antarctica. Totten Glacier has been the most rapidly thinning glacier in East Antarctica since satellite altimetry time series began and the nature of the thinning suggests that it is driven by enhanced basal melting due to ocean processes. While grounded ice thinning rates have been steady, recent work has shown that Totten's floating ice shelf may not have the same thinning behavior; as a result, it is critical to observe ice shelf and cavity boundary conditions and basal processes to understand this apparent discrepancy. Warm Modified Circumpolar Deep Water (MCDW), which has been linked to glacier retreat in West Antarctica, has been observed in summer and winter on the nearby Sabrina Coast continental shelf and deep depressions in the seafloor provide access for MCDW to reach the ice shelf cavity. Given its northern latitude, numerical ice sheet modeling indicates that Totten Glacier may be prone to retreat caused by hydrofracture in a warming climate, so it is important to understand how intruding MCDW is affecting thinning of Totten Glacier's ice shelf. Here we use post-processed, focused airborne radar observations of the Totten Glacier Ice Shelf to delineate multi-km wide basal channels and flat basal terraces associated with high basal reflectivity and specularity (flatness) anomalies and correspondingly large ice surface depressions that indicate active basal melting. Using a simple temperature-attenuation model, and basal roughness corrections, we present basal melt rates associated with the radar reflection and specularity anomalies and compare them to those derived from numerical ocean circulation modeling and an ice flow divergence calculation. Sub-ice shelf ocean circulation modeling and under-ice robotic observations of Pine Island Glacier Ice Shelf in West Antarctica and the Petermann Glacier Ice Shelf in Greenland have shown that basal terraces associated with large basal channels are an indication of rapidly melting ice shelves. In this context, these new results identify an East Antarctic example of rapid basal melting processes and demonstrate that airborne radar can be used to identify basal characteristics and processes relevant to ice shelf stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C43D0650H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C43D0650H"><span>Fjord dynamics and glacio-marine interactions on Northern Ellesmere Island, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, A.; Mueller, D.; Laval, B.</p> <p>2012-12-01</p> <p>Despite the existence of ice shelves and glacier tongues along the northern coast of Ellesmere Island, Canada, for the majority of the past 4000 years (Evans and England, 1992; Antoniades et al., 2011) recent atmospheric warming has contributed to collapse of the remaining ice shelves and the loss of rare ice-shelf dammed lakes (epishelf lakes) (Mueller et al., 2003, 2008; Copland et al., 2007). These studies have primarily addressed surface processes as the causal factors for ice shelf breakup, but changes in ocean stratification and heat flux, meltwater input, and subglacial thermodynamics may strongly influence the integrity and fate of these systems. Despite the growing evidence of the importance of oceanic processes on tidewater glacier mass balance in Greenlandic fjords (Holland et al., 2008; Johnson et al., 2011; Straneo et al., 2011) these processes remain poorly studied on related systems in the Canadian Arctic Archipelago (CAA). In addition, the recent sharp increase in mass loss from the glaciers and ice caps of the CAA, primarily in the form of meltwater runoff (Gardner et al., 2011) suggest understanding the aquatic and oceanic factors contributing to ice shelf and glacier tongue integrity and epishelf lake formation is critical. We will present observations from the Milne Fjord ice shelf, epishelf lake, and glacier tongue system on the northern coast of Ellesmere Island, Canada (Fig. 1). Two years of field observations include a 15-month under-ice ocean mooring deployment, through-ice oceanographic CTD and current velocity profiles, and ice mass balance estimates from ablation stake and GPR surveys. We will present the first ever observations of the seasonal and episodic oceanographic variations of Milne Fjord, with particular focus on ocean-epishelf lake-ice shelf dynamics. We aim to understand how all ice and ocean components interact to determine the evolution and stability of the system, with the goal of understanding and perhaps predicting large ice calving events and epishelf lake drainage. Figure 1. Elevation schematic of Milne Fjord, Ellesmere Island showing the ice shelf-dammed freshwater lake overlying deeper saltwater between the floating ice shelf and glacier tongue. Processes shown include a hypothesized estuarine-like fjord circulation, supra- and sub-glacial runoff, basal ice melting, tides, and sub-ice shelf freshwater outflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C11D..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C11D..03P"><span>Antarctic Peninsula Tidewater Glacier Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.</p> <p>2015-12-01</p> <p>The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers have longer and deeper fjords than the west-side glaciers. These distinct differences between the glaciers of the west and east side of the AP exert a primary control on the differing ice-ocean interactions, grounding-line retreat, and subglacial erosion rates, and provide context to understand rates of nAP ice mass loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26827262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26827262"><span>Ice Climbing Festival in Sochi 2014 Winter Olympics: Medical Management and Injury Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mashkovskiy, Evgeny; Beverly, James Marc; Stöcker, Urs; Bychkovskiy, Sergey</p> <p>2016-03-01</p> <p>Sports ice climbing (SIC) is developing rapidly as an independent sport with Olympic potentials. To date there has been no prior systematic evaluation of injury risks and injury patterns in a SIC-specific setting. This paper reports injury statistics collected during the Ice Climbing Festival, which was held during the XXII Winter Olympics in Sochi, Russia. More than 2500 amateur climbers and 53 professional athletes climbed during 16 days on a dry tooling lead-difficulty, and a 17-m vertical ice wall (grade M4/M5 or Union Internationale des Associations d'Alpinisme [UIAA] V+/VI-). The injury incidence rates were 0.82/100 in lead-difficulty and 0.83/100 in speed ice climbing with an overall incidence rate of 0.83/100. The injury risk in amateur climbers was 248 injuries per 1000 hours of sports activities. There were no major accidents or fatalities during the event. SIC could be graded I according to UIAA Fatality Risk Classification. Penetrating and superficial soft tissue injuries (cuts and bruises) were the most common. The anteromedial aspects of the thigh and knee were the most typical injury locations. The findings from this study provide an opportunity to compare injury patterns in SIC with what has previously been reported for traditional ice climbing. SIC has lower fatality risks, higher minor injury rates, and comparable injury severity to traditional ice climbing. The main limitation of our findings is that they were obtained on a population of amateur ice climbers with no previous experience. Further research should be performed to define injury risks in professional competitive ice climbers, and standard methodologies for reporting injuries should be considered. Copyright © 2016 Wilderness Medical Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S31D2268H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S31D2268H"><span>Multichannel seismic/oceanographic/biological monitoring of the oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.</p> <p>2011-12-01</p> <p>Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent. All data are transmitted using the Iridum satellite network in Rudics mode when the floats surface. Two-way communication with Iridium allows us to send new parameters to the float for its next mission. Dual project campaigns are envisaged for next year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..390H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..390H"><span>Pathways of Petermann Glacier meltwater, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas</p> <p>2016-04-01</p> <p>Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS13D..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS13D..01P"><span>Evaluating competing forces constraining glacial grounding-line stability (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, R. D.</p> <p>2013-12-01</p> <p>Stability of grounding lines of marine-terminating glaciers and ice sheets is of concern due to their importance in governing rates of ice mass loss and consequent sea level rise during global warming. Although processes are similar at tidewater and floating grounding zones their relative magnitudes in terms of their influence on grounding-line stability vary between these two end members. Processes considered Important for this discussion are ice dynamics, ice surface melting and crevassing, ocean dynamics, subglacial sediment and water dynamics, and subglacial bed geometries. Models have continued to improve in their representation of these complex interactions but reliable field measurements and data continue to be hard earned and too few to properly constrain the range of boundary conditions in this complicated system. Some data will be presented covering a range of regimes from Alaska, Svalbard and Antarctica. Certainly more data are required on subglacial sediment/water dynamics and fluxes to fully represent the spectrum of glacial regimes and to assess the significance of grounding-zone sediment systems in counteracting the other processes to force grounding-line stability. Especially important here is constraining the duration of the stability that could be maintained by sediment flux - present data appear to show that it is likely to be a limited period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512341E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512341E"><span>Arctic polynya and glacier interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, Laura</p> <p>2013-04-01</p> <p>Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring tidewater glaciers. The work presented discusses preliminary satellite observations of concurrent changes in the North Water and Nares Strait polynyas and neighbouring tidewater glaciers in Greenland and the Canadian Arctic where notable thinning and acceleration of glaciers have been observed. Also included is an outline of how these observations will fit into a much wider project on the topic involving ocean, atmosphere and sea ice modelling and short-term and longer-term in-situ measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012473','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012473"><span>Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reimnitz, E.; Toimil, L.; Barnes, P.</p> <p>1978-01-01</p> <p>Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom processes. A proposed ice zonation, including zones of (1) bottom-fast ice, (2) floating fast ice, (3) stamukhi, and (4) seasonal pack ice, emphasizes ice interaction with the shelf surface and differs from previous zonation. Certain aspects of the results reported here are directly applicable to planned offshore developments in the Prudhoe Bay oil field. Properly placed artificial structures similar to offshore shoals should be able to withstand the forces of the ice, serve to modify the observed ice zonation, and might be used to make the environment less hostile to human activities. ?? 1978.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G33B1149J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G33B1149J"><span>GPS and Relative Sea-level Constraints on Glacial Isostatic Adjustment in North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, T. S.; Simon, K.; Henton, J. A.; Craymer, M.</p> <p>2015-12-01</p> <p>Recently, new GIA models have been developed for the Innuitian Ice Sheet and for the north-central portion of the Laurentide Ice Sheet (Simon, 2014; Simon et al., 2015). This new combined model, herein called Innu-Laur15, was developed from the ICE-5G model and load adjustments were made to improve the fit to relative sea-level observations and to GPS-constrained vertical crustal motion in the Canadian Arctic Archipelago and around Hudson Bay. Here, the predictions of Innu-Laur15 are compared to observations and other GIA models over an extended region comprising much of North America east of the Rocky Mountains. GIA predictions are made using compressible Maxwell Earth models with gravitationally self-consistent ocean loading, changing coastlines, and ocean-water inundation where marine ice retreats or floats. For this study, GPS time series are the NA12 solution (Blewitt et al., 2013) downloaded from http://geodesy.unr.edu/NGLStationPages/GlobalStationList and fit with a linear trend, annual and semi-annual terms, and offsets as indicated by station logs and by inspection of the time series. For example, a comparison of GPS observations of vertical crustal motion from the NA12 solution at 360 sites gives root-mean-square (RMS) residuals of 3.2 mm/yr (null hypothesis), 1.8 mm/yr (Innu-Laur15), and 2.9 mm/yr (ICE-5G) for the VM5a Earth model. Preliminary comparisons with other Earth models give similar patterns where Innu-Laur15 provides a better fit than ICE-5G. Further adjustments to the Innu-Laur15 ice sheet history could improve the fit to GPS rates in other regions of North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C13A0563M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C13A0563M"><span>Jakobshavn Isbrae, Greenland: DEMs, orthophotos, surface velocities, and ice loss derived from photogrammetric re-analysis of July 1985 repeat aerial photography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Motyka, R.; Fahnestock, M.; Howat, I.; Truffer, M.; Brecher, H.; Luethi, M.</p> <p>2008-12-01</p> <p>Jakobshavn Isbrae drains about 7 % of the Greenland Ice Sheet and is the ice sheet's largest outlet glacier. Two sets of high elevation (~13,500 m), high resolution (2 m) aerial photographs of Jakobshavn Isbrae were obtained about two weeks apart during July 1985 (Fastook et al, 1995). These historic photo sets have become increasingly important for documenting and understanding the dynamic state of this outlet stream prior to the rapid retreat and massive ice loss that began in 1998 and continues today. The original photogrammetric analysis of this imagery is summarized in Fastook et al. (1995). They derived a coarse DEM (3 km grid spacing) covering an area of approximately 100 km x 100 km by interpolating several hundred positions determined manually from block-aerial triangulation. We have re-analyzed these photos sets using digital photogrammetry (BAE Socet Set©) and significantly improved DEM quality and resolution (20, 50, and 100 m grids). The DEMs were in turn used to produce high quality orthophoto mosaics. Comparing our 1985 DEM to a DEM we derived from May 2006 NASA ATM measurements showed a total ice volume loss of ~ 105 km3 over the lower drainage area; almost all of this loss has occurred since 1997. Ice stream surface velocities derived from the 1985 orthomosaics showed speeds of 20 m/d on the floating tongue, diminishing to 5 m/d at 50 km further upstream. Velocities have since nearly doubled along the ice stream during its current retreat. Fastook, J.L., H.H. Brecher, and T.J. Hughes, 1995. J.of Glaciol. 11 (137), 161-173.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7170P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7170P"><span>The CONCEPTS Global Ice-Ocean Prediction System: Establishing an Environmental Prediction Capability in Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pellerin, Pierre; Smith, Gregory; Testut, Charles-Emmanuel; Surcel Colan, Dorina; Roy, Francois; Reszka, Mateusz; Dupont, Frederic; Lemieux, Jean-Francois; Beaudoin, Christiane; He, Zhongjie; Belanger, Jean-Marc; Deacu, Daniel; Lu, Yimin; Buehner, Mark; Davidson, Fraser; Ritchie, Harold; Lu, Youyu; Drevillon, Marie; Tranchant, Benoit; Garric, Gilles</p> <p>2015-04-01</p> <p>Here we describe a new system implemented recently at the Canadian Meteorological Centre (CMC) entitled the Global Ice Ocean Prediction System (GIOPS). GIOPS provides ice and ocean analyses and 10 day forecasts daily at 00GMT on a global 1/4° resolution grid. GIOPS includes a full multivariate ocean data assimilation system that combines satellite observations of sea level anomaly and sea surface temperature (SST) together with in situ observations of temperature and salinity. In situ observations are obtained from a variety of sources including: the Argo network of autonomous profiling floats, moorings, ships of opportunity, marine mammals and research cruises. Ocean analyses are blended with sea ice analyses produced by the Global Ice Analysis System.. GIOPS has been developed as part of the Canadian Operational Network of Coupled Environmental PredicTion Systems (CONCEPTS) tri-departmental initiative between Environment Canada, Fisheries and Oceans Canada and National Defense. The development of GIOPS was made through a partnership with Mercator-Océan, a French operational oceanography group. Mercator-Océan provided the ocean data assimilation code and assistance with the system implementation. GIOPS has undergone a rigorous evaluation of the analysis, trial and forecast fields demonstrating its capacity to provide high-quality products in a robust and reliable framework. In particular, SST and ice concentration forecasts demonstrate a clear benefit with respect to persistence. These results support the use of GIOPS products within other CMC operational systems, and more generally, as part of a Government of Canada marine core service. Impact of a two-way coupling between the GEM atmospheric model and NEMO-CICE ocean-ice model will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11.1851P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11.1851P"><span>Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattyn, Frank</p> <p>2017-08-01</p> <p>The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet-ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a-1 under freely floating ice shelves, up to 6 m for a 50 m a-1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be integrated in large-scale Earth system models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP24A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP24A..02H"><span>On the Revealing Firsthand Probing of Ocean-Ice-Atmosphere Interactions off Sabrina Coast During NBP1402</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huber, B. A.; Orsi, A. H.; Zielinski, N. J.; Durkin, W. J., IV; Clark, P.; Wiederwohl, C. L.; Rosenberg, M. A.; Gwyther, D.; Greenbaum, J. S.; Lavoie, C.; Shevenell, A.; Leventer, A.; Blankenship, D. D.; Gulick, S. P. S.; Domack, E. W.</p> <p>2014-12-01</p> <p>Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form and massive floating ice shelves and glaciers melt, as well as control sea surface gas exchange and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on the unique set of synoptic shipboard measurements from NBP1402 (swath bathymetry, ADCP, underway CTD). Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice-atmosphere interactions on the characteristics of local Shelf Water (SW) sources to current outflow of newly formed Antarctic Bottom Water (AABW). A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, we found no evidence of dense SW off Sabrina Coast, which may lessen the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, there is no evidence of local cross-shelf inflow and mixing of warm Circumpolar Deep Water. Relatively cold thermocline waters from the continental slope enter the eastern trough off Sabrina Coast, and they are swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity near-freezing waters drawn from intermediate levels of the adjacent westward flowing ACoC. Winds, currents and ice interactions observed off Sabrina Coast during NBP1402 are most likely widespread, in view of reported decadal freshening of upper waters over the Antarctic continental shelf and their localized AABW outflows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0728W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0728W"><span>Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.</p> <p>2015-12-01</p> <p>Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for understanding how future changes in tidewater glaciers may impact harbor seals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011QSRv...30.3791J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011QSRv...30.3791J"><span>Holocene deglacial history of the northeast Antarctic Peninsula - A review and new chronological constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Joanne S.; Bentley, Michael J.; Roberts, Stephen J.; Binnie, Steven A.; Freeman, Stewart P. H. T.</p> <p>2011-12-01</p> <p>The northeast Antarctic Peninsula (NEAP) region is currently showing signs of significant environmental change, evidenced by acceleration of glacial retreat and collapse of both Larsen-A and -B ice shelves within the past 15 years. However, data on the past extent of the eastern margin of the Antarctic Peninsula Ice Sheet (APIS) and its Holocene retreat history are sparse, and hence we cannot yet put the recent changes into a long-term context. In order to investigate the timing of deglaciation, we present 16 new cosmogenic 10Be surface exposure ages from sites on northern James Ross Island (Cape Lachman, Johnson Mesa and Terrapin Hill) and Seymour Island. The majority of the ages cluster around 6-10 ka, with three significantly older (25-31 ka). We combine these ages with existing terrestrial and marine radiocarbon deglaciation ages, and a compilation of existing swath bathymetry data, to quantify the temporal and spatial character of the regional glacial history. Ice had begun to retreat from the outer shelf by 18.3 ka, reaching Seymour Island by ˜8 ka. Northern James Ross Island began to deglaciate around the time of the Early Holocene Climatic Optimum (c. 11-9.5 ka). Deglaciation continued, and a transition from grounded to floating ice in Prince Gustav Channel occurred around 8 ka, separating the James Ross Island ice cap from the APIS. This occurred shortly before Prince Gustav Channel ice shelf began to disintegrate at 6.2 ka. Our results suggest there may be a bathymetric control on the spatial pattern of deglaciation in the NEAP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C13C0690C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C13C0690C"><span>Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chetty, S.; Field, L. A.</p> <p>2013-12-01</p> <p>The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5853S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5853S"><span>Pathways of warm water to the Northeast Greenland outlet glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaffer, Janin; Timmermann, Ralph; Kanzow, Torsten; Arndt, Jan Erik; Mayer, Christoph; Schauer, Ursula</p> <p>2015-04-01</p> <p>The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers surrounding the Greenland coast. The warming and accumulation of Atlantic Water in the subpolar North Atlantic has been suggested to be a potential driver of the glaciers' retreat over the last decades. The shelf regions thus play a critical role for the transport of Atlantic Water towards the glaciers, but also for the transfer of freshwater towards the deep ocean. A key region for the mass balance of the Greenland Ice Sheet is the Northeast Greenland Ice Stream. This large ice stream drains the second-largest basin of the Greenland Ice Sheet and feeds three outlet glaciers. The largest one is Nioghalvfjerdsfjorden (79°N-Glacier) featuring an 80 km long floating ice tongue. Both the ocean circulation on the continental shelf off Northeast Greenland and the circulation in the cavity below the ice tongue are weakly constrained so far. In order to study the relevant processes of glacier-ocean interaction we combine observations and model work. Here we focus on historic and recent hydrographic observations and on the complex bathymetry in the Northeast Greenland shelf region, which is thought to steer the flux of warm Atlantic water onto the continental shelf and into the sub-ice cavity beneath the 79°N-Glacier. We present a new global topography data set, RTopo-2, which includes the most recent surveys on the Northeast Greenland continental shelf and provides a detailed bathymetry for all around Greenland. In addition, RTopo-2 contains ice and bedrock surface topographies for Greenland and Antarctica. Based on the updated ocean bathymetry and a variety of hydrographic observations we show the water mass distribution on the continental shelf off Northeast Greenland. These maps enable us to discuss possible supply pathways of warm modified Atlantic waters on the continental shelf and thus potential ways of heat transport towards the base of the 79°N-Glacier.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V"><span>The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.</p> <p>2016-02-01</p> <p>The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014QuRes..82..441N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014QuRes..82..441N"><span>Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nývlt, Daniel; Braucher, Régis; Engel, Zbyněk; Mlčoch, Bedřich</p> <p>2014-09-01</p> <p>The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED564000.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED564000.pdf"><span>Achievement Levels of Middle School Students in the Standardized Science and Technology Exam and Formative Assessment Probes: A Comparative Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bulunuz, Nermin; Bulunuz, Mizrap; Karagoz, Funda; Tavsanli, Omer Faruk</p> <p>2016-01-01</p> <p>The present study has two aims. Firstly, it aims to determine eighth grade students' conceptual understanding of floating and sinking through formative assessment probes. Secondly, it aims to determine whether or not there is a significant difference between students' performance in formative assessment probes and their achievement in the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED303375.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED303375.pdf"><span>Promoting Changes in Children's Predictive Rules about Natural Phenomena: The Role of Computer-Based Modelling Strategies. Technical Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Frenette, Micheline</p> <p></p> <p>Trying to change the predictive rule for the sinking and floating phenomena, students have a great difficulty in understanding density and they are insensitive to empirical counter-examples designed to challenge their own rule. The purpose of this study is to examine the process whereby students from sixth and seventh grades relinquish their…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8648E..0XT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8648E..0XT"><span>Automatic depth grading tool to successfully adapt stereoscopic 3D content to digital cinema and home viewing environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thébault, Cédric; Doyen, Didier; Routhier, Pierre; Borel, Thierry</p> <p>2013-03-01</p> <p>To ensure an immersive, yet comfortable experience, significant work is required during post-production to adapt the stereoscopic 3D (S3D) content to the targeted display and its environment. On the one hand, the content needs to be reconverged using horizontal image translation (HIT) so as to harmonize the depth across the shots. On the other hand, to prevent edge violation, specific re-convergence is required and depending on the viewing conditions floating windows need to be positioned. In order to simplify this time-consuming work we propose a depth grading tool that automatically adapts S3D content to digital cinema or home viewing environments. Based on a disparity map, a stereo point of interest in each shot is automatically evaluated. This point of interest is used for depth matching, i.e. to position the objects of interest of consecutive shots in a same plane so as to reduce visual fatigue. The tool adapts the re-convergence to avoid edge-violation, hyper-convergence and hyper-divergence. Floating windows are also automatically positioned. The method has been tested on various types of S3D content, and the results have been validated by a stereographer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4919644','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4919644"><span>Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng</p> <p>2016-01-01</p> <p>The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a “cold Leidenfrost phenomenon” when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology. PMID:27338595</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27338595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27338595"><span>Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng</p> <p>2016-06-24</p> <p>The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a "cold Leidenfrost phenomenon" when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C21D..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C21D..05W"><span>Two new ways of mapping sea ice thickness using ocean waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wadhams, P.</p> <p>2010-12-01</p> <p>TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given storm, the time delay between the arrival of the same frequency at two sites gives the dispersion, and hence the modal ice thickness along the great circle route connecting the arrays. The two quite different methods thus share the use of ocean wave dispersion to infer sea ice thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C53B0574L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C53B0574L"><span>Ice Shelf-Ocean Interactions Near Ice Rises and Ice Rumples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, M. A.; Rückamp, M.; Kleiner, T.