Kim, Joowhan; Min, Sung-Wook; Lee, Byoungho
2007-10-01
Integral floating display is a recently proposed three-dimensional (3D) display method which provides a dynamic 3D image in the vicinity to an observer. It has a viewing window only through which correct 3D images can be observed. However, the positional difference between the viewing window and the floating image causes limited viewing zone in integral floating system. In this paper, we provide the principle and experimental results of the location adjustment of the viewing window of the integral floating display system by modifying the elemental image region for integral imaging. We explain the characteristics of the viewing window and propose how to move the viewing window to maximize the viewing zone.
Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system
NASA Astrophysics Data System (ADS)
Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Yang, Shenwu; Liu, Boyang; Chen, Duo; Yan, Binbin; Yu, Chongxiu
2018-09-01
A floating aerial three-dimensional (3D) display based on the freeform-mirror and the improved integral imaging system is demonstrated. In the traditional integral imaging (II), the distortion originating from lens aberration warps elemental images and degrades the visual effect severely. To correct the distortion of the observed pixels and to improve the image quality, a directional diffuser screen (DDS) is introduced. However, the improved integral imaging system can hardly present realistic images with the large off-screen depth, which limits floating aerial visual experience. To display the 3D image in the free space, the off-axis reflection system with the freeform-mirror is designed. By combining the improved II and the designed freeform optical element, the floating aerial 3D image is presented.
NASA Astrophysics Data System (ADS)
Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Zhang, Wanlu; Yan, Binbin; Yu, Chongxiu
2018-06-01
The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image's brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.
Real object-based 360-degree integral-floating display using multiple depth camera
NASA Astrophysics Data System (ADS)
Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam
2015-03-01
A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.
Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR).
Yamamoto, Hirotsugu; Tomiyama, Yuka; Suyama, Shiro
2014-11-03
We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.
All-around viewing display system for group activity on life review therapy
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Okumura, Mitsuru
2009-10-01
This paper describes 360 degree viewing display system that can be viewed from any direction. A conventional monitor display is viewed from one direction, i.e., the display has narrow viewing angle and observers cannot view the screen from the opposite side. To solve this problem, we developed the 360 degree viewing display for collaborative tasks on the round table. This developed 360 degree viewing system has a liquid crystal display screen and a 360 degree rotating table by motor. The principle is very simple. The screen of a monitor only rotates at a uniform speed, but the optical techniques are also utilized. Moreover, we have developed a floating 360 degree viewing display that can be viewed from any direction. This new viewing system has a display screen, a rotating table and dual parabolic mirrors. In order to float the only image screen above the table, the rotating mechanism works in the parabolic mirrors. Because the dual parabolic mirrors generate a "mirage" image over the upper mirror, observers can view a floating 2D image on the virtual screen in front of them. Then the observer can view a monitor screen at any position surrounding the round table.
Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam
2014-04-15
We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.
X-Windows Widget for Image Display
NASA Technical Reports Server (NTRS)
Deen, Robert G.
2011-01-01
XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.
A 360-degree floating 3D display based on light field regeneration.
Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong
2013-05-06
Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.
Transparent 3D display for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Hong, Jisoo
2012-11-01
Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.
High-performance floating-point image computing workstation for medical applications
NASA Astrophysics Data System (ADS)
Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin
1990-07-01
The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.
Mobile viewer system for virtual 3D space using infrared LED point markers and camera
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-09-01
The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.
NASA Astrophysics Data System (ADS)
Morita, Shogo; Ito, Shusei; Yamamoto, Hirotsugu
2017-02-01
Aerial display can form transparent floating screen in the mid-air and expected to provide aerial floating signage. We have proposed aerial imaging by retro-reflection (AIRR) to form a large aerial LED screen. However, luminance of aerial image is not sufficiently high so as to be used for signage under broad daylight. The purpose of this paper is to propose a novel aerial display scheme that features hybrid display of two different types of images. Under daylight, signs made of cubes are visible. At night, or under dark lighting situation, aerial LED signs become visible. Our proposed hybrid display is composed of an LED sign, a beam splitter, retro-reflectors, and transparent acrylic cubes. Aerial LED sign is formed with AIRR. Furthermore, we place transparent acrylic cubes on the beam splitter. Light from the LED sign enters transparent acrylic cubes, reflects twice in the transparent acrylic cubes, exit and converge to planesymmetrical position with light source regarding the cube array. Thus, transparent acrylic cubes also form the real image of the source LED sign. Now, we form a sign with the transparent acrylic cubes so that this cube-based sign is apparent under daylight. We have developed a proto-type display by use of 1-cm transparent cubes and retro-reflective sheeting and successfully confirmed aerial image forming with AIRR and transparent cubes as well as cube-based sign under daylight.
Design of crossed-mirror array to form floating 3D LED signs
NASA Astrophysics Data System (ADS)
Yamamoto, Hirotsugu; Bando, Hiroki; Kujime, Ryousuke; Suyama, Shiro
2012-03-01
3D representation of digital signage improves its significance and rapid notification of important points. Our goal is to realize floating 3D LED signs. The problem is there is no sufficient device to form floating 3D images from LEDs. LED lamp size is around 1 cm including wiring and substrates. Such large pitch increases display size and sometimes spoils image quality. The purpose of this paper is to develop optical device to meet the three requirements and to demonstrate floating 3D arrays of LEDs. We analytically investigate image formation by a crossed mirror structure with aerial aperture, called CMA (crossed-mirror array). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. We have fabricated CMA for 3D array of LEDs. One CMA unit contains 20 x 20 apertures that are located diagonally. Floating image of LEDs was formed in wide range of incident angle. The image size of focused beam agreed to the apparent aperture size. When LEDs were located three-dimensionally (LEDs in three depths), the focused distances were the same as the distance between the real LED and the CMA.
Aerial LED signage by use of crossed-mirror array
NASA Astrophysics Data System (ADS)
Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro
2013-03-01
3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.
An array processing system for lunar geochemical and geophysical data
NASA Technical Reports Server (NTRS)
Eliason, E. M.; Soderblom, L. A.
1977-01-01
A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.
Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)
NASA Astrophysics Data System (ADS)
Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu
2017-06-01
The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.
Have Floating Rates Been a Success?
ERIC Educational Resources Information Center
Higham, David
1983-01-01
Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)
Float Package and the Data Rack aboard the DC-9
NASA Technical Reports Server (NTRS)
1996-01-01
Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.
li{list-style:none}ul#sort-by-form li{float:left;list-style:none;margin:0 3px}ul#chart-list li ul.data_set-list-item{display:block;height:88px}ul#chart-list li ul.data_set-list-item li{float:left ;display:block}ul#chart-list li.category-header{display:block}#chart-list{margin-top:10px}.header-text h3{font
MEMS scanned laser head-up display
NASA Astrophysics Data System (ADS)
Freeman, Mark O.
2011-03-01
Head-up displays (HUD) in automobiles and other vehicles have been shown to significantly reduce accident rates by keeping the driver's eyes on the road. The requirements for automotive HUDs are quite demanding especially in terms of brightness, dimming range, supplied power, and size. Scanned laser display technology is particularly well-suited to this application since the lasers can be very efficiently relayed to the driver's eyes. Additionally, the lasers are only turned on where the light is needed in the image. This helps to provide the required brightness while minimizing power and avoiding a background glow that disturbs the see-through experience. Microvision has developed a couple of HUD architectures that are presented herein. One design uses an exit pupil expander and relay optics to produce a high quality virtual image for built-in systems where the image appears to float above the hood of the auto. A second design uses a patented see-through screen technology and pico projector to make automotive HUDs available to anyone with a projector. The presentation will go over the basic designs for the two types of HUD and discuss design tradeoffs.
Design of polarization imaging system based on CIS and FPGA
NASA Astrophysics Data System (ADS)
Zeng, Yan-an; Liu, Li-gang; Yang, Kun-tao; Chang, Da-ding
2008-02-01
As polarization is an important characteristic of light, polarization image detecting is a new image detecting technology of combining polarimetric and image processing technology. Contrasting traditional image detecting in ray radiation, polarization image detecting could acquire a lot of very important information which traditional image detecting couldn't. Polarization image detecting will be widely used in civilian field and military field. As polarization image detecting could resolve some problem which couldn't be resolved by traditional image detecting, it has been researched widely around the world. The paper introduces polarization image detecting in physical theory at first, then especially introduces image collecting and polarization image process based on CIS (CMOS image sensor) and FPGA. There are two parts including hardware and software for polarization imaging system. The part of hardware include drive module of CMOS image sensor, VGA display module, SRAM access module and the real-time image data collecting system based on FPGA. The circuit diagram and PCB was designed. Stokes vector and polarization angle computing method are analyzed in the part of software. The float multiply of Stokes vector is optimized into just shift and addition operation. The result of the experiment shows that real time image collecting system could collect and display image data from CMOS image sensor in real-time.
1996-01-01
Ted Brunzie and Peter Mason observe the float package and the data rack aboard the DC-9 reduced gravity aircraft. The float package contains a cryostat, a video camera, a pump and accelerometers. The data rack displays and record the video signal from the float package on tape and stores acceleration and temperature measurements on disk.
CT image reconstruction with half precision floating-point values.
Maaß, Clemens; Baer, Matthias; Kachelrieß, Marc
2011-07-01
Analytic CT image reconstruction is a computationally demanding task. Currently, the even more demanding iterative reconstruction algorithms find their way into clinical routine because their image quality is superior to analytic image reconstruction. The authors thoroughly analyze a so far unconsidered but valuable tool of tomorrow's reconstruction hardware (CPU and GPU) that allows implementing the forward projection and backprojection steps, which are the computationally most demanding parts of any reconstruction algorithm, much more efficiently. Instead of the standard 32 bit floating-point values (float), a recently standardized floating-point value with 16 bit (half) is adopted for data representation in image domain and in rawdata domain. The reduction in the total data amount reduces the traffic on the memory bus, which is the bottleneck of today's high-performance algorithms, by 50%. In CT simulations and CT measurements, float reconstructions (gold standard) and half reconstructions are visually compared via difference images and by quantitative image quality evaluation. This is done for analytical reconstruction (filtered backprojection) and iterative reconstruction (ordered subset SART). The magnitude of quantization noise, which is caused by a reduction in the data precision of both rawdata and image data during image reconstruction, is negligible. This is clearly shown for filtered backprojection and iterative ordered subset SART reconstruction. In filtered backprojection, the implementation of the backprojection should be optimized for low data precision if the image data are represented in half format. In ordered subset SART image reconstruction, no adaptations are necessary and the convergence speed remains unchanged. Half precision floating-point values allow to speed up CT image reconstruction without compromising image quality.
Study on high power ultraviolet laser oil detection system
NASA Astrophysics Data System (ADS)
Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou
2018-03-01
Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.
fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media
NASA Astrophysics Data System (ADS)
Yoshida, Shunsuke
2012-06-01
A novel glasses-free tabletop 3D display, named fVisiOn, floats virtual 3D objects on an empty, flat, tabletop surface and enables multiple viewers to observe raised 3D images from any angle at 360° Our glasses-free 3D image reproduction method employs a combination of an optical device and an array of projectors and produces continuous horizontal parallax in the direction of a circular path located above the table. The optical device shapes a hollow cone and works as an anisotropic diffuser. The circularly arranged projectors cast numerous rays into the optical device. Each ray represents a particular ray that passes a corresponding point on a virtual object's surface and orients toward a viewing area around the table. At any viewpoint on the ring-shaped viewing area, both eyes collect fractional images from different projectors, and all the viewers around the table can perceive the scene as 3D from their perspectives because the images include binocular disparity. The entire principle is installed beneath the table, so the tabletop area remains clear. No ordinary tabletop activities are disturbed. Many people can naturally share the 3D images displayed together with real objects on the table. In our latest prototype, we employed a handmade optical device and an array of over 100 tiny projectors. This configuration reproduces static and animated 3D scenes for a 130° viewing area and allows 5-cm-tall virtual characters to play soccer and dance on the table.
NASA Astrophysics Data System (ADS)
Grenier, M.; Della Penna, A.; Trull, T. W.
2014-12-01
Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and stratification, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll fluorescence (Chl a), and particle backscatter in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (top 50 m depth; analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that dilution of chlorophyll by mixed layer depth variations plays only a minor role in the spatial distributions observed by satellite, and correspondingly that these images provide credible information on total and not just surface biomass accumulations. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters, which appears to derive from the northern Kerguelen plateau. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with water properties, including no dependence on mixed layer depth, suggesting a diversity of sources of iron and/or its efficient dispersion across filaments of the plume. The lack of dependence on mixed layer depth also indicates a limited influence on production by light limitation. One float became trapped in a cyclonic eddy, allowing temporal evaluation of the water column in early autumn. During this period, decreasing surface Chl a inventories corresponded with decreases in oxygen inventories on sub-mixed layer density surfaces, consistent with significant export of organic matter and its respiration and storage as dissolved inorganic carbon in the ocean interior. These results are encouraging for the expanded use of autonomous observing platforms to study biogeochemical, carbon cycle, and ecological problems, although the complex blend of Lagrangian and Eulerian sampling achieved by the floats suggests that arrays rather than single floats will often be required.
The New Visual Displays That Are "Floating" Your Way. Building Digital Libraries
ERIC Educational Resources Information Center
Huwe, Terence K.
2005-01-01
In this column, the author describes three very experimental visual display technologies that will affect library collections and services in the near future. While each of these new display strategies is unique in its technological approach, there is a common denominator to all three: better freedom of mobility that will allow people to interact…
History of globulettes in the Milky Way
NASA Astrophysics Data System (ADS)
Grenman, Tiia; Elfgren, Erik; Weber, Hans
2018-02-01
Globulettes are small (radii {<} 10 kAU) dark dust clouds, seen against the background of bright nebulae. A majority of the objects have planetary mass. These objects may be a source of brown dwarfs and free floating planetary mass objects in the galaxy. In this paper we investigate how many globulettes could have formed in the Milky Way and how they could contribute to the total population of free floating planets. In order to do that we examine H-alpha images of 27 H II regions. In these images, we find 778 globulettes. We find that a conservative value of the number of globulettes formed is 5.7× 10^{10}. If 10% of the globulettes form free floating planets then they have contributed with 5.7× 109 free floating planets in the Milky Way. A less conservative number of globulettes would mean that the globulettes could contribute 2.0× 10^{10} free floating planets. Thus the globulettes could represent a non-negligible source of free floating planets in the Milky Way.
NASA Astrophysics Data System (ADS)
Wang, Xiaochen; Shao, Yun; Tian, Wei; Li, Kun
2018-06-01
This study explored different methodologies using a C-band RADARSAT-2 quad-polarized Synthetic Aperture Radar (SAR) image located over China's Yellow Sea to investigate polarization decomposition parameters for identifying mixed floating pollutants from a complex ocean background. It was found that solitary polarization decomposition did not meet the demand for detecting and classifying multiple floating pollutants, even after applying a polarized SAR image. Furthermore, considering that Yamaguchi decomposition is sensitive to vegetation and the algal variety Enteromorpha prolifera, while H/A/alpha decomposition is sensitive to oil spills, a combination of parameters which was deduced from these two decompositions was proposed for marine environmental monitoring of mixed floating sea surface pollutants. A combination of volume scattering, surface scattering, and scattering entropy was the best indicator for classifying mixed floating pollutants from a complex ocean background. The Kappa coefficients for Enteromorpha prolifera and oil spills were 0.7514 and 0.8470, respectively, evidence that the composite polarized parameters based on quad-polarized SAR imagery proposed in this research is an effective monitoring method for complex marine pollution.
Flight Operations Analysis Tool
NASA Technical Reports Server (NTRS)
Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca
2006-01-01
Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.
Space Radar Image of Manaus, Brazil
1999-05-01
These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. http://photojournal.jpl.nasa.gov/catalog/PIA01735
Collaborative Visual Seafloor Imaging using a Photographic AUV and a Lagrangian Imaging Float
NASA Astrophysics Data System (ADS)
Friedman, A.; Pizarro, O.; Roman, C.; Toohey, L.; Snyder, W.; Johnson-Roberson, M.; Iscar, E.; Williams, S. B.
2016-02-01
High resolution seafloor imaging from mobile autonomous platforms has become a valuable tool for habitat classification, stock assessment and seafloor exploration. This abstract addresses the concept of joint seafloor survey planning using both navigable and drifting platforms, and presents results from an experiment using a bottom surveying AUV and a drifting Lagrangian camera float. We consider two classes of vehicles; one which is able to self propel and execute structured surveys, and one which is Lagrangian and moves only with the currents. The navigable vehicle is the more capable and the more expensives asset of the two. The Lagrangian platforms is a low cost imaging tool that can actively control its altitude above the seafloor to obtain high quality images but can not otherwise control its trajectory over the bottom. When used together the vehicles offer several scenarios for joint operations. When used in an exploratory manner the Lagrangian float is an inexpensive way to collect images from an unknown area. Depending on the collected images, a follow on structured survey with the navigable AUV can collect additional information if the cost is acceptable given the need and prior data. When used simultaneously the drifting float can guide the AUV trajectory over an area. When both platforms are equipped with acoustic tracking and communications the AUV trajectory can be automatically redirected to follow the Lagrangian float using one of many patterns. This capability allows for surveys that are potentially more representative of the near bottom oceanographic conditions at the desired location. Results will be presented from a cruise to Scott Reef, Australia, where both platforms were used as part of a coral habitat monitoring project.
Using optical flow for the detection of floating mines in IR image sequences
NASA Astrophysics Data System (ADS)
Borghgraef, Alexander; Acheroy, Marc
2006-09-01
In the first Gulf War, unmoored floating mines proved to be a real hazard for shipping traffic. An automated system capable of detecting these and other free-floating small objects, using readily available sensors such as infra-red cameras, would prove to be a valuable mine-warfare asset, and could double as a collision avoidance mechanism, and a search-and-rescue aid. The noisy background provided by the sea surface, and occlusion by waves make it difficult to detect small floating objects using only algorithms based upon the intensity, size or shape of the target. This leads us to look at the sequence of images for temporal detection characteristics. The target's apparent motion is such a determinant, given the contrast between the bobbing motion of the floating object and the strong horizontal component present in the propagation of the wavefronts. We have applied the Proesmans optical flow algorithm to IR video footage of practice mines, in order to extract the motion characteristic and a threshold on the vertical motion characteristic is then imposed to detect the floating targets.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Ferrari, Priscileila Colerato; dos Santos Grossklauss, Dany Bruno Borella; Alvarez, Matheus; Paixão, Fabiano Carlos; Andreis, Uilian; Crispim, Alexandre Giordano; de Castro, Ana Dóris; Evangelista, Raul Cesar; de Arruda Miranda, José Ricardo
2014-08-01
Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets. The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery. Floating tablets were prepared with hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and ferrite as magnetic marker. ACB was used to characterize the floating lag time and the tablet hydration rate, by quantification of the magnetic images to magnetic area. Besides the buoyancy, the floating tablets were evaluated for weight uniformity, hardness, swelling and in vitro drug release. The optimized tablets were prepared with equal amounts of HPMC and ferrite, and began to float within 4 min, maintaining the flotation during more than 24 h. The data of all physical parameters lied within the pharmacopeial limits. Drug release at 24 h was about 40%. The ACB results showed that this study provided a new approach for in vitro investigation of controlled-release dosage forms. Moreover, using automated ACB will also be possible to test these parameters in humans allowing to establish an in vitro.in vivo correlation (IVIVC).