</p> <p>2013-12-01</p> <p>The stability of ice shelves depends on the existence of embayments and is largely influenced by ice rises and ice rumples, which act as 'pinning-points' for ice shelf movement. Of additional critical importance are interactions between ice shelves and the water masses underlying them in ice shelf cavities, particularly melting and refreezing processes. The present study aims to elucidate the role of ice rises and ice rumples in the context of climate change impacts on Antarctic ice shelves. However, due to their smaller spatial extent, ice rumples react more sensitively to climate change than ice rises. Different forcings are at work and need to be considered separately as well as synergistically. In order to address these issues, we have decided to deal with the following three issues explicitly: oceanographic-, cryospheric and general topics. In so doing, we paid particular attention to possible interrelationships and feedbacks in a coupled ice-shelf-ocean system. With regard to oceanographic issues, we have applied the ocean circulation model ROMBAX to ocean water masses adjacent to and underneath a number of idealized ice shelf configurations: wide and narrow as well as laterally restrained and unrestrained ice shelves. Simulations were performed with and without small ice rises located close to the calving front. For larger configurations, the impact of the ice rises on melt rates at the ice shelf base is negligible, while for smaller configurations net melting rates at the ice-shelf base differ by a factor of up to eight depending on whether ice rises are considered or not. We employed the thermo-coupled ice flow model TIM-FD3 to simulate the effects of several ice rises and one ice rumple on the dynamics of ice shelf flow. We considered the complete un-grounding of the ice shelf in order to investigate the effect of pinning points of different characteristics (interior or near calving front, small and medium sized) on the resulting flow and stress fields, focusing on the floating ice parts of the Brunt and Riiser-Larsen ice shelves. The major response of the ice is observed instantaneously and is caused by the time independent nature of the Stokes equations and the used Glen-type rheology. The influence of ice temperatures and therefore the time-dependent effect on the flow-rate are small, given a 100 year time frame and applying a fixed-geometry setting.. A particularly important result of the current project lies in the fact that we have numerically simulated the three-dimensional stress fields in an ice shelf. Common numerical models that utilize a vertically integrated Shallow Shelf Approximation (SSA-models), do not provide that information. Due to the detailed horizontal resolution of 1km in our models, we were able to also model the observed heavily fractured areas in the vicinity of McDonald Ice Rise, a region that is characterized by simulated tensile stresses reaching maximum vertical extension in the ice column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000945.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000945.html"><span>Operation IceBridge Turns Five</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>In May 2014, two new studies concluded that a section of the land-based West Antarctic ice sheet had reached a point of inevitable collapse. Meanwhile, fresh observations from September 2014 showed sea ice around Antarctica had reached its greatest extent since the late 1970s. To better understand such dynamic and dramatic differences in the region's land and sea ice, researchers are travelling south to Antarctica this month for the sixth campaign of NASA’s Operation IceBridge. The airborne campaign, which also flies each year over Greenland, makes annual surveys of the ice with instrumented research aircraft. Instruments range from lasers that map the elevation of the ice surface, radars that "see" below it, and downward looking cameras to provide a natural-color perspective. The Digital Mapping System (DMS) camera acquired the above photo during the mission’s first science flight on October 16, 2009. At the time of the image, the DC-8 aircraft was flying at an altitude of 515 meters (1,700 feet) over heavily compacted first-year sea ice along the edge of the Amundsen Sea. Since that first flight, much has been gleaned from IceBridge data. For example, images from an IceBridge flight in October 2011 revealed a massive crack running about 29 kilometers (18 miles) across the floating tongue of Antarctica's Pine Island Glacier. The crack ultimately led to a 725-square-kilometer (280-square-mile) iceberg. In 2012, IceBridge data was a key part of a new map of Antarctica called Bedmap2. By combining surface elevation, ice thickness, and bedrock topography, Bedmap2 gives a clearer picture of Antarctica from the ice surface down to the land surface. Discoveries have been made in Greenland, too, including the identification of a 740-kilometer-long (460-mile-long) mega canyon below the ice sheet. Repeated measurements of land and sea ice from aircraft extend the record of observations once made by NASA’s Ice, Cloud, and Land Elevation Satellite, or ICESat, which stopped functioning in 2009. In addition to extending the ICESat record, IceBridge also sets the stage for ICESat-2, which is scheduled for launch in 2017. Credit: IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team/NASA DAAC at the National Snow and Ice Data Center More info: earthobservatory.nasa.gov/IOTD/view.php?id=84549 earthobservatory.nasa.gov/IOTD/view.php?id=84549</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591468-upgraded-metallurgical-grade-silicon-solar-cells-efficiency-above','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591468-upgraded-metallurgical-grade-silicon-solar-cells-efficiency-above"><span>Upgraded metallurgical-grade silicon solar cells with efficiency above 20%</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zheng, P.; Rougieux, F. E.; Samundsett, C.</p> <p></p> <p>We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28501162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28501162"><span>Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mansour, Fotouh R; Danielson, Neil D</p> <p>2017-08-01</p> <p>Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=meteorology&pg=2&id=EJ837584','ERIC'); return false;" href="https://eric.ed.gov/?q=meteorology&pg=2&id=EJ837584"><span>Antarctica: Is It More Than Just Ice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Johnson, Cheryl; Gutierrez, Melida</p> <p>2009-01-01</p> <p>The authors introduced polar science in a fourth-grade classroom by means of 3 hands-on activities that addressed (1) the melting of glaciers and ice, (2) the differences between the North and the South Pole, and (3) the geography and landforms of Antarctica. An assessment 4 months after the original activity showed that students remembered the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-11-02/pdf/2010-27538.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-11-02/pdf/2010-27538.pdf"><span>75 FR 67258 - Position Reports for Physical Commodity Swaps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-11-02</p> <p>... Cattle. CME Milk Class III. Comex (``CMX'') Copper Grade 1. CMX Gold. CMX Silver. ICE Futures US (``ICUS... Oats. CME Butter. CME Cheese. CME Dry Whey. CME Hardwood Pulp. CME Lean Hogs. CME Non Fat Dry Milk. CME... contract--The ICE WTI Average Price Option is indirectly linked to a 20.2 listed futures contract because...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=black+AND+hole&pg=7&id=ED131708','ERIC'); return false;" href="https://eric.ed.gov/?q=black+AND+hole&pg=7&id=ED131708"><span>Killaq Sikumi (The Hole in the Ice).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pope, Mary L.; And Others</p> <p></p> <p>This fourth grade elementary language text is designed for children in bilingual Inupiat-English programs in the Alaskan villages of Ambler, Kobuk, Kiana, Noorvik, and Shungnak. It contains a story about two friends who fall through a hole in the ice and land in a hidden spaceship with a being from outer space aboard. Each page of text is…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8..167S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8..167S"><span>Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950-2011): radar remote-sensing and numerical modeling data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surdu, C. M.; Duguay, C. R.; Brown, L. C.; Fernández Prieto, D.</p> <p>2014-01-01</p> <p>Air temperature and winter precipitation changes over the last five decades have impacted the timing, duration, and thickness of the ice cover on Arctic lakes as shown by recent studies. In the case of shallow tundra lakes, many of which are less than 3 m deep, warmer climate conditions could result in thinner ice covers and consequently, in a smaller fraction of lakes freezing to their bed in winter. However, these changes have not yet been comprehensively documented. The analysis of a 20 yr time series of European remote sensing satellite ERS-1/2 synthetic aperture radar (SAR) data and a numerical lake ice model were employed to determine the response of ice cover (thickness, freezing to the bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last six decades. Given the large area covered by these lakes, changes in the regional climate and weather are related to regime shifts in the ice cover of the lakes. Analysis of available SAR data from 1991 to 2011, from a sub-region of the NSA near Barrow, shows a reduction in the fraction of lakes that freeze to the bed in late winter. This finding is in good agreement with the decrease in ice thickness simulated with the Canadian Lake Ice Model (CLIMo), a lower fraction of lakes frozen to the bed corresponding to a thinner ice cover. Observed changes of the ice cover show a trend toward increasing floating ice fractions from 1991 to 2011, with the greatest change occurring in April, when the grounded ice fraction declined by 22% (α = 0.01). Model results indicate a trend toward thinner ice covers by 18-22 cm (no-snow and 53% snow depth scenarios, α = 0.01) during the 1991-2011 period and by 21-38 cm (α = 0.001) from 1950 to 2011. The longer trend analysis (1950-2011) also shows a decrease in the ice cover duration by ~24 days consequent to later freeze-up dates by 5.9 days (α = 0.1) and earlier break-up dates by 17.7-18.6 days (α = 0.001).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.472....1J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.472....1J"><span>Ocean forcing of Ice Sheet retreat in central west Greenland from LGM to the early Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jennings, Anne E.; Andrews, John T.; Ó Cofaigh, Colm; Onge, Guillaume St.; Sheldon, Christina; Belt, Simon T.; Cabedo-Sanz, Patricia; Hillaire-Marcel, Claude</p> <p>2017-08-01</p> <p>Three radiocarbon dated sediment cores from trough mouth fans on the central west Greenland continental slope were studied to determine the timing and processes of Greenland Ice Sheet (GIS) retreat from the shelf edge during the last deglaciation and to test the role of ocean forcing (i.e. warm ocean water) thereon. Analyses of lithofacies, quantitative x-ray diffraction mineralogy, benthic foraminiferal assemblages, the sea-ice biomarker IP25, and δ18 O of the planktonic foraminifera Neogloboquadrina pachyderma sinistral from sediments in the interval from 17.5-10.8 cal ka BP provide consistent evidence for ocean and ice sheet interactions during central west Greenland (CWG) deglaciation. The Disko and Uummannaq ice streams both retreated from the shelf edge after the last glacial maximum (LGM) under the influence of subsurface, warm Atlantic Water. The warm subsurface water was limited to depths below the ice stream grounding lines during the LGM, when the GIS terminated as a floating ice shelf in a sea-ice covered Baffin Bay. The deeper Uummannaq ice stream retreated first (ca. 17.1 cal ka BP), while the shallower Disko ice stream retreated at ca. 16.2 cal ka BP. The grounding lines were protected from accelerating mass loss (calving) by a buttressing ice shelf and by landward shallowing bathymetry on the outer shelf. Calving retreat was delayed until ca. 15.3 cal ka BP in the Uummannaq Trough and until 15.1 cal ka BP in the Disko Trough, during another interval of ocean warming. Instabilities in the Laurentide, Innuitian and Greenland ice sheets with outlets draining into northern Baffin Bay periodically released cold, fresh water that enhanced sea ice formation and slowed GIS melt. During the Younger Dryas, the CWG records document strong cooling, lack of GIS meltwater, and an increase in iceberg rafted material from northern Baffin Bay. The ice sheet remained in the cross-shelf troughs until the early Holocene, when it retreated rapidly by calving and strong melting under the influence of atmosphere and ocean warming and a steep reverse slope toward the deep fjords. We conclude that ocean warming played an important role in the palaeo-retreat dynamics of the GIS during the last deglaciation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C23C0646G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C23C0646G"><span>Numerical model of ice melange expansion during abrupt ice-shelf collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.</p> <p>2010-12-01</p> <p>Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system evolve into full-blown collapse of the ice shelf? What proportion of uncapsizable icebergs prevent a collapse?), (b) the rates of mobilization and their dependence on iceberg geometry (e.g., what determines the speed at which the expanding ice melange moves into the open, ice-free water?), and (c) the factors that promote the arrest of the system (e.g., are there circumstances where only partial collapses can occur?). Results of simulations are compared with observational parameters derived from satellite imagery, seismic analysis and laboratory experiment to determine what aspects of the numerical model's physical formulation may have most relevance to the disappearance of ice shelves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U22A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U22A..02H"><span>An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, T.</p> <p>2008-12-01</p> <p>Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions by radar, seismic, and magnetic profiling, and direct measurement of basal conditions by deep drilling and coring into the ice and the bed. These data allow calculating the geothermal heat flux and mapping flow of basal meltwater from geothermal sources to sinks at the termini of ice streams, which discharge up to 90 percent of the ice. James Fastook has a preliminary solution of the full momentum equation needed to model ice streams. Douglas MacAyeal has pioneered modeling catastrophic ice-shelf disintegration that releases "armadas" of icebergs into the world ocean, to extract heat from ocean surface water and thereby reduce the critical ocean-to-atmosphere heat exchange that drives global climate. Ice sheets are the only component of Earth's climate machine that can destroy itself-- swiftly--and thereby radically and rapidly alter global climate and sea level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP13A2054F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP13A2054F"><span>Late Weichselian ice-sheet dynamics and deglaciation history of the northern Svalbard margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fransner, O.; Noormets, R. R. N. N.; Flink, A.; Hogan, K.; Dowdeswell, J. A.; O'Regan, M.; Jakobsson, M.</p> <p>2016-12-01</p> <p>The glacial evolution of the northern Svalbard margin is poorly known compared with the western margin. Gravity cores, swath bathymetric, sub-bottom acoustic and 2D airgun data are used to investigate the Late Weichselian Svalbard-Barents Ice Sheet history on the northern Svalbard margin. Prograding sequences in Kvitøya and Albertini trough mouths (TMs) indicate ice streaming to the shelf edge multiple times during the Quaternary. While Kvitøya Trough has an associated trough-mouth fan (TMF), Albertini TM is cut back into the shelf edge. Down-faulted bedrock below Albertini TM suggests larger sediment accommodation space there, explaining the absence of a TMF. The bathymetry indicates that ice flow in Albertini Trough was sourced from Duvefjorden and Albertinibukta. Exposed crystalline bedrock likely kept the two ice flows separated before merging north of Karl XII-Øya. Subglacial landforms in Rijpfjorden and Duvefjorden indicate that both fjords accommodated northward-flowing ice streams during the LGM. The deeper fjord basin and higher elongation ratios of landforms in Duvefjorden suggest a more focused and/or larger ice flow there. Easily erodible sedimentary rocks are common in Duvefjorden, which may explain different ice flow dynamics in these fjords. Kvitøya TMF is flanked by gullies, probably formed through erosive downslope gravity flows triggered by sediment-laden meltwater during early deglaciation. Glacial landforms in Albertini Trough comprise retreat-related landforms indicating slow deglaciation. Iceberg scours in Albertini Trough suggest the importance of calving for mass-loss. Sets of De Geer moraines in Rijpfjorden imply that slow, grounded retreat continued in <210 m water depth. Lack of retreat-related landforms in deeper areas of Rijpfjorden and in Duvefjorden indicates floating glacier fronts influenced by calving. 14C ages suggest that deglaciation of inner Rijpfjorden and central Duvefjorden were complete before 10,434 cal a BP and 10,779 cal a BP respectively.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16782608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16782608"><span>The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hindmarsh, Richard C A</p> <p>2006-07-15</p> <p>Membrane stresses act along thin bodies which are relatively well lubricated on both surfaces. They operate in ice sheets because the bottom is either sliding, or is much less viscous than the top owing to stress and heat softening of the basal ice. Ice streams flow over very well lubricated beds, and are restrained at their sides. The ideal of the perfectly slippery bed is considered in this paper, and the propagation of mechanical effects along an ice stream considered by applying spatially varying horizontal body forces. Propagation distances depend sensitively on the rheological index, and can be very large for ice-type rheologies.A new analytical solution for ice-shelf profiles and grounded tractionless stream profiles is presented, which show blow up of the profile in a finite distance upstream at locations where the flux is non-zero. This is a feature of an earlier analytical solution for a floating shelf.The length scale of decay of membrane stresses from the grounding line is investigated through scale analysis. In ice sheets, such effects decay over distances of several tens of kilometres, creating a vertical boundary layer between sheet flow and shelf flow, where membrane stresses adjust. Bounded, physically reasonable steady surface profiles only exist conditionally in this boundary layer. Where bounded steady profiles exist, adjacent profile equilibria for the whole ice sheet corresponding to different grounded areas occur (neutral equilibrium). If no solution in the boundary layer can exist, the ice-sheet profile must change.The conditions for existence can be written in terms of whether the basal rate factor (sliding or internal deformation) is too large to permit a steady solution. The critical value depends extremely sensitively on ice velocity and the back stress applied at the grounding line. High ice velocity and high stress both favour the existence of solutions and stability. Changes in these parameters can cause the steady solution existence criterion to be traversed, and the ice-sheet dynamics to change.A finite difference model which represents both neutral equilibrium and the dynamical transition is presented, and preliminary investigations into its numerical sensitivity are carried out. Evidence for the existence of a long wavelength instability is presented through the solution of a numerical eigenproblem, which will hamper predictability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000070390&hterms=retreated&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dretreated','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000070390&hterms=retreated&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dretreated"><span>Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rignot, Eric (Editor)</p> <p>1999-01-01</p> <p>The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative on Thwaites Glacier. This sector of West Antarctica probably initiated its collapse decades or centuries ago, once the embaying ice shelves in front of them started to melt because of enhanced basal melting from warmer ocean waters. Additional information is contained in the original.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22587952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22587952"><span>Assessing biological and chemical signatures related to nutrient removal by floating islands in stormwater mesocosms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Ni-Bin; Islam, Kamrul; Marimon, Zachary; Wanielista, Martin P</p> <p>2012-07-01</p> <p>Aquatic floating plants on BioHaven mats were tested for their potential use as a Best Management Practice to be incorporated within existing stormwater detention ponds. Plants were analyzed for their capability to remove nutrient-pollution in parallel with the study of ecological dynamics. Experiments were carried out in cylindrical mesocosms of 5 m diameter and 1.2 m height, above-ground pools with a water volume of 14 m(3). The design parameters tested were for 5% and 10% vegetated floating island coverage of the mesocosm, both with and without shoreline plants called littoral zone. This littoral shelf was 0.5 m thick, graded at a downward slope of 1:5 toward the center using loamy soil with low organic matter content, excavated from below turf grass. Endemic plant species were chosen for the experimental location in central Florida based on a wetland identification manual by the Florida Department of Environmental Protection to ensure the study was not compromised by unique climate requirements of the plants. Nutrient and aquatic chemical conditions such as pH, dissolved oxygen, temperature, turbidity, and chlorophyll a were monitored to understand their relationships to the general wetland ecosystem. Real-time polymerase chain reaction analysis identified the microbial activity near the rhizospheric zone. Logistical placement considerations were made using spatial sampling across the horizontal plane of the mesocosms, beneath and around the root zone, to determine if nutrients tend to aggregate around the floating island. This study concluded that the application of floating islands as a stormwater technology can remove nutrients through plant uptake and biological activity. The most cost-effective size in the outdoor mesocosms was 5% surface area coverage of the mat. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010106105','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010106105"><span>Water Ice and Life's Roots in Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)</p> <p>2001-01-01</p> <p>Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25157189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25157189"><span>Sustaining observations in the polar oceans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abrahamsen, E P</p> <p>2014-09-28</p> <p>Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity-temperature-depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12.1415L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12.1415L"><span>Changes in flow of Crosson and Dotson ice shelves, West Antarctica, in response to elevated melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lilien, David A.; Joughin, Ian; Smith, Benjamin; Shean, David E.</p> <p>2018-04-01</p> <p>Crosson and Dotson ice shelves are two of the most rapidly changing outlets in West Antarctica, displaying both significant thinning and grounding-line retreat in recent decades. We used remotely sensed measurements of velocity and ice geometry to investigate the processes controlling their changes in speed and grounding-line position over the past 20 years. We combined these observations with inverse modeling of the viscosity of the ice shelves to understand how weakening of the shelves affected this speedup. These ice shelves have lost mass continuously since the 1990s, and we find that this loss results from increasing melt beneath both shelves and the increasing speed of Crosson. High melt rates persisted over the period covered by our observations (1996-2014), with the highest rates beneath areas that ungrounded during this time. Grounding-line flux exceeded basin-wide accumulation by about a factor of 2 throughout the study period, consistent with earlier studies, resulting in significant loss of grounded as well as floating ice. The near doubling of Crosson's speed in some areas during this time is likely the result of weakening of its margins and retreat of its grounding line. This speedup contrasts with Dotson, which has maintained its speed despite increasingly high melt rates near its grounding line, likely a result of the sustained competency of the shelf. Our results indicate that changes to melt rates began before 1996 and suggest that observed increases in melt in the 2000s compounded an ongoing retreat of this system. Advection of a channel along Dotson, as well as the grounding-line position of Kohler Glacier, suggests that Dotson experienced a change in flow around the 1970s, which may be the initial cause of its continuing retreat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1397981-boundary-layer-models-calving-marine-outlet-glaciers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1397981-boundary-layer-models-calving-marine-outlet-glaciers"><span>Boundary layer models for calving marine outlet glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.</p> <p></p> <p>We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controllingmore » the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1397981-boundary-layer-models-calving-marine-outlet-glaciers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1397981-boundary-layer-models-calving-marine-outlet-glaciers"><span>Boundary layer models for calving marine outlet glaciers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.</p> <p>2017-10-05</p> <p>We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controllingmore » the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA009363','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA009363"><span>The Bearing Capacity of Floating Ice Plates Subjected to Static or Quasi-Static Loads. A Critical Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-03-01</p> <p>8217" in 1926, Korenev *" in 1954, Korenev "’ in 1960, and Korenev and Clu■ml^Ulvskala,, in 1962. A solution for the infinite plate subjected to a row of...analyzed by Westernaard’" in 1923. Similar problems were solved by Panfilov"" m in 1963. The publications of Shekhter and Vmokurova,’" and Korenev ... Korenev " in 1960. An analysis of a lloaling infinite strip, free alonf; both edges and subjected to a lateral load, was presented by Shapiro"* in 194</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..439..139D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..439..139D"><span>Study of reverse flotation of calcite from scheelite in acidic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, Rongdong; Huang, Yuqing; Hu, Yuan; Ku, Jiangang; Zuo, Weiran; Yin, Wanzhong</p> <p>2018-05-01</p> <p>A new coated-reactive reverse flotation method based on the generation of CO2 bubbles at a calcite surface in acidic solution was used to separate calcite from scheelite. The dissolution kinetics of coated and uncoated calcite were studied in sulfuric acid. The CO2 bubbles generated on the uncoated calcite particle surface are enough to float the particle. However, most of these bubbles left the surface quickly, preventing calcite from floating. Here, a mixture of polyvinyl alcohol polymer and sodium dodecyl sulfonate was used to coat the mineral particles and form a stable membrane, resulting in the formation of a stable foam layer on the calcite surface. After the calcite is coated, the generated bubbles could be successfully captured on the calcite surface, and calcite particles could float to the air-water interface and remain there for more than one hour. Flotation tests indicated that a high-quality tungsten concentrate with a grade of more than 75% and a recovery of more than 99% could be achieved when the particle size was between 0.3 and 1.5 mm. The present results provide theoretical support for the development of a highly efficient flotation separation for carbonate minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C34B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C34B..01M"><span>North Greenland's Ice Shelves and Ocean Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.</p> <p>2014-12-01</p> <p>Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line. Models of glacier-ocean interaction must represent both bottom topography and closely related ocean dynamics and mixing at their dynamically relevant scales within a density stratified water column. Projects for such integrated ocean-glacier observations are in the planning stages for 79N and PG.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0696O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0696O"><span>Ocean-Ice-Atmosphere Interactions off Sabrina and Adelie Coasts During NBP1402 and AU1402</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsi, A. H.; Zielinski, N. J.; Webb, C.; Huber, B. A.</p> <p>2015-12-01</p> <p>Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form, massive floating ice shelves and glaciers melt, gases are exchanged at the sea surface, and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on a the first synoptic shipboard measurements made by U.S. (NBP1402) and Australian (AU1402) scientists. Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice- atmosphere interactions on the characteristics of local Shelf Water (SW) sources. A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, there was no evidence of dense SW off Sabrina Coast during both summer cruises of 2014 and 2015, thus lessening the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, the main evidence of inflow and mixing of relatively warm oceanic waters is reduced to relatively cold thermocline water (< 0.3°C) from the continental slope. This source water enters the eastern trough off Sabrina Coast and is swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity near-freezing waters drawn from intermediate levels of the adjacent westward flowing ACoC.
Winds, currents and ice interactions observed off Sabrina Coast during NBP1402 and AU1402 are most likely widespread, in view of reported decadal freshening of upper waters over the Antarctic continental shelf and their localized AABW outflows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.2964J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.2964J"><span>Wind tunnel investigations on the retention of carboxylic acids during riming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jost, Alexander; Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.; Borrmann, Stephan</p> <p>2015-04-01</p> <p>In mid-latitudes, precipitation is mainly initiated via the ice phase in mixed phase clouds. In such clouds the ice particles grow to precipitation sizes at the expense of liquid drops through riming which means that supercooled droplets collide with ice particles and subsequently freeze. Water-soluble trace substances present in the liquid phase might remain only fractionally in the ice phase after freezing. This fractionation is called retention and is an important ratio which quantifies the partitioning of atmospheric trace substances between the phases. Laboratory experiments were carried out at the Mainz vertical wind tunnel to determine the retention of lower mono- and di-carboxylic acids during riming. Due to their low molecular weight and their polarity these acids are water-soluble. In the atmosphere formic acid and acetic acid are the most abundant mono-carboxylic acids in the gas and aqueous phase, thus, they represent the major fraction of carboxylic acids in cloud water. Oxalic and malonic acid are common coatings on aerosol particles because of their relatively low saturation vapor pressure. These di-carboxylic acids might therefore promote the aerosol particles to act as cloud condensation nuclei and additionally contribute to the aqueous phase chemistry in cloud droplets. The conditions during the riming experiments in the wind tunnel were similar to those in atmospheric mixed phase clouds, i.e. temperatures from -18°C to -6 °C, liquid water contents between 0.5 and 1.5 g/m3, and liquid drop radii between 10 and 20 μm. The liquid phase concentrations ranged from 3 to 5 mg/l (4.1 < pH < 4.5). As rime collectors captively floating ice particles and quasi-floating snowflakes with diameters between 0.6 and 1.5 cm were used. The wind speed in the vertical wind tunnel was very close to the terminal velocities of the rime collectors, thus, the ventilation during riming was in the same order of magnitude as under atmospheric riming conditions. After riming the collectors were removed from the wind tunnel, their melt water was analyzed by ion chromatography and the retention coefficients, i.e. the fractions of the species which remained in the ice phase were determined. Average retention coefficients of formic acid and acetic acid were 0.73 ± 0.07 and 0.62 ± 0.12, respectively; both oxalic and malonic acids had average retention coefficients of 0.98 ± 0.04. These variations can be explained by the fact that retention depends on the one hand on the dissociation state of the substance together with its solubility (described by the effective Henry's law constant) and on the other hand on the latent heat removal from the collector to the environment. This is affected by ventilation, shape of the rime collector, liquid water content, and droplet size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED12A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED12A..06H"><span>Improving Climate Literacy Using The Ice Sheet System Model (ISSM): A Prototype Virtual Ice Sheet Laboratory For Use In K-12 Classrooms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.</p> <p>2013-12-01</p> <p>Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and critical problem solving appropriate to grade level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JFM...531..221B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JFM...531..221B"><span>A coupled-mode model for the hydroelastic analysis of large floating bodies over variable bathymetry regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belibassakis, K. A.; Athanassoulis, G. A.</p> <p>2005-05-01</p> <p>The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h( {x,y}) {=} h( x ), attaining constant, but possibly different, values in the semi-infinite regions x {<} a and x {>} b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x {=} a to x {=} b and {-} infty {<} y{<}infty . Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a {≤} x {≤} b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x{=}a and x{=}b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001938.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001938.html"><span>Matusevich Glacier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired September 6, 2010 The Matusevich Glacier flows toward the coast of East Antarctica, pushing through a channel between the Lazarev Mountains and the northwestern tip of the Wilson Hills. Constrained by surrounding rocks, the river of ice holds together. But stresses resulting from the glacier’s movement make deep crevasses, or cracks, in the ice. After passing through the channel, the glacier has room to spread out as it floats on the ocean. The expanded area and the jostling of ocean waves prompts the ice to break apart, which it often does along existing crevasses. On September 6, 2010, the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image of the margin of Matusevich Glacier. Shown here just past the rock-lined channel, the glacier is calving large icebergs. Low-angled sunlight illuminates north-facing surfaces and casts long shadows to the south. Fast ice anchored to the shore surrounds both the glacier tongue and the icebergs it has calved. Compared to the glacier and icebergs, the fast ice is thinner with a smoother surface. Out to sea (image left), the sea ice is even thinner and moves with winds and currents. Matusevich Glacier does not drain a significant amount of ice off of the Antarctic continent, so the glacier’s advances and retreats lack global significance. Like other Antarctic glaciers, however, Matusevich helps glaciologists form a larger picture of Antarctica’s glacial health and ice sheet volume. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Michon Scott based on image interpretation by Robert Bindschadler, NASA Goddard Space Flight Center, and Walt Meier, National Snow and Ice Data Center. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook To download the full resolution image go to: earthobservatory.nasa.gov/IOTD/view.php?id=46840</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C52A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C52A..08G"><span>Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.</p> <p>2015-12-01</p> <p>The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..369....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..369....1A"><span>Exhumed subglacial landscape in Uruguay: Erosional landforms, depositional environments, and paleo-ice flow in the context of the late Paleozoic Gondwanan glaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Assine, Mario Luis; de Santa Ana, Héctor; Veroslavsky, Gerardo; Vesely, Fernando F.</p> <p>2018-07-01</p> <p>A well-exposed glacial surface sculpted on Precambrian crystalline basement rocks occurs below the glacial succession of the San Gregorio Formation on the eastern border of the Chaco-Parana Basin in Uruguay and was formed in the context of the late Paleozoic Gondwana Ice Age. On the glacial surface are asymmetric parallel streamlined bedrock landforms interpreted as whalebacks. The downglacier (lee-side) faces of the whalebacks have gentle slopes dipping NNW with striated and sometimes polished surfaces on crystalline rocks. These landforms are covered by 10-100-cm-thick layers of tillites and shear-laminated siltstones, suggesting glacial abrasion produced mainly by subglacial till sliding. The subglacial facies are ice-molded, and exhibit meso-scale glacial lineations such as ridges and grooves up to 30 m long and 30 cm deep. The subglacial association is directly overlain by proglacial fine-grained facies (rhythmites) with dropstones indicating a subaqueous depositional environment following ice-margin retreat. The fine-grained facies are erosively cut by a succession of sandstones with wave-generated stratification resting on a basal conglomerate. Intraformational striated surfaces, NNE-oriented, were found on four distinct bedding planes within the sandstone package and interpreted as ice keel scour marks produced by floating ice. The San Gregorio deposits are partially confined in a wide and shallow subglacial trough and the stratigraphic succession is interpreted as the record of a glacial advance-retreat cycle comparable to deglacial sequences from other late Paleozoic localities. The paleo-ice flow to the NNW indicated by subglacial lineations is parallel to that verified in the southernmost Paraná Basin located north of the study area, suggesting a paleogeographic scenario in which glaciers advanced northward into a glaciomarine environment. The proposed palaeogeography does not confirm the previous hypothesis of an ice center on the Sul-Riograndense Shield but, instead, it corroborates a south-derived Uruguayan Ice Lobe advancing to the north, probably with provenance far afield in terranes of the present-day southern African.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC31A1164K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC31A1164K"><span>A New Ice-sheet / Ocean Interaction Model for Greenland Fjords using High-Order Discontinuous Galerkin Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopera, M. A.; Maslowski, W.; Giraldo, F.</p> <p>2015-12-01</p> <p>One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM), Community Earth System Model (CESM) or Advanced Climate Model for Energy (ACME).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9626B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9626B"><span>Circumpolar patterns of ground-fast lake ice and landscape development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartsch, Annett; Pointner, Georg; Leibmann, Marina; Dvornikov, Yuri; Khomutov, Artem</p> <p>2017-04-01</p> <p>Shallow lakes in the Arctic are often associated with thermokarst processes which are characteristic for permafrost environments. They partially or completely freeze-up during winter time what can be observed from space using Synthetic Aperture Radar (SAR) data. Spatial patterns of ground-fast and floating ice relate to geomorphological and hydrological processes, but no circumpolar account of this phenomenon is currently available due to challenges when dealing with the varying observation geometry typical for SAR. An approach using ENVISAT ASAR Wide Swath data (approximately 120 m resolution) has been developed supported by bathymetric measurements in Siberia and eventually applied across the entire Arctic for late winter 2008. In total about 2 Million lake objects have been analyzed considering the boundaries of the Last Glacial Maximum, permafrost zones and soil organic carbon content. Distinct patterns of ground-fast lake ice fraction can be found across the Arctic. Clusters of variable fractions of ground-fast ice occur especially in Yedoma regions of Eastern Siberia and Alaska. This reflects the nature of thaw lake dynamics. Analyses of lake depth measurements from several sites (Alaskan North Slope, Richards Island in Canada, Yamal Peninsula and Lena Delta) suggest that the used method yields the potential to utilize ground-fast lake ice information over larger areas with respect to landscape development, but results need to be treated with care, specifically for larger lakes and along river courses. A combination of general lake features and ground-fast ice fraction may lead to an advanced understanding of landscape patterns and development. Ground-fast ice fraction information may support to some extent the identification of landscape units, for example areas of adjacent lakes with similar patterns (terraces) or areas with mixed ground-fast fractions which indicate different lake development stages. This work was supported by the Austrian Science Fund under Grant [I 1401] and the Russian Foundation for Basic Research Grant 13-05-91001-ANF-a (Joint Russian-Austrian project COLD-Yamal).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51A0956B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51A0956B"><span>Mapping the Antarctic grounding line with CryoSat-2 radar altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bamber, J. L.; Dawson, G. J.</p> <p>2017-12-01</p> <p>The grounding line, where grounded ice begins to float, is the boundary at which the ocean has the greatest influence on the ice-sheet. Its position and dynamics are critical in assessing the stability of the ice-sheet, for mass budget calculations and as an input into numerical models. The most reliable approaches to map the grounding line remotely are to measure the limit of tidal flexure of the ice shelf using differential synthetic aperture radar interferometry (DInSAR) or ICESat repeat-track measurements. However, these methods are yet to provide satisfactory spatial and temporal coverage of the whole of the Antarctic grounding zone. It has not been possible to use conventional radar altimetry to map the limit of tidal flexure of the ice shelf because it performs poorly near breaks in slope, commonly associated with the grounding zone. The synthetic aperture radar interferometric (SARin) mode of CryoSat-2, performs better over steeper margins of the ice sheet and allows us to achieve this. The SARin mode combines "delay Doppler" processing with a cross-track interferometer, and enables us to use elevations based on the first return (point of closest approach or POCA) and "swath processed" elevations derived from the time-delayed waveform beyond the first return, to significantly improve coverage. Here, we present a new method to map the limit of tidal motion from a combination of POCA and swath data. We test this new method on the Siple Coast region of the Ross Ice Shelf, and the mapped grounding line is in good agreement with previous observations from DinSAR and ICESat measurements. There is, however, an approximately constant seaward offset between these methods and ours, which we believe is due to the poorer precision of CryoSat-2. This new method has improved the coverage of the grounding zone across the Siple Coast, and can be applied to the rest of Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C11B0758J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C11B0758J"><span>Imaging Basal Crevasses at the Grounding Line of Whillans Ice Stream, West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobel, R. W.; Dawson, E. C.; Christianson, K.</p> <p>2015-12-01</p> <p>We acquired gridded ground-based radar data at the WIS grounding zone where the transition from limited- or no-slip conditions at the base of grounded ice to free-slip conditions beneath floating ice occurs across a region only a few kilometers wide. This transition is either an elastic-flexural transition from bedrock to hydrostatically-supported elevations (often tidally influenced), a transition from thicker to thinner ice over a flat bed, or some combination of these. In either case, the stress field of the ice changes as it flows across the grounding zone, often resulting in brittle deformation, which is manifested as basal crevassing at the ice-sheet base and sometimes as strand cracks at the surface. The position and morphology of these features reveal important information about the stress state across this transition where ice and ocean interact. Our surveys indicate a complex pattern of basal crevassing with many imaged in two or more profile segments as a linear feature at the bed, usually trending oblique to flow and often extending for several kilometers. Due to the wide beam pattern of our antennas, we image many of the crevasses from off-nadir reflections. Thus their arrival times are later than the primary basal reflection and segments of the crevasse appear "below" the bed, when in fact they are merely trending oblique to the profile. Often these returns have a reversed phase relative to the bed echo because the high dielectric contrast of seawater and a favorable geometry enable reflections with little loss (but a second phase reversal) from the ice-water interface near the crevasse base. In a few cases, these crevasse echoes from targets trending oblique to the profile appear to mimic the geometry of a sub-ice sediment "wedge", while in reality the radar never penetrates below the basal interface. Only about 25% of the crevasses appear to extend any significant distance upward into the basal ice, typically at low angles. A subset of these are doubly imaged by direct returns as well as by delayed reflections from the bright planar basal interface, giving curious mirror-like signatures. Our results indicate that basal crevasses offer a rich dataset for diagnosing basal stress state across ice-sheet grounding zones and that special care is needed when interpreting subglacial returns in radar data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813552E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813552E"><span>Immersion and contact freezing experiments in the Mainz wind tunnel laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós</p> <p>2016-04-01</p> <p>Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997EOSTr..78...93C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997EOSTr..78...93C"><span>New data from cold war treasure trove</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlowicz, Michael</p> <p></p> <p>For half a century, the Russian and United States navies competed for tactical advantage in the Arctic Ocean, mapping seafloor and floating ice sheets, measuring temperatures and reckoning chemistry. But with old enemies becoming new friends, data once collected for the sake of war now are being shared in the name of scientific cooperation.In mid-January, the U.S. and Russian governments announced the release of the first of four volumes of a new atlas of the Arctic Ocean. The previously classified data it contains will effectively double the amount of Arctic data that is available to the scientific community. The set includes more than 1.3 million temperature and salinity observations collected from 1948 to 1993 by drifting ice camps and stations, icebreaking ships, land—and airborne expeditions, and buoys. Approximately 70% of the observations for the Arctic Ocean and shelf seas were derived from Russian archives of formerly restricted data, with the other 30% coming from comparable sources in the U.S., Canada, and other Western nations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JApMa..74..273B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JApMa..74..273B"><span>Wave scattering by an axisymmetric ice floe of varying thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David</p> <p>2009-04-01</p> <p>The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=movie+AND+review&pg=7&id=EJ524752','ERIC'); return false;" href="https://eric.ed.gov/?q=movie+AND+review&pg=7&id=EJ524752"><span>Into the Curriculum. Art: Pueblo Storyteller Figures [and] Physical Education: Games That Rely on Feet [and] Reading/Language Arts: Movie Reviews [and] Reading/Language Arts: Reader's Choice [and] Science: Float or Sink [and] Social Studies: Buildings and Designs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Crane, Jean; Rains, Annette</p> <p>1996-01-01</p> <p>Presents six curriculum guides for art, physical education, reading/language arts, science, and social studies. Each guide identifies library media skills objectives; curriculum objectives; grade levels; print and nonprint resources; instructional roles; the activity; and procedures for completion, evaluation, and follow-up activities. (AEF)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ice+AND+cream&pg=6&id=ED206542','ERIC'); return false;" href="https://eric.ed.gov/?q=ice+AND+cream&pg=6&id=ED206542"><span>Improving Voting in Ohio through Education. A Voter Education Program for Elementary Grades.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Celebrezze, Anthony J., Jr.; Walter, Franklin</p> <p></p> <p>This resource booklet contains activities for elementary teachers who want to teach their students about voting and the election process. Part I consists of suggestions for conducting an election at different grade levels. All of the elections involve real choices that affect the student (e.g. choice of ice cream flavor or other treat for a class…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........14Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........14Y"><span>Manipulating particles for micro- and nano-fluidics via floating electrodes and diffusiophoresis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yalcin, Sinan Eren</p> <p></p> <p>The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field. The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates an induced-charge electro-osmotic (ICED) flow near the metal strip. The demonstrations by using single and multiple floating electrodes at the bottom of a straight microchannel, with induced DC electric field, include particle enrichment, movement, trapping, reversal of motion, separation, and particle focusing. A flexible strategy for the on-demand control of the particle enrichment and positioning is also proposed and demonstrated by using a locally-controlled floating metal electrode. Then, under an externally imposed AC electric field, the particle deposition onto a floating electrode, which is placed in a closed circular cavity, has been experimentally investigated. In the second part of the study, another particle manipulation method was computationally investigated. The diffusiophoretic and electrodiffusiophoretic motion of a charged spherical particle in a nanopore is subjected to an axial electrolyte concentration gradient. The charged particle experiences electrophoresis because of the imposed electric field and the diffusiophoresis is caused solely by the imposed concentration gradient. Depending on the magnitude and direction of the imposed concentration gradient, the particle's electrophoretic motion can be accelerated, decelerated, and even reversed in a nanopore by the superimposed diffusiophoresis. Based on the results demonstrated in the present study, it is entirely conceivable to extend the development to design devices for the following objectives: (1) to enrich the concentration of, say, DNA or RNA, and to increase their concentrations at a desired location. (2) to act as a filtration device, wherin the filtration can be achieved without blocking the microfluidic channel and without any porous material. (3) to act as a microfluidic valve, where the particles can be locally trapped in any desired location and the direction can be switched as desired. (4) to create nanocomposite material formation or even a thin nanocomposite film formation on the floating electrode. (5) to create a continuous concentration-gradient-generator nanofluidic device that may be obtained for nanoparticle translocation process. This may achieve nanometer-scale spatial accuracy sample sequencing by simultaneously controlling the electric field and concentration gradient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE12A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE12A..07H"><span>Pathways of Petermann Glacier's Meltwaters, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heuzé, C.; Wahlin, A.; Johnson, H. L.; Muenchow, A.</p> <p>2016-02-01</p> <p>Radar and satellite observations suggest that the floating ice shelf of Petermann glacier, north Greenland, loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic water into the fjord and under the ice shelf. Although Greenland meltwaters are key to sea level rise projections and can potentially disrupt the whole ocean circulation, the fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise onboard I/B Oden in August 2015. Two layers are found: one at 200 m (i.e. terminus depth) mostly on the eastern side of the fjord where a calving event occurred this summer, and one around 500 m depth (i.e. the grounding line) on the western side. At the sill, approximately 3 mSv of freshwater leave the fjord around 150 m on the eastern side. On the western side, a more complex circulation occurs as waters intrude in. Outside of the fjord in Hall Basin, only one layer is found, around 300 m, but its oxygen content and T-S properties suggests it is a mixture between Petermann's meltwater, meltwater from the neighbouring glaciers, surface run-off and sea ice. As Atlantic water warms up, it is key to monitor Greenland melting glaciers to properly assess sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.C21D0464D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.C21D0464D"><span>Full-Stokes modeling of grounding line dynamics: some first interplay with measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durand, G.; Gagliardini, O.; Zwinger, T.; Ritz, C.; Le Meur, E.; Rémy, F.</p> <p>2009-12-01</p> <p>Movement of the grounding line (i.e, the line between the grounded and the floating part of a marine ice-sheet) is one of the key processes that governs the mass balance of marine ice-sheets. So far, modeling of grounding line migration was inconsistent, leading to poorly reliable forecast of marine ice-sheet evolution. Important theoretical progress has been made these last years to describe the dynamics of the grounding line, and a recently developed full-Stokes model gives consistent results in comparison to this theory. Despite these important breakthroughs, theory as well as the model are restricted to two-dimensional flow line and therefore unable to be applied to a particular three-dimensional glaciological problem. Nevertheless, some first insights can be already drawn from 2D modeling results to improve the adequacy between future modeling and field measurements. We will particularly emphasize on two different aspects. (i) Modeling results have shown the major importance of high grid resolution in the vicinity of the grounding line, questioning strategies for future measurement campaigns of bedrock elevation of coastal glaciers. (ii) An approximately 10 m depression of the surface at the vertical position above the grounding line is a very stable feature produced by the model. Careful investigation of the surface curvature should help to locate grounding line position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359046','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359046"><span>Hospital-acquired listeriosis linked to a persistently contaminated milkshake machine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mazengia, E.; Kawakami, V.; Rietberg, K.; Kay, M.; Wyman, P.; Skilton, C.; Aberra, A.; Boonyaratanakornkit, J.; Limaye, A. P.; Pergam, S. A.; Whimbey, E.; Olsen, R.; Duchin, J. S.</p> <p>2017-01-01</p> <p>SUMMARY One case of hospital-acquired listeriosis linked to milkshakes produced in a commercial-grade shake freezer machine that remained contaminated following a previous outbreak of listeriosis associated with a pasteurized, dairy-based ice cream product at the same hospital despite repeated cleaning and sanitation. Healthcare facilities should be aware of the potential for prolonged Listeria contamination of food service equipment. In addition, healthcare providers should consider counseling persons who have an increased risk for Listeria infections regarding foods that have caused Listeria infections. The prevalence of persistent Listeria contamination of commercial-grade milkshake machines in healthcare facilities and the risk associated with serving dairy-based ice cream products to hospitalized patients at increased risk for invasive L. monocytogenes infections should be further evaluated. PMID:28065212</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C53C0724S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C53C0724S"><span>Ross Ice Shelf, Antarctica: Bathymetry, Structural Geology and Ocean Circulation from New IcePod Airborne Geophysical Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siddoway, C. S.; Tinto, K. J.; Bell, R. E.; Padman, L.; Fricker, H. A.; Springer, S. R.</p> <p>2016-12-01</p> <p>Rock exposures in the Ford Ranges, Marie Byrd Land (MBL), on the eastern margin of the Ross Embayment, contain direct evidence of the geological processes that led to formation of West Antarctica's continental lithosphere. Processes include wide regional extension, volcanism, and thermal reequilibration, with creation of crustal structures that are prone to reactivation today. Marie Byrd Land is tectonically active, as is evident from Late Pleistocene to Holocene eruptive centers, englacial volcanic tephra as young as 2200 years, a site of magma propagation inferred from POLEnet seismic records, and the occurrence of a 2012 earthquake cluster of magnitude M4.4 to M5.5 north of Edward VII Peninsula. However, the lithosphere underlying the Ross Ice Shelf (RIS) is poorly known due to the thick cover of shelf ice floating on the ocean, difficult to penetrate by satellite remote sensing or other methods. Airborne geophysical data for the Ford Ranges and the Ross Ice Shelf (RIS) suggest that the rock formations and structures that underlie MBL continue beneath the RIS. Notable features known in outcrop and detected/inferred from potential fields data are Pleistocene or younger mafic volcanic centers and Cretaceous core complexes, both likely associated with wrench faults. The Ford Ranges legacy dataset that now provides a fundamental basis for sub-RIS geological interpretation is a product of research in coastal MBL led by B.P. Luyendyk from 1989 - 2006. To improve our knowledge of lithospheric evolution, identify active faults and prospective zones of volcanism/heat flow, and to determine the sub-RIS bathymetry, the RIS sector is being explored via new Icepod aerogeophysics acquisition during the ROSETTA-Ice project (Ross Ocean and ice Shelf Environment, and Tectonic setting Through Aerogeophysical surveys and modeling), now underway over this vast under-explored sector of the Ross Embayment. ROSETTA-Ice collects and employs new gravity data with magnetics to delineate sediments, bedrock geological units, and faults beneath the RIS, then model bathymetry. This poster will share preliminary results and interpretations. The improved characterization of the subglacial geology and bathymetry will aid in refinement of the tectonic framework and models of oceanographic circulation, with bearing on RIS stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T22D..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T22D..06T"><span>New Crustal Boundary Revealed Beneath the Ross Ice Shelf, Antarctica, through ROSETTA-Ice Integrated Aerogeophysics, Geology, and Ocean Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.</p> <p>2017-12-01</p> <p>Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and transfer zones, and the crustal boundary that is well-separated from the Transantarctic Mountains front, control the bathymetry, impart the large-scale patterning within and upon the base of the ice sheet, influence oceanographic circulation, and therefore are of import for Ross Ice Shelf stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE14B1417M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE14B1417M"><span>Ocean Warming of Petermann Fjord and Glacier, North Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muenchow, A.; Washam, P.; Padman, L.; Nicholls, K. W.