Engineering the Ideal Gigapixel Image Viewer
NASA Astrophysics Data System (ADS)
Perpeet, D. Wassenberg, J.
2011-09-01
Despite improvements in automatic processing, analysts are still faced with the task of evaluating gigapixel-scale mosaics or images acquired by telescopes such as Pan-STARRS. Displaying such images in ‘ideal’ form is a major challenge even today, and the amount of data will only increase as sensor resolutions improve. In our opinion, the ideal viewer has several key characteristics. Lossless display - down to individual pixels - ensures all information can be extracted from the image. Support for all relevant pixel formats (integer or floating point) allows displaying data from different sensors. Smooth zooming and panning in the high-resolution data enables rapid screening and navigation in the image. High responsiveness to input commands avoids frustrating delays. Instantaneous image enhancement, e.g. contrast adjustment and image channel selection, helps with analysis tasks. Modest system requirements allow viewing on regular workstation computers or even laptops. To the best of our knowledge, no such software product is currently available. Meeting these goals requires addressing certain realities of current computer architectures. GPU hardware accelerates rendering and allows smooth zooming without high CPU load. Programmable GPU shaders enable instant channel selection and contrast adjustment without any perceptible slowdown or changes to the input data. Relatively low disk transfer speeds suggest the use of compression to decrease the amount of data to transfer. Asynchronous I/O allows decompressing while waiting for previous I/O operations to complete. The slow seek times of magnetic disks motivate optimizing the order of the data on disk. Vectorization and parallelization allow significant increases in computational capacity. Limited memory requires streaming and caching of image regions. We develop a viewer that takes the above issues into account. Its awareness of the computer architecture enables previously unattainable features such as smooth zooming and image enhancement within high-resolution data. We describe our implementation, disclosing its novel file format and lossless image codec whose decompression is faster than copying the raw data in memory. Both provide crucial performance boosts compared to conventional approaches. Usability tests demonstrate the suitability of our viewer for rapid analysis of large SAR datasets, multispectral satellite imagery and mosaics.
DSP Implementation of the Retinex Image Enhancement Algorithm
NASA Technical Reports Server (NTRS)
Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn
2004-01-01
The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.
... diagnosis. Alternative Names Floating stools Images Lower digestive anatomy References Schiller LR, Sellin JH. Diarrhea. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger and Fordtran's Gastrointestinal and Liver Disease . 10th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...
Web-based visualization of very large scientific astronomy imagery
NASA Astrophysics Data System (ADS)
Bertin, E.; Pillay, R.; Marmo, C.
2015-04-01
Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.
Hadfield watches a water bubble float in the Node 1
2013-01-21
View of Canadian Space Agency (CSA) Chris Hadfield,Expedition 34 Flight Engineer (FE),watching a water bubble float freely,showing his image refracted,in the Node 1. Photo was taken during Expedition 34.
B, Vinoth; Lai, Xin-Ji; Lin, Yu-Chih; Tu, Han-Yen; Cheng, Chau-Jern
2018-04-13
Digital holographic microtomography is a promising technique for three-dimensional (3D) measurement of the refractive index (RI) profiles of biological specimens. Measurement of the RI distribution of a free-floating single living cell with an isotropic superresolution had not previously been accomplished. To the best of our knowledge, this is the first study focusing on the development of an integrated dual-tomographic (IDT) imaging system for RI measurement of an unlabelled free-floating single living cell with an isotropic superresolution by combining the spatial frequencies of full-angle specimen rotation with those of beam rotation. A novel 'UFO' (unidentified flying object) like shaped coherent transfer function is obtained. The IDT imaging system does not require any complex image-processing algorithm for 3D reconstruction. The working principle was successfully demonstrated and a 3D RI profile of a single living cell, Candida rugosa, was obtained with an isotropic superresolution. This technology is expected to set a benchmark for free-floating single live sample measurements without labeling or any special sample preparations for the experiments.
NASA Astrophysics Data System (ADS)
Thébault, Cédric; Doyen, Didier; Routhier, Pierre; Borel, Thierry
2013-03-01
To ensure an immersive, yet comfortable experience, significant work is required during post-production to adapt the stereoscopic 3D (S3D) content to the targeted display and its environment. On the one hand, the content needs to be reconverged using horizontal image translation (HIT) so as to harmonize the depth across the shots. On the other hand, to prevent edge violation, specific re-convergence is required and depending on the viewing conditions floating windows need to be positioned. In order to simplify this time-consuming work we propose a depth grading tool that automatically adapts S3D content to digital cinema or home viewing environments. Based on a disparity map, a stereo point of interest in each shot is automatically evaluated. This point of interest is used for depth matching, i.e. to position the objects of interest of consecutive shots in a same plane so as to reduce visual fatigue. The tool adapts the re-convergence to avoid edge-violation, hyper-convergence and hyper-divergence. Floating windows are also automatically positioned. The method has been tested on various types of S3D content, and the results have been validated by a stereographer.
Seismic monitoring in the oceans by autonomous floats.
Sukhovich, Alexey; Bonnieux, Sébastien; Hello, Yann; Irisson, Jean-Olivier; Simons, Frederik J; Nolet, Guust
2015-08-20
Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments.
Seismic monitoring in the oceans by autonomous floats
Sukhovich, Alexey; Bonnieux, Sébastien; Hello, Yann; Irisson, Jean-Olivier; Simons, Frederik J.; Nolet, Guust
2015-01-01
Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments. PMID:26289598
Optimal Compression Methods for Floating-point Format Images
NASA Technical Reports Server (NTRS)
Pence, W. D.; White, R. L.; Seaman, R.
2009-01-01
We report on the results of a comparison study of different techniques for compressing FITS images that have floating-point (real*4) pixel values. Standard file compression methods like GZIP are generally ineffective in this case (with compression ratios only in the range 1.2 - 1.6), so instead we use a technique of converting the floating-point values into quantized scaled integers which are compressed using the Rice algorithm. The compressed data stream is stored in FITS format using the tiled-image compression convention. This is technically a lossy compression method, since the pixel values are not exactly reproduced, however all the significant photometric and astrometric information content of the image can be preserved while still achieving file compression ratios in the range of 4 to 8. We also show that introducing dithering, or randomization, when assigning the quantized pixel-values can significantly improve the photometric and astrometric precision in the stellar images in the compressed file without adding additional noise. We quantify our results by comparing the stellar magnitudes and positions as measured in the original uncompressed image to those derived from the same image after applying successively greater amounts of compression.
Observation of the Kelvin–Helmholtz Instability in a Solar Prominence
NASA Astrophysics Data System (ADS)
Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan
2018-04-01
Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.
McCann, Michael J
2016-01-01
Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.
2016-01-01
Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619
Whipple, Rebecca A.; Zhang, Peipei; Sooklal, Elisabeth L.; Martin, Stuart S.; Jewell, Christopher M.
2016-01-01
Free-floating tumor cells located in the blood of cancer patients, known as circulating tumor cells (CTCs), have become key targets for studying metastasis. However, effective strategies to study the free-floating behavior of tumor cells in vitro have been a major barrier limiting the understanding of the functional properties of CTCs. Upon extracellular-matrix (ECM) detachment, breast tumor cells form tubulin-based protrusions known as microtentacles (McTNs) that play a role in the aggregation and re-attachment of tumor cells to increase their metastatic efficiency. In this study, we have designed a strategy to spatially immobilize ECM-detached tumor cells while maintaining their free-floating character. We use polyelectrolyte multilayers deposited on microfluidic substrates to prevent tumor cell adhesion and the addition of lipid moieties to tether tumor cells to these surfaces through interactions with the cell membranes. This coating remains optically clear, allowing capture of high-resolution images and videos of McTNs on viable free-floating cells. In addition, we show that tethering allows for the real-time analysis of McTN dynamics on individual tumor cells and in response to tubulin-targeting drugs. The ability to image detached tumor cells can vastly enhance our understanding of CTCs under conditions that better recapitulate the microenvironments they encounter during metastasis. PMID:26871289
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
..., MD AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a... safety of life on navigable waters during a fireworks display launched from a floating platform located... zone is intended to protect the maritime public in a portion of the Potomac River. DATES: This rule is...
Calendar * @subpackage Default Theme */ a:hover {text-decoration:none;color:#FF6600;} a:active {text -decoration:underline;color:#FF6600;} a.series {float:right;} a.output {display:block;width:80%;} p{margin:0 0 10px 0 header {display:block;font-size:13px;font-weight:bold;border-bottom:1px solid #3D3F3E;color:#000000
Ford watches a water bubble float in the Node 1
2013-01-21
ISS034-E-031855 (21 Jan. 2013) --- NASA astronaut Kevin Ford, Expedition 34 commander, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Traumatic Extra-capsular and Intra-capsular Floating Fat: Fat-fluid Levels of the Knee Revisited
Davis, Derik L; Vachhani, Prasann
2015-01-01
Floating fat is a sign of acute bone injury at the knee following trauma. The goal of this article is to review the etiology, patterns, and mimickers of extra-capsular and intra-capsular floating fat, with the major emphasis on knee trauma in the acute setting. We will discuss the spectrum of multimodal imaging findings for rare presentations of extra-capsular floating fat, and contrast these with common and atypical forms of intra-capsular lipohemarthrosis, as an aid to the assessment of acute bone trauma at the knee. PMID:26713176
Chiao watches a water bubble float in the SM taken during Expedition 10
2005-01-15
ISS010-E-13569 (15 January 2005) --- Astronaut Leroy Chiao, Expedition 10 commander and NASA ISS science officer, watches a water bubble float between him and the camera, showing his image refracted, on the International Space Station (ISS).
Chiao watches a water bubble float in the SM taken during Expedition 10
2005-01-15
ISS010-E-13562 (15 January 2005) --- Astronaut Leroy Chiao, Expedition 10 commander and NASA Space Station science officer, watches a water bubble float between himself and the camera in the Zvezda Service Module, showing his image refracted.
33 CFR 165.1307 - Elliott Bay, Seattle, WA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... centered around the barge from which the fireworks will be launched and begins 100 yards from the shoreline of Myrtle Edwards Park. Floating markers will be placed by the sponsor of the fireworks display to...
1988-03-01
Applesoft language, a variant of floating-point BASIC that is supplied with the computer. As an intepreted language, Apple- soft BASIC executes fairly...fit with (VI , II ) array. I 8400 Sound bell and display warning when current limit exceeded. 8500-8510 Output HV pulse, read and display amplitude
Apple Floating in Cupola Module
2014-02-06
ISS038-E-042121 (6 Feb. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. The bright sun and Earth's horizon provide the backdrop for the scene.
Hadfield watches a water bubble float freely in the Node 1
2013-01-21
ISS034-E-031694 (21 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Hadfield watches a water bubble float freely in the Node 1
2013-01-21
ISS034-E-031695 (21 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
: 0; } .dl-horizontal dt { float: none; width: auto; clear: none; text-align: left; } .dl-horizontal dd { margin-left: 0; } .container { width: auto; } .row-fluid { width: 100%; } .row, .thumbnails [class*="span"] { display: inline-block; width: auto; } .controls-row [class*="span"
STS-33 MS Carter and MS Thornton display 'Maggot on Board' sign and candy
NASA Technical Reports Server (NTRS)
1989-01-01
STS-33 Mission Specialist (MS) Manley L. Carter, Jr (left) and MS Kathryn C. Thornton display 'Maggot on Board' sign and 'SMARTIES' candy stored in plastic bag on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. The mission specialists are wearing their mission polo shirts and communications kit assembly headsets. An overhead window appears above their heads. A gold necklace chain floats around Carter's neck.
Fruit Floating at Cupola Window
2014-01-12
ISS038-E-029073 (12 Jan. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. Attached to the Harmony node, the Orbital Sciences Corp. Cygnus commercial cargo craft, which brought the fresh fruit, is visible at center.
Geographic Resources Analysis Support System (GRASS) Version 4.0 User’s Reference Manual
1992-06-01
inpur-image need not be square; before processing, the X and Y dimensions of the input-image are padded with zeroes to the next highest power of two in...structures an input kowledge /control script with an appropriate combination of map layer category values (GRASS raster map layers that contain data on...F cos(x) cosine of x (x is in degrees) F exp(x) exponential function of x F exp(x,y) x to the power y F float(x) convert x to floating point F if
NASA Technical Reports Server (NTRS)
Dimeff, J.; Rositano, S.; Taylor, R. C.
1977-01-01
Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.
Displaying Planetary and Geophysical Datasets on NOAAs Science On a Sphere (TM)
NASA Astrophysics Data System (ADS)
Albers, S. C.; MacDonald, A. E.; Himes, D.
2005-12-01
NOAAs Science On a Sphere(TM)(SOS)was developed to educate current and future generations about the changing Earth and its processes. This system presents NOAAs global science through a 3D representation of our planet as if the viewer were looking at the Earth from outer space. In our presentation, we will describe the preparation of various global datasets for display on Science On a Sphere(TM), a 1.7-m diameter spherical projection system developed and patented at the Forecast Systems Laboratory (FSL) in Boulder, Colorado. Four projectors cast rotating images onto a spherical projection screen to create the effect of Earth, planet, or satellite floating in space. A static dataset can be prepared for display using popular image formats such as JPEG, usually sized at 1024x2048 or 2048x4096 pixels. A set of static images in a directory will comprise a movie. Imagery and data for SOS are obtained from a variety of government organizations, sometimes post-processed by various individuals, including the authors. Some datasets are already available in the required cylindrical projection. Readily available planetary maps can often be improved in coverage and/or appearance by reprojecting and combining additional images and mosaics obtained by various spacecraft, such as Voyager, Galileo, and Cassini. A map of Mercury was produced by blending some Mariner 10 photo-mosaics with a USGS shaded-relief map. An improved high-resolution map of Venus was produced by combining several Magellan mosaics, supplied by The Planetary Society, along with other spacecraft data. We now have a full set of Jupiter's Galilean satellite imagery that we can display on Science On a Sphere(TM). Photo-mosaics of several Saturnian satellites were updated by reprojecting and overlaying recently taken Cassini flyby images. Maps of imagery from five Uranian satellites were added, as well as one for Neptune. More image processing was needed to add a high-resolution Voyager mosaic to a pre-existing map of Neptune's moon Triton. A map of the cosmic background radiation was produced that shows the early universe from an external perspective. Full details and credits for these maps may be viewed online at http://laps.fsl.noaa.gov/albers/sos/sos.html. Geophysical imagery recently added to SOS includes a real-time global infrared weather satellite animation of Earth. This is a 15-minute, quality controlled animation spanning the most recent month, which draws on a number of geosynchronous and polar-orbiting weather satellites for data. Other meteorological and oceanographic datasets can be displayed, such as animations depicting the three-dimensional drifting of the ARGO buoy network through the oceans. Oceanic buoy observations were overlaid on the "Blue Marble" Earth imagery displayed on Science On a Sphere(TM). A static image shows locations for five different global buoy networks. We also produced two movies that show the drift of >1000 ARGO buoys over a period of several months. The first movie shows only the horizontal buoy drift, and the second modulates the intensities to represent the timing of each buoy dive cycle. Animations in real time are also being produced for sea surface temperatures (and anomalies). These analyses are obtained from web displays provided by the DOD Fleet Numerical Operations Center. With advanced technologies, the possibilities are limitless for displaying additional global datasets on Science On a Sphere(TM) and other spherical projection screens.
Apple Floating in Cupola Module
2014-02-06
ISS038-E-042112 (6 Feb. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. Currently docked to the station, a Russian Progress resupply vehicle (left) and a Soyuz spacecraft along with Earth's horizon are visible in the background.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Ball, Felix; Elzemann, Anne; Busch, Niko A
2014-09-01
The change blindness paradigm, in which participants often fail to notice substantial changes in a scene, is a popular tool for studying scene perception, visual memory, and the link between awareness and attention. Some of the most striking and popular examples of change blindness have been demonstrated with digital photographs of natural scenes; in most studies, however, much simpler displays, such as abstract stimuli or "free-floating" objects, are typically used. Although simple displays have undeniable advantages, natural scenes remain a very useful and attractive stimulus for change blindness research. To assist researchers interested in using natural-scene stimuli in change blindness experiments, we provide here a step-by-step tutorial on how to produce changes in natural-scene images with a freely available image-processing tool (GIMP). We explain how changes in a scene can be made by deleting objects or relocating them within the scene or by changing the color of an object, in just a few simple steps. We also explain how the physical properties of such changes can be analyzed using GIMP and MATLAB (a high-level scientific programming tool). Finally, we present an experiment confirming that scenes manipulated according to our guidelines are effective in inducing change blindness and demonstrating the relationship between change blindness and the physical properties of the change and inter-individual differences in performance measures. We expect that this tutorial will be useful for researchers interested in studying the mechanisms of change blindness, attention, or visual memory using natural scenes.
ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (SILICON GRAPHICS VERSION)
NASA Technical Reports Server (NTRS)
Walters, D.
1994-01-01
The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.
ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (CONCURRENT VERSION)
NASA Technical Reports Server (NTRS)
Pearson, R. W.
1994-01-01
The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.
ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (SUN VERSION)
NASA Technical Reports Server (NTRS)
Walters, D.
1994-01-01
The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.
ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (MASSCOMP VERSION)
NASA Technical Reports Server (NTRS)
Walters, D.
1994-01-01
The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.
ELAS - SCIENCE & TECHNOLOGY LABORATORY APPLICATIONS SOFTWARE (DEC VAX VERSION)
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1994-01-01
The Science and Technology Laboratory Applications Software (ELAS) was originally designed to analyze and process digital imagery data, specifically remotely-sensed scanner data. This capability includes the processing of Landsat multispectral data; aircraft-acquired scanner data; digitized topographic data; and numerous other ancillary data, such as soil types and rainfall information, that can be stored in digitized form. ELAS has the subsequent capability to geographically reference this data to dozens of standard, as well as user created projections. As an integrated image processing system, ELAS offers the user of remotely-sensed data a wide range of capabilities in the areas of land cover analysis and general purpose image analysis. ELAS is designed for flexible use and operation and includes its own FORTRAN operating subsystem and an expandable set of FORTRAN application modules. Because all of ELAS resides in one "logical" FORTRAN program, data inputs and outputs, directives, and module switching are convenient for the user. There are over 230 modules presently available to aid the user in performing a wide range of land cover analyses and manipulation. The file management modules enable the user to allocate, define, access, and specify usage for all types of files (ELAS files, subfiles, external files etc.). Various other modules convert specific types of satellite, aircraft, and vector-polygon data into files that can be used by other ELAS modules. The user also has many module options which aid in displaying image data, such as magnification/reduction of the display; true color display; and several memory functions. Additional modules allow for the building and manipulation of polygonal areas of the image data. Finally, there are modules which allow the user to select and classify the image data. An important feature of the ELAS subsystem is that its structure allows new applications modules to be easily integrated in the future. ELAS has as a standard the flexibility to process data elements exceeding 8 bits in length, including floating point (noninteger) elements and 16 or 32 bit integers. Thus it is able to analyze and process "non-standard" nonimage data. The VAX (ERL-10017) and Concurrent (ERL-10013) versions of ELAS 9.0 are written in FORTRAN and ASSEMBLER for DEC VAX series computers running VMS and Concurrent computers running MTM. The Sun (SSC-00019), Masscomp (SSC-00020), and Silicon Graphics (SSC-00021) versions of ELAS 9.0 are written in FORTRAN 77 and C-LANGUAGE for Sun4 series computers running SunOS, Masscomp computers running UNIX, and Silicon Graphics IRIS computers running IRIX. The Concurrent version requires at least 15 bit addressing and a direct memory access channel. The VAX and Concurrent versions of ELAS both require floating-point hardware, at least 1Mb of RAM, and approximately 70Mb of disk space. Both versions also require a COMTAL display device in order to display images. For the Sun, Masscomp, and Silicon Graphics versions of ELAS, the disk storage required is approximately 115Mb, and a minimum of 8Mb of RAM is required for execution. The Sun version of ELAS requires either the X-Window System Version 11 Revision 4 or Sun OpenWindows Version 2. The Masscomp version requires a GA1000 display device and the associated "gp" library. The Silicon Graphics version requires Silicon Graphics' GL library. ELAS display functions will not work with a monochrome monitor. The standard distribution medium for the VAX version (ERL10017) is a set of two 9-track 1600 BPI magnetic tapes in DEC VAX BACKUP format. This version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. The standard distribution medium for the Concurrent version (ERL-10013) is a set of two 9-track 1600 BPI magnetic tapes in Concurrent BACKUP format. The standard distribution medium for the Sun version (SSC-00019) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Masscomp version, (SSC-00020) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the Silicon Graphics version (SSC-00021) is a .25 inch streaming magnetic IRIS tape cartridge in UNIX tar format. Version 9.0 was released in 1991. Sun4, SunOS, and Open Windows are trademarks of Sun Microsystems, Inc. MIT X Window System is licensed by Massachusetts Institute of Technology.