</p> <p>2016-02-01</p> <p>Petermann Fjord connects one of the largest floating ice shelves of Greenland to Nares Strait between northern Canada and Greenland. First ocean temperatures under the ice shelf and in the fjord were recorded in 2002 and 2003, respectively. Last observations were taken in August of 2015 as part of an interdisciplinary experiment of US, Swedish, and British scientists. The new ocean data include hydrographic sections along and across the 450-m deep sill at the entrance of the fjord, sections along and across the 200-m thick terminus of the glacier, and time series from three ocean-weather stations that collect ocean temperature, salinity, and pressure data from under the ice shelf of Petermann Gletscher in near real time. Our ocean data cover the entire 2002-2015 time period when we find statistically significant changes of ocean properties in space and time. The ocean under the ice shelf connects to ambient Nares Strait and to the grounding zone of the glacier at daily to weekly time scales via temperature and salinity correlation. More specifically, we find 1. substantial and significant ocean warming of deep fjord waters at Interannual time scales, 2. intense and rapid renewal of bottom waters inside the 1000-m deep fjord, and 3. large fluctuations of temperature and salinity within about 30-m of the glacier ice-ocean interface at daily to weekly time scales. Figure: Map of the study area with 2015 locations of CTD casts (blue and green dots), ocean-weather stations (green dots), and differential GPS (red triangles). Red contours are bottom depths at 500 and 1000-m while thick black line indicates the grounding zone where the glacier connects to the bed rock below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22171312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22171312"><span>Lornoxicam gastro retentive floating matrix tablets: Design and in vitro evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sathiyaraj, S; Devi, Ramya D; Hari, Vedha B N</p> <p>2011-07-01</p> <p>The objective of this present investigation is to prolong the gastric residence time of Lornoxicam by fabricating it into a floating sustained release matrix tablets. Lornoxicam, a potent oxicam group of non-steroidal anti-inflammatory drugs, suffers from relatively short half life of 2 to 3 hrs showing maximal absorption in proximal gastro intestinal tract region necessitating its need to be formulated as a floating sustained release matrix tablets. In this current investigation, hydroxyl propyl methyl cellulose K15M, a high viscous grade polymer with apparent viscosity of 15,000 cps, was kept as a variable (10-50%) and calcium carbonate (13%) was used as a gas generator. The prepared blends were subjected for its pre-formulation characterization. The directly compressed tablets were evaluated for physical parameters such as weight uniformity, hardness, friability, drug content, in-vitro buoyancy with axial and radial enlargement measurement, swelling index. From the investigation it was observed that the buoyancy lasted for up to 24 hrs. Fourier transform infra-red spectroscopy peaks assured the compatibility of the drug with excipients and confirmed the presence of pure drug in the formulation. It was supported by in-vitro dissolution studies; and the dissolution data was subjected to various release kinetic models to understand the mechanism of drug release.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTB...48.2859L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTB...48.2859L"><span>Flotation of Metallurgical Grade Silicon and Silicon Metal from Slag by Selective Hydrogen Fluoride-Assisted Flotation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larsen, E.; Kleiv, R. A.</p> <p>2017-12-01</p> <p>Flotation experiments performed on metallurgical grade silicon have demonstrated that silicon (Si) can be floated in diluted solutions of hydrogen fluoride (HF) and a frother. The recovery was found to depend on HF conditioning time, frother type, and the concentration of both HF and frother. Although Brij 58 produced the highest recoveries of the frothers that was tested, good recoveries were also obtained for Flotanol C07. Chemical analyses showed that the flotation products were purer than the corresponding feed materials, and that most impurity elements were concentrated in the tailings. A case study on cleaning of slag containing 36 pct metallurgical silicon showed promising results concerning the recovery of silicon by flotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss021e015243.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss021e015243.html"><span>Earth Observations taken by the Expedition 21 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-10-25</p> <p>ISS021-E-015243 (25 Oct. 2009) --- Upsala Glacier, Argentina is featured in this image photographed by an Expedition 21 crew member on the International Space Station. The Southern Patagonian Ice Field of Argentina and Chile hosts some of the most spectacular glaciers in the world, and is second only to Antarctica in size. This detailed photograph illustrates the terminus of Upsala Glacier, located on the eastern side of the ice field. This glacier is the third largest in the Southern Patagonian Ice Field and, like most other glaciers in the region, has experienced significant retreat over the past century. This image was taken during spring in the Southern Hemisphere, and calving of icebergs ? release of chunks of ice from the glacier terminus as it enters the waters of Lake Argentina - is visible at left. Two icebergs are of particular interest, as they retain fragments of the moraine that forms a dark line along the upper surface of the glacier. Moraines of the type visible in this image are formed from coarse rock and soil debris that accumulates along the front and sides of a flowing glacier; much like a bulldozer blade pushes material in front of it. When two glaciers merge together (center), debris in moraines along their edges can now form a medial moraine that is drawn out along the upper surface of the new ice mass. These moraines can be carried intact to the terminus and included in icebergs that then float away, dropping the coarse debris as the iceberg melts. While the icebergs produced by Upsala Glacier do not reach an ocean, there are many current glaciers ? as well as glaciers and ice sheets that existed in the geologic past ? capable of producing ocean-going icebergs. This process is thought to be recorded in the geologic record as layers or lenses of coarse, land-derived sediments within finer grained sea floor sediments that are located far from any current (or former) coastline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13K..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13K..08H"><span>Public Perceptions of Arctic Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, L.</p> <p>2014-12-01</p> <p>What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on these surveys highlights both the need and the challenge of communicating polar science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28065212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28065212"><span>Hospital-acquired listeriosis linked to a persistently contaminated milkshake machine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mazengia, E; Kawakami, V; Rietberg, K; Kay, M; Wyman, P; Skilton, C; Aberra, A; Boonyaratanakornkit, J; Limaye, A P; Pergam, S A; Whimbey, E; Olsen-Scribner, R J; Duchin, J S</p> <p>2017-04-01</p> <p>One case of hospital-acquired listeriosis was linked to milkshakes produced in a commercial-grade shake freezer machine. This machine was found to be contaminated with a strain of Listeria monocytogenes epidemiologically and molecularly linked to a contaminated pasteurized, dairy-based ice cream product at the same hospital a year earlier, despite repeated cleaning and sanitizing. Healthcare facilities should be aware of the potential for prolonged Listeria contamination of food service equipment. In addition, healthcare providers should consider counselling persons who have an increased risk for Listeria infections regarding foods that have caused Listeria infections. The prevalence of persistent Listeria contamination of commercial-grade milkshake machines in healthcare facilities and the risk associated with serving dairy-based ice cream products to hospitalized patients at increased risk for invasive L. monocytogenes infections should be further evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2210A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2210A"><span>Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon</p> <p>2017-04-01</p> <p>The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a persistent westward current in the CDW layer. We use hydrographic and ADCP sections to discuss the mechanisms that could be responsible for the formation of this feature and the implications for oceanic heat transport towards the western Amundsen ice shelves.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS33B1822A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS33B1822A"><span>Measuring the Ice Floe Sizes of the Lake Akkeshi Broken by 2011 Tohoku Pacific-Coast Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abe, T.; Yoshikawa, Y.</p> <p>2012-12-01</p> <p>Water level fluctuations in an open sea can sometimes cause large oscillations of water level in partially enclosed bodies of water such as lakes and bays. In cold and snowy regions, flooding caused by water level fluctuation and scattering of ice floes can occur due to these secondary undulation of tide, which little studies have assessed. The tsunami caused by 2011 Tohoku Pacific-Coast Earthquake reached the coast of Hokkaido, Japan. This tsunami broke up the ice on an unprecedented scale in the Lake Akkeshi, which is connected with Akkeshi Bay. Also, the intermittent tsunami intrusion caused a serious damage to local oyster fishery. On the other hand, lake ice was not broken in other lakes near the coast lines unconnected to the open sea. Therefore, in the Lake Akkeshi, the main cause of the ice breakup is thought to have been the tsunami intrusion. In this study, the sizes of floating lake ice were measured to clarify the effect of the tsunami and the water level fluctuation on lake ice. We used satellite images by WorldView-2 sensor obtained on March 9 and March 12, 2011. We measured the sizes and areas of lake ice by GIS analysis to compare these with the results from other sea ice size measurement and then attempted to clarify the difference in sizes from ice formed in sea ice zones. Firstly, we measured the area of lake ice formed before the tsunami intrusions. From the photograph obtained on March 12, we extracted the contours of ice floes formed by the tsunami. Based on the contours, we measured the areas and diameter d of floes. In the photograph obtained on March 9, the area of lake ice was estimated as about 15 km2. The figure shows a cumulative number distribution of floe diameter d on March 12. It is noticed from the figure that the graph is almost linear for the d between 8m and 20m. In other words, this means for this range N(d) behaves like d-α; that is, the floe size distribution is basically self-similar. Note that the value α=3.0 is significantly greater than the past results of 1.2<α<2.5. Moreover, diameter d notably deviated from the line for d larger than 30m. This is because some ice floes were not affected by the tsunami, while others were broken into pieces by mechanical breakup due to water level fluctuations by tsunami oscillations. In this study, the size distribution of lake ice floes broken by a tsunami is evaluated for the first time in a lake. It is revealed that there are some regimes for diameters of floes and the significant impact of the tsunami on breakup was discussed.; The cumulative number distribution of floe diameter N(d).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S33A2372H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S33A2372H"><span>MULTIMERMAID: A dedicated multichannel seismic/weather/zoological float for monitoring of the oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hello, Y. M.; Bonnieux, S.; Joubert, C.; Sukhovich, A.; Argentino, J.; Yegikyan, M.; Nolet, G.</p> <p>2013-12-01</p> <p>Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions, mostly because of the large cost associated with deploying ocean-bottom seismometers. At the same time, several thousand free-drifting profiling floats measure the temperature, salinity and current of the upper 2000 m of the ocean in the Argo program, but are incapable to record and transmit seismic signals. Simons et al. (JGR, 2009) developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. We built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. This `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers', has concluded its final design stage and a fleet of 20 units is available for experiments. Since 2012, half of these floats have been deployed in the Mediterranean and in the South Indian Ocean. 10 more will be deployed early in 2014 near the Galapagos islands in the Pacific. Analysis of the first data is allowing us to sharpen the wavelet-based algorithm parameters used to discriminate P-waves from the continuous input signal and adapt it to specific noise conditions. A new multidisciplinary version of Mermaid using a dedicated hydrophone is designed to enlarge the band pass for acoustic signals with much higher frequency than seismic. By combining the same algorithm using wavelet transforms, and by adopting a different monitoring strategy with a dedicated processing, Mermaid is able to continuously analyzes acoustic signals to detect major seismic events, while at the same time regularly checking for weather phenomena such rain, drizzle, open sea and ice, or whale migration. This extension to multi-purpose applications makes the Mermaid very attractive for the Argo program. In fact, Mermaids using passive low cost sensors form a very light and complementary solution that can easily be integrated with an Argo float since CTD data are taken during ascent. Such multidisciplinary approach should allow seismologists to participate in international programs such as Argo and obtain the dense ocean coverage needed to image the deep structure of the Earth. We estimate that about 300 Mermaids, operated over a time span of five years, can provide a ray coverage beneath the oceans comparable to that now available beneath the continents with the Global Seismic Network (GSN). To compensate for the extra energy needed for multidisciplinary applications, Geoazur and Osean are developing a new float, called Multimermaid, that uses the same 17' glass sphere as the Ocean Bottom Seismometers constructed by Geoazur. The Multimermaid can navigate up to a depth of 3000 m and hold 2.5 times more battery power than a conventional float.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C14A..02O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C14A..02O"><span>Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium</p> <p>2010-12-01</p> <p>Since fulfilling Austin Post’s prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26726743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26726743"><span>Investigation and Evaluation of an in Situ Interpolymer Complex of Carbopol with Polyvinylpyrrolidone as a Matrix for Gastroretentive Tablets of Ranitidine Hydrochloride.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yusif, Rehab Mohammad; Abu Hashim, Irhan Ibrahim; Mohamed, Elham Abdelmonem; El Rakhawy, Mohamed Magdy</p> <p>2016-01-01</p> <p>Carbopol (CP) is a biocompatible bioadhesive polymer used as a matrix for gastroretentive (GR) tablets, however, its rapid hydration shortens its bioadhesion and floating when incorporated in effervescent formulae. The interpolymer complexation of CP with polyvinylpyrrolidone (PVP) significantly reduced the excessive hydration of CP, prolonging floating and maintaining the mucoadhesiveness. In early attempts, a lengthy process was followed to prepare such an interpolymer complex. In this study, an in situ interpolymer complexation between CP and two grades of PVP (K25 and K90) in 0.1 N HCl was investigated and characterized by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Hence, directly compressed GR tablets of different combinations of PVP and CP with sodium bicarbonate (SB) as an effervescent agent were examined for prolonged gastroretention and sustained release of ranitidine hydrochloride (RHCl) as a model drug. Tablets were evaluated for in vitro buoyancy, bioadhesiveness, swelling, and drug release in 0.1 N HCl. All GR tablets containing PVP-CP combinations achieved more prolonged floating (>24 h) than CP tablets (5.2 h). Their bioadhesiveness, swelling, and drug release were dependent on the PVP molecular weight and its ratio to CP. Drug release profiles of all formulae followed non-Fickian diffusion. Formula containing the PVP K90-CP combination at a respective ratio of 1 : 3 (P90C13) was a promising system, exhibiting good floating and bioadhesive properties as well as sustained drug release. Abdominal X-ray imaging of P90C13 formula, loaded with barium sulfate, in six healthy volunteers showed a mean gastric retention period of 6.8±0.3 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001QSRv...20.1223F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001QSRv...20.1223F"><span>High-resolution climate signals in the Bølling Allerød Interstadial (Greenland Interstadial 1) as reflected in European tree-ring chronologies compared to marine varves and ice-core records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedrich, Michael; Kromer, Bernd; Kaiser, Klaus F.; Spurk, Marco; Hughen, Konrad A.; Johnsen, Sigfus J.</p> <p>2001-05-01</p> <p>Lateglacial and Holocene tree-ring chronologies are unique archives, which provide various information on past environments on a true annual time scale. Changes in ring-width can be related to past climate anomalies and dendrodated wood provides an ideal source for radiocarbon calibration. We present a 1051 year tree-ring chronology from the Late Glacial, built from subfossil Scots pines (Pinus sylvestris) that grew in different regions of Central and Southern Europe. Through a series of high-precision radiocarbon measurements we obtained a floating radiocarbon chronology, which allowed accurate wiggle-matching to the INTCAL98 calibration curve. The trees show a coherent pattern in ring-width variations throughout Central Europe, and extending into the Mediterranean, which indicates a strong external climatic factor, most probably temperature during the growing season. We identified major growth events, which appear synchronous with events seen in isotopic and tracer signals in the Greenland ice cores and with changes in the strength of upwelling in the Cariaco Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24832977','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24832977"><span>Vitamin D status and V[combining dot above]O2peak during a skate treadmill graded exercise test in competitive ice hockey players.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fitzgerald, John S; Peterson, Ben J; Warpeha, Joseph M; Wilson, Patrick B; Rhodes, Greg S; Ingraham, Stacy J</p> <p>2014-11-01</p> <p>Vitamin D status has been associated with cardiorespiratory fitness (CRF) in cross-sectional investigations in the general population. Data characterizing the association between 25-hydroxyvitamin D (25(OH)D) concentration and CRF in athletes are lacking. Junior and collegiate ice hockey players were recruited from the Minneapolis, MN (44.9° N), area during the off-season period (May 16-June 28). The purpose of this study was to examine the cross-sectional association between 25(OH)D concentration and CRF in a sample population of competitive ice hockey players. Circulating 25(OH)D level was assessed from a capillary blood sample analyzed using liquid chromatography-tandem mass spectrometry. V[Combining Dot Above]O2peak during a skate treadmill graded exercise test (GXT) was used to assess CRF. Data on both 25(OH)D concentration and V[Combining Dot Above]O2peak were available for 52 athletes. Insufficient 25(OH)D concentrations were found in 37.7% of the athletes (<32 ng·ml). Vitamin D status was not significantly associated with any physiological or physical parameter during the skate treadmill GXT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480966','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480966"><span>Clinical Commentary: On-Ice Return-to-Hockey Progression After Anterior Cruciate Ligament Reconstruction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Capin, Jacob J.; Behrns, William; Thatcher, Karen; Arundale, Amelia; Smith, Angela Hutchinson; Snyder-Mackler, Lynn</p> <p>2017-01-01</p> <p>SYNOPSIS Limited literature exists pertaining to rehabilitation of ice hockey players seeking to return-to-sport after anterior cruciate ligament reconstruction (ACLR). The purpose of this clinical commentary is to present a criterion-based, return-to-ice hockey progression for athletes after ACLR. First, we review pertinent literature and provide previously published guidelines on general rehabilitation after ACLR. Then, we present a four-phase, on-ice skating progression with objective criteria to initiate each phase. During the early on-ice phase, the athlete is reintroduced to specific demands, including graded exposure to forward, backward, and crossover skating. In the intermediate on-ice phase, the emphasis shifts to developing power and introducing anticipated changes of direction within a controlled environment. During the late on-ice phase, the focus progresses to developing anaerobic endurance and introducing unanticipated changes of direction, but still without other players or contact. Finally, once objective return-to-sport criteria are met, non-contact team drills, outnumbered and even-numbered drills, practices, scrimmages, and games are progressively reintroduced during the return-to-sport phase. Recommendations for off-ice strength and conditioning exercises complement the on-ice progression. Additionally, we apply the return-to-hockey progression framework to a case report of a female collegiate defensive ice hockey player who returned to sport successfully after ACLR. This criterion-based return-to-hockey progression may guide rehabilitation specialists managing athletes returning to ice hockey after ACLR. PMID:28355976</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9231H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9231H"><span>Multichannel seismic/weather/Zoological monitoring of the oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hello, Yann; Bonnieux, Sebastien; Sukovitch, Alexey; Argentino, Jean-Francois; Nolet, Guust</p> <p>2013-04-01</p> <p>Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' has concuded its final design stage and a fleet of 20 units is available off the shelf. Two of these floats have been deployed in the Mediterranean sea between Nice and the island of Corsica late 2012, others will be deployed in 2013, in the South Indian Ocean and near Galapagos in the Pacific. Analysis of the first data will allow us to sharpen the wavelet-based algorithm parameters used to discriminate P-waves from the continuous input signal. Ten significant events can be stored in internal memory during an average "parking depth" drift of 10 days at a chosen depth of up to 2 km. Events are classified by interest and when the memory is full, larger events replace minor events. At the end of the preprogrammed mission the float surface and transmit data (health logs and events) in Rudics mode by Iridium satellite network. A major event will force the float to ascent at surface and transmit in a short delay the corresponding recorded data as well as its GPS position. A second, dual channel, prototype version of Mermaid using two dedicated hydrophones is designed to enlarge the band pass for acoustic signals with much higher frequency than seismic. Based on the same algorithm using wavelet transforms, Mermaid continuously analyzes acoustic signals to detect both major seismic events and weather phenomena such rain, drizzle, open sea and ice, or whale migration, during its drift phase. This extension to multi-purpose applications makes the Mermaid very attractive for the Argo program. In fact, Mermaids using passive low cost sensors form a very light and complementary solution that can be integrated with an Argo float; Mermaids listen during the passive drift while CTD data are taken during ascent and descent. Such multidisciplinary approach should allow seismologists to participate in international program such as Argo and obtain the dense ocean coverage needed to image the deep structure of the Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss008e12109.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss008e12109.html"><span>Crew Earth Observations (CEO) taken during Expedition 8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-01-06</p> <p>ISS008-E-12109 (6 January 2004) --- Five year old icebergs near South Georgia Island are featured in this image photographed by an Expedition 8 crewmember onboard the International Space Station (ISS). This oblique image shows two pieces of a massive iceberg that broke off from the Antarctica Ronne Ice Shelf in October 1998. The pieces of iceberg A-38 have floated relatively close to South Georgia Island. After five years and 3 months, they are approximately 1500 nautical miles from their origin. The cloud pattern is indicative of the impact of the mountainous islands on the local wind field. At the time this image was taken, the icebergs were sheltered in the lee side of the island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27443743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27443743"><span>Absence of 21st century warming on Antarctic Peninsula consistent with natural variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Turner, John; Lu, Hua; White, Ian; King, John C; Phillips, Tony; Hosking, J Scott; Bracegirdle, Thomas J; Marshall, Gareth J; Mulvaney, Robert; Deb, Pranab</p> <p>2016-07-21</p> <p>Since the 1950s, research stations on the Antarctic Peninsula have recorded some of the largest increases in near-surface air temperature in the Southern Hemisphere. This warming has contributed to the regional retreat of glaciers, disintegration of floating ice shelves and a 'greening' through the expansion in range of various flora. Several interlinked processes have been suggested as contributing to the warming, including stratospheric ozone depletion, local sea-ice loss, an increase in westerly winds, and changes in the strength and location of low-high-latitude atmospheric teleconnections. Here we use a stacked temperature record to show an absence of regional warming since the late 1990s. The annual mean temperature has decreased at a statistically significant rate, with the most rapid cooling during the Austral summer. Temperatures have decreased as a consequence of a greater frequency of cold, east-to-southeasterly winds, resulting from more cyclonic conditions in the northern Weddell Sea associated with a strengthening mid-latitude jet. These circulation changes have also increased the advection of sea ice towards the east coast of the peninsula, amplifying their effects. Our findings cover only 1% of the Antarctic continent and emphasize that decadal temperature changes in this region are not primarily associated with the drivers of global temperature change but, rather, reflect the extreme natural internal variability of the regional atmospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E2054W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E2054W"><span>Latest Results from and Plans for the New Horizons Pluto-Kuiper Belt Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weaver, Harold; Stern, Alan</p> <p>2016-07-01</p> <p>On 2015 July 14 NASA's New Horizons spacecraft flew 12,500 km above the surface of Pluto revealing a world of remarkable complexity and diversity. A giant basin filled with nitrogen ice dominated the encounter hemisphere and is the site of vigorous ongoing solid state convection that generates glacier-like transport along the surface. Giant mountains of water ice appear to be floating in the nitrogen ice. The periphery of the basin has a wide variety of landforms, including ice flow channels and chaotically arranged blocks of water ice. Extensive sublimation pitting is observed within the nitrogen ice sheet, testifying to active volatile transport. Peculiar bladed terrain to the east of the nitrogen ice sheet appears to be coated by methane ice. Pluto's equatorial region is dominated by an ancient dark red belt of material, probably tholins created either by irradiation of surface ices or by haze precipitation from the atmosphere. Pluto sports a wide variety of surface craters with some terrains dating back approximately 4 billion years while some terrains are geologically young. New Horizons discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Charon, Pluto's largest moon, displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. All of Pluto's four small moons (Styx, Nix, Kerberos, and Hydra) have high albedos, highly elongated shapes, and are rotating much faster then synchronous with their orbital periods, with rotational poles clustered near the Pluto-Charon orbital plane. The surfaces of Nix and Hydra are coated with nearly pristine crystalline water ice, despite having crater retention ages greater than 4 billion years. The New Horizons spacecraft remains healthy and was targeted toward the flyby of a small (~30-40 km) KBO in late-2015, enabling the study of an object (2014 MU69) in a completely different dynamical class (cold classical) than Pluto, if NASA approves an Extended Mission phase. In addition to the flyby of 2014 MU69 on 2019-Jan-01, the proposed Extended Mission would also include observations of more than 20 other KBOs at resolutions and geometries not feasible from Earth, and studies of the heliospheric plasma, neutral H and He, and the dust environment out to 50 AU from the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ice+AND+cream&pg=3&id=EJ507172','ERIC'); return false;" href="https://eric.ed.gov/?q=ice+AND+cream&pg=3&id=EJ507172"><span>First Little Bank: An Economics Project in First Grade.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wamester, Pamela Ricci</p> <p>1995-01-01</p> <p>Describes a class banking project whereby students deposited their ice cream money, received a more nutritious snack as interest, and saved enough to buy books. Includes activities across the curriculum related to the banking project. (HTH)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614550O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614550O"><span>Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith</p> <p>2014-05-01</p> <p>Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access the 402 m of water underlying the 763-m thick ice. Results from the multiyear time series show the sensitivity of the sub-ice shelf circulation to changes in conditions over the continental shelf and highlight the importance of monitoring the ice shelf cavity. We will reoccupy Site 5 in the 2014/15 season to deploy a suite of observing systems for long time monitoring of the circulation below Ronne Ice Shelf. The systems will consist of sub-ice shelf oceanographic moorings instrumented with high quality sensors. They will transmit in real-time and are designed to operate for more than 10 years. In 2015/16 we will extend the observing network by deploying observatories on Filchner Ice Shelf. The Filchner-Ronne Ice Shelf and S2 observatories will provide the first ever concurrent observations from the ice-shelf cavity where ISW is formed, and the sill where it starts its descent towards the deep Weddell Sea, and will provide a unique dataset allowing us to link processes and variability within the cavity directly to overflow properties and deep water formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25723132','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25723132"><span>Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of thiamphenicol and florfenicol in environmental water samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peng, Guilong; He, Qiang; Al-Hamadani, Sulala M Z F; Zhou, Guangming; Liu, Mengzi; Zhu, Hui; Chen, Junhua</p> <p>2015-05-01</p> <p>Dispersive liquid-liquid microextraction with solidification of a floating organic droplet (DLLME-SFO) followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection was applied for the determination of thiamphenicol (TAP), florfenicol (FF) in water samples. 