Small maritime target detection through false color fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Wu, Tirui
2008-04-01
We present an algorithm that produces a fused false color representation of a combined multiband IR and visual imaging system for maritime applications. Multispectral IR imaging techniques are increasingly deployed in maritime operations, to detect floating mines or to find small dinghies and swimmers during search and rescue operations. However, maritime backgrounds usually contain a large amount of clutter that severely hampers the detection of small targets. Our new algorithm deploys the correlation between the target signatures in two different IR frequency bands (3-5 and 8-12 μm) to construct a fused IR image with a reduced amount of clutter. The fused IR image is then combined with a visual image in a false color RGB representation for display to a human operator. The algorithm works as follows. First, both individual IR bands are filtered with a morphological opening top-hat transform to extract small details. Second, a common image is extracted from the two filtered IR bands, and assigned to the red channel of an RGB image. Regions of interest that appear in both IR bands remain in this common image, while most uncorrelated noise details are filtered out. Third, the visual band is assigned to the green channel and, after multiplication with a constant (typically 1.6) also to the blue channel. Fourth, the brightness and colors of this intermediate false color image are renormalized by adjusting its first order statistics to those of a representative reference scene. The result of these four steps is a fused color image, with naturalistic colors (bluish sky and grayish water), in which small targets are clearly visible.
Steingoetter, A; Kunz, P; Weishaupt, D; Mäder, K; Lengsfeld, H; Thumshirn, M; Boesiger, P; Fried, M; Schwizer, W
2003-10-01
Modern medical imaging modalities can trace labelled oral drug dosage forms in the gastrointestinal tract, and thus represent important tools for the evaluation of their in vivo performance. The application of gastric-retentive drug delivery systems to improve bioavailability and to avoid unwanted plasma peak concentrations of orally administered drugs is of special interest in clinical and pharmaceutical research. To determine the influence of meal composition and timing of tablet administration on the intragastric performance of a gastric-retentive floating tablet using magnetic resonance imaging in the sitting position. A tablet formulation was labelled with iron oxide particles as negative magnetic resonance contrast marker to allow the monitoring of the tablet position in the food-filled human stomach. Labelled tablet was administered, together with three different solid meals, to volunteers seated in a 0.5-T open-configuration magnetic resonance system. Volunteers were followed over a 4-h period. Labelled tablet was detectable in all subjects throughout the entire study. The tablet showed persistent good intragastric floating performance independent of meal composition. Unfavourable timing of tablet administration had a minor effect on the intragastric tablet residence time and floating performance. Magnetic resonance imaging can reliably monitor and analyse the in vivo performance of labelled gastric-retentive tablets in the human stomach.
Abduljabbar, Hana N; Badr-Eldin, Shaimaa M; Aldawsari, Hibah M
2015-01-01
Ranitidine HCl is an H2-antagonist that suffers from low oral bioavailability of 50%. The site-specific absorption from the upper part of the small intestine and the colonic metabolism of the drug could partially contribute to its reduced bioavailability. To surmount these drawbacks, this work aimed at the formulation of Ranitidine HCl gastroretentive floating-biaodhesive tablets. A 3(2) factorial design was applied to assess the effects of matrix former (HPMC K100M): drug ratio, and the release retardant (Carbopol 971) amount on the characteristics of the tablets prepared using direct compression technique. The prepared tablets were thoroughly evaluated for physical properties, floating, swelling, bioadhesive and in vitro release behaviors. Statistical analysis of the results revealed significant effects for both formulation variables on the swelling index, maximum detachment force and cumulative percent drug released after 6 hours. In addition, the matrix- former: drug ratio showed a statistically significant effect on the floating lag time. Kinetic analysis of the release data indicated Higuchi diffusion kinetics and anomalous transport mechanism for all formulations. Scanning electron micrographs of the selected tablet formulation; F8, revealed intact surface without any perforations or channels in the dry state, while polymer expansion (relaxation) with some perforated areas were observed on the surface of the tablets after 12 hours dissolution in 0.1 N HCl. Furthermore, in vivo abdominal x-ray imaging showed good floating behavior of the selected formulation; F8, for up to 6 hours with appropriate bioadhesive property. In conclusion, the selected ranitidine HCl floating-bioadhesive tablets could be regarded as a promising gastroretentive drug delivery system that could deliver the drug at a controlled rate.
Kangabam, Rajiv Das; Selvaraj, Muthu; Govindaraju, Munisamy
2018-02-06
The presence of floating islands is a unique characteristic of Loktak Lake. Floating islands play a significant role in ecosystem services and ecological processes and functioning. Rapid urbanization, industrialization, and a demand for more resources have led to changes in the landscape patterns at Loktak Lake in past three decades, thereby degrading and threatening the fragile ecosystem. The aim of the present study is to assess the changes in land use practices of the Phumdis by analyzing data from the past 38 years with remote sensing techniques. Landsat images from 1977, 1988, 1999 and an Indian remote sensing image from 2015 were used to assess the land use/land cover changes. The methodology adopted is a supervised classification using the maximum likelihood technique in ERDAS software. Five land used classes were employed: open water bodies, agricultural areas, Phumdis with thick vegetation, and Phumdis with thin vegetation and settlements. The results indicate that the highest loss of land used class was in Phumdis with thin vegetation (49.38 km 2 ) followed by Phumdis with thick vegetation (8.59 km 2 ), while there was an overall increase in open water bodies (27.00 km 2 ), agricultural areas (25.33 km 2 ), and settlement (5.75 km 2 ). Our study highlights the loss of floating islands from the Loktak as a major concern that will lead to the destruction of the only "floating national park in the world." There is a high probability of extinction of the Sangai, an important keystone species found in the Indo-Burma biodiversity hotspot, if floating islands are not protected through sustainable development.
Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors.
Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2015-07-08
We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm(3) by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores.
Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors
Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2015-01-01
We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm3 by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores. PMID:26152453
Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information
NASA Technical Reports Server (NTRS)
Pence, William D.; White, R. L.; Seaman, R.
2010-01-01
We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.
Classification scheme for sedimentary and igneous rocks in Gale crater, Mars
NASA Astrophysics Data System (ADS)
Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.
2017-03-01
Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. In contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.
Classification scheme for sedimentary and igneous rocks in Gale crater, Mars
Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.; ...
2016-11-05
Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. Finally, in contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.« less
Classification scheme for sedimentary and igneous rocks in Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangold, Nicolas; Schmidt, Mariek E.; Fisk, Martin R.
Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. Here, to facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematicmore » classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e.g., potassic rocks) cannot be paired with any igneous rocks analyzed so far. Finally, in contrast, many float rocks, which cannot be classified from their poorly defined texture, plot on chemistry diagrams close to float rocks defined as igneous from their textures, potentially constraining their nature.« less
1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.
Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît
2009-01-01
We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.
Fruit Floating at Cupola Window
2014-01-12
ISS038-E-029068 (12 Jan. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. Attached to the Harmony node, the Orbital Sciences Corp. Cygnus commercial cargo craft, which brought the fresh fruit, is visible at center. The bright sun, Earth's horizon and the blackness of space provide the backdrop for the scene.
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.
2001-12-01
A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.
Pc-Based Floating Point Imaging Workstation
NASA Astrophysics Data System (ADS)
Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin
1989-07-01
The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.
;] { float: left; margin-right: 3px; margin-left: 0; } .control-group { margin-bottom: 10px; } legend + .control-group { margin-top: 20px; -webkit-margin-top-collapse: separate; } .form-horizontal .control-group : 1px solid #999; page-break-inside: avoid; } thead { display: table-header-group; } tr, img { page
ERIC Educational Resources Information Center
Ucke, C.; Schlichting, H. J.
2017-01-01
This relatively rare thermometer has a rather unusual display: lower temperatures are located at the top of the scale, higher ones at the bottom. A sphere on a chain floats in a suitable liquid, sinking at high temperatures when the density of the liquid decreases and rising in the increased density at low temperatures. With reasonable effort and…
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
33 CFR 88.15 - Lights on dredge pipelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights on dredge pipelines. 88.15... NAVIGATION RULES ANNEX V: PILOT RULES § 88.15 Lights on dredge pipelines. Dredge pipelines that are floating or supported on trestles shall display the following lights at night and in periods of restricted...
NASA Spacecraft Images One of Earth Iceberg Incubators
2012-04-13
Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.
Yoshida, Shunsuke
2016-06-13
A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present.
NASA Astrophysics Data System (ADS)
Zhao, Z.
2011-12-01
Changes in ice sheet and floating ices around that have great significance for global change research. In the context of global warming, rapidly changing of Antarctic continental margin, caving of ice shelves, movement of iceberg are all closely related to climate change and ocean circulation. Using automatic change detection technology to rapid positioning the melting Region of Polar ice sheet and the location of ice drift would not only strong support for Global Change Research but also lay the foundation for establishing early warning mechanism for melting of the polar ice and Ice displacement. This paper proposed an automatic change detection method using object-based segmentation technology. The process includes three parts: ice extraction using image segmentation, object-baed ice tracking, change detection based on similarity matching. An approach based on similarity matching of eigenvector is proposed in this paper, which used area, perimeter, Hausdorff distance, contour, shape and other information of each ice-object. Different time of LANDSAT ETM+ data, Chinese environment disaster satellite HJ1B date, MODIS 1B date are used to detect changes of Floating ice at Antarctic continental margin respectively. We select different time of ETM+ data(January 7, 2003 and January 16, 2003) with the area around Antarctic continental margin near the Lazarev Bay, which is from 70.27454853 degrees south latitude, longitude 12.38573410 degrees to 71.44474167 degrees south latitude, longitude 10.39252222 degrees,included 11628 sq km of Antarctic continental margin area, as a sample. Then we can obtain the area of floating ices reduced 371km2, and the number of them reduced 402 during the time. In addition, the changes of all the floating ices around the margin region of Antarctic within 1200 km are detected using MODIS 1B data. During the time from January 1, 2008 to January 7, 2008, the floating ice area decreased by 21644732 km2, and the number of them reduced by 83080. The results show that the object-based information extraction algorithm can obtain more precise details of a single object, while the change detection method based on similarity matching can effectively tracking the change of floating ice.
NASA Astrophysics Data System (ADS)
Zinke, Stephan
2017-02-01
Memory sensitive applications for remote sensing data require memory-optimized data types in remote sensing products. Hierarchical Data Format version 5 (HDF5) offers user defined floating point numbers and integers and the n-bit filter to create data types optimized for memory consumption. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) applies a compaction scheme to the disseminated products of the Day and Night Band (DNB) data of Suomi National Polar-orbiting Partnership (S-NPP) satellite's instrument Visible Infrared Imager Radiometer Suite (VIIRS) through the EUMETSAT Advanced Retransmission Service, converting the original 32 bits floating point numbers to user defined floating point numbers in combination with the n-bit filter for the radiance dataset of the product. The radiance dataset requires a floating point representation due to the high dynamic range of the DNB. A compression factor of 1.96 is reached by using an automatically determined exponent size and an 8 bits trailing significand and thus reducing the bandwidth requirements for dissemination. It is shown how the parameters needed for user defined floating point numbers are derived or determined automatically based on the data present in a product.
Brockmann, C.E.; Carter, William D.
1976-01-01
ERTS-1 digital data in the form of computer compatible tapes provide the geoscientist with an unusual opportunity to test the maximum flexibility of the satellite system using interactive computers, such as the General Electric Image 100 System. Approximately 9 hours of computer and operator time were used to analyze the Lake Titicaca image, 1443-14073, acquired 9 October 1973. The total area of the lake and associate wetlands was calculated and found to be within 3 percent of previous measurements. The area was subdivided by reflectance characteristics employing cluster analysis of all 4 bands and later compared with density values of band 4. Reflectance variations may be attributed to surface roughness, water depth and bottom characteristics, turbidity, and floating matter. Wetland marsh vegetation, vegetation related to ground-water effluents, natural grasses, and farm crops were separated by cluster analysis. Sandstone, limestone, sand dunes, and several volcanic rock types were similarly separated and displayed by assigned colors and extended through the entire scene. Waste dumps of the Matilde Zinc Mine and smaller mine workings were tentatively identified by signature analysis. Histograms of reflectance values and map printouts were automatically obtained as a record of each of the principal themes. These themes were also stored on a work tape for later display and photographic record as well as to serve in training. The Image 100 System is rapid, extremely flexible and very useful to the investigator in identifying subtle features that may not be noticed by conventional image analysis. The entire scene, which covers 34,225 km2, was analyzed at a scale of 1:600,000, and portions at 1:98,000 and 1:25,000, during a 9-hour period at a rental cost of $250 per hour. Costs to the user can be reduced by restricting its uses to specific areas, objectives, and procedures, rather than undertaking a complete analysis of a total scene.
High Quality Liquid Crystal Tunable Lenses and Optimization with Floating Electrodes
ERIC Educational Resources Information Center
Li, Liwei
2013-01-01
In addition to the display application, Liquid Crystals (LC) can be very useful in other applications such as beam steering, tunable lenses, etc. Electro-optical LC tunable lenses have been considered as an alternative to conventional glass lenses because of their ability to change their focal length with the application of a control voltage, as…
Critical path method applied to research project planning: Fire Economics Evaluation System (FEES)
Earl B. Anderson; R. Stanton Hales
1986-01-01
The critical path method (CPM) of network analysis (a) depicts precedence among the many activities in a project by a network diagram; (b) identifies critical activities by calculating their starting, finishing, and float times; and (c) displays possible schedules by constructing time charts. CPM was applied to the development of the Forest Service's Fire...
-overlay a{z-index:100;display:block;width:49%;height:100%;padding-top:45%;font-size:30px;color:#fff;text -nav-overlay a:empty{width:49%}.ekko-lightbox a:hover{text-decoration:none;opacity:1}.ekko-lightbox .glyphicon-chevron-left{left:0;float:left;padding-left:15px;text-align:left}.ekko-lightbox .glyphicon-chevron
Floating arterial thrombus related stroke treated by intravenous thrombolysis.
Vanacker, P; Cordier, M; Janbieh, J; Federau, C; Michel, P
2014-01-01
The effects of intravenous thrombolysis on floating thrombi in cervical and intracranial arteries of acute ischemic stroke patients are unknown. Similarly, the best prevention methods of early recurrences remain controversial. This study aimed to describe the clinical and radiological outcome of thrombolyzed strokes with floating thrombi. We retrospectively analyzed all thrombolyzed stroke patients in our institution between 2003 and 2010 with floating thrombi on acute CT-angiography before the intravenous thrombolysis. The floating thrombus was diagnosed if an elongated thrombus of at least 5 mm length, completely surrounded by contrast on supra-aortic neck or intracerebral arteries, was present on CT-angiography. Demographics, vascular risk factors, and comorbidities were recorded and stroke etiology was determined after a standardized workup. Repeat arterial imaging was performed by CTA at 24 h or before if clinical worsening was noted and then by Doppler and MRA during the first week and at four months. Of 409 thrombolyzed stroke patients undergoing acute CT Angiography, seven (1.7%) had a floating thrombus; of these seven, six had it in the anterior circulation. Demographics, risk factors and stroke severity of these patients were comparable to the other thrombolyzed patients. After intravenous thrombolysis, the floating thrombi resolved completely at 24 h in four of the patients, whereas one had an early recurrent stroke and one developed progressive worsening. One patient developed early occlusion of the carotid artery with floating thrombus and subsequently a TIA. The two patients with a stable floating thrombus had no clinical recurrences. In the literature, only one of four reported cases were found to have a thrombolysis-related early recurrence. Long-term outcome seemed similar in thrombolyzed patients with floating thrombus, despite a possible increase of very early recurrence. It remains to be established whether acute mechanical thrombectomy could be a safer and more effective treatment to prevent early recurrence. However, intravenous thrombolysis should not be withheld in eligible stroke patients. © 2014 S. Karger AG, Basel.
Evaluation of color encodings for high dynamic range pixels
NASA Astrophysics Data System (ADS)
Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania
2015-03-01
Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.
On the Challenge of Observing Pelagic Sargassum in Coastal Oceans: A Multi-sensor Assessment
NASA Astrophysics Data System (ADS)
Hu, C.; Feng, L.; Hardy, R.; Hochberg, E. J.
2016-02-01
Remote detection of pelagic Sargassum is often hindered by its spectral similarity to other floating materials and by the inadequate spatial resolution. Using measurements from multi-spectral satellite sensors (Moderate Resolution Imaging Spectroradiometer or MODIS), Landsat, WorldView-2 (or WV-2) as well as hyperspectral sensors (Hyperspectral Imager for the Coastal Ocean or HICO, Airborne Visible-InfraRed Imaging Spectrometer or AVIRIS) and airborne digital photos, we analyze and compare their ability (in terms of spectral and spatial resolutions) to detect Sargassum and to differentiate from other floating materials such as Trichodesmium, Syringodium, Ulva, garbage, and emulsified oil. Field measurements suggest that Sargassum has a distinctive reflectance curvature around 630 nm due to its chlorophyll c pigments, which provides a unique spectral signature when combined with the reflectance ratio between brown ( 650 nm) and green ( 555 nm) wavelengths. For a 10-nm resolution sensor on the hyperspectral HyspIRI mission currently being planned by NASA, a stepwise rule to examine several indexes established from 6 bands (centered at 555, 605, 625, 645, 685, 755 nm) is shown to be effective to unambiguously differentiate Sargassum from all other floating materials Numerical simulations using spectral endmembers and noise in the satellite-derived reflectance suggest that spectral discrimination is degraded when a pixel is mixed between Sargassum and water. A minimum of 20-30% Sargassum coverage within a pixel is required to retain such ability, while the partial coverage can be as low as 1-2% when detecting floating materials without spectral discrimination. With its expected signal-to-noise ratios (SNRs 200:1), the hyperspectral HyspIRI mission may provide a compromise between spatial resolution and spatial coverage to improve our capacity to detect, discriminate, and quantify Sargassum.