1-Undecanol was used as the extraction solvent which has lower density than water, low toxicity, and low melting point (19°C). A mixture of 800mL acetone (disperser solvent) and 80µL of 1-undecanol (extraction solvent) was injected into 20mL of aqueous solution. After 5min, 0.6g of NaCl was added and the sample vial was shaken. After 5min, the sample was centrifuged at 3500rpm for 3min, and then placed in an ice bath. When the extraction solvent floating on the aqueous solution had solidified, it was transferred into another conical vial where it was melted quickly at room temperature, and was diluted with methanol to 1mL, and analyzed by HPLC-UV detection. Parameters influencing the extraction efficiency were thoroughly examined and optimized. The extraction recoveries (ER) and the enrichment factors (EF) ranged from 67% to 72% and 223 to 241, respectively. The limits of detection (LODs) (S/N=3) were 0.33 and 0.56µgL(-1) for TAP and FF, respectively. Linear dynamic range (LDR) was in the range of 1.0-550µgL(-1) for TAP and 1.5-700µgL(-1) for FF, the relative standard deviations (RSDs) were in the range of 2.6-3.5% and the recoveries of spiked samples ranged from 94% to 106%. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=alfalfa&id=EJ321620','ERIC'); return false;" href="https://eric.ed.gov/?q=alfalfa&id=EJ321620"><span>The Exchange.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Blain, Mary P., Ed.; Pintavalle, Steven J., Ed.</p> <p>1985-01-01</p> <p>Presents 10 activities in biology, chemistry, physical science, and general science. Activities focus on: alfalfa sprouts; soap test; density; skating on cold ice; Kirlian photography; titration analysis (with program listing); radioactive decay; and others. Each activity includes suggested grade level(s) and procedures. (DH)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28355976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28355976"><span>On-Ice Return-to-Hockey Progression After Anterior Cruciate Ligament Reconstruction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Capin, Jacob J; Behrns, William; Thatcher, Karen; Arundale, Amelia; Smith, Angela Hutchinson; Snyder-Mackler, Lynn</p> <p>2017-05-01</p> <p>Synopsis The literature pertaining to the rehabilitation of ice hockey players seeking to return to sport after anterior cruciate ligament reconstruction (ACLR) is currently limited. The purpose of this clinical commentary was to present a criterion-based progression for return to ice hockey for athletes after ACLR. First, we review pertinent literature and provide previously published guidelines on general rehabilitation after ACLR. Then, we present a 4-phase, on-ice skating progression with objective criteria to initiate each phase. During the early on-ice phase, the athlete is reintroduced to specific demands, including graded exposure to forward, backward, and crossover skating. In the intermediate on-ice phase, the emphasis shifts to developing power and introducing anticipated changes of direction within a controlled environment. During the late on-ice phase, the focus progresses to developing anaerobic endurance and introducing unanticipated changes of direction, but still without other players or contact. Finally, once objective return-to-sport criteria are met, noncontact team drills, outnumbered and even-numbered drills, practices, scrimmages, and games are progressively reintroduced during the return-to-sport phase. Recommendations for off-ice strength and conditioning exercises complement the on-ice progression. Additionally, we apply the return-to-hockey progression framework to a case report of a female collegiate defensive ice hockey player who returned to sport successfully after ACLR. This criterion-based return-to-hockey progression may guide rehabilitation specialists managing athletes returning to ice hockey after ACLR. J Orthop Sports Phys Ther 2017;47(5):324-333. Epub 29 Mar 2017. doi:10.2519/jospt.2017.7245.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.C11A0470K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.C11A0470K"><span>Glacitectonic deformation around the retreating margin of the last Irish ice sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, J.</p> <p>2008-12-01</p> <p>Evidence for ice-marginal glacitectonic shunting and deformation of bedrock slabs is described from three sites around the west coast of Ireland. These sites (Brandon Bay, County Kerry; Pigeon Point, County Mayo; Inishcrone, County Sligo) are all locations where the late Devensian ice margin retreated on land and was confined to within limestone bedrock embayments. At these sites, flat-lying bedrock slabs (< 8 m long) have been dissociated from rockhead and moved seaward (in the direction of ice flow) by glacitectonic shunting. At all of the sites, bedrock slabs have been variously stacked, rotated, deformed into open folds, and brecciated. Separating the bedrock slabs is either a thin layer (< 20 cm) of brecciated and mylonitised cemented bedrock that shows internal folding; or a thicker (< 50 cm) normally-graded diamicton with a fine matrix. Together, the presence of these features suggests oscillation of a polythermal and clean basal ice margin that was strongly associated with basal freeze-on and the presence of proglacial permafrost. Subglacial sediment-laden meltwater was focused from behind the ice margin and through permafrost taliks. It is suggested that hydrofracturing under high hydraulic pressure, and through a frozen-bed ice margin, forced sediment injection into bedrock fractures and bedding planes and away from the ice margin, and that bedrock slabs were moved in part by hydraulic lift as well as thrust-style ice-marginal tectonics. The presence of a mosaic of warm and frozen ice-bed patches, in combination with strong geologic control and meltwater generation from behind the ice margin, can help explain formation of these unusual bedrock slab features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ED04-0056-132.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ED04-0056-132.html"><span>The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-03-16</p> <p>The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ED04-0056-114.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ED04-0056-114.html"><span>The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-03-13</p> <p>The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ED04-0056-138.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ED04-0056-138.html"><span>The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-03-16</p> <p>The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with an Airborne Synthetic Aperture Radar (AirSAR) developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C11D..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C11D..07B"><span>Increased Ocean Access to Totten Glacier, East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.; Richter, T. G.; Roberts, J. L.; Aitken, A.; Legresy, B.; Warner, R. C.; van Ommen, T. D.; Siegert, M. J.</p> <p>2015-12-01</p> <p>The Totten Glacier is the largest ice sheet outlet in East Antarctica, draining 3.5 meters of eustatic sea level potential from the Aurora Subglacial Basin (ASB) into the Sabrina Coast. Recent work has shown that the ASB has drained and filled many times since largescale glaciation began including evidence that it collapsed during the Pliocene. Steady thinning rates observed near Totten Glacier's grounding line since the beginning of the satellite altimetry record are the largest in East Antarctica and the nature of the thinning suggests that it is driven by enhanced basal melting due to ocean processes. Warm Modified Circumpolar Deep Water (MCDW), which has been linked to glacier retreat in West Antarctica, has been observed in summer and winter on the Sabrina Coast continental shelf in the 400-500 m depth range. Using airborne geophysical data acquired over multiple years we delineate seafloor valleys connecting the inner continental shelf to the cavity beneath Totten Glacier that cut through a large sill centered along the ice shelf calving front. The sill shallows to depths of about 300 mbsl and was likely a grounding line pinning point during Holocene retreat, however, the two largest seafloor valleys are deeper than the observed range of thermocline depths. The deeper of the two valleys, a 4 km-wide trough, connects to the ice shelf cavity through an area of the coastline that was previously believed to be grounded but that our analysis demonstrates is floating, revealing a second, deeper entryway to ice shelf cavity. The previous coastline was charted using satellite-based mapping techniques that infer subglacial properties based on surface expression and behavior; the new geophysical analysis techniques we use enable inferences of subglacial characteristics using direct observations of the ice-water interface. The results indicate that Totten Glacier and, by extension, the Aurora Subglacial Basin are vulnerable to MCDW that has been observed on the nearby Sabrina Coast continental shelf by multiple shipborne expeditions beginning in 1996.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SedG..350....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SedG..350....1C"><span>Sedimentology of Hirnantian glaciomarine deposits in the Balkan Terrane, western Bulgaria: Fixing a piece of the north peri-Gondwana jigsaw puzzle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatalov, Athanas</p> <p>2017-04-01</p> <p>Glaciomarine deposits of late Hirnantian age in the western part of the Palaeozoic Balkan Terrane have persistent thickness ( 7 m) and lateral uniformity in rock colour, bedding pattern, lithology, and sedimentary structures. Four lithofacies are distinguished from base to top: lonestone-bearing diamictites, interbedded structureless mudstones, crudely laminated diamictites, and finely laminated mudstones. The diamictites are clast-poor to clast-rich comprising muddy to sandy varieties. Their compositional maturity is evidenced by the very high amount of detrital quartz compared to the paucity of feldspar and unstable lithic grains. Other textural components include extraclasts derived from the local Ordovician basement, mudstone intraclasts, and sediment aggregates. Turbate structures, grain lineations, and soft sediment deformation of the matrix below larger grains are locally observed. Sedimentological analysis reveals that deposition occurred in an ice-intermediate to ice-distal, poorly agitated shelf environment by material supplied from meltwater buoyant plumes and rain-out from ice-rafted debris. Remobilization by mass-flow processes (cohesive debris flows and slumps) was an important mechanism particularly for the formation of massive diamictites. The glaciomarine deposits represent a typical deglaciation sequence reflecting retreat of the ice front (grounded or floating ice sheet), relative sea-level rise and gradually reduced sedimentation rate with increasing contribution from suspension fallout. This sequence was deposited on the non-glaciated shelf of the intracratonic North Gondwana platform along the southern margin of the Rheic Ocean. The Hirnantian strata of the Balkan Terrane can be correlated with similar glaciomarine deposits known from peri-Gondwana terranes elsewhere in Europe showing clear 'Armorican affinity'. Several lines of evidence suggest that the provenance of siliciclastic material was associated mainly with sedimentary recycling of mature sands which had been deposited across North Gondwana in Cambrian and pre-glacial Ordovician times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C33C0839O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C33C0839O"><span>Regional and Local Glacial-Earthquake Patterns in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olsen, K.; Nettles, M.</p> <p>2016-12-01</p> <p>Icebergs calved from marine-terminating glaciers currently account for up to half of the 400 Gt of ice lost annually from the Greenland ice sheet (Enderlin et al., 2014). When large capsizing icebergs ( 1 Gt of ice) calve, they produce elastic waves that propagate through the solid earth and are observed as teleseismically detectable MSW 5 glacial earthquakes (e.g., Ekström et al., 2003; Nettles & Ekström, 2010 Tsai & Ekström, 2007; Veitch & Nettles, 2012). The annual number of these events has increased dramatically over the past two decades. We analyze glacial earthquakes from 2011-2013, which expands the glacial-earthquake catalog by 50%. The number of glacial-earthquake solutions now available allows us to investigate regional patterns across Greenland and link earthquake characteristics to changes in ice dynamics at individual glaciers. During the years of our study Greenland's west coast dominated glacial-earthquake production. Kong Oscar Glacier, Upernavik Isstrøm, and Jakobshavn Isbræ all produced more glacial earthquakes during this time than in preceding years. We link patterns in glacial-earthquake production and cessation to the presence or absence of floating ice tongues at glaciers on both coasts of Greenland. The calving model predicts glacial-earthquake force azimuths oriented perpendicular to the calving front, and comparisons between seismic data and satellite imagery confirm this in most instances. At two glaciers we document force azimuths that have recently changed orientation and confirm that similar changes have occurred in the calving-front geometry. We also document glacial earthquakes at one previously quiescent glacier. Consistent with previous work, we model the glacial-earthquake force-time function as a boxcar with horizontal and vertical force components that vary synchronously. We investigate limitations of this approach and explore improvements that could lead to a more accurate representation of the glacial earthquake source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSPTA.37550354S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSPTA.37550354S"><span>Micromechanics of sea ice frictional slip from test basin scale experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.</p> <p>2017-02-01</p> <p>We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue 'Microdynamics of ice'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019365&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisruption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019365&hterms=disruption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisruption"><span>Cooling of the magma ocean due to accretional disruption of the surface insulating layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sasaki, Sho</p> <p>1992-01-01</p> <p>Planetary accretion has been considered as a process to heat planets. Some fraction of the kinetic energy of incoming planetesimals is trapped to heat the planetary interior (Kaula, 1979; Davies, 1984). Moreover, blanketing effect of a primary atmosphere (Hayashi et al., 1979; Sasaki, 1990) or a degassed atmosphere (Abe and Matsui, 1986; Zahnle et al., 1988) would raise the surface temperature of the Earth-size planets to be higher than the melting temperature. The primordial magma ocean was likely to be formed during accretion of terrestrial planets. In the magma ocean, if crystallized fractions were heavier than melt, they would sink. But if solidified materials were lighter than the melt (like anorthosite of the lunar early crust) they would float to form a solid shell surrounding the planet. (In an icy satellite, solidified water ice should easily float on liquid water because of its small density.) The surface solid lid would prevent efficient convective heat transfer and slow the interior cooling. Consider that the accretion of planetesimals still continues in this cooling stage. Shock disruption at planetesimal impact events may destroy the solid insulating layer. Even if the layer survives impacts, the surface layer is finally overturned by Rayleigh-Taylor instability, since accreting materials containing metals are heavier than the surface solidified lid of silicates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3354757','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3354757"><span>Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mohadesi, Alireza; Falahnejad, Masoumeh</p> <p>2012-01-01</p> <p>In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C12B..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C12B..03B"><span>Greenland's Biggest Losers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Box, J. E.; Hubbard, A.; Howat, I. M.; Csatho, B. M.; Decker, D. T.; Bates, R.; Tulaczyk, S. M.</p> <p>2010-12-01</p> <p>On 4 August, 2010, 275 square km of the front of the floating Petermann Glacier, far northwest Greenland, broke away. The glacier effectively retreated 15 km. Petermann has retreated 21 km since year 2000. Consulting available imagery, publications, and maps spanning the past century, we conclude that this is a retreat to a minimum extent in the observational record. This glacier is not the only ice are loser in Greenland. GRACE observations verify the concern of increased mass budget deficit. Retreat is ongoing at the 110 km wide Humboldt glacier and at the 23 km wide Zachariae ice stream. Humboldt, Zachariae, and Petermann (16 km wide) are among a handful of large marine-terminating outlets that have bedrock trenches that lead inland below sea level to the thick, interior reservoir of the ice sheet. Sleeping giants are awakening. Our area change survey of the 35 widest Greenland outlets indicates an annual marine-terminating glacier area loss rate in excess of 130 sq km per year. Here, we evaluate in this context the mechanisms for marine-terminating glacier retreat, dynamical responses to calving, and the apparent climate forcings. The work thus consults a suite of data sets, including: long-term meteorological station records; satellite-derived sea and land surface temperatures; satellite-derived sea ice extent; regional climate model output; oceanographic casts; time lapse cameras, surface elevation change, and tidal records. Cumulative area change at Greenland’s glacier top 5 “losers”. 2010 areas are measured ~1 month prior to the end of summer melt when the survey usually is made . We do not expect 2010 area changes to be much different using the future data. If anything, we expect the losses to be larger. Click here for a full resolution graphic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.G1147E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.G1147E"><span>Optical Properties of Silver Nanoparticulate Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.</p> <p></p> <p>The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JMS....45...21T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JMS....45...21T"><span>The influence of double-diffusive processes on the melting of ice in the Arctic Ocean: laboratory analogue experiments and their interpretation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turner, J. S.; Veronis, G.</p> <p>2004-03-01</p> <p>This study has been motivated by two oceanographic observations: an increased rate of melting of sea ice in the Arctic Ocean, and the advance of an anomalously warm tongue of Atlantic water across the Arctic below the halocline over the last few decades. A series of laboratory experiments has been carried out in order to explore the physical principles underlying these phenomena, and the possibility that the extra heating at depth is responsible for the enhanced melting rate. A tank was filled with salt solution having various constant vertical density gradients. A block of ice one third of the length of the tank was floated on the surface at one end, and the rest of the surface and the walls of the tank were insulated. When no extra heat was supplied the melting rate (loss of weight of the ice in 1 h) systematically decreased as the stratification was changed from homogeneous fluid to increasingly large density gradients, while keeping the salinity of the solution in contact with the ice constant. An analogue of the intruding Atlantic water was produced by heating the lower portion of the vertical end wall at the end of the tank opposite to the ice end, keeping its temperature constant, and using the same range of salinity gradients as in the unheated experiments. Again the melting rate decreased as the density gradient was increased, but for low gradients it was larger than that in the unheated experiments. Above a certain intermediate gradient there was no significant difference in melting rate between the unheated and heated runs. The melting data were supplemented by photographs and vertical temperature and salinity profiles. The upward transfer of heat from the body of the fluid to melt the ice was clearly double-diffusive: overturning layers, separated by 'diffusive' interfaces, were visible on shadowgraphs, and the thickness of the layers decreased as the density gradient increased. The mean thickness of the layers through the depth of the tank also systematically decreased as the density gradient increased. With weak gradients an extra heat flux to the ice came from the intruding heated layer, but at large gradients this tongue of warm water at depth did not add to the flux near the surface. Though they were obtained in a simple, arbitrary and fixed geometry, we believe that the results of these experiments can be used as the basis for a better physical understanding of the melting rates of ice in the Arctic under various conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21B0339B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21B0339B"><span>Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.</p> <p>2014-12-01</p> <p>During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness except in areas of relatively flat snow and ice. The LiDAR had a ground point spacing of ~25-50 cm (depending on survey altitude) and so easily encompassed all other data. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1303304','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1303304"><span>Ice Load Project Final Technical Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McCoy, Timothy J.; Brown, Thomas; Byrne, Alex</p> <p></p> <p>As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of anmore » integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the moving ice and the response of the structure. In some cases, the dynamic effects are random and in other cases they are deterministic, such as the effect of structural resonance and coupling of the ice forces with the defection of the support structure. The initial versions of the IceFloe routines incorporate modules that address these varied force and dynamic phenomena with seven alternative algorithms that can be specified by the user. The IceFloe routines have been linked and tested with four major wind turbine aeroelastic simulation codes: FAST, a tool developed under the management of the National Renewable Energy Laboratory (NREL) and available free of charge from its web site; Bladed[4], a widely-used commercial package available from DNV GL; ADAMS[5], a general purpose multi-body simulation code used in the wind industry and available from MSC Software; and HAWC2[6], a code developed by and available for purchase from Danmarks Tekniske Universitet (DTU). Interface routines have been developed and tested with full wind turbine simulations for each of these codes and the source code and example inputs and outputs are available from the NREL website.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FlDyR..49b5512D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FlDyR..49b5512D"><span>Effect of small floating disks on the propagation of gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Santi, F.; Olla, P.</p> <p>2017-04-01</p> <p>A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC51H0827G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC51H0827G"><span>A Coupled Ice-Atmosphere-Dust Model for a Neoproterozoic "Mudball Earth"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodman, J. C.; Strom, D.</p> <p>2010-12-01</p> <p>The Neoproterozoic "Snowball Earth" glaciations remain a subject of intense debate. While many have used field data to argue for either a totally or partially ice-covered Earth, fewer efforts have been made to establish the basic physical climate state and internal dynamics of these alternatives. Description of feedbacks is especially important: how does a globally ice-covered Earth reinforce itself as a stable climate system, and/or sow the seeds for its own destruction? In previous work, we investigated the flow properties of thick floating global ice sheets, and found that flow from pole to equator tends to eliminate regions of thin ice in the tropics. We briefly mentioned that ice flow and sublimation could lead to a "lag deposit" of dust on top of the tropical ice. The consequences of this were explored in detail by Dorian Abbott and others, who found that the accumulation of dust atop tropical ice causes a strong warming effect, which strongly promotes deglaciation of a Snowball climate. However, Abbott et al specified a dust layer ab initio in their GCM simulations, leaving aside the processes which produce it. Here, we present the results of our efforts to add dust processes to an earlier coupled atmosphere/ocean/ice model originally developed by David Pollard and Jim Kasting. Their model includes energy balance equations for the atmosphere and an ice mechanics model for glacial flow. To this we have added variables tracking the fraction of dust incorporated into snow and ice; the transport and accumulation of this dust through ice flow; the effects of dust on albedo and penetration of sunlight into the ice; restriction of evaporation from dust-covered surfaces; and density and buoyancy effects of dusty ice. Dust is added to the surface globally at a fixed rate, and is removed by meltwater runoff. We find that ice in tropical regions of net evaporation quickly develops a surface dust layer which drastically lowers its albedo. This dust layer develops rapidly (1000-10,000 years), and remains relatively thin (mm to cm). Its albedo effect is not strong enough to cause deglaciation on its own, but does warm the planet to near the melting point: modest amounts of CO2 are enough to cause total deglaciation. Our results show that the "mudball Earth" is a remarkably stable climate system. Drastic changes in forcing, such as varying the rate of dust accumulation by a factor of 100, have little effect on the climate, due to a strong feedback control. With summertime temperatures just below melting, adding more dust to lower the planetary albedo warms the Earth, causing summertime melting which washes away the additional dust, maintaining status quo. Dust layer thickness is controlled by a related hydrological feedback: if the dust becomes thick enough to prevent evaporation in the tropics, then less snow falls at midlatitudes. Thus, midlatitude snow cover becomes dustier and darker, warming the planet, which again melts some ice to eliminate excess dust. Future work with this model will consider the patchiness of thin dust cover on an ice surface, and will also look at the consequences of large instantaneous dust sources such as asteroid/comet impacts or large volcanic eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Icar..177..491P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Icar..177..491P"><span>Evaluation of the possible presence of clathrate hydrates in Europa's icy shell or seafloor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prieto-Ballesteros, Olga; Kargel, Jeffrey S.; Fernández-Sampedro, Maite; Selsis, Franck; Martínez, Eduardo Sebastián; Hogenboom, David L.</p> <p>2005-10-01</p> <p>Several substances besides water ice have been detected on the surface of Europa by spectroscopic sensors, including CO 2, SO 2, and H 2S. These substances might occur as pure crystalline ices, as vitreous mixtures, or as clathrate hydrate phases, depending on the system conditions and the history of the material. Clathrate hydrates are crystalline compounds in which an expanded water ice lattice forms cages that contain gas molecules. The molecular gases that may constitute Europan clathrate hydrates may have two possible ultimate origins: they might be primordial condensates from the interstellar medium, solar nebula, or jovian subnebula, or they might be secondary products generated as a consequence of the geological evolution and complex chemical processing of the satellite. Primordial ices and volatile-bearing compounds would be difficult to preserve in pristine form in Europa without further processing because of its active geological history. But dissociated volatiles derived from differentiation of a chondritic rock or cometary precursor may have produced secondary clathrates that may be present now. We have evaluated the current stability of several types of clathrate hydrates in the crust and the ocean of Europa. The depth at which the clathrates of SO 2, CO 2, H 2S, and CH 4 are stable have been obtained using both the temperatures observed in the surface [Spencer, J.R., Tamppari, L.K., Martin, T.Z., Travis, L.D., 1999. Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514-1516] and thermal models for the crust. In addition, their densities have been calculated in order to determine their buoyancy in the ocean, obtaining different results depending upon the salinity of the ocean and type of clathrate. For instance, assuming a eutectic composition of the system MgSO 4sbnd H 2O for the ocean, CO 2, H 2S, and CH 4 clathrates would float but SO 2 clathrate would sink to the seafloor; an ocean of much lower salinity would allow all these clathrates to sink, except that CH 4 clathrate would still float. Many geological processes may be driven or affected by the formation, presence, and destruction of clathrates in Europa such as explosive cryomagmatic activity [Stevenson, D.J., 1982. Volcanism and igneous processes in small icy satellites. Nature 298, 142-144], partial differentiation of the crust driven by its clathration, or the local retention of heat within or beneath clathrate-rich layers because of the low thermal conductivity of clathrate hydrates [Ross, R.G., Kargel, J.S., 1998. Thermal conductivity of Solar System ices, with special reference to martian polar caps. In: Schmitt, B., De Berg, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Dordrecht, pp. 33-62]. On the surface, destabilization of these minerals and compounds, triggered by fracture decompression or heating could result in formation of chaotic terrain morphologies, a mechanism that also has been proposed for some martian chaotic terrains [Tanaka, K.L., Kargel, J.S., MacKinnon, D.J., Hare, T.M., Hoffman, N., 2002. Catastrophic erosion of Hellas basin rim on Mars induced by magmatic intrusion into volatile-rich rocks. Geophys. Res. Lett. 29 (8); Kargel, J.S., Prieto-Ballesteros, O., Tanaka K.L., 2003. Is clathrate hydrate dissociation responsible for chaotic terrains on Earth, Mars, Europa, and Triton? Geophys. Res. 5. Abstract 14252]. Models of the evolution of the ice shell of Europa might take into account the presence of clathrate hydrates because if gases are vented from the silicate interior to the water ocean, they first would dissolve in the ocean and then, if the gas concentrations are sufficient, may crystallize. If any methane releases occur in Europa by hydrothermal or biological activity, they also might form clathrates. Then, from both geological and astrobiological perspectives, future missions to Europa should carry instrumentation capable of clathrate hydrate detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3117R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3117R"><span>Classroom Activities about Water and Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez, M.</p> <p>2012-04-01</p> <p>The purpose of this activity is to demonstrate practical work and experiments in the classroom, with students on Water: Water is the most neccesary Earth's resource, although it is decreasing because many human activities are changing its quality and its availability. The activity is designed in order to recreate experiments, simulations, and determine the aspects of the problematic environment currently plaguing our planet, especially those related to water and climate change. The selected activities have to be easy to make, and easy to understand. Each activity will be illustrated, explained and described using pictures and short texts, so teachers could replay them in their classroom. 1. Simulation of the Ocean Water Currents Convection to understand the heat distribution in our planet. 2. Ocean Water Stratification According to Water Salinity. We can understand the behaviour of water when we mix water from different densities 3. Melting of the Arctic and Antarctic Polar Caps. In this experiment, we can see the consequences of changing environment and climate conditions as it pertains to ice and our polar ice caps. We want to show the different behaviours of continental and floating ice and to evaluate the consequences of their melting. 4. Detecting water pollution. Here, we can analyse some water patterns and get to know the existence or absence of pollutants in the water, as well as learning how to determine its pH level, hardness, nitrogen composition, bacteria content and more. 5. Creating a home treatment. We show the necessity to preserve the water quality through a suitable treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913204S"><span>CryoSat SAR/SARin Level1b products: assessment of BaselineC and improvements towards BaselineD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso</p> <p>2017-04-01</p> <p>CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline C, was released in operation in April 2015 and the second CryoSat reprocessing campaign was jointly initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also of some specific configurations for the calibration corrections. In particular, the CryoSat Level1b BaselineC products generated in the framework of the second reprocessing campaign include refined information for what concerns the mispointing angles and the calibration corrections. This poster will thus detail thus the evolutions that are currently planned for the CryoSat BaselineD SAR/SARin Level1b products and the corresponding quality improvements that are expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11809B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11809B"><span>Jökulhlaup hazards in Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Björnsson, H.; Palsson, F.; Mahlmann, A.</p> <p>2003-04-01</p> <p>Jökulhlaups (glacial outburst floods) in Iceland profoundly affect landscape, threaten human life and property. They can be traced to (1) marginal ice-dammed lakes (< 15 km^2 in area), (2) subglacial lakes at geothermal areas (1 to 40 km^2) and (3) meltwater drained during volcanic eruptions. At present, jökulhlaups originate from some fifteen marginal ice-dammed lakes. Typical values for peak discharges are 1,000-3,000 m^3s^-1, duration 2-5 days and total volumes of 2,000x10^6 m^3. The subglacial lakes vary in volume by three orders of magnitude (2x10^9 to 4x10^12 m^3) and the production rate of basal meltwater spans from 2-6 m^3s^-1. Jökulhlaups drain regularly from six subglacial lakes with an interval of 1 to 10 years. The duration may be from 2-3 days to 2-3 weeks, and the peak discharge from 200 to 10^6 m^3s^-1. More than 100 subglacial volcanic eruptions have occurred during the last 800 years, melting 5x10^3 to 10^5 m^3s^-1; the most catastrophic reaching peak discharge of up to 10^6 m^3s^-1 within 1 to 3 days. Jökulhlaups from subglacial lakes may transport of the order of 10^7 tons of sediment but during the most violent volcanic eruptions the sediment load has been 10^8 tons. The release of meltwater from glacial lakes can take place by two different mechanisms. Drainage can begin at pressures lower than the ice overburden in conduits that expand slowly due to melting of the ice walls by frictional and sensible heat in the water. Alternatively, the lake level rises until the ice dam is floated. In this case, discharge rises faster than can be accommodated by melting of the conduits, and the glacier is lifted along the flow path as the water forces open space for itself, prior to channel formation. Approaching the glacier terminus, basal water may burst on to the glacier surface through several hundred metres of ice. Icebergs may be broken off the margin and spread over the surroundings. Normally jökulhlaups do not lead to glacier surges but eruptions in ice-capped stratovolcanoes have caused rapid and extensive glacier sliding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C13C0687W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C13C0687W"><span>United States Naval Academy Polar Science Program's Visual Arctic Observing Platforms; IceGoat and IceKids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woods, J. E.; Rigor, I. G.; Valentic, T. A.</p> <p>2013-12-01</p> <p>The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Observing Platforms. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Engineering Departments, and in close collaboration with SRI International, developed the USNA Visual Arctic Observing Platforms. The experience gained through Polar field studies and data derived from these platforms will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 (IG1) off the USCGC HEALY in September, 2012. IG1 suffered a malfunction to its solar powered webcam system upon deployment, but is still reporting via ARGOS SATCOM systems basic weather parameters of air temperature, pressure, and position. USNA PSP attempted to build a less robust, but more economical system integrating similar low power observing platforms housed in heavy duty coolers. This allowed for a streamlined process to get a complete system completed in one academic year. IceKids (IK) are similar observing platforms, just not designed to float once the sea ice melts. IK1 was deployed to Antarctica from October 2012 through January 2013 and captured over 11,000 web cam images in near real time of two remote environmental monitoring stations. IK2A and IK3T were built to be deployed at the Naval Academy Ice Experiment in Barrow, AK in March 2013. IK2A was unique in trying to collect and transmit underwater acoustic signals in near real time. The system integrated a passive hydrophone into the already developed low power data transport system. Unfortunately a malfunction occurred post deployment and only a few hours of data was collected while under the ice. IK3T integrated a Vaisala all in one weather station for very accurate Air Temperature, Pressure, and Wind measurements. IK3T is still operating in Barrow, AK as part of the University of Washington's Arctic Observing Experiment (AOX) where very precise temperature measurements are being collected for validation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23369093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23369093"><span>Formulation, in vitro evaluation and study of variables on tri-layered gastro-retentive delivery system of diltiazem HCl.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raut Desai, Shilpa; Rohera, Bhagwan D</p> <p>2014-03-01</p> <p>Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs. To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ). Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12 h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied. The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3-4 min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer-Peppas model, which suggested that drug release was due to diffusion through polymer swelling. Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol3/pdf/CFR-2010-title7-vol3-sec58-646.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol3/pdf/CFR-2010-title7-vol3-sec58-646.pdf"><span>7 CFR 58.646 - Official identification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Requirements for Finished Products Bearing Usda Official Identification § 58.646 Official identification. (a) Only ice cream and... to be in compliance with these requirements may be identified with the official USDA Quality Approved...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15668755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15668755"><span>Oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis in allogeneic hematopoietic stem cell transplant recipients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aisa, Yoshinobu; Mori, Takehiko; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Yokoyama, Akihiro; Ikeda, Yasuo; Okamoto, Shinichiro</p> <p>2005-04-01</p> <p>The purpose of this study was to evaluate the efficacy of oral cryotherapy to prevent high-dose melphalan-induced stomatitis. Eighteen consecutive recipients of allogeneic hematopoietic stem cell transplant conditioned with high-dose melphalan (140 mg/m2) in combination with fludarabine alone or with fludarabine and additional chemotherapy or radiation were enrolled. The severity of stomatitis was graded according to the National Cancer Institute Common Toxicity Criteria. Patients were kept on oral cryotherapy using ice chips and ice-cold water shortly before, during, and for additional 90 min after completion of melphalan administration. Only two of 18 patients (11.1%) developed grade 2 or 3 stomatitis while six of seven patients in the historical control developed it (85.7%; P=0.001). These results suggested that oral cryotherapy could effectively prevent stomatitis caused by high-dose melphalan, and we recommend that it should be incorporated into the conditioning regimen with high-dose melphalan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cm15.book..621X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cm15.book..621X"><span>Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Ping; Li, Guangqiang; Qin, Qingwei</p> <p></p> <p>Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002461"><span>The Geographic Distribution of Boulder Halo Craters at Mid-to-High Latitudes on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rader, L. X.; Fassett, C. I.; Levy, J. S.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002461'); toggleEditAbsImage('author_20170002461_show'); toggleEditAbsImage('author_20170002461_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002461_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002461_hide"></p> <p>2017-01-01</p> <p>Extensive evidence exists for ground ice at mid-to-high latitudes on Mars, including results from neutron spectroscopy [1-3], thermal properties [4-5], geomorphology [e.g., 6-9], and the in situ observations of Mars Phoenix [10]. This ground ice has been hypothesized to be emplaced diffusively and fill pores [11], or to have accumulated by ice and dust deposition that draped or mantled the terrain [7, 12]. These two processes are not mutually exclusive; both potentially have occurred on Mars [5]. One of the landforms found in areas where ground ice is common on Mars are boulder halo craters [e.g., 13-15] (Figure 1), which are topographically muted impact craters that are filled by ice-rich regolith. They are outlined by boulders that trace a circular outline of the original crater rim. Boulder halos generally have distinctly higher boulder densities than the surrounding background plains and have few boulders in their interiors. The mechanism of boulder halo crater formation is somewhat uncertain. Our working model is that an impact event occurs with sufficient size to excavate to a depth greater than the boulder-poor, ice-rich soils. Excavated boulders are deposited around the crater's rim and in its proximal ejecta. Quite rapidly [14], the crater becomes infilled by icy soil. Rather than being buried, boulders in the halo remain at the surface, perhaps be-cause they 'float' relative to finer-grained materials [14, 16]. Regardless of the details of this process, the life-time of boulders at the surface is much greater than the timescale needed to remove most of the craters' topography. Physical weathering of rocks must be greatly out-paced by crater infilling (the opposite of what is typical, e.g., on the Moon [17]). The rapidity of this infilling is easiest to understand if icy mantling material is deposited and accumulates, rather than simply being added by pore filling of soils. If this model is correct, boulder halos only form when they excavate rock-producing materials from beneath the upper surface. Thus, the distribution and size of craters that result in boulders halos may provide in-sight into the thickness of the ice-rich surface layer in different locations. Note that this thickness is necessarily that of the ice-rich layer at the time of impact, not at present. This study is an initial survey of boulder halo crater locations in the 50deg to 80degN and 50deg to 80degS latitude bands on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913431R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913431R"><span>Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Tjarda; Hole, Lars; Voss, Paul</p> <p>2017-04-01</p> <p>We demonstrate profiling of the atmospheric boundary layer over Arctic ice-free and sea-ice covered regions by free-floating controllable CMET balloons. The CMET observations (temperature, humidity, wind-speed, pressure) provide in-situ meteorological datasets in very remote regions for comparison to atmospheric models. Controlled Meteorological (CMET) balloons are small airborne platforms that use reversible lift-gas compression to regulate altitude. These balloons have approximately the same payload mass as standard weather balloons but can float for many days, change altitude on command, and transmit meteorological and system data in near-real time via satellite. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles (temperature, humidity, wind) over coastal and remote areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic atmospheric boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea-ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind-shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We show that CMET balloons are a valuable approach for profiling the free atmosphere and atmospheric boundary layer in remote regions such as the Arctic, where few other in-situ observations are available to trace processes and for model evaluation. References: Roberts, T. J., Dütsch, M., Hole, L. R., and Voss, P. B.: Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses. Atmos. Chem. Phys., 16, 12383-12396, doi:10.5194/acp-16-12383-2016, 2016. Hole L. R., Bello A. P., Roberts T. J., Voss P. B., Vihma T.: Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 1-8, doi:10.1017/S0954102016000213, 2016. Voss P. B., Hole L. R., Helbling E. F., Roberts T. J.: Continuous in-situ soundings in the arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons. Journal of Intelligent Robot Systems, 70, 609-617, doi 10.1007/s10846-012-9758-6, 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001434"><span>Electrostatic Evaluation of the ARES I FTS Antenna Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hogue, Michael D.; Calle, Carlos I.</p> <p>2010-01-01</p> <p>Surface resistivity and volume resistivity data show all the tested non-metallic materials of the Ares I FTS antenna assembly to be insulative. The external materials (White foam, phenolic) should be able to develop a large surface charge density upon tribocharging with ice crystal impingement. Dielectric breakdown tests on the FTS antenna housing materials show that each of the insulative materials are very resistive to electrical breakdown. The thicknesses of these materials in a nominal housing should protect the antenna from direct breakdown from external triboelectric charging potentials. Per data from the Air Force study, a maximum external electric potential in the range of 100kV can be developed on surfaces tribocharged by ice crystal impingement. Testing showed that under operational pressure ranges, this level of exterior voltage can result in a potential of about 6 kV induced on the electrically floating interior antenna vanes. Testing the vanes up to this voltage level showed that electrostatic discharges can occur between the electrically floating vanes and the center, grounded screw heads. Repeated tests with multiple invisible and visible discharges caused only superficial physical damage to the vanes. Fourier analysis of the discharge signals showed that the frequency range of credible discharges would not interfere with the nominal operation of the FTS antenna. However, due to the limited scope, short timetable, and limited funding of this study, a direct measurement of the triboelectric charge that could be generated on the Ares I antenna housing when the rocket traverses an ice cloud at supersonic speeds was not performed. Instead, data for the limited Air Force study [3] was used as input for our experiments. The Air Force data used was not collected with a sensor located to provide us with the best approximation at the geometry of the Ares I rocket, namely that of the windshield electrometer, because brush discharges to the metal frame of the windshield periodically depleted any charge accumulated. The configuration of the Ares I antenna assembly does not include any exposed metals in the vicinity and the windshield data could not be used. Since the windshield sensor data was unusable, we decided that the Patch 2 location would provide us with a rough approximation to the Ares I antenna configuration and would give us an indication of the possible charging levels that would develop. This was the data that we used in this study. Whether these charging levels would be of the same order of magnitude as the actual charges developed by the Ares I traversing a cloud with ice particles is at this point unknown. An actual experimental test, requiring the acquisition of additional instrumentation, is strongly advised before a final recommendation can be formulated regarding the safe levels of electrostatic charging on the antenna housing. Thus the results of this study should be considered to be preliminary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.117q5901W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.117q5901W"><span>Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.</p> <p>2016-10-01</p> <p>Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=skating&pg=3&id=EJ835929','ERIC'); return false;" href="https://eric.ed.gov/?q=skating&pg=3&id=EJ835929"><span>Connecting Mathematics and Writing Workshop: It's Kinda like Ice Skating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carter, Susan</p> <p>2009-01-01</p> <p>Second-grade students struggle with writing about mathematical topics during math class, so the teacher begins to integrate mathematical topics into their Writing Workshop. Content journals are used during math, and students are encouraged to write about personal connections to mathematical situations, as well as incorporate mathematical concepts…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ice+AND+cream&pg=4&id=EJ271931','ERIC'); return false;" href="https://eric.ed.gov/?q=ice+AND+cream&pg=4&id=EJ271931"><span>Thumbs Up: High-Quality, Low-Cost Teaching Aids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Paine, Carolyn</p> <p>1982-01-01</p> <p>Exemplary teaching aids--games, workbooks, student and teacher resource books, reading materials, and records--are recommended by subject area and grade level. Materials include an ice cream cone game for mathematics, a "Life Skills Reading" book on telephone usage, a "Dictionary of Recent American History," and many other items. (PP)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cricket&pg=6&id=ED230528','ERIC'); return false;" href="https://eric.ed.gov/?q=cricket&pg=6&id=ED230528"><span>Nontraditional Games in a Foreign Environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cross, Thomas S.</p> <p></p> <p>A study investigated students' reactions to the addition of nontraditional games (played in and traditional to another country) to the physical education curriculum. Seventh grade students in Australia were introduced to game development, skills, and present status of two sports, 'Midget' Hockey, a modified version of Canadian ice hockey, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=plastic+AND+use&pg=3&id=EJ650390','ERIC'); return false;" href="https://eric.ed.gov/?q=plastic+AND+use&pg=3&id=EJ650390"><span>From IDs to Ice Cream to "I, Claudius": Security Is in the Cards at Cleveland Hill Union Free School District.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Passmore, Cheryl</p> <p>2002-01-01</p> <p>Describes the use of plastic identity badges with photographs and barcodes issued to all administrators, teachers, staff members, and students in grades 6-12 at the Cleveland Hill Union Free School District in Cheektowaga, New York. (PKP)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03734&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03734&hterms=ice+antarctica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dice%2Bantarctica"><span>Clouds and Ice of the Lambert-Amery System, East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p><p/>These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.<p/>The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.<p/>Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate prediction models. Identification of polar clouds, mapping of their distributions, and retrieval of their heights provide information that will help to reduce this uncertainty.<p/>The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 15171. The panels cover an area of 380 kilometers x 984 kilometers, and utilize data from blocks 145 to 151 within World Reference System-2 path 127.<p/>MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RvGeo..54..220T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RvGeo..54..220T"><span>Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Truffer, Martin; Motyka, Roman J.</p> <p>2016-03-01</p> <p>Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25875205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25875205"><span>Sources and levels of ambient ocean sound near the Antarctic Peninsula.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dziak, Robert P; Bohnenstiehl, DelWayne R; Stafford, Kathleen M; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J; Lau, Tai-Kwan; Haxel, Joseph H; Mellinger, David K</p> <p>2015-01-01</p> <p>Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4397061','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4397061"><span>Sources and Levels of Ambient Ocean Sound near the Antarctic Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.</p> <p>2015-01-01</p> <p>Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec27-753.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec27-753.pdf"><span>14 CFR 27.753 - Main float design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-753.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-753.pdf"><span>14 CFR 29.753 - Main float design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ED04-0056-110.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ED04-0056-110.html"><span>An AirSAR 2004 view from the DC-8 as it approaches the Larsen Ice Shelf, which is part of the Antarctic Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-03-13</p> <p>An AirSAR 2004 view from the DC-8 as it approaches the Larsen Ice Shelf, which is part of the Antarctic Peninsula. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28025302','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28025302"><span>Micromechanics of sea ice frictional slip from test basin scale experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sammonds, Peter R; Hatton, Daniel C; Feltham, Daniel L</p> <p>2017-02-13</p> <p>We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with [Formula: see text] (where τ is the shear stress and σ n is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = f fractal T ml w s , where f fractal is the fractal asperity height distribution, T ml is the shear strength for frictional melting and lubrication and w s is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19769106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19769106"><span>Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lovvorn, James R; Grebmeier, Jacqueline M; Cooper, Lee W; Bump, Joseph K; Richman, Samantha E</p> <p>2009-09-01</p> <p>Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss030e091253.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss030e091253.html"><span>Earth Observations taken by Expedition 30 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-02-21</p> <p>ISS030-E-091253 (21 Feb. 2012) --- Perito Moreno Glacier near Lake Argentino, Argentina is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The largest glacier tongue in this image is known as the Perito Moreno Glacier (center). It descends from the Southern Patagonian Icefield (top) at great altitudes (greater than 2,100 meters, 6,825 feet) in the southern Andes Mountains, down into the water and warmer altitudes of Lake Argentino at approximately 180 meters above sea level. The glacier is 30 kilometers long (image width represents approximately 60 kilometers on the ground). Perito Moreno is one of the largest glaciers in Patagonia, and is perhaps the most famous for the fact that it periodically cuts off the major southern arm (known as Brazo Rico) of Lake Argentino completely from the rest of the lake. This is because the glacier advances right across the lake until it meets the opposite shoreline. The ice tongue is “grounded” (meaning that it is not floating, as occurs at the termini of glaciers and ice shelves where they enter the sea), thus forming a natural dam which prevents the lake water on either side from circulating, which in turn causes muddier, “milkier” water to concentrate in Brazo Rico. Sub-ice water, flows under the ice, not only carrying the mud into the lake but also helping lubricate the glacier’s downhill movement. Because of its effect as a dam, meltwater from the south raises water levels in Brazo Rico by as much as 30 meters above the level of the water in Lago Argentino. The great pressure of this higher water ultimately causes the ice tongue to rupture catastrophically, in a great natural spectacle. The last rupture took place in March 2012. The process then repeats, on average every four to five years, as the glacier starts to grow back towards the opposite shoreline. The repeatability of the rupture has contributed to the event becoming a major tourist attraction in the region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/934910-cryogenic-target-implosion-experiments-omega','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/934910-cryogenic-target-implosion-experiments-omega"><span>Cryogenic Target-Implosion Experiments on OMEGA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Harding, D.R.; Meyerhofer, D.D.; Sangster, T.C.</p> <p></p> <p>The University of Rochester’s Laboratory for Laser Energetics has been imploding thick cryogenic targets for six years. Improvements in the Cryogenic Target Handling System and the ability to accurately design laser pulse shapes that properly time shocks and minimize electron preheat, produced high fuel areal densities in deuterium cryogenic targets (202+/-7 mg/cm^2). The areal density was inferred from the energy loss of secondary protons in the fuel (D2) shell. Targets were driven on a low final adiabat (alpha = 2) employing techniques to radially grade the adiabat (the highest adiabat at the ablation surface). The ice layer meets the target-designmore » toughness specification for DT ice of 1-um rms (all modes), while D2 ice layers average 3.0-um-rms roughness. The implosion experiments and the improvements in the quality and understanding of cryogenic targets are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol15/pdf/CFR-2010-title40-vol15-sec65-45.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol15/pdf/CFR-2010-title40-vol15-sec65-45.pdf"><span>40 CFR 65.45 - External floating roof converted into an internal floating roof.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED314377.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED314377.pdf"><span>Dynamics of Effective Study. Bulletin 1825.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Louisiana State Dept. of Education, Baton Rouge.</p> <p></p> <p>This study skills curriculum addresses the problem of a lack of study skills demonstrated by students in grades 7-10. It focuses on 11 essential knowledge acquisition skills: (1) motivation and ice-breakers; (2) outlining and mapping; (3) time management; (4) PQ5R (Preview, Question, Read, Record, Recite, Review, and Reflect); (5) notetaking; (6)…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.C41B0326G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.C41B0326G"><span>Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gobat, J.; Lee, C.