Matched filter based detection of floating mines in IR spacetime
NASA Astrophysics Data System (ADS)
Borghgraef, Alexander; Lapierre, Fabian; Philips, Wilfried; Acheroy, Marc
2009-09-01
Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared.
Imaging electron flow from collimating contacts in graphene
NASA Astrophysics Data System (ADS)
Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.
2018-04-01
The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B = 0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B = 0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ = 9° for electron flow from the collimating contact, compared with Δθ = 54° for the non-collimating case.
NASA Astrophysics Data System (ADS)
Evans, C. A.; Runco, S. K.; Willis, K.; Heydorn, J.; Trenchard, M.; Stefanov, W. L.; Wilkinson, M. J.
2006-12-01
For more than 40 years astronauts have been observing Earth, taking photographs or digital images from their spacecraft. Today, a robust program of observation from the International Space Station (ISS) has yielded hundreds of thousands of images of the Earth's surface collected since 2001. Seeing Earth through the eyes of an astronaut is exciting to the general public, and the images are popular in classrooms. Because the ISS has an orbital inclination of 51.6 degrees (the north-south limits of the orbit are at 51.6 degrees latitude), high latitude observations are common. Some of the most striking images collected include views of polar phenomena. Astronauts routinely pass above brilliant red and green aurora; view high, wispy clouds at the top of the atmosphere; or look down on glaciers and floating ice rafts. These images, framed and captured by humans, are easily interpreted by students and teachers. Astronaut observations provide a way to visualize complicated polar phenomena and communicate about them to students of all ages. Over the next two years, astronauts aboard the ISS will formally focus their observations on polar phenomena as participants in the International Polar Year (IPY). Imagery acquisition from the ISS will be coordinated with other IPY scientists staging studies and field campaigns on the ground. The imagery collected from the ISS will be cataloged and served on NASA's web-based database of images, http://eol.jsc.nasa.gov . The website allows investigators, students and teachers to search through the imagery, assemble image datasets, and download the imagery and the metadata. We display some of the most spectacular examples of polar imagery and demonstrate NASA's database of astronaut images of Earth.
NASA Technical Reports Server (NTRS)
Abercromby, Kira J.; Seitzer, Patrick; Rodriquez, Heather M.; Barker, Edwin S.; Matney, Mark J.
2006-01-01
For more than 40 years astronauts have been observing Earth, taking photographs or digital images from their spacecraft. Today, a robust program of observation from the International Space Station (ISS) has yielded hundreds of thousands of images of the Earth s surface collected since 2001. Seeing Earth through the eyes of an astronaut is exciting to the general public, and the images are popular in classrooms. Because the ISS has an orbital inclination of 51.6 degrees (the north-south limits of the orbit are at 51.6 degrees latitude), high latitude observations are common. Some of the most striking images collected include views of polar phenomena. Astronauts routinely pass above brilliant red and green aurora; view high, wispy clouds at the top of the atmosphere; or look down on glaciers and floating ice rafts. These images, framed and captured by humans, are easily interpreted by students and teachers. Astronaut observations provide a way to visualize complicated polar phenomena and communicate about them to students of all ages. Over the next two years, astronauts aboard the ISS will formally focus their observations on polar phenomena as participants in the International Polar Year (IPY). Imagery acquisition from the ISS will be coordinated with other IPY scientists staging studies and field campaigns on the ground. The imagery collected from the ISS will be cataloged and served on NASA s web-based database of images, http://eol.jsc.nasa.gov . The website allows investigators, students and teachers to search through the imagery, assemble image datasets, and download the imagery and the metadata. We display some of the most spectacular examples of polar imagery and demonstrate NASA s database of astronaut images of Earth.
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Runco, Susan K.; Heydorn, James; Trenchard, Michael; Stefanov, William L.; Wilkinson, M. Justin
2006-01-01
For more than 40 years astronauts have been observing Earth, taking photographs or digital images from their spacecraft. Today, a robust program of observation from the International Space Station (ISS) has yielded hundreds of thousands of images of the Earth s surface collected since 2001. Seeing Earth through the eyes of an astronaut is exciting to the general public, and the images are popular in classrooms. Because the ISS has an orbital inclination of 51.6 degrees (the north-south limits of the orbit are at 51.6 degrees latitude), high latitude observations are common. Some of the most striking images collected include views of polar phenomena. Astronauts routinely pass above brilliant red and green aurora; view high, wispy clouds at the top of the atmosphere; or look down on glaciers and floating ice rafts. These images, framed and captured by humans, are easily interpreted by students and teachers. Astronaut observations provide a way to visualize complicated polar phenomena and communicate about them to students of all ages. Over the next two years, astronauts aboard the ISS will formally focus their observations on polar phenomena as participants in the International Polar Year (IPY). Imagery acquisition from the ISS will be coordinated with other IPY scientists staging studies and field campaigns on the ground. The imagery collected from the ISS will be cataloged and served on NASA s web-based database of images, http://eol.jsc.nasa.gov . The website allows investigators, students and teachers to search through the imagery, assemble image datasets, and download the imagery and the metadata. We display some of the most spectacular examples of polar imagery and demonstrate NASA s database of astronaut images of Earth.
System and method for floating-substrate passive voltage contrast
Jenkins, Mark W [Albuquerque, NM; Cole, Jr., Edward I.; Tangyunyong, Paiboon [Albuquerque, NM; Soden, Jerry M [Placitas, NM; Walraven, Jeremy A [Albuquerque, NM; Pimentel, Alejandro A [Albuquerque, NM
2009-04-28
A passive voltage contrast (PVC) system and method are disclosed for analyzing ICs to locate defects and failure mechanisms. During analysis a device side of a semiconductor die containing the IC is maintained in an electrically-floating condition without any ground electrical connection while a charged particle beam is scanned over the device side. Secondary particle emission from the device side of the IC is detected to form an image of device features, including electrical vias connected to transistor gates or to other structures in the IC. A difference in image contrast allows the defects or failure mechanisms be pinpointed. Varying the scan rate can, in some instances, produce an image reversal to facilitate precisely locating the defects or failure mechanisms in the IC. The system and method are useful for failure analysis of ICs formed on substrates (e.g. bulk semiconductor substrates and SOI substrates) and other types of structures.
NASA Astrophysics Data System (ADS)
Armono, H. D.; Mahaputra, B. G.; Zikra, M.
2018-03-01
Floating cages is one of the methods of fish farming (aqua culture) that can be developed at rivers, lakes or seas. To determine a proper location for floating cages, there are some requirements that need to be fulfilled to maintain sustainibility of floating cages. Those requirements are the quality of the environment. This paper will discuss the selection of best location for aquaculture activities using Weighted Overlay method in the Geographical Information System, based on the the concentration of chlorophyll-a, sea surface temperature presented by Aqua MODIS Level 1b satellite images. The satellite data will be associated with the measured field data on March and October 2016. The study take place on Prigi Bay, at Trenggalek Regency, East Java. Based on spatial analysis in the Geographical Information System, the Prigi bay generally suitable for aquaculture activities using floating net cages. The result of Weighted Overlay combinations in both periods showed a mean score of 2.18 of 3 where 8.33 km2 (23.13% of the water area) considered as "very suitable" and 27.67 km2 (76.87% of water area) considered "suitable".
2016-02-29
Showcased at the centre of this NASA/ESA Hubble Space Telescope image is an emission-line star known as IRAS 12196-6300. Located just under 2300 light-years from Earth, this star displays prominent emission lines, meaning that the star’s light, dispersed into a spectrum, shows up as a rainbow of colours marked with a characteristic pattern of dark and bright lines. The characteristics of these lines, when compared to the “fingerprints” left by particular atoms and molecules, can be used to reveal IRAS 12196-6300’s chemical composition. Under 10 million years old and not yet burning hydrogen at its core, unlike the Sun, this star is still in its infancy. Further evidence of IRAS 12196-6300’s youth is provided by the presence of reflection nebulae. These hazy clouds, pictured floating above and below IRAS 12196-6300, are created when light from a star reflects off a high concentration of nearby dust, such as the dusty material still remaining from IRAS 12196-6300’s formation.
Atmospheric Science Data Center
2014-05-15
article title: Front Range of the Rockies View ... north and east. Denver is situated just east of the Front Range of the Rocky Mountains, located in the lower right of the images. The ... of erosion. Scattered cumulus clouds floating above the mountain peaks are visible in these images, and stand out most dramatically in ...
Xiao, Xia; Feng, Ya-Ping; Du, Bin; Sun, Han-Ru; Ding, You-Quan; Qi, Jian-Guo
2017-03-01
Fluorescent immunolabeling and imaging in free-floating thick (50-60 μm) tissue sections is relatively simple in practice and enables design-based non-biased stereology, or 3-D reconstruction and analysis. This method is widely used for 3-D in situ quantitative biology in many areas of biological research. However, the labeling quality and efficiency of standard protocols for fluorescent immunolabeling of these tissue sections are not always satisfactory. Here, we systematically evaluate the effects of raising the conventional antibody incubation temperatures (4°C or 21°C) to mammalian body temperature (37°C) in these protocols. Our modification significantly enhances the quality (labeling sensitivity, specificity, and homogeneity) and efficiency (antibody concentration and antibody incubation duration) of fluorescent immunolabeling of free-floating thick tissue sections.
Hubble and a Stellar Fingerprint
2016-03-04
Showcased at the center of this NASA/ESA Hubble Space Telescope image is an emission-line star known as IRAS 12196-6300. Located just under 2,300 light-years from Earth, this star displays prominent emission lines, meaning that the star’s light, dispersed into a spectrum, shows up as a rainbow of colors marked with a characteristic pattern of dark and bright lines. The characteristics of these lines, when compared to the “fingerprints” left by particular atoms and molecules, can be used to reveal IRAS 12196-6300’s chemical composition. Under 10 million years old and not yet burning hydrogen at its core, unlike the sun, this star is still in its infancy. Further evidence of IRAS 12196-6300’s youth is provided by the presence of reflection nebulae. These hazy clouds, pictured floating above and below IRAS 12196-6300, are created when light from a star reflects off a high concentration of nearby dust, such as the dusty material still remaining from IRAS 12196-6300’s formation. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Optical tomography by means of regularized MLEM
NASA Astrophysics Data System (ADS)
Majer, Charles L.; Urbanek, Tina; Peter, Jörg
2015-09-01
To solve the inverse problem involved in fluorescence mediated tomography a regularized maximum likelihood expectation maximization (MLEM) reconstruction strategy is proposed. This technique has recently been applied to reconstruct galaxy clusters in astronomy and is adopted here. The MLEM algorithm is implemented as Richardson-Lucy (RL) scheme and includes entropic regularization and a floating default prior. Hence, the strategy is very robust against measurement noise and also avoids converging into noise patterns. Normalized Gaussian filtering with fixed standard deviation is applied for the floating default kernel. The reconstruction strategy is investigated using the XFM-2 homogeneous mouse phantom (Caliper LifeSciences Inc., Hopkinton, MA) with known optical properties. Prior to optical imaging, X-ray CT tomographic data of the phantom were acquire to provide structural context. Phantom inclusions were fit with various fluorochrome inclusions (Cy5.5) for which optical data at 60 projections over 360 degree have been acquired, respectively. Fluorochrome excitation has been accomplished by scanning laser point illumination in transmission mode (laser opposite to camera). Following data acquisition, a 3D triangulated mesh is derived from the reconstructed CT data which is then matched with the various optical projection images through 2D linear interpolation, correlation and Fourier transformation in order to assess translational and rotational deviations between the optical and CT imaging systems. Preliminary results indicate that the proposed regularized MLEM algorithm, when driven with a constant initial condition, yields reconstructed images that tend to be smoother in comparison to classical MLEM without regularization. Once the floating default prior is included this bias was significantly reduced.
mobile_icon{margin-right:5px;margin-left:8px}div#tools-main span i{margin-right:6px;float:left}div #tools-main i.icon-eere-arrow-header-link{margin:0 0 0 4px;vertical-align:center}div#tools-main div.highlight-box{margin-top:20px}div#tools-main div.highlight-box div{height:70px;width:33px;display:inline
; color:#5A5655; background-color:#F8F8F8; height:368px; text-align:left; overflow:auto; z-index:88 { display:block; position: relative; clear:right; margin: 3px 0 0 0; border: 1px solid #CCC; padding: 0; color : #5A5655; background-color: #F8F8F8; height:40px; width:723px; /*float:right;*/ text-align:left
Event-driven charge-coupled device design and applications therefor
NASA Technical Reports Server (NTRS)
Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)
2005-01-01
An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.
2007-03-01
Magnificent blue and gold Saturn floats obliquely as one of its gravity-bound companions, Dione, hangs in the distance. The darkened rings seem to nearly touch their shadowy reverse images on the planet below
Space Radar Image of Manaus, Brazil
1999-01-27
These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. http://photojournal.jpl.nasa.gov/catalog/PIA01712
USDA-ARS?s Scientific Manuscript database
The objective of this work was to design, construct, and test the self-propelled aquatic platform for imaging, multi-tier water sampling, water quality sensing, and depth profiling to document microbial content and environmental covariates in the interior of irrigation ponds and reservoirs. The plat...
Khan, Zulfequar Ahamad; Tripathi, Rahul; Mishra, Brahmeshwar
2011-12-01
The present work investigates the feasibility of the design of a novel floating elementary osmotic pump tablet (FEOPT) to prolong the gastric residence of a highly water-soluble drug. Diethylcarbamazine citrate (DEC) was chosen as a model drug. The FEOPT consisted of an osmotic core (DEC, mannitol, and hydrophilic polymers) coated with a semipermeable layer (cellulose acetate) and a gas-generating gelling layer (sodium bicarbonate, hydrophilic polymers) followed by a polymeric film (Eudragit RL 30D). The effect of formulation variables such as concentration of polymers, types of diluent, and coat thickness of semipermeable membrane was evaluated in terms of physical parameters, floating lag time, duration of floatation, and in vitro drug release. The Fourier transform infrared and X-ray diffraction analysis were carried out to study the physicochemical changes in the drug excipients powder blend. The integrity of the orifice and polymeric film layer was confirmed from scanning electron microscopy image. All the developed FEOPT showed floating lag time of less than 8 min and floating duration of 24 h. A zero-order drug release could be attained for DEC. The formulations were found to be stable up to 3 months of stability testing at 40°C/75% relative humidity.
Reddy, Arun B; Reddy, Narendar D
2017-07-01
Clarithromycin (CM), a broad spectrum macrolide antibiotic used to eradicate H. pylori in peptic ulcer. Clarithromycin (CM) is well absorbed from the gastrointestinal tract, but has a bioavailability of 50% due to rapid biodegradation. The aim of this investigation was to increase the gastric residence time, and to control the drug release of clarithromycin by formulating into multiple unit floating mini-tablets. Floating tablets were prepared by using direct compression method with HPMC K 4 M and Polyox WSR 1105 as release retarded polymers and sodium bicarbonate as gas generating agent. The prepared mini-tablets were evaluated for thickness, weight variation, friability, hardness, drug content, in vitro buoyancy, swelling studies, in vitro dissolution studies by using modified Rossett-Rice test and in vivo radiographic studies in healthy human volunteers in fasting conditions. DSC analysis revealed that no interaction between drug and excipients. All the physical parameters of the tablets were within the acceptable limits. The optimized formulation (F6) had showed controlled drug release of 99.16±3.22% in 12 h, by zero-order release kinetics, along with floating lag time of 9.5±1.28 s and total floating time of 12±0.14 h. X-ray imaging studies revealed that in vivo gastric residence time of clarithromycin floating mini-tablet in the stomach was about 3.5 h. The results demonstrated that the developed floating mini-tablets of clarithromycin caused significant enhancement in gastric retention time along with sustained effect and increased oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.
Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles
NASA Astrophysics Data System (ADS)
Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten
2013-03-01
The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.
Best, Heather; McNamara, J.P.; Liberty, Lee M.
2005-01-01
We collected ground-penetrating radar data at 10 sites along the Kuparuk River and its main tributary, the Toolik River, to detect unfrozen water beneath river ice. We used 250 MHz and 500 MHz antennas to image both the ice-water interface and the river channel in late April 2001, when daily high temperatures were consistently freezing and river ice had attained its maximum seasonal thickness. The presence of water below the river ice appears as a strong, horizontal reflection observed in the radar data and is confirmed by drill hole data. A downstream transition occurs from ice that is frozen to the bed, called bedfast ice, to ice that is floating on unfrozen water, called floating ice. This transition in ice type corresponds to a downstream change in channel size that was detected in previously conducted hydraulic geometry surveys of the Kuparuk River. We propose a conceptual model wherein the downstream transition from bedfast ice to floating ice is responsible for an observed step change in channel size due to enhanced bank erosion in large channels by floating ice.
Definitive diagnosis of breast implant rupture using magnetic resonance imaging.
Ahn, C Y; Shaw, W W; Narayanan, K; Gorczyca, D P; Sinha, S; Debruhl, N D; Bassett, L W
1993-09-01
Breast implant rupture is an important complication of augmented and reconstructed breasts. Although several techniques such as mammography, xeromammography, ultrasound, thermography, and computed tomographic (CT) scanning have been proven to be useful to detect implant rupture, they have several disadvantages and lack specificity. In the current study, we have established magnetic resonance imaging (MRI) as a definitive, reliable, and reproducible technique to diagnose both intracapsular and extracapsular ruptures. The study was conducted in 100 symptomatic patients. Our imaging parameters were able to identify ruptures in implants with silicone shells. All the ruptures showed the presence of wavy lines, free-floating silicone shell within the gel ("free-floating loose-thread sign" or "linguine sign"). We had a 3.75 percent incidence of false-positive and false-negative results. The sensitivity for detection of silicone implant rupture was 76 percent, with a specificity of 97 percent. In addition, we also were able to identify the artifacts that may interfere with the definitive diagnosis of implant rupture.
2012-06-24
ISS031-E-143936 (24 June 2012) --- NASA astronaut Joe Acaba, Expedition 31 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, on the International Space Station.
A randomization approach to handling data scaling in nuclear medicine.
Bai, Chuanyong; Conwell, Richard; Kindem, Joel
2010-06-01
In medical imaging, data scaling is sometimes desired to handle the system complexity, such as uniformity calibration. Since the data are usually saved in short integer, conventional data scaling will first scale the data in floating point format and then truncate or round the floating point data to short integer data. For example, when using truncation, scaling of 9 by 1.1 results in 9 and scaling of 10 by 1.1 results in 11. When the count level is low, such scaling may change the local data distribution and affect the intended application of the data. In this work, the authors use an example gated cardiac SPECT study to illustrate the effect of conventional scaling by factors of 1.1 and 1.2. The authors then scaled the data with the same scaling factors using a randomization approach, in which a random number evenly distributed between 0 and 1 is generated to determine how the floating point data will be saved as short integer data. If the random number is between 0 and 0.9, then 9.9 will be saved as 10, otherwise 9. In other words, the floating point value 9.9 will be saved in short integer value as 10 with 90% probability or 9 with 10% probability. For statistical analysis of the performance, the authors applied the conventional approach with rounding and the randomization approach to 50 consecutive gated studies from a clinical site. For the example study, the image reconstructed from the original data showed an apparent perfusion defect at the apex of the myocardium. The defect size was noticeably changed by scaling with 1.1 and 1.2 using the conventional approaches with truncation and rounding. Using the randomization approach, in contrast, the images from the scaled data appeared identical to the original image. Line profile analysis of the scaled data showed that the randomization approach introduced the least change to the data as compared to the conventional approaches. For the 50 gated data sets, significantly more studies showed quantitative differences between the original images and the images from the data scaled by 1.2 using the rounding approach than the randomization approach [46/50 (92%) versus 3/50 (6%), p < 0.05]. Likewise, significantly more studies showed visually noticeable differences between the original images and the images from the data scaled by 1.2 using the rounding approach than randomization [29/50 (58%) versus 1/50 (2%), p < 0.05]. In conclusion, the proposed randomization approach minimizes the scaling-introduced local data change as compared to the conventional approaches. It is preferred for nuclear medicine data scaling.