</p> <p>2006-12-01</p> <p>Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications, developing an overarching system specification to guide community-wide engineering efforts and establishing an active community and steering group to guide long-term engineering efforts and ensure interoperability. This presentation will summarize ANCHOR workshop findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918586S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918586S"><span>Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph</p> <p>2017-04-01</p> <p>The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting enhanced basal melt rates may explain the observed thinning of the glacier tongue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26307090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26307090"><span>In silico and in vitro methods to optimize the performance of experimental gastroretentive floating mini-tablets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim</p> <p>2016-01-01</p> <p>Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DDA....4530103N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DDA....4530103N"><span>On the time-variable nature of Titan's obliquity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noyelles, Benoit; Nimmo, Francis</p> <p>2014-05-01</p> <p>Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001525.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001525.html"><span>Extensive Ice Fractures in the Beaufort Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-ice fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the ice cap is a continuous sheet of stationary, floating ice. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of ice. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of ice west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this area is not unusual because the Beaufort Gyre tends to push ice away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & Ice Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the ice catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of ice to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of ice had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how much heat the surface was emitting as VIIRS surveyed the area. Cooler areas (sea ice) appear white, while warmer areas (open water) are dark. The light gray plume near the cracks is warmer, moister air escaping from the ocean and blowing downwind. Clouds do not show up well in the VIIRS thermal band, so the storms that fueled the fracturing are not readily visible. While fracturing events are common, few events sprawl across such a large area or produce cracks as long and wide as those seen here. The age of the sea ice in this area was one of the key reasons this event became so widespread. “The region is covered almost completely by seasonal or first-year ice—ice that has formed since last September,” said Meier. “This ice is thinner and weaker than the older, multi-year ice, so it responds more readily to winds and is more easily broken up.” NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=80752 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001526.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001526.html"><span>Extensive Ice Fractures in the Beaufort Sea [detail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-ice fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the ice cap is a continuous sheet of stationary, floating ice. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of ice. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of ice west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this area is not unusual because the Beaufort Gyre tends to push ice away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & Ice Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the ice catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of ice to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of ice had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how much heat the surface was emitting as VIIRS surveyed the area. Cooler areas (sea ice) appear white, while warmer areas (open water) are dark. The light gray plume near the cracks is warmer, moister air escaping from the ocean and blowing downwind. Clouds do not show up well in the VIIRS thermal band, so the storms that fueled the fracturing are not readily visible. While fracturing events are common, few events sprawl across such a large area or produce cracks as long and wide as those seen here. The age of the sea ice in this area was one of the key reasons this event became so widespread. “The region is covered almost completely by seasonal or first-year ice—ice that has formed since last September,” said Meier. “This ice is thinner and weaker than the older, multi-year ice, so it responds more readily to winds and is more easily broken up.” NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=80752 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001524.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001524.html"><span>Extensive Ice Fractures in the Beaufort Sea [annotated</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this view of extensive sea-ice fracturing off the northern coast of Alaska. The event began in late-January and spread west toward Banks Island throughout February and March 2013. Visualizations of the Arctic often give the impression that the ice cap is a continuous sheet of stationary, floating ice. In fact, it is a collection of smaller pieces that constantly shift, crack, and grind against one another as they are jostled by winds and ocean currents. Especially during the summer—but even during the height of winter—cracks—or leads—open up between pieces of ice. That was what was happening on the left side of the animation (seen here: bit.ly/10kE7sh) in late January. A high-pressure weather system was parked over the region, producing warmer temperatures and winds that flowed in a southwesterly direction. That fueled the Beaufort Gyre, a wind-driven ocean current that flows clockwise. The gyre was the key force pulling pieces of ice west past Point Barrow, the northern nub of Alaska that protrudes into the Beaufort Sea. “A fracturing event in this area is not unusual because the Beaufort Gyre tends to push ice away from Banks Island and the Canadian Archipelago,” explained Walt Meier of the National Snow & Ice Data Center (NSIDC). “Point Barrow can act like a ‘pin point’ where the ice catches and fractures to the north and east.” In February, however, a series of storms passing over central Alaska exacerbated the fracturing. Strong westerly winds prompted several large pieces of ice to break away in an arc-shaped wave that moved progressively east. By the end of February, large pieces of ice had fractured all the way to the western coast of Banks Island, a distance of about 1,000 kilometers (600 miles). The data used to create the animation came from the longwave infrared (thermal) portion of the electromagnetic spectrum, so the animation illustrates how much heat the surface was emitting as VIIRS surveyed the area. Cooler areas (sea ice) appear white, while warmer areas (open water) are dark. The light gray plume near the cracks is warmer, moister air escaping from the ocean and blowing downwind. Clouds do not show up well in the VIIRS thermal band, so the storms that fueled the fracturing are not readily visible. While fracturing events are common, few events sprawl across such a large area or produce cracks as long and wide as those seen here. The age of the sea ice in this area was one of the key reasons this event became so widespread. “The region is covered almost completely by seasonal or first-year ice—ice that has formed since last September,” said Meier. “This ice is thinner and weaker than the older, multi-year ice, so it responds more readily to winds and is more easily broken up.” NASA Earth Observatory images by Jesse Allen using VIIRS day-night band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Adam Voiland. Instrument: Suomi NPP - VIIRS For more info go to: earthobservatory.nasa.gov/IOTD/view.php?id=80752 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=anger+AND+depression&pg=4&id=EJ1152742','ERIC'); return false;" href="https://eric.ed.gov/?q=anger+AND+depression&pg=4&id=EJ1152742"><span>"The Last Block of Ice": Trauma Literature in the High School Classroom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Moore, Amber; Begoray, Deborah</p> <p>2017-01-01</p> <p>This article explores the potential of using trauma literature in the secondary high school classroom, drawing from a case study that explored grade 10 secondary students' responses to a trauma story. These responses were primarily collected from their digital writing and reveal a number of interesting findings, including the expression of anger…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23692262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23692262"><span>Clinical efficacy and safety of an implantable cardioverter-defibrillator lead with a floating atrial sensing dipole.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Safak, Erdal; Schmitz, Dietmar; Konorza, Thomas; Wende, Christian; De Ros, Jose Olague; Schirdewan, Alexander</p> <p>2013-08-01</p> <p>The concept of a single-lead implantable cardioverter-defibrillator (ICD), with a floating dipole, has been proven safe and functional. The studied active-fixation, steroid-eluting lead (Linox(smart) S DX, BIOTRONIK SE & Co KG, Berlin, Germany) is one French thinner than its predecessor and coated with lubricious SilGlide to improve lead handling. A dedicated ICD device has a self-adaptive atrial input stage including a fourfold amplifier. The amplification, filtering, and adapted atrial input stage are located in the Lumax 540 VR-T DX (BIOTRONIK). The Linox(smart) S DX ICD lead delivers only the signal. The lead was evaluated during implantation; at predischarge; and 1-, 3-, and 6-month follow-up examinations. The primary endpoint (efficacy) was the rate of appropriate atrial sensing tests. The secondary endpoint (safety) was freedom from lead-related invasive reinterventions. Both safety and efficacy were expected to be significantly higher than 90%. The study enrolled 116 patients at 25 clinical sites. Skin-to-skin operation time was 52.4 ± 26.2 minutes. The investigators graded lead insertion as "easy" in 87% of patients. Mean P-wave amplitudes (preamplified) varied from 5.0 to 6.1 mV in different body positions. Both primary and secondary endpoints were met, as 93.8% (364/388; P = 0.005) of specific sensing tests indicated appropriate atrial sensing, and 94.8% (110/116; P = 0.048) of patients were free from reinterventions (lead dislodgement). Analysis of arrhythmia episodes stored in ICDs and elective 24-hour Holter electrocardiogram tests raised no concerns about lead functionality. The studied ICD lead with a floating atrial sensing dipole met the predefined safety expectation and demonstrated appropriate atrial sensing performance. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RSTEd..31..133H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RSTEd..31..133H"><span>The impact of cognitive and affective aspects of cognitive conflict on learners' conceptual change about floating and sinking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadjiachilleos, Stella; Valanides, Nicos; Angeli, Charoula</p> <p>2013-07-01</p> <p>Background: Cognitive conflict has been identified as an important factor for bringing about students' conceptual change. Researchers draw attention to the need to study not only cognitive factors related to cognitive conflict but affective factors as well. Purpose: The purpose of this study was to investigate the contribution of cognitive and non-cognitive aspects involved in cognitive conflict on students' conceptual change. Sample: Fifteen students, five from each of fourth, sixth and eighth grades, participated in the study. Seven students were male, and the rest were female. All students had high academic performance and were good at explaining their reasoning. Design and method: The study focused on gaining in-depth information, using semi-structured clinical interviews, about students' thinking when they were engaged in an inquiry process, which incorporated cognitive conflict using a scenario about floating and sinking. Students' initial conceptions related to the phenomenon of floating and sinking were first diagnosed and, subsequently, discrepant events were presented to challenge their initial conceptions. The 15 interviews were qualitatively analyzed using the constant comparative analysis method. Results: The results of this study showed that students' conceptual change was directly related to both cognitive and affective aspects of cognitive conflict. The results also showed that some students showed persistence on alternative frameworks even after their exposure to cognitive conflict. Conclusions: Cognitive conflict is an idiosyncratic, or personal event, that may not be experienced by all learners in the same way. Thus, the effect of cognitive conflict on learners' conceptual change is directly related to learners' ability to experience and feel the conflict when it is presented to them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27356416','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27356416"><span>[Investigation on source and dissemination way of knowledge on schistosomiasis prevention and control in population in Jingjiang City after transmission-interrupted].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Ji-sheng; Chen, Jian-feng; Liu, Ya-hong; Song, Liang-liang</p> <p>2016-02-01</p> <p>To understand the source of knowledge on schistosomiasis prevention and control and the acceptable degree on different propagation patterns of population in Jingjiang City after schistosomiasis transmission-interrupted, so as to provide the evidence for the production of suitable materials for health education. The permanent residents, floating population as well as the primary school students in Grade 5 and 6 in riverside regions in Jingjiang City were selected as the investigation objects, the information propagation condition and the knowledge source, and the expected propagation patterns were investigated by questionnaires. The popularizing rates on the television, computer and mobile phone of the villagers were 99.81%, 84.16% and 87.78%, respectively. Both the two investigated schools had the independent TV network, broadcast and multimedia, and all the computer classroom could connected to Internet. The main sources on schistosomiasis control of permanent residents and floating population were folders and the exhibition board (62.0% and 40.5% respectively), the substantial material (42.0% and 33.5% respectively) and TV (40.5% and 36.0% respectively), while those of the students were video CD (100%), substantial material (99.5%) and folders and the exhibition boards (84.2%). The propagation ways with high acceptable degrees among the residents and floating population were substantial material, folders and the exhibition boards and short messages by mobile phone, while those among the students were video CD, substantial material, folders and the exhibition boards. The material on health education should be targeted to the demands of the different populations and their condition of information propagation, in addition, the Internet material should be developed and the communicational channels should be broaden.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec144-01-1.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title33-vol2/pdf/CFR-2010-title33-vol2-sec144-01-1.pdf"><span>33 CFR 144.01-1 - Life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title46-vol6/pdf/CFR-2010-title46-vol6-sec160-027-3.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title46-vol6/pdf/CFR-2010-title46-vol6-sec160-027-3.pdf"><span>46 CFR 160.027-3 - Additional requirements for life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... 46 Shipping 6 2010-10-01 2010-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title46-vol6/pdf/CFR-2011-title46-vol6-sec160-027-3.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title46-vol6/pdf/CFR-2011-title46-vol6-sec160-027-3.pdf"><span>46 CFR 160.027-3 - Additional requirements for life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... 46 Shipping 6 2011-10-01 2011-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec144-01-1.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec144-01-1.pdf"><span>33 CFR 144.01-1 - Life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-757.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec29-757.pdf"><span>14 CFR 29.757 - Hull and auxiliary float strength.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec144-01-1.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol2/pdf/CFR-2014-title33-vol2-sec144-01-1.pdf"><span>33 CFR 144.01-1 - Life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec144-01-1.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title33-vol2/pdf/CFR-2012-title33-vol2-sec144-01-1.pdf"><span>33 CFR 144.01-1 - Life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec144-01-1.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title33-vol2/pdf/CFR-2013-title33-vol2-sec144-01-1.pdf"><span>33 CFR 144.01-1 - Life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title46-vol6/pdf/CFR-2014-title46-vol6-sec160-027-3.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title46-vol6/pdf/CFR-2014-title46-vol6-sec160-027-3.pdf"><span>46 CFR 160.027-3 - Additional requirements for life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... 46 Shipping 6 2014-10-01 2014-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title46-vol6/pdf/CFR-2013-title46-vol6-sec160-027-3.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title46-vol6/pdf/CFR-2013-title46-vol6-sec160-027-3.pdf"><span>46 CFR 160.027-3 - Additional requirements for life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... 46 Shipping 6 2013-10-01 2013-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title46-vol6/pdf/CFR-2012-title46-vol6-sec160-027-3.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title46-vol6/pdf/CFR-2012-title46-vol6-sec160-027-3.pdf"><span>46 CFR 160.027-3 - Additional requirements for life floats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... 46 Shipping 6 2012-10-01 2012-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930094773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930094773"><span>Load assumptions for the landing impact of seaplanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taub, Josef</p> <p>1931-01-01</p> <p>The formula for the impact of floats must include the enlargement factor itself as well as the type of enlargement. The latter is preferably characterized by the change in surface loading. It is shown that the enlargement of a small seaplane generally results in a changed float (or boat) loading as well as wing loading. The conditions of starting stipulate the retention of the float loading when changing from single-float (boat) to twin-float arrangement. This contingency is followed by an increased impact factor in the twin-float type against the otherwise equivalent single-float type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019384','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019384"><span>Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.</p> <p>1996-01-01</p> <p>In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1136970','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1136970"><span>Electrically floating, near vertical incidence, skywave antenna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.</p> <p>2014-07-08</p> <p>An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18249530','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18249530"><span>New insights on poly(vinyl acetate)-based coated floating tablets: characterisation of hydration and CO2 generation by benchtop MRI and its relation to drug release and floating strength.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Strübing, Sandra; Abboud, Tâmara; Contri, Renata Vidor; Metz, Hendrik; Mäder, Karsten</p> <p>2008-06-01</p> <p>The purpose of this study was to investigate the mechanism of floating and drug release behaviour of poly(vinyl acetate)-based floating tablets with membrane controlled drug delivery. Propranolol HCl containing tablets with Kollidon SR as an excipient for direct compression and different Kollicoat SR 30 D/Kollicoat IR coats varying from 10 to 20mg polymer/cm2 were investigated regarding drug release in 0.1N HCl. Furthermore, the onset of floating, the floating duration and the floating strength of the device were determined. In addition, benchtop MRI studies of selected samples were performed. Coated tablets with 10mg polymer/cm2 SR/IR, 8.5:1.5 coat exhibited the shortest lag times prior to drug release and floating onset, the fastest increase in and highest maximum values of floating strength. The drug release was delayed efficiently within a time interval of 24 h by showing linear drug release characteristics. Poly(vinyl acetate) proved to be an appropriate excipient to ensure safe and reliable drug release. Floating strength measurements offered the possibility to quantify the floating ability of the developed systems and thus to compare different formulations more efficiently. Benchtop MRI studies allowed a deeper insight into drug release and floating mechanisms noninvasively and continuously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec23-753.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec23-753.pdf"><span>14 CFR 23.753 - Main float design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1184780-sources-levels-ambient-ocean-sound-near-antarctic-peninsula','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1184780-sources-levels-ambient-ocean-sound-near-antarctic-peninsula"><span>Sources and levels of ambient ocean sound near the antarctic peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; ...</p> <p>2015-04-14</p> <p>Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more » deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue ( Balaenoptera musculus) and fin ( B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...858...97M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...858...97M"><span>An L Band Spectrum of the Coldest Brown Dwarf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.</p> <p>2018-05-01</p> <p>The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C31B0330K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C31B0330K"><span>Subglacial Depositional Processes in the Port Askaig Formation (Neoproterozoic) of Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knight, J.</p> <p>2004-12-01</p> <p>The Port Askaig Formation was deposited during the Vendian glaciation (c. 650 Ma) and is a range of tillites that outcrop discontinuously from Banffshire (Scotland) to Connemara (Ireland). Sedimentary structures commonly observed include dropstones and sediment drapes, interpreted as deposition from a floating glacial ice shelf in a shallow marginal sea. Other structures, such as intersecting clastic dikes, have been interpreted as evidence for subaerial exposure of the tillite surface. Exposures of the Port Askaig Formation were examined at its Irish type area at Kiltyfanned Lough, County Donegal. Here, homogeneous sandy beds with internal planar bedding structures are separated by laminated fine sand beds which have erosional upper surfaces. The laminated beds are clast-free and individual laminae are laterally continuous and undisturbed. Larger clasts lie bed-parallel and are draped by overlying beds. Occasionally drapes are asymmetric with a thickened sediment prow, suggestive of flow direction. The clastic dikes are polygonal in plan view, may be isolated or interconnected, and are often arranged in parallel sheets which pinch out laterally. Internally, the clastic dikes are infilled with coarse sand to gravel. Infills are often aligned parallel to dike margins. The presence of draped and deformed sediments suggest a subglacial environment with free water availability. The flat-lying morphology of clasts also favours a subglacial rather than a full marine environment. The morphology and disposition of clastic dikes is interpreted as due to subglacial hydrofracturing of a till sheet and upward passage of sediment-charged water through the fracture zone, which is known from late Pleistocene and Precambrian tillites elsewhere. Variations in water availability can be reconciled by a sub-ice shelf depositional model with spatial and temporal changes in tidally-induced ice-bed coupling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5570828','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5570828"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rehder, J.B.</p> <p></p> <p>The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion ofmore » the potential applications of floating hydro power systems in small streams.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1333226','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1333226"><span>Turbine with radial acting seal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Eng, Darryl S; Ebert, Todd A</p> <p>2016-11-22</p> <p>A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21A0312F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21A0312F"><span>Using Airborne Lidar Data from IcePod to Measure Annual and Seasonal Ice Changes Over Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frearson, N.; Bertinato, C.; Das, I.</p> <p>2014-12-01</p> <p>The IcePod is a multi-sensor airborne science platform that supports a wide suite of instruments, including a Riegl VQ-580 infrared scanning laser, GPS-inertial positioning system, shallow and deep-ice radars, visible-wave and infrared cameras, and upward-looking pyrometer. These instruments allow us to image the ice from top to bottom, including the surface of melt-water plumes that originate at the ice-ocean boundary. In collaboration with the New York Air National Guard 109th Airlift Wing, the IcePod is flown on LC-130 aircraft, which presents the unique opportunity to routinely image the Greenland ice sheet several times within a season. This is particularly important for mass balance studies, as we can measure elevation changes during the melt season. During the 2014 summer, laser data was collected via IcePod over the Greenland ice sheet, including Russell Glacier, Jakobshavn Glacier, Eqip Glacier, and Summit Camp. The Icepod will also be routinely operated in Antarctica. We present the initial testing, calibration, and error estimates from the first set of laser data that were collected on IcePod. At a survey altitude of 1000 m, the laser swath covers ~ 1000 m. A Northrop-Grumman LN-200 tactical grade IMU is rigidly attached to the laser scanner to provide attitude data at a rate of 200 Hz. Several methods were used to determine the lever arm between the IMU center of navigation and GPS antenna phase center, terrestrial scanning laser, total station survey, and optimal estimation. Additionally, initial bore sight calibration flights yielded misalignment angles within an accuracy of ±4 cm. We also performed routine passes over the airport ramp in Kangerlussuaq, Greenland, comparing the airborne GPS and Lidar data to a reference GPS-based ground survey across the ramp, spot GPS points on the ramp and a nearby GPS base station. Positioning errors can severely impact the accuracy of a laser altimeter when flying over remote regions such as across the ice sheets. Setting up GPS base stations along the flight track can prove to be logistically challenging. We have processed the GPS-inertial data using both DGPS and PPP and present the comparison of those results here. Finally, we discuss our processing, calibration and error estimation methods and compare our results to previously flown IceBridge lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081446','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081446"><span>The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>House, R O</p> <p>1938-01-01</p> <p>The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930081437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930081437"><span>Hydrodynamic and Aerodynamic Tests of Models of Floats for Single-float Seaplanes NACA Models 41-D, 41-E, 61-A, 73, and 73-A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parkinson, J B; HOUSE R O</p> <p>1938-01-01</p> <p>Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998LPICo.953...40T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998LPICo.953...40T"><span>Terrestrial Ice Sheets: Studies of Climate History, Internal Structure, Surface, and Bedrock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thorsteinsson, Th.; Kipfstuhl, J.; Nixdorf, U.; Oerter, H.; Miller, H.; Fritsche, D.; Jung-Rothenhaeusler, F.; Mayer, C.; Schwager, M.; Wilhelms, F.; Steinhage, D.; Goektas, F.