Software For Tie-Point Registration Of SAR Data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice
1995-01-01
SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)
2006-01-01
A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.
Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach.
McNabb, Robert W; Womble, Jamie N; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E
2016-01-01
Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice ([Formula: see text] = 45.2%, SD = 41.5%), water ([Formula: see text] = 52.7%, SD = 42.3%), and icebergs ([Formula: see text] = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability.
Fixed-point image orthorectification algorithms for reduced computational cost
NASA Astrophysics Data System (ADS)
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
Quantification and Analysis of Icebergs in a Tidewater Glacier Fjord Using an Object-Based Approach
McNabb, Robert W.; Womble, Jamie N.; Prakash, Anupma; Gens, Rudiger; Haselwimmer, Christian E.
2016-01-01
Tidewater glaciers are glaciers that terminate in, and calve icebergs into, the ocean. In addition to the influence that tidewater glaciers have on physical and chemical oceanography, floating icebergs serve as habitat for marine animals such as harbor seals (Phoca vitulina richardii). The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords. We present a case study to describe a novel method that uses object-based image analysis (OBIA) to classify floating glacier ice in a tidewater glacier fjord from high-resolution aerial digital imagery. Our objectives were to (i) develop workflows and rule sets to classify high spatial resolution airborne imagery of floating glacier ice; (ii) quantify the amount and fine-scale characteristics of floating glacier ice; (iii) and develop processes for automating the object-based analysis of floating glacier ice for large number of images from a representative survey day during June 2007 in Johns Hopkins Inlet (JHI), a tidewater glacier fjord in Glacier Bay National Park, southeastern Alaska. On 18 June 2007, JHI was comprised of brash ice (x¯ = 45.2%, SD = 41.5%), water (x¯ = 52.7%, SD = 42.3%), and icebergs (x¯ = 2.1%, SD = 1.4%). Average iceberg size per scene was 5.7 m2 (SD = 2.6 m2). We estimate the total area (± uncertainty) of iceberg habitat in the fjord to be 455,400 ± 123,000 m2. The method works well for classifying icebergs across scenes (classification accuracy of 75.6%); the largest classification errors occur in areas with densely-packed ice, low contrast between neighboring ice cover, or dark or sediment-covered ice, where icebergs may be misclassified as brash ice about 20% of the time. OBIA is a powerful image classification tool, and the method we present could be adapted and applied to other ice habitats, such as sea ice, to assess changes in ice characteristics and availability. PMID:27828967
NASA Astrophysics Data System (ADS)
Fusilli, Lorenzo; Cavalli, Rosa Maria; Laneve, Giovanni; Pignatti, Stefano; Santilli, Giancarlo; Santini, Federico
2010-05-01
Remote sensing allows multi-temporal mapping and monitoring of large water bodies. The importance of remote sensing for wetland and inland water inventory and monitoring at all scales was emphasized several times by the Ramsar Convention on Wetlands and from EU projects like SALMON and ROSALMA, e.g. by (Finlayson et al., 1999) and (Lowry and Finlayson, 2004). This paper aims at assessing the capability of time series of satellite imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the macrophytes growing in order to support the monitor and management of the lake Victoria water resources. The lake Victoria coastal areas are facing a number of challenges related to water resource management which include growing population, water scarcity, climate variability and water resource degradation, invasive species, water pollution. The proliferation of invasive plants and aquatic weeds, is of growing concern. In particular, let us recall some of the problems caused by the aquatic weeds growing: Ø interference with human activities such as fishing, and boating; Ø inhibition or interference with a balanced fish population; Ø fish killing due to removal of too much oxygen from the water; Ø production of quiet water areas that are ideal for mosquito breeding. In this context, an integrated use of medium/high resolution images from sensors like MODIS, ASTER, LANDSAT/TM and whenever available CHRIS offers the possibility of creating a congruent time series allowing the analysis of the floating vegetation dynamic on an extended temporal basis. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution, further its spatial resolution can results not always adequate to map the extension of floating plants. Therefore, the integrated use of sensors with different spatial resolution, were used to map across seasons the evolution of the phenomena. The integrated use of satellite resources allowed the estimate of the temporal variability of physical parameters that were used to i) sample the spatio-temporal distribution of the whole floating vegetation (i.e. native vegetation and weed) and ii) assess the seasonal recurrence of the abnormal weeds grow, as well as, their possible relation with the hydrological regimes of the rivers. The paper describes how the 2000 - 2009 MODIS images time series, were analysed (navigated and processed) to derive i) the map the floating vegetation on the test area and ii) identify the areas more interested by the growing iii) to discriminate, whenever possible, according to the spectral and spatial resolution of the sensor applied (i.e. LANDSAT, ASTER, CHRIS), the different vegetation species in order to discriminate the weeds from the floating vegetation. The spectral identification of the different species was performed by exploiting the results of a field campaign performed in the past along the Kenyan coastal areas devoted to define a data base of spectral signatures of the main species. Spectral information was treated to define indexes and spectral analysis procedure customized to multispectral high resolution satellite data. Moreover, the results of the images time series has been analysed to identify a possible definition of the temporal occurrence of the floating vegetation growing considering both the natural phenomenological cycles and the conditions related to the abnormal growing. These results, whenever related to ancillary hydrological information (e.g. the amount of rain), they have shown that the synergy of MODIS images time series with lower temporal frequency time series imagery is a powerful tool to monitor the lake Victoria ecosystem and to follow the floating vegetation extension and even to foresee the possibility to set up a model for the abnormal vegetation growing.
2007-04-16
The Seven Sisters, also known as the Pleiades star cluster, seem to float on a bed of feathers in a new infrared image from NASA Spitzer Space Telescope. Clouds of dust sweep around the stars, swaddling them in a cushiony veil.
2013-07-12
NASA astronaut Karen Nyberger, Expedition 36 flight engineer, watches a water bubble float freely between her and the camera, showing her image refracted in the droplet, while in the Node 1Unity module of the International Space Station.
2013-07-12
ISS036-E-018302 (12 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Unity node of the International Space Station.
Duque plays with a droplet of liquid
2003-10-25
ISS007-E-17973 (25 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque of Spain watches a water bubble float between him and the camera, showing his image refracted, on the International Space Station (ISS).
2012-06-24
ISS031-E-143875 (24 June 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted and reflected, on the International Space Station.
Fluidic lens of floating oil using round-pot chamber based on electrowetting.
Choi, Hyunhwan; Won, Yonghyub
2013-07-01
This study presents a liquid lens using electrowetting that employs an oil phase floating in between the conducting fluids. The lens shape has double-sided surfaces and operates with a bias of 0-60 V. The focal length of the lens, with an aperture size of 2 mm, is ~5.8 mm, and it is converted into an optical power of 172. The lens is sufficient to suppress the fluctuation of fluids due to the external vibration. An image seen through the lens clearly resolves the element better than 6.35 LP/mm on USAF 1951 1×.
Refai, Tamer Adel
2015-10-01
Apical protrusion in the central 4-mm ring in the Scheimflug imaging (Pentacam), both for the anterior and posterior floats as well as Corneal Hysteresis and Corneal Resistance Factor by Ocular Response Analyzer (ORA), generally are considered important predictors for post-Lasik ectasia. The aim of this work was to find out if there is a statistically significant correlation between these different predictors and their correlation with the central corneal thickness for refractive non-keratoconic Egyptian patients trying to achieve a better decision and avoiding ectasia. This case-control study involved 142 eyes (of 77 patients with various refractive errors) arriving at the refractive surgery unit in the Research Institute of Ophthalmology in Giza (Egypt) in 2014-2015 seeking excimer laser ablation. The flattest, steepest keratometry readings, central corneal thickness as well as the apical protrusion in the central 4-mm ring, both for the anterior and posterior floats, in microns were measured by Scheimflug imaging. The Corneal Hysteresis and Corneal Resistance Factor were measured by the ocular response analyzer. Statistical analysis was performed by SPSS, using the Pearson correlation test. The spherical refractive error ranged from +7.00 to -13.00 diopters (-3.80 ± 2.89). The central pachymetry ranged from 494 to 634 μm (550.35 ± 32.13). For the central 4-mm ring, the apical protrusion ranged from 0 to +15 μ (6.93 ± 2.99) for the anterior float and from -3 to +20 μ (9.33 ± 4.55) for the posterior float. The Corneal Hysterisis (CH) ranged from 7 to 14.8 mmHg (10.18±1.44), while the Corneal Resistance Factor (CRF) ranged from 7.5 to 14.9 mmHg (10.58 ± 1.67). There was a strong positive correlation between the central corneal thickness and both Corneal Hysteresis (CH: r = 0.56, P ≤ 0.01) and Corneal Resistance Factor (r = 0.46, P ≤ 0.01). A significant correlation (P < 0.05, r = 0.15) existed between apical protrusion in the posterior float and the central corneal thickness. Also, significant negative correlation (P < 0.05, r = -0.12) existed between apical protrusion in the anterior float by pentacam and the Corneal Resistance Factor by ocular response analyzer. Our finding of a strong positive correlation between both Corneal Hysteresis and Corneal Resistance Factor and the Central corneal thickness being important for biomechanical corneal stability. The findings of this study also support using both machines preoperatively to decrease the risk of post-Lasik ectasia.
Magnetic resonance imaging for the in vivo evaluation of gastric-retentive tablets.
Steingoetter, Andreas; Weishaupt, Dominik; Kunz, Patrick; Mäder, Karsten; Lengsfeld, Hans; Thumshirn, Miriam; Boesiger, Peter; Fried, Michael; Schwizer, Werner
2003-12-01
To develop a magnetic resonance imaging (MRI) technique for assessing in vivo properties of orally ingested gastric-retentive tablets under physiologic conditions. Tablets with different floating characteristics (tablet A-C) were marked with superparamagnetic Fe3O4 particles to analyze intragastric tablet position and residence time in human volunteers. Optimal Fe3O4 concentration was determined in vitro. Intragastric release characteristic of one slow-release tablet (tablet D) was analyzed by embedding gadolinium chelates (Gd-DOTA) as a drug model into the tablet. All volunteers underwent MRI in the sitting position. Tablet performance was analyzed in terms of relative position of tablet to intragastric meal level (with 100% at meal surface), intragastric residence time (min) and Gd-DOTA distribution volume (% of meal volume). Intragastric tablet floating performance and residence time of tablets (tablet A-D) as well as the intragastric Gd-DOTA distribution of tablet D could be monitored using MRI. Tablet floating performance was different between the tablets (A, 93%(95 - 9%); B, 80%(80 - 68%): C, 38%(63 - 32%); p < 0.05). The intragastric distribution volume of Gd-DOTA was 19.9% proximally and 35.5% distally. The use of MRI allows the assessment of galenic properties of orally ingested tablets in humans in seated position.
Walimbe, Vivek; Shekhar, Raj
2006-12-01
We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.
Preliminary display comparison for dental diagnostic applications
NASA Astrophysics Data System (ADS)
Odlum, Nicholas; Spalla, Guillaume; van Assche, Nele; Vandenberghe, Bart; Jacobs, Reinhilde; Quirynen, Marc; Marchessoux, Cédric
2012-02-01
The aim of this study is to predict the clinical performance and image quality of a display system for viewing dental images. At present, the use of dedicated medical displays is not uniform among dentists - many still view images on ordinary consumer displays. This work investigated whether the use of a medical display improved the perception of dental images by a clinician, compared to a consumer display. Display systems were simulated using the MEdical Virtual Imaging Chain (MEVIC). Images derived from two carefully performed studies on periodontal bone lesion detection and endodontic file length determination, were used. Three displays were selected: a medical grade one and two consumer displays (Barco MDRC-2120, Dell 1907FP and Dell 2007FPb). Some typical characteristics of the displays are evaluated by measurements and simulations like the Modulation Function (MTF), the Noise Power Spectrum (NPS), backlight stability or calibration. For the MTF, the display with the largest pixel pitch has logically the worst MTF. Moreover, the medical grade display has a slightly better MTF and the displays have similar NPS. The study shows the instability effect for the emitted intensity of the consumer displays compared to the medical grade one. Finally the study on the calibration methodology of the display shows that the signal in the dental images will be always more perceivable on the DICOM GSDF display than a gamma 2,2 display.
On the numbers of images of two stochastic gravitational lensing models
NASA Astrophysics Data System (ADS)
Wei, Ang
2017-02-01
We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.
Space Radar Image of Manaus, Brazil
NASA Technical Reports Server (NTRS)
1994-01-01
These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.
Lu plays with a droplet of liquid
2003-10-25
ISS007-E-17985 (2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, watches a water bubble float between him and the camera, showing his image refracted, on the International Space Station (ISS).
Dube, T S; Ranpise, N S; Ranade, A N
2014-01-01
The objective of the present study was to fabricate and evaluate a multiparticulate oral gastroretentive dosage form of baclofen characterized by a central large cavity (hollow core) promoting unmitigated floatation with practical applications to alleviate the signs and symptoms of spasticity and muscular rigidity. Solvent diffusion and evaporation procedure were applied to prepare floating microspheres with a central large cavity using various combinations of ethylcellulose (release retardant) and HPMC K4M (release modifier) dissolved in a mixture of dichloromethane and methanol (2:1). The obtained microspheres (700-1000 µm) exhibit excellent floating ability (86 ± 2.00%) and release characteristics with entrapment efficiency of 95.2 ± 0.32%. Microspheres fabricated with ethylcellulose to HPMC K4M in the ratio 8.5:1.5 released 98.67% of the entrapped drug in 12 h. Muscle relaxation caused by baclofen microspheres impairs the rotarod performance for more than 12 h. Abdominal X-ray images showed that the gastroretention period of the floating barium sulfate- labeled microspheres was no less than 10 h. The buoyant baclofen microspheres provide a promising gastroretentive drug delivery system to deliver baclofen in spastic patients with a sustained release rate.
Design and development of a smart aerial platform for surface hydrological measurements
NASA Astrophysics Data System (ADS)
Tauro, F.; Pagano, C.; Porfiri, M.; Grimaldi, S.
2013-12-01
Currently available experimental methodologies for surface hydrological monitoring rely on the use of intrusive sensing technologies which tend to provide local rather than distributed information on the flow physics. In this context, drawbacks deriving from the use of invasive instrumentation are partially alleviated by Large Scale Particle Image Velocimetry (LSPIV). LSPIV is based on the use of cameras mounted on masts along river banks which capture images of artificial tracers or naturally occurring objects floating on water surfaces. Images are then georeferenced and the displacement of groups of floating tracers statistically analyzed to reconstruct flow velocity maps at specific river cross-sections. In this work, we mitigate LSPIV spatial limitations and inaccuracies due to image calibration by designing and developing a smart platform which integrates digital acquisition system and laser calibration units onboard of a custom-built quadricopter. The quadricopter is designed to be lightweight, low cost as compared to kits available on the market, highly customizable, and stable to guarantee minimal vibrations during image acquisition. The onboard digital system includes an encased GoPro Hero 3 camera whose axis is constantly kept orthogonal to the water surface by means of an in-house developed gimbal. The gimbal is connected to the quadricopter through a shock absorber damping device which further reduces eventual vibrations. Image calibration is performed through laser units mounted at known distances on the quadricopter landing apparatus. The vehicle can be remotely controlled by the open-source Ardupilot microcontroller. Calibration tests and field experiments are conducted in outdoor environments to assess the feasibility of using the smart platform for acquisition of high quality images of natural streams. Captured images are processed by LSPIV algorithms and average flow velocities are compared to independently acquired flow estimates. Further, videos are presented where the smart platform captures the motion of environmentally-friendly buoyant fluorescent particle tracers floating on the surface of water bodies. Such fluorescent particles are in-house synthesized and their visibility and accuracy in tracing complex flows have been previously tested in laboratory and outdoor settings. Experimental results demonstrate the potential of the methodology in monitoring severely accessible and spatially extended environments. Improved accuracy in flow monitoring is accomplished by minimizing image orthorectification and introducing highly visible particle tracers. Future developments will aim at the autonomy of the vehicle through machine learning procedures for unmanned monitoring in the environment.
Mannoji, Chikato; Murakami, Masazumi; Kinoshita, Tomoaki; Hirayama, Jiro; Miyashita, Tomohiro; Eguchi, Yawara; Yamazaki, Masashi; Suzuki, Takane; Aramomi, Masaaki; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Furuya, Takeo
2016-01-01
Study Design Retrospective case-control study. Purpose To determine whether kissing spine is a risk factor for recurrence of sciatica after lumbar posterior decompression using a spinous process floating approach. Overview of Literature Kissing spine is defined by apposition and sclerotic change of the facing spinous processes as shown in X-ray images, and is often accompanied by marked disc degeneration and decrement of disc height. If kissing spine significantly contributes to weight bearing and the stability of the lumbar spine, trauma to the spinous process might induce a breakdown of lumbar spine stability after posterior decompression surgery in cases of kissing spine. Methods The present study included 161 patients who had undergone posterior decompression surgery for lumbar canal stenosis using a spinous process floating approaches. We defined recurrence of sciatica as that resolved after initial surgery and then recurred. Kissing spine was defined as sclerotic change and the apposition of the spinous process in a plain radiogram. Preoperative foraminal stenosis was determined by the decrease of perineural fat intensity detected by parasagittal T1-weighted magnetic resonance imaging. Preoperative percentage slip, segmental range of motion, and segmental scoliosis were analyzed in preoperative radiographs. Univariate analysis followed by stepwise logistic regression analysis determined factors independently associated with recurrence of sciatica. Results Stepwise logistic regression revealed kissing spine (p=0.024; odds ratio, 3.80) and foraminal stenosis (p<0.01; odds ratio, 17.89) as independent risk factors for the recurrence of sciatica after posterior lumbar spinal decompression with spinous process floating procedures for lumbar spinal canal stenosis. Conclusions When a patient shows kissing spine and concomitant subclinical foraminal stenosis at the affected level, we should sufficiently discuss the selection of an appropriate surgical procedure. PMID:27994785
Koda, Masao; Mannoji, Chikato; Murakami, Masazumi; Kinoshita, Tomoaki; Hirayama, Jiro; Miyashita, Tomohiro; Eguchi, Yawara; Yamazaki, Masashi; Suzuki, Takane; Aramomi, Masaaki; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Furuya, Takeo
2016-12-01
Retrospective case-control study. To determine whether kissing spine is a risk factor for recurrence of sciatica after lumbar posterior decompression using a spinous process floating approach. Kissing spine is defined by apposition and sclerotic change of the facing spinous processes as shown in X-ray images, and is often accompanied by marked disc degeneration and decrement of disc height. If kissing spine significantly contributes to weight bearing and the stability of the lumbar spine, trauma to the spinous process might induce a breakdown of lumbar spine stability after posterior decompression surgery in cases of kissing spine. The present study included 161 patients who had undergone posterior decompression surgery for lumbar canal stenosis using a spinous process floating approaches. We defined recurrence of sciatica as that resolved after initial surgery and then recurred. Kissing spine was defined as sclerotic change and the apposition of the spinous process in a plain radiogram. Preoperative foraminal stenosis was determined by the decrease of perineural fat intensity detected by parasagittal T1-weighted magnetic resonance imaging. Preoperative percentage slip, segmental range of motion, and segmental scoliosis were analyzed in preoperative radiographs. Univariate analysis followed by stepwise logistic regression analysis determined factors independently associated with recurrence of sciatica. Stepwise logistic regression revealed kissing spine ( p =0.024; odds ratio, 3.80) and foraminal stenosis ( p <0.01; odds ratio, 17.89) as independent risk factors for the recurrence of sciatica after posterior lumbar spinal decompression with spinous process floating procedures for lumbar spinal canal stenosis. When a patient shows kissing spine and concomitant subclinical foraminal stenosis at the affected level, we should sufficiently discuss the selection of an appropriate surgical procedure.
NASA Technical Reports Server (NTRS)
Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul
2009-01-01
The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.
Veligdan, James T.
2005-05-31
A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.
Veligdan, James T [Manorville, NY
2007-05-29
A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.
The Seven Sisters Pose for Spitzer
2007-04-16
The Seven Sisters, also known as the Pleiades star cluster, seem to float on a bed of feathers in a new infrared image from NASA Spitzer Space Telescope. Clouds of dust sweep around the stars, swaddling them in a cushiony veil.
2010-04-12
S131-E-009294 (12 April 2010) --- NASA astronaut Alan Poindexter, STS-131 commander, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
STS-129 MS1 Melvin plays with water globules on the Middeck
2009-11-24
S129-E-008267 (24 Nov. 2009) --- Astronaut Leland Melvin, STS-129 mission specialist, watches a water bubble float between him and the camera, showing his image refracted, on the middeck of space shuttle Atlantis.
2007-01-15
ISS014-E-11798 (14 Jan. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, watches a water bubble float between him and the camera, showing his image refracted, in the Zvezda Service Module of the International Space Station.
Features and limitations of mobile tablet devices for viewing radiological images.
Grunert, J H
2015-03-01
Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.
Display challenges resulting from the use of wide field of view imaging devices
NASA Astrophysics Data System (ADS)
Petty, Gregory J.; Fulton, Jack; Nicholson, Gail; Seals, Ean
2012-06-01
As focal plane array technologies advance and imagers increase in resolution, display technology must outpace the imaging improvements in order to adequately represent the complete data collection. Typical display devices tend to have an aspect ratio similar to 4:3 or 16:9, however a breed of Wide Field of View (WFOV) imaging devices exist that skew from the norm with aspect ratios as high as 5:1. This particular quality, when coupled with a high spatial resolution, presents a unique challenge for display devices. Standard display devices must choose between resizing the image data to fit the display and displaying the image data in native resolution and truncating potentially important information. The problem compounds when considering the applications; WFOV high-situationalawareness imagers are sought for space-limited military vehicles. Tradeoffs between these issues are assessed to the image quality of the WFOV sensor.
2010-04-19
ISS023-E-025091 (19 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Kibo laboratory of the International Space Station.
STS-129 MS1 Melvin poses for a photo with a Water Globule
2009-11-24
S129-E-008320 (24 Nov. 2009) --- This close-up view of a water bubble floating freely on the middeck of space shuttle Atlantis shows a refracted image of astronaut Leland Melvin, STS-129 mission specialist.
2010-04-12
S131-E-009277 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
2010-04-12
S131-E-009299 (12 April 2010) --- NASA astronaut Clayton Anderson, STS-131 mission specialist, watches a water bubble float freely between him and the camera, showing his image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
Hubble Sees Stars and a Stripe in Celestial Fireworks
2008-07-01
A delicate ribbon of gas floats eerily in our galaxy. This image, taken by NASA Hubble Space Telescope, is a very thin section of a supernova remnant caused by a stellar explosion that occurred more than 1,000 years ago.
A photophoretic-trap volumetric display
NASA Astrophysics Data System (ADS)
Smalley, D. E.; Nygaard, E.; Squire, K.; van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M.; Costner, K.; Monk, A.; Pearson, M.; Haymore, B.; Peatross, J.
2018-01-01
Free-space volumetric displays, or displays that create luminous image points in space, are the technology that most closely resembles the three-dimensional displays of popular fiction. Such displays are capable of producing images in ‘thin air’ that are visible from almost any direction and are not subject to clipping. Clipping restricts the utility of all three-dimensional displays that modulate light at a two-dimensional surface with an edge boundary; these include holographic displays, nanophotonic arrays, plasmonic displays, lenticular or lenslet displays and all technologies in which the light scattering surface and the image point are physically separate. Here we present a free-space volumetric display based on photophoretic optical trapping that produces full-colour graphics in free space with ten-micrometre image points using persistence of vision. This display works by first isolating a cellulose particle in a photophoretic trap created by spherical and astigmatic aberrations. The trap and particle are then scanned through a display volume while being illuminated with red, green and blue light. The result is a three-dimensional image in free space with a large colour gamut, fine detail and low apparent speckle. This platform, named the Optical Trap Display, is capable of producing image geometries that are currently unobtainable with holographic and light-field technologies, such as long-throw projections, tall sandtables and ‘wrap-around’ displays.
Super long viewing distance light homogeneous emitting three-dimensional display
NASA Astrophysics Data System (ADS)
Liao, Hongen
2015-04-01
Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.
NPS assessment of color medical image displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-10-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired
Image change detection systems, methods, and articles of manufacture
Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.
2010-01-05
Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.
NASA Astrophysics Data System (ADS)
Kim, Hak-Rin; Park, Min-Kyu; Choi, Jun-Chan; Park, Ji-Sub; Min, Sung-Wook
2016-09-01
Three-dimensional (3D) display technology has been studied actively because it can offer more realistic images compared to the conventional 2D display. Various psychological factors such as accommodation, binocular parallax, convergence and motion parallax are used to recognize a 3D image. For glass-type 3D displays, they use only the binocular disparity in 3D depth cues. However, this method cause visual fatigue and headaches due to accommodation conflict and distorted depth perception. Thus, the hologram and volumetric display are expected to be an ideal 3D display. Holographic displays can represent realistic images satisfying the entire factors of depth perception. But, it require tremendous amount of data and fast signal processing. The volumetric 3D displays can represent images using voxel which is a physical volume. However, it is required for large data to represent the depth information on voxel. In order to simply encode 3D information, the compact type of depth fused 3D (DFD) display, which can create polarization distributed depth map (PDDM) image having both 2D color image and depth image is introduced. In this paper, a new volumetric 3D display system is shown by using PDDM image controlled by polarization controller. In order to introduce PDDM image, polarization states of the light through spatial light modulator (SLM) was analyzed by Stokes parameter depending on the gray level. Based on the analysis, polarization controller is properly designed to convert PDDM image into sectioned depth images. After synchronizing PDDM images with active screens, we can realize reconstructed 3D image. Acknowledgment This work was supported by `The Cross-Ministry Giga KOREA Project' grant from the Ministry of Science, ICT and Future Planning, Korea
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-19
... Effects Devices and Image Display Devices and Components and Products Containing Same; Notice of... United States after importation of certain motion-sensitive sound effects devices and image display... devices and image display devices and components and products containing same that infringe one or more of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... Frames and Image Display Devices and Components Thereof; Notice of Institution of Investigation... United States after importation of certain digital photo frames and image display devices and components... certain digital photo frames and image display devices and components thereof that infringe one or more of...
NASA Technical Reports Server (NTRS)
Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.
1992-01-01
This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.
Monocular display unit for 3D display with correct depth perception
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Hosomi, Takashi
2009-11-01
A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.
Medical image registration based on normalized multidimensional mutual information
NASA Astrophysics Data System (ADS)
Li, Qi; Ji, Hongbing; Tong, Ming
2009-10-01
Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.
Numerical simulations of inductive-heated float-zone growth
NASA Technical Reports Server (NTRS)
Chan, Y. T.; Choi, S. K.
1992-01-01
The present work provides an improved fluid flow and heat-transfer modeling of float-zone growth by introducing a RF heating model so that an ad hoc heating temperature profile is not necessary. Numerical simulations were carried out to study the high-temperature float-zone growth of titanium carbide single crystal. The numerical results showed that the thermocapillary convection occurring inside the molten zone tends to increase the convexity of the melt-crystal interface and decrease the maximum temperature of the molten zone, while the natural convection tends to reduce the stability of the molten zone by increasing its height. It was found that the increase of induced heating due to the increase of applied RF voltage is reduced by the decrease of zone diameter. Surface tension plays an important role in controlling the amount of induced heating. Finally, a comparison of the computed shape of the free surface with a digital image obtained during a growth run showed adequate agreement.
Veligdan, James Thomas
1997-01-01
An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.
Wakata with water bubble in Node 2
2009-06-16
ISS020-E-011082 (16 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, in the Harmony node of the International Space Station.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Image Display Devices and Components Thereof; Issuance of a Limited Exclusion Order and Cease and Desist... within the United States after importation of certain digital photo frames and image display devices and...: (1) The unlicensed entry of digital photo frames and image display devices and components thereof...
Head Mounted Display with a Roof Mirror Array Fold
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor)
2014-01-01
The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.
NPS assessment of color medical displays using a monochromatic CCD camera
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-02-01
This paper presents an approach to Noise Power Spectrum (NPS) assessment of color medical displays without using an expensive imaging colorimeter. The R, G and B color uniform patterns were shown on the display under study and the images were taken using a high resolution monochromatic camera. A colorimeter was used to calibrate the camera images. Synthetic intensity images were formed by the weighted sum of the R, G, B and the dark screen images. Finally the NPS analysis was conducted on the synthetic images. The proposed method replaces an expensive imaging colorimeter for NPS evaluation, which also suggests a potential solution for routine color medical display QA/QC in the clinical area, especially when imaging of display devices is desired.
NASA Astrophysics Data System (ADS)
Robbins, Woodrow E.
1988-01-01
The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.
Floating Forests: Validation of a Citizen Science Effort to Answer Global Ecological Questions
NASA Astrophysics Data System (ADS)
Rosenthal, I.; Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.
2017-12-01
Researchers undertaking long term, large-scale ecological analyses face significant challenges for data collection and processing. Crowdsourcing via citizen science can provide an efficient method for analyzing large data sets. However, many scientists have raised questions about the quality of data collected by citizen scientists. Here we use Floating-Forests (http://floatingforests.org), a citizen science platform for creating a global time series of giant kelp abundance, to show that ensemble classifications of satellite data can ensure data quality. Citizen scientists view satellite images of coastlines and classify kelp forests by tracing all visible patches of kelp. Each image is classified by fifteen citizen scientists before being retired. To validate citizen science results, all fifteen classifications are converted to a raster and overlaid on a calibration dataset generated from previous studies. Results show that ensemble classifications from citizen scientists are consistently accurate when compared to calibration data. Given that all source images were acquired by Landsat satellites, we expect this consistency to hold across all regions. At present, we have over 6000 web-based citizen scientists' classifications of almost 2.5 million images of kelp forests in California and Tasmania. These results are not only useful for remote sensing of kelp forests, but also for a wide array of applications that combine citizen science with remote sensing.
Interactive display system having a digital micromirror imaging device
Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin
2006-04-11
A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.
Extracting the Data From the LCM vk4 Formatted Output File
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
These are slides about extracting the data from the LCM vk4 formatted output file. The following is covered: vk4 file produced by Keyence VK Software, custom analysis, no off the shelf way to read the file, reading the binary data in a vk4 file, various offsets in decimal lines, finding the height image data, directly in MATLAB, binary output beginning of height image data, color image information, color image binary data, color image decimal and binary data, MATLAB code to read vk4 file (choose a file, read the file, compute offsets, read optical image, laser optical image, read and computemore » laser intensity image, read height image, timing, display height image, display laser intensity image, display RGB laser optical images, display RGB optical images, display beginning data and save images to workspace, gamma correction subroutine), reading intensity form the vk4 file, linear in the low range, linear in the high range, gamma correction for vk4 files, computing the gamma intensity correction, observations.« less
Future Directions for Astronomical Image Display
NASA Technical Reports Server (NTRS)
Mandel, Eric
2000-01-01
In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.
Display of travelling 3D scenes from single integral-imaging capture
NASA Astrophysics Data System (ADS)
Martinez-Corral, Manuel; Dorado, Adrian; Hong, Seok-Min; Sola-Pikabea, Jorge; Saavedra, Genaro
2016-06-01
Integral imaging (InI) is a 3D auto-stereoscopic technique that captures and displays 3D images. We present a method for easily projecting the information recorded with this technique by transforming the integral image into a plenoptic image, as well as choosing, at will, the field of view (FOV) and the focused plane of the displayed plenoptic image. Furthermore, with this method we can generate a sequence of images that simulates a camera travelling through the scene from a single integral image. The application of this method permits to improve the quality of 3D display images and videos.
A virtual image chain for perceived image quality of medical display
NASA Astrophysics Data System (ADS)
Marchessoux, Cédric; Jung, Jürgen
2006-03-01
This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.
IIPImage: Large-image visualization
NASA Astrophysics Data System (ADS)
Pillay, Ruven
2014-08-01
IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola
2003-03-01
The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.
MULTIMERMAID: A dedicated multichannel seismic/weather/zoological float for monitoring of the oceans
NASA Astrophysics Data System (ADS)
Hello, Y. M.; Bonnieux, S.; Joubert, C.; Sukhovich, A.; Argentino, J.; Yegikyan, M.; Nolet, G.
2013-12-01
Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions, mostly because of the large cost associated with deploying ocean-bottom seismometers. At the same time, several thousand free-drifting profiling floats measure the temperature, salinity and current of the upper 2000 m of the ocean in the Argo program, but are incapable to record and transmit seismic signals. Simons et al. (JGR, 2009) developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. We built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. This `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers', has concluded its final design stage and a fleet of 20 units is available for experiments. Since 2012, half of these floats have been deployed in the Mediterranean and in the South Indian Ocean. 10 more will be deployed early in 2014 near the Galapagos islands in the Pacific. Analysis of the first data is allowing us to sharpen the wavelet-based algorithm parameters used to discriminate P-waves from the continuous input signal and adapt it to specific noise conditions. A new multidisciplinary version of Mermaid using a dedicated hydrophone is designed to enlarge the band pass for acoustic signals with much higher frequency than seismic. By combining the same algorithm using wavelet transforms, and by adopting a different monitoring strategy with a dedicated processing, Mermaid is able to continuously analyzes acoustic signals to detect major seismic events, while at the same time regularly checking for weather phenomena such rain, drizzle, open sea and ice, or whale migration. This extension to multi-purpose applications makes the Mermaid very attractive for the Argo program. In fact, Mermaids using passive low cost sensors form a very light and complementary solution that can easily be integrated with an Argo float since CTD data are taken during ascent. Such multidisciplinary approach should allow seismologists to participate in international programs such as Argo and obtain the dense ocean coverage needed to image the deep structure of the Earth. We estimate that about 300 Mermaids, operated over a time span of five years, can provide a ray coverage beneath the oceans comparable to that now available beneath the continents with the Global Seismic Network (GSN). To compensate for the extra energy needed for multidisciplinary applications, Geoazur and Osean are developing a new float, called Multimermaid, that uses the same 17' glass sphere as the Ocean Bottom Seismometers constructed by Geoazur. The Multimermaid can navigate up to a depth of 3000 m and hold 2.5 times more battery power than a conventional float.
Stereo 3D vision adapter using commercial DIY goods
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Ohara, Takashi
2009-10-01
The conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. Meanwhile the mirror supplies us with the same image but this mirror image is usually upside down. Assume that the images on an original screen and a virtual screen in the mirror are completely different and both images can be displayed independently. It would be possible to enlarge a screen area twice. This extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. Although the displaying region is doubled, this virtual display could not produce 3D images. In this paper, we present an extension method using a unidirectional diffusing image screen and an improvement for displaying a 3D image using orthogonal polarized image projection.
2010-04-12
S131-E-009285 (12 April 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, watches a water bubble float freely between her and the camera, showing her image refracted, on the middeck of space shuttle Discovery while docked with the International Space Station.
NASA Astrophysics Data System (ADS)
Choe, Giseok; Nang, Jongho
The tiled-display system has been used as a Computer Supported Cooperative Work (CSCW) environment, in which multiple local (and/or remote) participants cooperate using some shared applications whose outputs are displayed on a large-scale and high-resolution tiled-display, which is controlled by a cluster of PC's, one PC per display. In order to make the collaboration effective, each remote participant should be aware of all CSCW activities on the titled display system in real-time. This paper presents a capturing and delivering mechanism of all activities on titled-display system to remote participants in real-time. In the proposed mechanism, the screen images of all PC's are periodically captured and delivered to the Merging Server that maintains separate buffers to store the captured images from the PCs. The mechanism selects one tile image from each buffer, merges the images to make a screen shot of the whole tiled-display, clips a Region of Interest (ROI), compresses and streams it to remote participants in real-time. A technical challenge in the proposed mechanism is how to select a set of tile images, one from each buffer, for merging so that the tile images displayed at the same time on the tiled-display can be properly merged together. This paper presents three selection algorithms; a sequential selection algorithm, a capturing time based algorithm, and a capturing time and visual consistency based algorithm. It also proposes a mechanism of providing several virtual cameras on tiled-display system to remote participants by concurrently clipping several different ROI's from the same merged tiled-display images, and delivering them after compressing with video encoders requested by the remote participants. By interactively changing and resizing his/her own ROI, a remote participant can check the activities on the tiled-display effectively. Experiments on a 3 × 2 tiled-display system show that the proposed merging algorithm can build a tiled-display image stream synchronously, and the ROI-based clipping and delivering mechanism can provide individual views on the tiled-display system to multiple remote participants in real-time.
Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays.
Kim, Hwi; Hahn, Joonku; Lee, Byoungho
2009-04-13
Three-dimensional (3D) displays having regular-polyhedron structures are proposed and their imaging characteristics are analyzed. Four types of conceptual regular-polyhedron 3D displays, i.e., hexahedron, octahedron, dodecahedron, and icosahedrons, are considered. In principle, regular-polyhedron 3D display can present omnidirectional full parallax 3D images. Design conditions of structural factors such as viewing angle of facet panel and observation distance for 3D display with omnidirectional full parallax are studied. As a main issue, image volumes containing virtual 3D objects represented by the four types of regular-polyhedron displays are comparatively analyzed.