</p> <p>1998-01-01</p> <p>Recently drilled deep ice cores from Central Greenland (GRIP and GISP2) provide the most detailed results available on climatic variation in the northern hemisphere during the last 100,000 years, a period that includes the Holocene (0-11.5 ka) and most of the Wisconsin glacial period. Summer-winter variation in various physical and chemical properties of polar ice allows dating of ice cores by annual layer counting. Several such methods are currently being employed on an ice core drilled by the new North Greenland Ice Core Project (NGRIP), which is aimed at extending the Greenland ice palaeoclimatic record through the last interglacial, the Eemian. Two examples will be presented: (1) visual and photographic studies of seasonal variation in stratigraphic layering, crystal size, air bubble and clathrate concentration, and (2) studies of electric stratigraphy, using the method of dielectric profiling (DEP). This method records the AC conductivity of ice cores, which is negatively correlated with the concentration of airborne dust in the ice but positively correlated with volcanic and marine aerosols. Comprehensive surface traverse programs, which include shallow coring and ice velocity measurements, have recently been carried out by the Alfred Wegener Institute in previously little-investigated regions of Greenland and Antarctica. Serving partly as reconnaissance prior to deep drilling projects, such studies also help to reduce considerable uncertainties in the mass balance of the two large polar ice sheets and thus in their estimated response to climate change. Main results of a recent traverse in North Greenland include the following: (1) A new map of the accumulation distribution on the ice sheet indicates a large low-accumulation region in Northeast-Greenland; (2) North Greenland records show significantly greater climatic variability during the last 500 yr than corresponding records from the southern part of the ice sheet; and (3) data on variation in accumulation rates do not indicate a definite trend in the region during this century. The Alfred Wegener Institute has in recent years employed both airborne and ground-penetrating ice radar systems to map the bedrock around deep drilling sites in Central and North Greenland, as well as in a planned Antarctic site in Dronning Maud Land. The radar also records shallow and deep internal echoes, caused by rapid variation in density and ice acidity in layers of certain ages, allowing isochrones to be traced over wide reaches of the ice sheet. Disturbances in regular stratigraphic layering, due to ice flow over an irregular bed, were observed in the lowest 200-300 m of the GRIP and GISP2 ice cores. Since the aim of the new NGRIP coring program is to obtain an ice core reaching further back in time than the Central Greenland cores, this site was chosen in a region where the bedrock is relatively flat. Echo-sounding surveys between GRIP and NGREP show that the isochrones lie 100-200 in higher above the bed at NGRIP, indicating that the Eemian layer is unlikely to have been disturbed by ice flow at this location. Due to the flow pattern of ice sheets, layers forming a vertical sequence in the interior regions of an ice sheet can, under favorable conditions, be traced on horizontal profiles at the margins. Some meaningful correlations have already been established between Greenland deep ice core climatic records and corresponding records from ice margins. In these regions, a clear contrast is observed between ice of Holocene origin and significantly darker-looking ice dating from the Wisconsin glacial period, which displays summertime ablation rates 2-4x higher than the Holocene ice. This difference is due to higher concentrations of dust and other impurities in the Wisconsin ice, by 1-2 orders of magnitude, leading to reduced albedo. Furthermore, smaller crystal sizes in the Wisconsin ice lead to a more homogeneous distribution of impurities on the surface, which probably contributes to lowering the albedo. Comprehensive studies of ice crystal size and c-axis orientations on the GRIP and NGRIP deep cores provide detailed information on recrystallization processes in polar ice sheets. Based on the GRIP results, the Central-Greenland ice sheet can be vertically divided into three different recrystallization regimes: (1) normal grain growth regime (0-700 in), in which the average crystal size increases steadily to 4mm diameter; (2) polygonization regime (700-2800m), in which crystals are subdivided due to increasing strain and no further increase in crystal size is observed; and (3) migration recrystallization regime (2800-3050m), where higher temperatures (-10C) cause rapid crystal growth with average diameters increasing to 30 mm in the bottom layers. Higher impurity content in ice dating from glacial periods is seen to exert a strong inhibitive effect on crystal growth. The data on c-axis fabrics demonstrate the development of crystalline anisotropy with depth, leading to significant variation in flow properties. In particular, strong rheological contrasts are observed between glacial and interglacial ice, with fine-grained ice dating from glacial periods deforming more rapidly under conditions of simple shear than more coarse-grained interglacial ice. When the dynamics of ice masses are addressed by modeling, special attention must be given to the transition zone between ice resting on bedrock and floating ice shelves. One application for numerical ice-dynamics models that deal with such transition zones is the investigation of areas with special mass balance characteristics, like ice streams entering ice shelves or ice sheet areas over subglacial lakes. Recent results from a model applied to the ice above Lake Vostok in East Antarctica indicate that comparatively strong basal melting and adjacent refreezing occur close to the western shore of the lake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021842&hterms=floating+point&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfloating%2Bpoint','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021842&hterms=floating+point&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfloating%2Bpoint"><span>Program Converts VAX Floating-Point Data To UNIX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alves, Marcos; Chapman, Bruce; Chu, Eugene</p> <p>1996-01-01</p> <p>VAX Floating Point to Host Floating Point Conversion (VAXFC) software converts non-ASCII files to unformatted floating-point representation of UNIX machine. This is done by reading bytes bit by bit, converting them to floating-point numbers, then writing results to another file. Useful when data files created by VAX computer must be used on other machines. Written in C language.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41B0654A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41B0654A"><span>Using U-Pb Detrital Zircon Geochronology to Study Ice Streams in the Weddell Sea Embayment, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agrios, L.; Licht, K.; Hemming, S. R.; Williams, T.</p> <p>2016-12-01</p> <p>Till from major ice streams of the Weddell Sea Embayment contain detrital zircons with distinct U-Pb age populations that can be used as a provenance tool to better understand ice stream dynamics. The ice streams in this study include the Foundation Ice Stream, and Academy, Slessor, and Recovery glaciers, all of which drain ice from the continent's interior into the Weddell Sea. Characterizing the U-Pb detrital zircon ages in till and rocks will (1) provide the zircon provenance signatures of the material carried by the ice stream - when these signatures are found in LGM and older deposits downstream they can enable interpretation of past ice flow history; and (2) constrain ice-covered upstream bedrock geology that supplies the till carried by ice streams and glaciers. U-Pb ages of detrital zircons were measured in 21 samples of onshore till, erratics, and bedrock of potential source rocks. Grains were analyzed by LA-ICPMS at the University of Arizona (n=300). Relative probability U-Pb age density plots of till in moraines along the Foundation Ice Stream and Academy Glacier show prominent peaks at 500-530 and 615-650 Ma, which overlap with the timing of the Ross and Pan-African orogenies. Zircon ages of 1000-1095 Ma are also present. Local bedrock in the Patuxent Range has the most prominent peak at 510 Ma, suggesting the till is predominantly derived from local Patuxent Formation. However, local bedrock also has fewer grains at 1030 Ma which suggests that this age population is carried in the till as well. Prominent peaks in U-Pb ages from till transported by the Recovery Glacier are 530, 635, 1610 and 1770 Ma. Bedrock of this area contains similar age peaks, with the exception of the 635 Ma peak, suggesting that this ice stream is carrying a signature from an unexposed source of this age completely buried by ice. The Slessor Glacier carries zircons with prominent populations at 1710 and 2260-2420 Ma, which overlap with a high-grade metamorphic event in the Shackleton Range between 1710-1680 Ma. In order to gain the offshore signature of ice streams, these data will be compared to 40Ar/39Ar hornblende and biotite thermochronological data, and U-Pb geochronology data from subglacial till and proximal glaciomarine sediment from existing core sites located at the edge of the Ronne-Filchner Ice Shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14664504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14664504"><span>Freshness assessments of Moroccan sardine (Sardina pilchardus): comparison of overall sensory changes to instrumentally determined volatiles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Triqui, Réda; Bouchriti, Nourredine</p> <p>2003-12-17</p> <p>Freshness of ice-stored sardine was assessed by two sensory methods, the quality index method (QIM) and the European Union freshness grading system, and by instrumental means using the method of aroma extract dilution analysis. Screening of sardine potent volatiles was carried out at three freshness stages. In the very fresh state, the plant-like fresh volatiles dominated the odor pattern, with the exception of methional. Overall odor changes in sardine throughout storage correlated with changes in the concentration of some potent volatiles: after 2 days of ice storage, (Z)-4-heptenal, (Z)-1,5-octadien-3-one, and methional imparted an overall "fishy" odor character to sardine, whereas at a lower sensory grade (B), the compounds (E)-2-nonenal and (E,Z)-2,6-nonadienal could be, in part, associated with the slightly rancid aroma top notes. Trimethylamine was detected as a highly volatile odorant using solid-phase microextraction (SPME) headspace analysis of refrigerator-stored sardine. Intensity and sensory characteristics of some SPME determined volatiles, for example, 3-methylnonane-2,4-dione, were closely related to overall odor changes. SPME headspace analysis may be useful in the characterization of off-flavors in fish.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6299869','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6299869"><span>Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology interim report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wade, D W; Trammel, B C; Dixit, B S</p> <p>1979-02-01</p> <p>Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. The concept of an HP-WHR system is developed, the potential performance and economics of such a system is evaluated and the potential for application is examined. A thermodynamic performance analysis of a hypothetical system projects an overall system coefficient of performance (C.O.P.) of from 2.181 to 2.264 formore » wastewater temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the implementation of this system is projected to be 5.014 QUADS, or the energy equivalent of 687 millions tons of coal, from 1980 to the year 2000. Economic analysis shows the HP-WHR scheme to be cost-competitive, on the basis of a net present value life cycle cost comparison, with conventional residential and light commercial HVAC systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25657839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25657839"><span>Characterization of cement float buoyancy in the stalked barnacle Dosima fascicularis (Crustacea, Cirripedia).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zheden, Vanessa; Kovalev, Alexander; Gorb, Stanislav N; Klepal, Waltraud</p> <p>2015-02-06</p> <p>Dosima fascicularis is the only barnacle which can drift autonomously at the water surface with a foam-like cement float. The cement secreted by the animal contains numerous gas-filled cells of different size. When several individuals share one float, their size and not their number is crucial for the production of both volume and mass of the float. The gas content within the cells of the foam gives positive static buoyancy to the whole float. The volume of the float, the gas volume and the positive static buoyancy are positively correlated. The density of the cement float without gas is greater than that of seawater. This study shows that the secreted cement consists of more than 90% water and the gas volume is on average 18.5%. Our experiments demonstrate that the intact foam-like cement float is sealed to the surrounding water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4275874','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4275874"><span>Characterization of cement float buoyancy in the stalked barnacle Dosima fascicularis (Crustacea, Cirripedia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zheden, Vanessa; Kovalev, Alexander; Gorb, Stanislav N.; Klepal, Waltraud</p> <p>2015-01-01</p> <p>Dosima fascicularis is the only barnacle which can drift autonomously at the water surface with a foam-like cement float. The cement secreted by the animal contains numerous gas-filled cells of different size. When several individuals share one float, their size and not their number is crucial for the production of both volume and mass of the float. The gas content within the cells of the foam gives positive static buoyancy to the whole float. The volume of the float, the gas volume and the positive static buoyancy are positively correlated. The density of the cement float without gas is greater than that of seawater. This study shows that the secreted cement consists of more than 90% water and the gas volume is on average 18.5%. Our experiments demonstrate that the intact foam-like cement float is sealed to the surrounding water. PMID:25657839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1007272','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1007272"><span>Autonomous Microstructure EM-APEX Floats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-01-01</p> <p>Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910755W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910755W"><span>First measurements with Argo flots in the Southern Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walczowski, Waldemar; Goszczko, Ilona; Wieczorek, Piotr; Merchel, Malgorzata; Rak, Daniel</p> <p>2017-04-01</p> <p>The Argo programme is one of the most important elements of the ocean observing system. Currently almost 4000 Argo floats profile global oceans and deliver real time data. Originally Argo floats were developed for open ocean observations. Therefore a standard float can dive up to 2000 m and deep Argo floats are under development. However in the last years the shallow shelf seas become also interesting for Argo users. Institute of Oceanology Polish Academy of Sciences (IOPAN) participates in the Euro-Argo research infrastructure, the European contribution to Argo system. A legal and governance framework (Euro-Argo ERIC) was set up in May 2014. For a few years IOPAN has deployed floats mostly in the Nordic Seas and the European Arctic region. In the end of 2016 the first Polish Argo float was deployed in the Southern Baltic Sea. Building on the successful experience with Argo floats deployed by the Finnish oceanographers in the Bothnian Sea and Gotland Basin, the IOPAN float was launched in the Bornholm Deep during the fall cruise of IOPAN research vessel Oceania. The standard APEX float equipped with 2-way Iridium communication was used and different modes of operation, required for the specific conditions in the shallow and low saline Baltic Sea, were tested. Settings for the Baltic float are different than for the oceanic mode and were frequently changed during the mission to find the optimum solution. Changing the float parking depth during the mission allows for the limited control of the float drift direction. Results of a high resolution numerical forecast model for the Baltic Sea proved to be a valuable tool for determining the parking depth of the float in the different flow regimes. Trajectory and drift velocity of the Argo float deployed in the Southern Baltic depended strongly on the atmospheric forcing (in particular wind speed and direction), what was clearly manifested during the 'Axel' storm passing over the deployment area in January 2017. The first deployment showed clearly that Argo floats can be a useful tool for the Baltic Sea monitoring as the important element of a more complex, multidisciplinary observing system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29187246','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29187246"><span>Comparison of Bispectral Index™ values during the flotation restricted environmental stimulation technique and results for stage I sleep: a prospective pilot investigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dunham, C Michael; McClain, Jesse V; Burger, Amanda</p> <p>2017-11-29</p> <p>To determine whether Bispectral Index™ values obtained during flotation-restricted environment stimulation technique have a similar profile in a single observation compared to literature-derived results found during sleep and other relaxation-induction interventions. Bispectral Index™ values were as follows: awake-state, 96.6; float session-1, 84.3; float session-2, 82.3; relaxation-induction, 82.8; stage I sleep, 86.0; stage II sleep, 66.2; and stages III-IV sleep, 45.1. Awake-state values differed from float session-1 (%difference 12.7%; Cohen's d = 3.6) and float session-2 (%difference 14.8%; Cohen's d = 4.6). Relaxation-induction values were similar to float session-1 (%difference 1.8%; Cohen's d = 0.3) and float session-2 (%difference 0.5%; Cohen's d = 0.1). Stage I sleep values were similar to float session-1 (%difference 1.9%; Cohen's d = 0.4) and float session-2 (%difference 4.3%; Cohen's d = 1.0). Stage II sleep values differed from float session-1 (%difference 21.5%; Cohen's d = 4.3) and float session-2 (%difference 19.6%; Cohen's d = 4.0). Stages III-IV sleep values differed from float session-1 (%difference 46.5%; Cohen's d = 5.6) and float session-2 (%difference 45.2%; Cohen's d = 5.4). Bispectral Index™ values during flotation were comparable to those found in stage I sleep and nadir values described with other relaxation-induction techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17117384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17117384"><span>Floating electrode dielectrophoresis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri</p> <p>2006-12-01</p> <p>In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14977153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14977153"><span>A novel control process of cyanobacterial bloom using cyanobacteriolytic bacteria immobilized in floating biodegradable plastic carriers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakamura, N; Nakano, K; Sugiura, N; Matsumura, M</p> <p>2003-12-01</p> <p>A process using a floating carrier for immobilization of cyanobacteriolytic bacteria, B.cereus N-14, was proposed to realize an effective in situ control of natural floating cyanobacterial blooms. The critical concentrations of the cyanobacteriolytic substance and B.cereus N-14 cells required to exhibit cyanobacteriolytic activity were investigated. The results indicated the necessity of cell growth to produce sufficiently high amounts of the cyanobacteriolytic substance to exhibit its activity and also for conditions enabling good contact between high concentrations of the cyanobacteriolytic substance and cyanobacteria. Floating biodegradable plastics made of starch were applied as a carrier material to maintain close contact between the immobilized cyanobacteriolytic bacteria and floating cyanobacteria. The floating starch-carriers could eliminate 99% of floating cyanobacteria in 4 d. Since B.cereus N-14 could produce the cyanobacteriolytic substance under the presence of starch and some amino acids, the cyanobacteriolytic activity could be attributed to carbon source fed from starch carrier and amino acids eluted from lysed cyanobacteria. Therefore, the effect of using a floating starch-carrier was confirmed from both view points as a carrier for immobilization and a nutrient source to stimulate cyanobacteriolytic activity. The new concept to apply a floating carrier immobilizing useful microorganisms for intensive treatment of a nuisance floating target was demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910394W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910394W"><span>Geoengineering Outlet Glaciers and Ice Streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolovick, Michael</p> <p>2017-04-01</p> <p>Mass loss from Greenland and Antarctica is highly sensitive to the presence of warm ocean water that drives melting of ice shelves and marine terminated glaciers. This warm water resides offshore at depth and accesses the grounding line through deep but narrow troughs and fjords. Here, we investigate the possibility of blocking warm water transport through these choke points with an artificial sill. Using a simple width-averaged model of ice stream flow coupled to a buoyant-plume model of submarine melt, we find that grounding line retreat and sea level rise can be delayed or reversed for hundreds of years if warm water is prevented from accessing outlet glaciers and ice-shelf cavities. Glaciers with a floating shelf exhibit a strong response to the presence of the artificial sill regardless of our choice of calving law, while tidewater glaciers require a strong linkage between submarine melt and iceberg calving for the artificial sill to have an effect. As a result of this difference and as a result of differing degrees of overdeepening in the basal topography, Antarctica and Greenland present very different societal cost-benefit analyses. Intervention in Greenland would be low-cost and low-reward: the volume of the artificial sill is comparable to existing large public works projects such as the Dubai Islands or the Suez Canal, but the magnitude of averted sea-level rise is small, the success of the intervention depends on the choice of calving law, and the glaciers return to their non-geoengineered trajectories within one to two centuries. Intervention in Antarctica, on the other hand, would be high-cost and high-reward: the volume of the artificial sill is one to two orders of magnitude greater, but the averted sea level rise is much larger, the intervention is successful regardless of the choice of calving law, and the ice streams remain far from their non-geoengineered trajectories throughout the 1000 year duration of our model runs. In both cases, an artificial sill cannot save the glaciers forever if the climate continues to warm and surface melt continues to increase, but glacial geoengineering may offer society a way to delay irreversible grounding line retreat and thus buy time while emissions reduction and carbon removal efforts are underway.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcScD..11...47M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcScD..11...47M"><span>Possible signals of poleward surface ocean heat transport, of Arctic basal ice melt, and of the twentieth century solar maximum in the 1904-2012 Isle of Man daily timeseries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, J. B.; Matthews, J. B. R.</p> <p>2014-01-01</p> <p>This is the second of two papers on observational timeseries of top of ocean heat capture. The first reports hourly and daily meridional central tropical Pacific top 3 m timeseries showing high Southern Hemisphere evaporation (2.67 m yr-1) and Northern Hemisphere trapped heat (12 MJ m-2 day-1). We suggested that wind drift/geostrophic stratified gyre circulation transported warm water to the Arctic and led to three phases of Arctic basal ice melt and fluxes of brackish nutrient-rich waters to north Atlantic on centennial timescales. Here we examine daily top metre 1904-2012 timeseries at Isle of Man west coast ~54° N for evidence of tropical and polar surface waters. We compare these to Central England (CET) daily land-air temperatures and to Arctic floating ice heat content and extent. We find three phases of ocean surface heating consistent with basal icemelt buffering greenhouse gas warming until a regime shift post-1986 led to the modern surface temperature rise of ~1 °C in 20 yr. Three phases were: warming +0.018 °C yr-1 from 1904-1939, slight cooling -0.002 °C yr-11940-86 and strong warming +0.037 °C yr-1 1986-2012. For the same periods CET land-air showed: warming +0.015 °C yr-1, slight cooling -0.004 °C yr-1, about half SST warming at +0.018 °C yr-1. The mid-century cooling and a 1959/1963 hot/cold event is consistent with sunspot/solar radiation maximum 1923-2008 leading to record volumes of Arctic ice meltwater and runoff that peaked in 1962/3 British Isles extreme cold winter. The warming Arctic resulted in wind regime and surface water regime shifts post 1986. This coincides with the onset of rapid Arctic annual ice melt. Continued heat imbalance is likely to lead to tidewater glacier basal icemelt and future sealevel rise after remaining relatively stable over 4000 yr. Our work needs confirmation by further fieldwork concentrating on the dynamics and thermodynamics of ocean top 3 m that controls the 93 % anthropogenic global warming in the oceans. This may be done most cost-effectively through focussed multidisciplinary scientific research adaptively managed and funded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43B2877H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43B2877H"><span>What explains the structure of Enceladus's ice shell and can it be in equilibrium?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemingway, D.; Mittal, T.</p> <p>2017-12-01</p> <p>Over the course of the Cassini mission, a series of geodetic measurements [1-3] have revealed that Enceladus's ongoing south polar eruptions are likely sourced from a global subsurface liquid water ocean [2-6]. The extent of the ocean and the structure of the overlying ice shell are of particular importance as they speak to the nature of the eruptions and the thermal state and evolution of Enceladus. How quickly is Enceladus cooling? Is the ocean a recent, perhaps transient phenomenon, or has it been present for billions of years? Based on shape, gravity, and libration observations, the floating ice shell is inferred to be thickest at the equator, where it is perhaps 35-45 km thick at the sub- and anti-Saturnian points, and thinnest at the poles, especially beneath the broad topographic depression associated with the South Polar Terrain (SPT), where the shell is likely less—perhaps much less—than 10 km thick [6,7]. Although tidal heating is assumed to be the mechanism primarily responsible for the observed shell structure, and whereas several theoretical studies have been carried out [e.g., 8], a clear match between theory and observations has yet to be demonstrated. Likewise, the question of whether or not the current configuration can be in equilibrium, remains open. Here we model the effects of tidal heating on Enceladus's ice shell, showing that the expected equilibrium ice shell structure is largely consistent with the structure inferred from shape, gravity, and libration observations. We consider the nature of the north-south polar asymmetry in shell structure and geologic activity, and we address the question of whether or not the current structure can be maintained in spite of ongoing relaxation. In light of our results, we discuss implications for the heat budget and thermal evolution of Enceladus. [1] P. Thomas et al., Icarus 190 (2), 573-584, Oct. 2007. [2] L. Iess et al., Science 344 (6179), 78-80, 2014. [3] P. C. Thomas et al., Icarus 264, 37-47, 2016. [4] W. B. McKinnon, Geophys. Res. Lett. 42, 2015. [5] O. Čadek et al., Geophys. Res. Lett. 43, 2016. [6] M. Beuthe, A. Rivoldini, and A. Trinh, Geophys. Res. Lett. 43, 2016. [7] D. J. Hemingway and T. Mittal, Icarus, in prep. [8] J. H. Roberts and F. Nimmo, Icarus 194 (2), 675-689, 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.123....7K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.123....7K"><span>Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon</p> <p>2016-01-01</p> <p>The glaciers that drain the West Antarctic Ice Sheet into the Amundsen Sea are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated heat flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen Sea shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of sea surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of heat appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036254','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036254"><span>A complex relationship between calving glaciers and climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Post, A.; O'Neel, S.; Motyka, R.J.; Streveler, G.</p> <p>2011-01-01</p> <p>Many terrestrial glaciers are sensitive indicators of past and present climate change as atmospheric temperature and snowfall modulate glacier volume. However, climate interpretations based on glacier behavior require careful selection of representative glaciers, as was recently pointed out for surging and debris-covered glaciers, whose behavior often defies regional glacier response to climate [Yde and Paasche, 2010]. Tidewater calving glaciers (TWGs)mountain glaciers whose termini reach the sea and are generally grounded on the seaflooralso fall into the category of non-representative glaciers because the regional-scale asynchronous behavior of these glaciers clouds their complex relationship with climate. TWGs span the globe; they can be found both fringing ice sheets and in high-latitude regions of each hemisphere. TWGs are known to exhibit cyclic behavior, characterized by slow advance and rapid, unstable retreat, largely independent of short-term climate forcing. This so-called TWG cycle, first described by Post [1975], provides a solid foundation upon which modern investigations of TWG stability are built. Scientific understanding has developed rapidly as a result of the initial recognition of their asynchronous cyclicity, rendering greater insight into the hierarchy of processes controlling regional behavior. This has improved the descriptions of the strong dynamic feedbacks present during retreat, the role of the ocean in TWG dynamics, and the similarities and differences between TWG and ice sheet outlet glaciers that can often support floating tongues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol30/pdf/CFR-2011-title40-vol30-sec426-50.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol30/pdf/CFR-2011-title40-vol30-sec426-50.pdf"><span>40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float glass...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol29/pdf/CFR-2010-title40-vol29-sec426-50.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol29/pdf/CFR-2010-title40-vol29-sec426-50.pdf"><span>40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float glass...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1321782','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1321782"><span>Tethered float liquid level sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Daily, III, William Dean</p> <p>2016-09-06</p> <p>An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol25/pdf/CFR-2010-title40-vol25-sec264-1085.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol25/pdf/CFR-2010-title40-vol25-sec264-1085.pdf"><span>40 CFR 264.1085 - Standards: Surface impoundments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... the surface impoundment by installing and operating either of the following: (1) A floating membrane... from a surface impoundment using a floating membrane cover shall meet the requirements specified in... floating membrane cover designed to meet the following specifications: (i) The floating membrane cover...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413700B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413700B"><span>Preliminary results from DIMES: Dispersion in the ACC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balwada, D.; Speer, K.; LaCasce, J. H.; Owens, B.</p> <p>2012-04-01</p> <p>The Diapycnal and Isopynal Mixing Experiment in the Southern Ocean (DIMES) is a CLIVAR process study designed to study mixing in the Antarctic Circumpolar Current. The experiment includes tracer release, float, and small-scale turbulence components. This presentation will report on some results of the float component, from floats deployed across the ACC in the Southeast Pacific Ocean. These are the first subsurface Lagrangian trajectories from the ACC. Floats were deployed to follow approximately a constant density surface for a period of 1-3 years. To help aid the experimental results virtual floats were advected using AVISO data and basic statistics were derived from both deployed and virtual float trajectories. Experimental design, initial results, comparison to virtual floats and single particle and relative dispersion calculations will be presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>