Raghuvanshi, Smita; Pathak, Kamla
2016-01-01
Introduction: The study was aimed at the development of low-density gastroretentive bioadhesive microsponges of cinnarizine by two-pronged approach (i) coating with bioadhesive material and (ii) exploration of acconon MC 8-2 EP/NF as bioadhesive raw material for fabrication. Materials and Methods: Microsponges were prepared by quasi-emulsion solvent diffusion method using 32 factorial design. Capmul GMO was employed for bioadhesive coating. In parallel, potential of acconon for the fabrication of bioadhesive floating microsponges (A8) was assessed. Results: Formulation with entrapment efficiency = 82.4 ± 3.4%, buoyancy = 82.3 ± 2.5%, and correlation of drug release (CDR8h) = 88.7% ± 2.9% was selected as optimized formulation (F8) and subjected to bioadhesive coating (BF8). The %CDR8h for A8 was similar to BF8 (87.2% ± 3.5%). Dynamic in vitro bioadhesion test revealed comparable bioadhesivity with BF8. The ex vivo permeation across gastric mucin displayed 63.16% for BF8 against 56.74% from A8; affirmed the bioadhesivity of both approaches. Conclusion: The study concluded with the development of novel bioadhesive floating microsponges of cinnarizine employing capmul GMO as bioadhesive coating material and confirmed the viability of acconon MC 8-2EP/NF as bioadhesive raw material for sustained targeted delivery of drug. PMID:28123987
Raghuvanshi, Smita; Pathak, Kamla
2016-01-01
The study was aimed at the development of low-density gastroretentive bioadhesive microsponges of cinnarizine by two-pronged approach (i) coating with bioadhesive material and (ii) exploration of acconon MC 8-2 EP/NF as bioadhesive raw material for fabrication. Microsponges were prepared by quasi-emulsion solvent diffusion method using 3 2 factorial design. Capmul GMO was employed for bioadhesive coating. In parallel, potential of acconon for the fabrication of bioadhesive floating microsponges (A8) was assessed. Formulation with entrapment efficiency = 82.4 ± 3.4%, buoyancy = 82.3 ± 2.5%, and correlation of drug release (CDR 8h ) = 88.7% ± 2.9% was selected as optimized formulation (F8) and subjected to bioadhesive coating (BF8). The %CDR 8h for A8 was similar to BF8 (87.2% ± 3.5%). Dynamic in vitro bioadhesion test revealed comparable bioadhesivity with BF8. The ex vivo permeation across gastric mucin displayed 63.16% for BF8 against 56.74% from A8; affirmed the bioadhesivity of both approaches. The study concluded with the development of novel bioadhesive floating microsponges of cinnarizine employing capmul GMO as bioadhesive coating material and confirmed the viability of acconon MC 8-2EP/NF as bioadhesive raw material for sustained targeted delivery of drug.
Ghosting in anaglyphic stereoscopic images
NASA Astrophysics Data System (ADS)
Woods, Andrew J.; Rourke, Tegan
2004-05-01
Anaglyphic 3D images are an easy way of displaying stereoscopic 3D images on a wide range of display types, e.g. CRT, LCD, print, etc. While the anaglyphic 3D image method is cheap and accessible, its use requires a compromise in stereoscopic image quality. A common problem with anaglyphic 3D images is ghosting. Ghosting (or crosstalk) is the leaking of an image to one eye, when it is intended exclusively for the other eye. Ghosting degrades the ability of the observer to fuse the stereoscopic image and hence the quality of the 3D image is reduced. Ghosting is present in various levels with most stereoscopic displays, however it is often particularly evident with anaglyphic 3D images. This paper describes a project whose aim was to characterize the presence of ghosting in anaglyphic 3D images due to spectral issues. The spectral response curves of several different display types and several different brands of anaglyph glasses were measured using a spectroradiometer or spectrophotometer. A mathematical model was then developed to predict the amount of crosstalk in anaglyphic 3D images when different combinations of displays and glasses are used, and therefore predict the best type of anaglyph glasses for use with a particular display type.
Flatbed-type 3D display systems using integral imaging method
NASA Astrophysics Data System (ADS)
Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki
2006-10-01
We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.
Image quality metrics for volumetric laser displays
NASA Astrophysics Data System (ADS)
Williams, Rodney D.; Donohoo, Daniel
1991-08-01
This paper addresses the extensions to the image quality metrics and related human factors research that are needed to establish the baseline standards for emerging volume display technologies. The existing and recently developed technologies for multiplanar volume displays are reviewed with an emphasis on basic human visual issues. Human factors image quality metrics and guidelines are needed to firmly establish this technology in the marketplace. The human visual requirements and the display design tradeoffs for these prototype laser-based volume displays are addressed and several critical image quality issues identified for further research. The American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSIHFS-100) and other international standards (ISO, DIN) can serve as a starting point, but this research base must be extended to provide new image quality metrics for this new technology for volume displays.
Ivanova, Maria V.; Hallowell, Brooke
2017-01-01
Purpose Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic comprehension may influence performance. In this study we explore the influence of physical image characteristics of multiple-choice image displays on visual attention allocation by PWA. Method Eye fixations of 41 PWA were recorded while they viewed 40 multiple-choice image sets presented with and without verbal stimuli. Within each display, 3 images (majority images) were the same and 1 (singleton image) differed in terms of 1 image characteristic. The mean proportion of fixation duration (PFD) allocated across majority images was compared against the PFD allocated to singleton images. Results PWA allocated significantly greater PFD to the singleton than to the majority images in both nonverbal and verbal conditions. Those with greater severity of comprehension deficits allocated greater PFD to nontarget singleton images in the verbal condition. Conclusion When using tasks that rely on multiple-choice displays and verbal stimuli, one cannot assume that verbal stimuli will override the effect of visual-stimulus characteristics. PMID:28520866
PCIPS 2.0: Powerful multiprofile image processing implemented on PCs
NASA Technical Reports Server (NTRS)
Smirnov, O. M.; Piskunov, N. E.
1992-01-01
Over the years, the processing power of personal computers has steadily increased. Now, 386- and 486-based PC's are fast enough for many image processing applications, and inexpensive enough even for amateur astronomers. PCIPS is an image processing system based on these platforms that was designed to satisfy a broad range of data analysis needs, while requiring minimum hardware and providing maximum expandability. It will run (albeit at a slow pace) even on a 80286 with 640K memory, but will take full advantage of bigger memory and faster CPU's. Because the actual image processing is performed by external modules, the system can be easily upgraded by the user for all sorts of scientific data analysis. PCIPS supports large format lD and 2D images in any numeric type from 8-bit integer to 64-bit floating point. The images can be displayed, overlaid, printed and any part of the data examined via an intuitive graphical user interface that employs buttons, pop-up menus, and a mouse. PCIPS automatically converts images between different types and sizes to satisfy the requirements of various applications. PCIPS features an API that lets users develop custom applications in C or FORTRAN. While doing so, a programmer can concentrate on the actual data processing, because PCIPS assumes responsibility for accessing images and interacting with the user. This also ensures that all applications, even custom ones, have a consistent and user-friendly interface. The API is compatible with factory programming, a metaphor for constructing image processing procedures that will be implemented in future versions of the system. Several application packages were created under PCIPS. The basic package includes elementary arithmetics and statistics, geometric transformations and import/export in various formats (FITS, binary, ASCII, and GIF). The CCD processing package and the spectral analysis package were successfully used to reduce spectra from the Nordic Telescope at La Palma. A photometry package is also available, and other packages are being developed. A multitasking version of PCIPS that utilizes the factory programming concept is currently under development. This version will remain compatible (on the source code level) with existing application packages and custom applications.
2014-02-06
ISS038-E-042125 (6 Feb. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. The bright sun and the thin line of Earth's atmosphere provide the backdrop for the scene.
2015-03-01
ISS042E292504 (03/01/2015) --- US astronaut Terry Virts observed this scene from the International Space Station on Feb.1, 2015. He sent this image via Twitter with the remark, "The camera doesn't do it justice - floating in space, looking down on creation, seeing new color shades".
Ambulance ride: fixed or floating stretcher?
Snook, R; Pacifico, R
1976-01-01
The alternatives of a purpose-bult ambulance and a specially designed stretcher suspension system were considered and the features of the latter assessed by subjective and objective tests. The results showed a significant improvement in the quality of the ride offered to the patient. Images FIG 2 PMID:947448
Shen, Xin; Javidi, Bahram
2018-03-01
We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.
Aidlen, Jeremy T; Glick, Sara; Silverman, Kenneth; Silverman, Harvey F; Luks, Francois I
2009-08-01
Light-weight, low-profile, and high-resolution head-mounted displays (HMDs) now allow personalized viewing, of a laparoscopic image. The advantages include unobstructed viewing, regardless of position at the operating table, and the possibility to customize the image (i.e., enhanced reality, picture-in-picture, etc.). The bright image display allows use in daylight surroundings and the low profile of the HMD provides adequate peripheral vision. Theoretic disadvantages include reliance for all on the same image capture and anticues (i.e., reality disconnect) when the projected image remains static, despite changes in head position. This can lead to discomfort and even nausea. We have developed a prototype of interactive laparoscopic image display that allows hands-free control of the displayed image by changes in spatial orientation of the operator's head. The prototype consists of an HMD, a spatial orientation device, and computer software to enable hands-free panning and zooming of a video-endoscopic image display. The spatial orientation device uses magnetic fields created by a transmitter and receiver, each containing three orthogonal coils. The transmitter coils are efficiently driven, using USB power only, by a newly developed circuit, each at a unique frequency. The HMD-mounted receiver system links to a commercially available PC-interface PCI-bus sound card (M-Audiocard Delta 44; Avid Technology, Tewksbury, MA). Analog signals at the receiver are filtered, amplified, and converted to digital signals, which are processed to control the image display. The prototype uses a proprietary static fish-eye lens and software for the distortion-free reconstitution of any portion of the captured image. Left-right and up-down motions of the head (and HMD) produce real-time panning of the displayed image. Motion of the head toward, or away from, the transmitter causes real-time zooming in or out, respectively, of the displayed image. This prototype of the interactive HMD allows hands-free, intuitive control of the laparoscopic field, independent of the captured image.
NASA Astrophysics Data System (ADS)
Ochai-Ejeh, F. O.; Momodu, D. Y.; Madito, M. J.; Khaleed, A. A.; Oyedotun, K. O.; Ray, S. C.; Manyala, N.
2018-05-01
Biomass-derived activated carbon from cork (Quercus Suber) (ACQS) was prepared via a two-step environment-friendly route using mild KHCO3 as the activating agent. This synthesis route makes the material produced less toxic for usage as electrode material for energy storage application. The ACQS has well-defined microporous and mesoporous structures and a specific surface area of 1056.52 m2 g-1 and pore volume of 0.64 cm3 g-1. Three-electrode tests were performed in 6 M KOH, 1 M H2SO4 and 3 M KNO3 aqueous electrolytes, to analyse the material performance in acidic, basic, and neutral media. Specific capacitance values (Cs) of 133 F g-1/167 F g-1 at 1.0 A g-1 was obtained in 3 M KNO3 in the positive/negative potential windows. Due to the observed best performance in neutral 3 M KNO3, further electrochemical analysis of the symmetric device was carried out using the same electrolyte. The device displayed a Cs value of 122 F g-1, energy and power densities of ˜14 W h kg-1 and 450 W kg-1 respectively; at 0.5 A g-1. The device also displayed an excellent stability after potentiostatic floating at a maximum voltage of 1.8 V for 120 h and ˜100% capacitance retention after 10,000 charge-discharge cycles. The excellent stability makes the cork-derived material a potential excellent, cost-effective material for supercapacitor application.
NASA Astrophysics Data System (ADS)
Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho
2016-10-01
A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.
Multichannel seismic/weather/Zoological monitoring of the oceans
NASA Astrophysics Data System (ADS)
Hello, Yann; Bonnieux, Sebastien; Sukovitch, Alexey; Argentino, Jean-Francois; Nolet, Guust
2013-04-01
Delays of seismic P waves are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have built and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' has concuded its final design stage and a fleet of 20 units is available off the shelf. Two of these floats have been deployed in the Mediterranean sea between Nice and the island of Corsica late 2012, others will be deployed in 2013, in the South Indian Ocean and near Galapagos in the Pacific. Analysis of the first data will allow us to sharpen the wavelet-based algorithm parameters used to discriminate P-waves from the continuous input signal. Ten significant events can be stored in internal memory during an average "parking depth" drift of 10 days at a chosen depth of up to 2 km. Events are classified by interest and when the memory is full, larger events replace minor events. At the end of the preprogrammed mission the float surface and transmit data (health logs and events) in Rudics mode by Iridium satellite network. A major event will force the float to ascent at surface and transmit in a short delay the corresponding recorded data as well as its GPS position. A second, dual channel, prototype version of Mermaid using two dedicated hydrophones is designed to enlarge the band pass for acoustic signals with much higher frequency than seismic. Based on the same algorithm using wavelet transforms, Mermaid continuously analyzes acoustic signals to detect both major seismic events and weather phenomena such rain, drizzle, open sea and ice, or whale migration, during its drift phase. This extension to multi-purpose applications makes the Mermaid very attractive for the Argo program. In fact, Mermaids using passive low cost sensors form a very light and complementary solution that can be integrated with an Argo float; Mermaids listen during the passive drift while CTD data are taken during ascent and descent. Such multidisciplinary approach should allow seismologists to participate in international program such as Argo and obtain the dense ocean coverage needed to image the deep structure of the Earth.
Collimated autostereoscopic displays for cockpit applications
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-06-01
The use of an autostereoscopic display (a display that produces stereoscopic images that the user can see without wearing special glasses) for cockpit applications is now under investigation at Wright Patterson Air Force Base. DTI reported on this display, built for testing in a simulator, at last year's conference. It is believed, based on testing performed at NASA's Langley Research Center, that collimating this type of display will accrue benefits to the user including a grater useful imaging volume and more accurate stereo perception. DTI has therefore investigated the feasibility of collimating an autostereoscopic display, and has experimentally demonstrated a proof of concept model of such a display. As in the case of conventional displays, a collimated autostereoscopic display utilizes an optical element located one focal length from the surface of the image forming device. The presence of this element must be taken into account when designing the optics used to create the autostereoscopic images. The major design issues associated with collimated 2D displays are also associated with collimated autostereoscopic displays.
Design and evaluation of web-based image transmission and display with different protocols
NASA Astrophysics Data System (ADS)
Tan, Bin; Chen, Kuangyi; Zheng, Xichuan; Zhang, Jianguo
2011-03-01
There are many Web-based image accessing technologies used in medical imaging area, such as component-based (ActiveX Control) thick client Web display, Zerofootprint thin client Web viewer (or called server side processing Web viewer), Flash Rich Internet Application(RIA) ,or HTML5 based Web display. Different Web display methods have different peformance in different network environment. In this presenation, we give an evaluation on two developed Web based image display systems. The first one is used for thin client Web display. It works between a PACS Web server with WADO interface and thin client. The PACS Web server provides JPEG format images to HTML pages. The second one is for thick client Web display. It works between a PACS Web server with WADO interface and thick client running in browsers containing ActiveX control, Flash RIA program or HTML5 scripts. The PACS Web server provides native DICOM format images or JPIP stream for theses clients.
NASA Astrophysics Data System (ADS)
Pazmino, A.; Bonnieux, S.; Joubert, C.; Gonzales, N.; Hello, Y.; Nolet, G.
2014-12-01
Mermaids have been developed to improve seismic data coverage in the oceanic domain for imaging of the Earth's interior. Though housed in conventional Argo-type floats, hardware and software was developed to analyze acoustic signals and determine whether an earthquake has been recorded, and whether the Mermaid should to come up to the surface and transmit to the satellite. In contrast to the passive Argo floats, Mermaids are essentially floating computers that decide for themselves what to do. After testing in the Mediterranean and Indian Ocean and improving the concept for more than a year, we recently started two fully scientific experiments using Mermaids. In cooperation with Inocar, we deployed a fleet of 10 Mermaids in May 2014 around the Galapagos islands from the LAE Sirius to study the suspected mantle plume beneath these islands. We are interested in plumes because we do not understand very well how the mantle has retained an almost constant temperature for three or four billion years, an essential condition for life to develop. The depth of mantle plumes is an important unknown, because it may tell us how well the lower mantle is able to transmit heat into the upper mantle. A second experiment is taking place in the Ligurian Sea. This basin opened with a rifting phase in late Oligocene. The rifting phase of the Ligurian basin is followed by the Corsica - Sardinia block counterclockwise rotation, but the deeper causes of this are still poorly understood. Three Mermaids are deployed, and re-deployed after drifting too far west, to augment the P arrivals observed for 6 months with 5 OBS's during the 2008 Grosmarin campaign. The experience obtained with this first generation of Mermaids has led to the development of a new multidisciplinary float (Multimermaid), which is programmable, able to carry up to 8 sensors to a depth of 3000 m, and with a duration of at least five years.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1992-11-01
The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.
Display nonlinearity in digital image processing for visual communications
NASA Astrophysics Data System (ADS)
Peli, Eli
1991-11-01
The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.
3D augmented reality with integral imaging display
NASA Astrophysics Data System (ADS)
Shen, Xin; Hua, Hong; Javidi, Bahram
2016-06-01
In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
2015-02-20
On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea ice off of western Alaska. In this true-color image, the snow and ice covered land appears bright white while the floating sea ice appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. Ice overlying oceans contains more water, and increasing water decreases reflectivity of ice, resulting in duller colors. Thinner ice is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with ice, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark area, loosely covered with floating sea ice, marks a persistent polynya – an area of open water surrounded by more frozen sea ice. Due to the prevailing winds, which blow the sea ice away from the coast in this location, the area rarely completely freezes. The ice-covered areas in this image, as well as the Beaufort Sea, to the north, are critical areas for the survival of the ringed seal, a threatened species. The seals use the sea ice, including ice caves, to rear their young, and use the free-floating sea ice for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Accommodation response measurements for integral 3D image
NASA Astrophysics Data System (ADS)
Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.
2014-03-01
We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.
A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy
NASA Astrophysics Data System (ADS)
Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.
1989-05-01
A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.
Onufrienko with fresh fruit in the Zvezda SM, Expedition Four
2002-01-16
ISS004-E-6334 (January 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander representing Rosaviakosmos, is photographed in the Zvezda Service Module on the International Space Station (ISS). Apples and oranges are visible floating freely in front of Onufrienko. The image was taken with a digital still camera.
NASA Astrophysics Data System (ADS)
Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.
2016-06-01
We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.
Display system for imaging scientific telemetric information
NASA Technical Reports Server (NTRS)
Zabiyakin, G. I.; Rykovanov, S. N.
1979-01-01
A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.
NASA Astrophysics Data System (ADS)
Li, Jun; Qin, Qiming; Xie, Chao; Zhao, Yue
2012-10-01
The update frequency of digital road maps influences the quality of road-dependent services. However, digital road maps surveyed by probe vehicles or extracted from remotely sensed images still have a long updating circle and their cost remain high. With GPS technology and wireless communication technology maturing and their cost decreasing, floating car technology has been used in traffic monitoring and management, and the dynamic positioning data from floating cars become a new data source for updating road maps. In this paper, we aim to update digital road maps using the floating car data from China's National Commercial Vehicle Monitoring Platform, and present an incremental road network extraction method suitable for the platform's GPS data whose sampling frequency is low and which cover a large area. Based on both spatial and semantic relationships between a trajectory point and its associated road segment, the method classifies each trajectory point, and then merges every trajectory point into the candidate road network through the adding or modifying process according to its type. The road network is gradually updated until all trajectories have been processed. Finally, this method is applied in the updating process of major roads in North China and the experimental results reveal that it can accurately derive geometric information of roads under various scenes. This paper provides a highly-efficient, low-cost approach to update digital road maps.
Fast and efficient compression of floating-point data.
Lindstrom, Peter; Isenburg, Martin
2006-01-01
Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.
Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Kole, J S; Beekman, F J
2006-02-21
Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.
Shrestha, Prabin; Adhikari, Rupendra; Tamrakar, Samantha; Pant, Basanta; Koirala, Bhagwan; Yamaguchi, Satoshi; Kurisu, Kaoru
2012-12-01
Free floating thrombus in the carotid artery is a well-known phenomenon, though relatively rare. We present a case in which we performed open surgery and achieved successful retrieval of the thrombus. A 40 year-old male patient presented with ischemic stroke and mild left hemiparesis. Computerized tomography and magnetic resonance imaging showed infarction in the right parieto-occipital area. Carotid Doppler study showed carotid stenosis on the right side. Further investigation with CT angiography of the neck vessels confirmed significant carotid artery occlusion with a free-floating thrombus in the internal carotid artery. Carotid endarterectomy was planned under EEG monitoring. The right carotid artery was exposed with a vertical incision along the medial margin of the sternocleido-mastoid muscle. The carotid artery was opened and, as expected, showed a soft, mobile thrombus. Thus thrombectomy was planned. A 2 Fr fogarty catheter was introduced distal to the thrombus, the balloon was inflated and pulled back gently, which removed the thrombus completely. There was no postoperative complication and the patient is fine at 1 year follow-up.
Malakar, Jadupati; Datta, Prabir Kumar; Purakayastha, Saikat Das; Dey, Sanjay; Nayak, Amit Kumar
2014-03-01
The present study deals with the development and evaluations of stomach-specific floating capsules containing salbutamol sulfate-loaded oil-entrapped alginate-based beads. Salbutamol sulfate-loaded oil-entrapped beads were prepared and capsulated within hard gelatin capsules (size 1). The effects of HPMC K4M and potato starch weight masses on drug encapsulation efficiency (DEE) of beads and cumulative drug release at 10h (R10 h) from capsules was analyzed by 3(2) factorial design. The optimization results indicate increasing of DEE in the oil-entrapped beads and decreasing R10 h from capsules with increment of HPMC K4M and potato starch weight masses. The optimized formulation showed DEE of 70.02 ± 3.16% and R10 h of 56.96 ± 2.92%. These capsules showed floatation over 6h and sustained drug release over 10h in gastric pH (1.2). In vivo X-ray imaging study of optimized floating capsules in rabbits showed stomach-specific gastroretention over a prolonged period. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Nolet, G.
2016-12-01
While the tomography techniques of imaging the earth's interior have been improved significantly over the past three decades the resolution of the resulting 3D images of the earth's interior, particularly the lower mantle, has been severely limited by the lack of seismic stations in the oceans which cover the 2/3 of the earth's surface. But this is going to be changed by the recently developed floating hydrophones called "Mermaids" which, freely floating under the sea surface, can operate as seismometers (see abstract by Nolet et al. in session DI010). These `Mermaids' have recorded (1) teleseismic waves, crucial to provide resolution for tomographic images of the deep mantle beneath oceanic areas, as well as (2) swarms of earthquakes too small to be observed on land, indicative of tectonic motions on oceanic ridges. Transmission is in quasi-real time by satellite (Iridium). A new version of the Mermaid, of much larger capacity, with a lifetime of five to six years is available for deployment. SUSTC in Shenzhen, China, in close collaboration with Geoazur (France), will launch the first stage of a large scale, global network of floating seismometers in the oceans named EarthScope-Oceans in 2017 by setting afloat 50 Mermaids in the Indian Ocean. Japan and other European nations may join the effort, which should reach 500 sensors by 2019 covering the entire world oceans. After that, the robots will be equipped with sophisticated software currently under development, which adds the capacity to juggle up to eight sensors and that has a reprogramming ability even during missions. We then expect the network to become multi-disciplinary and be able to host instruments not only for global seismology but also for biologists, oceanographers, geochemists, meteorologists and others. This new monitoring network will greatly improve our knowledge of acoustic noise pollution, of cetacean populations and their interaction with noise and meteorological conditions in all of the oceans by providing large and continuous data coverage. It will transform the discipline of seismic tomography at sea and improve our understanding of geodynamical processes operating in the deep mantle of the Earth by filling the data gap that currently exists in the oceanic domain.
High-pressure floating-zone growth of perovskite nickelate LaNiO 3 single crystals
Zhang, Junjie; Zheng, Hong; Ren, Yang; ...
2017-04-07
We report the first single crystal growth of the correlated metal LaNiO 3 using a high-pressure optical-image floating zone furnace. The crystals were studied using single crystal/powder X-ray diffraction, resistivity, specific heat, and magnetic susceptibility. The availability of bulk LaNiO 3 crystals will (i) promote deep understanding in this correlated material, including the mechanism of enhanced paramagnetic susceptibility, and (ii) provide rich opportunities as a substrate for thin film growth such as important ferroelectric and/or multiferroic materials. As a result, this study demonstrates the power of high pO 2 single crystal growth of nickelate perovskites and correlated electron oxides moremore » generally.« less
A floating-point digital receiver for MRI.
Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki
2002-07-01
A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.
Adolescents' reactions to the imagery displayed in smoking and antismoking advertisements.
Shadel, William G; Niaura, Raymond; Abrams, David B
2002-06-01
This study compared adolescents' unbiased perceptions of the images displayed in smoking and antismoking advertising. Twenty-nine adolescents (ages 11-17) were shown images taken from both advertising types; all images were digitally edited so that no product information appeared in them. Participants described each image in a free-response format and rated each image on self-report dimensions. Content analyses of free-response descriptions and analyses of self-reports revealed that adolescents viewed images taken from cigarette advertisements more positively compared with images taken from antismoking advertisements. These findings suggest that I reason for the potency of cigarette advertising, compared with antismoking advertising, is the inherent positive appeal of the images displayed. Antismoking advertising may be more effective at limiting adolescent smoking if the images displayed have a more positive valence.
Display And Analysis Of Tomographic Volumetric Images Utilizing A Vari-Focal Mirror
NASA Astrophysics Data System (ADS)
Harris, L. D.; Camp, J. J.
1984-10-01
A system for the three-dimensional (3-D) display and analysis of stacks of tomographic images is described. The device utilizes the principle of a variable focal (vari-focal) length optical element in the form of an aluminized membrane stretched over a loudspeaker to generate a virtual 3-D image which is a visible representation of a 3-D array of image elements (voxels). The system displays 500,000 voxels per mirror cycle in a 3-D raster which appears continuous and demonstrates no distracting artifacts. The display is bright enough so that portions of the image can be dimmed without compromising the number of shades of gray. For x-ray CT, a displayed volume image looks like a 3-D radiograph which appears to be in the space directly behind the mirror. The viewer sees new views by moving his/her head from side to side or up and down. The system facilitates a variety of operator interactive functions which allow the user to point at objects within the image, control the orientation and location of brightened oblique planes within the volume, numerically dissect away selected image regions, and control intensity window levels. Photographs of example volume images displayed on the system illustrate, to the degree possible in a flat picture, the nature of displayed images and the capabilities of the system. Preliminary application of the display device to the analysis of volume reconstructions obtained from the Dynamic Spatial Reconstructor indicates significant utility of the system in selecting oblique sections and gaining an appreciation of the shape and dimensions of complex organ systems.
Model-based vision for space applications
NASA Technical Reports Server (NTRS)
Chaconas, Karen; Nashman, Marilyn; Lumia, Ronald
1992-01-01
This paper describes a method for tracking moving image features by combining spatial and temporal edge information with model based feature information. The algorithm updates the two-dimensional position of object features by correlating predicted model features with current image data. The results of the correlation process are used to compute an updated model. The algorithm makes use of a high temporal sampling rate with respect to spatial changes of the image features and operates in a real-time multiprocessing environment. Preliminary results demonstrate successful tracking for image feature velocities between 1.1 and 4.5 pixels every image frame. This work has applications for docking, assembly, retrieval of floating objects and a host of other space-related tasks.
The research on a novel type of the solar-blind UV head-mounted displays
NASA Astrophysics Data System (ADS)
Zhao, Shun-long
2011-08-01
Ultraviolet technology of detecting is playing a more and more important role in the field of civil application, especially in the corona discharge detection, in modern society. Now the UV imaging detector is one of the most important equipments in power equipment flaws detection. And the modern head-mounted displays (HMDs) have shown the applications in the fields of military, industry production, medical treatment, entertainment, 3D visualization, education and training. We applied the system of head-mounted displays to the UV image detection, and a novel type of head-mounted displays is presented: the solar-blind UV head-mounted displays. And the structure is given. By the solar-blind UV head-mounted displays, a real-time, isometric and visible image of the corona discharge is correctly displayed upon the background scene where it exists. The user will see the visible image of the corona discharge on the real scene rather than on a small screen. Then the user can easily find out the power equipment flaws and repair them. Compared with the traditional UV imaging detector, the introducing of the HMDs simplifies the structure of the whole system. The original visible spectrum optical system is replaced by the eye in the solar-blind UV head-mounted displays. And the optical image fusion technology would be used rather than the digital image fusion system which is necessary in traditional UV imaging detector. That means the visible spectrum optical system and digital image fusion system are not necessary. This makes the whole system cheaper than the traditional UV imaging detector. Another advantage of the solar-blind UV head-mounted displays is that the two hands of user will be free. So while observing the corona discharge the user can do some things about it. Therefore the solar-blind UV head-mounted displays can make the corona discharge expose itself to the user in a better way, and it will play an important role in corona detection in the future.
72-directional display having VGA resolution for high-appearance image generation
NASA Astrophysics Data System (ADS)
Takaki, Yasuhiro; Dairiki, Takeshi
2006-02-01
The high-density directional display, which was originally developed in order to realize a natural 3D display, is not only a 3D display but also a high-appearance display. The appearances of objects, such as glare and transparency, are the results of the reflection and the refraction of rays. The faithful reproduction of such appearances of objects is impossible using conventional 2D displays because rays diffuse on the display screen. The high-density directional display precisely controls the horizontal ray directions so that it can reproduce the appearances of objects. The fidelity of the reproduction of object appearances depends on the ray angle sampling pitch. The angle sampling pitch is determined by considering the human eye imaging system. In the present study the high-appearance display which has the resolution of 640×400 and emits rays in 72 different horizontal directions with the angle pitch of 0.38° was constructed. Two 72-directional displays were combined, each of which consisted of a high-resolution LCD panel (3,840×2,400) and a slanted lenticular sheet. Two images produced by two displays were superimposed by a half mirror. A slit array was placed at the focal plane of the lenticular sheet for each display to reduce the horizontal image crosstalk in the combined image. The impression analysis shows that the high-appearance display provides higher appearances and presence than the conventional 2D displays do.
An atlas-based multimodal registration method for 2D images with discrepancy structures.
Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng
2018-06-04
An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.
Dual-view integral imaging three-dimensional display using polarized glasses.
Wu, Fei; Lv, Guo-Jiao; Deng, Huan; Zhao, Bai-Chuan; Wang, Qiong-Hua
2018-02-20
We propose a dual-view integral imaging (DVII) three-dimensional (3D) display using polarized glasses. The DVII 3D display consists of a display panel, a polarized parallax barrier, a microlens array, and two pairs of polarized glasses. Two kinds of elemental images, which are captured from two different 3D scenes, are alternately arranged on the display panel. The polarized parallax barrier is attached to the display panel and composed of two kinds of units that are also alternately arranged. The polarization directions between adjacent units are perpendicular. The polarization directions of the two pairs of polarized glasses are the same as those of the two kinds of units of the polarized parallax barrier, respectively. The lights emitted from the two kinds of elemental images are modulated by the corresponding polarizer units and microlenses, respectively. Two different 3D images are reconstructed in the viewing zone and separated by using two pairs of polarized glasses. A prototype of the DVII 3D display is developed and two 3D images can be presented simultaneously, verifying the hypothesis.
Programmable architecture for pixel level processing tasks in lightweight strapdown IR seekers
NASA Astrophysics Data System (ADS)
Coates, James L.
1993-06-01
Typical processing tasks associated with missile IR seeker applications are described, and a straw man suite of algorithms is presented. A fully programmable multiprocessor architecture is realized on a multimedia video processor (MVP) developed by Texas Instruments. The MVP combines the elements of RISC, floating point, advanced DSPs, graphics processors, display and acquisition control, RAM, and external memory. Front end pixel level tasks typical of missile interceptor applications, operating on 256 x 256 sensor imagery, can be processed at frame rates exceeding 100 Hz in a single MVP chip.
Fractional screen video enhancement apparatus
Spletzer, Barry L [Albuquerque, NM; Davidson, George S [Albuquerque, NM; Zimmerer, Daniel J [Tijeras, NM; Marron, Lisa C [Albuquerque, NM
2005-07-19
The present invention provides a method and apparatus for displaying two portions of an image at two resolutions. For example, the invention can display an entire image at a first resolution, and a subset of the image at a second, higher resolution. Two inexpensive, low resolution displays can be used to produce a large image with high resolution only where needed.
Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long
2018-01-01
With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637
IMDISP - INTERACTIVE IMAGE DISPLAY PROGRAM
NASA Technical Reports Server (NTRS)
Martin, M. D.
1994-01-01
The Interactive Image Display Program (IMDISP) is an interactive image display utility for the IBM Personal Computer (PC, XT and AT) and compatibles. Until recently, efforts to utilize small computer systems for display and analysis of scientific data have been hampered by the lack of sufficient data storage capacity to accomodate large image arrays. Most planetary images, for example, require nearly a megabyte of storage. The recent development of the "CDROM" (Compact Disk Read-Only Memory) storage technology makes possible the storage of up to 680 megabytes of data on a single 4.72-inch disk. IMDISP was developed for use with the CDROM storage system which is currently being evaluated by the Planetary Data System. The latest disks to be produced by the Planetary Data System are a set of three disks containing all of the images of Uranus acquired by the Voyager spacecraft. The images are in both compressed and uncompressed format. IMDISP can read the uncompressed images directly, but special software is provided to decompress the compressed images, which can not be processed directly. IMDISP can also display images stored on floppy or hard disks. A digital image is a picture converted to numerical form so that it can be stored and used in a computer. The image is divided into a matrix of small regions called picture elements, or pixels. The rows and columns of pixels are called "lines" and "samples", respectively. Each pixel has a numerical value, or DN (data number) value, quantifying the darkness or brightness of the image at that spot. In total, each pixel has an address (line number, sample number) and a DN value, which is all that the computer needs for processing. DISPLAY commands allow the IMDISP user to display all or part of an image at various positions on the display screen. The user may also zoom in and out from a point on the image defined by the cursor, and may pan around the image. To enable more or all of the original image to be displayed on the screen at once, the image can be "subsampled." For example, if the image were subsampled by a factor of 2, every other pixel from every other line would be displayed, starting from the upper left corner of the image. Any positive integer may be used for subsampling. The user may produce a histogram of an image file, which is a graph showing the number of pixels per DN value, or per range of DN values, for the entire image. IMDISP can also plot the DN value versus pixels along a line between two points on the image. The user can "stretch" or increase the contrast of an image by specifying low and high DN values; all pixels with values lower than the specified "low" will then become black, and all pixels higher than the specified "high" value will become white. Pixels between the low and high values will be evenly shaded between black and white. IMDISP is written in a modular form to make it easy to change it to work with different display devices or on other computers. The code can also be adapted for use in other application programs. There are device dependent image display modules, general image display subroutines, image I/O routines, and image label and command line parsing routines. The IMDISP system is written in C-language (94%) and Assembler (6%). It was implemented on an IBM PC with the MS DOS 3.21 operating system. IMDISP has a memory requirement of about 142k bytes. IMDISP was developed in 1989 and is a copyrighted work with all copyright vested in NASA. Additional planetary images can be obtained from the National Space Science Data Center at (301) 286-6695.
New DICOM extensions for softcopy and hardcopy display consistency.
Eichelberg, M; Riesmeier, J; Kleber, K; Grönemeyer, D H; Oosterwijk, H; Jensch, P
2000-01-01
The DICOM standard defines in detail how medical images can be communicated. However, the rules on how to interpret the parameters contained in a DICOM image which deal with the image presentation were either lacking or not well defined. As a result, the same image frequently looks different when displayed on different workstations or printed on a film from various printers. Three new DICOM extensions attempt to close this gap by defining a comprehensive model for the display of images on softcopy and hardcopy devices: Grayscale Standard Display Function, Grayscale Softcopy Presentation State and Presentation Look Up Table.
Display gamma is an important factor in Web image viewing
NASA Astrophysics Data System (ADS)
Zhang, Xuemei; Lavin, Yingmei; Silverstein, D. Amnon
2001-06-01
We conducted a perceptual image preference experiment over the web to find our (1) if typical computer users have significant variations in their display gamma settings, and (2) if so, do the gamma settings have significant perceptual effect on the appearance of images in their web browsers. The digital image renderings used were found to have preferred tone characteristics from a previous lab- controlled experiment. They were rendered with 4 different gamma settings. The subjects were asked to view the images over the web, with their own computer equipment and web browsers. The subjects werewe asked to view the images over the web, with their own computer equipment and web browsers. The subjects made pair-wise subjective preference judgements on which rendering they liked bets for each image. Each subject's display gamma setting was estimated using a 'gamma estimator' tool, implemented as a Java applet. The results indicated that (1) the user's gamma settings, as estimated in the experiment, span a wide range from about 1.8 to about 3.0; (2) the subjects preferred images that werewe rendered with a 'correct' gamma value matching their display setting. Subjects disliked images rendered with a gamma value not matching their displays'. This indicates that display gamma estimation is a perceptually significant factor in web image optimization.
NASA Technical Reports Server (NTRS)
Randle, R. J.; Roscoe, S. N.; Petitt, J. C.
1980-01-01
Twenty professional pilots observed a computer-generated airport scene during simulated autopilot-coupled night landing approaches and at two points (20 sec and 10 sec before touchdown) judged whether the airplane would undershoot or overshoot the aimpoint. Visual accommodation was continuously measured using an automatic infrared optometer. Experimental variables included approach slope angle, display magnification, visual focus demand (using ophthalmic lenses), and presentation of the display as either a real (direct view) or a virtual (collimated) image. Aimpoint judgments shifted predictably with actual approach slope and display magnification. Both pilot judgments and measured accommodation interacted with focus demand with real-image displays but not with virtual-image displays. With either type of display, measured accommodation lagged far behind focus demand and was reliably less responsive to the virtual images. Pilot judgments shifted dramatically from an overwhelming perceived-overshoot bias 20 sec before touchdown to a reliable undershoot bias 10 sec later.
Image quality evaluation of medical color and monochrome displays using an imaging colorimeter
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Gu, Xiliang; Fan, Jiahua
2012-10-01
The purpose of this presentation is to demonstrate the means which permit examining the accuracy of Image Quality with respect to MTF (Modulation Transfer Function) and NPS (Noise Power Spectrum) of Color Displays and Monochrome Displays. Indications were in the past that color displays could affect the clinical performance of color displays negatively compared to monochrome displays. Now colorimeters like the PM-1423 are available which have higher sensitivity and color accuracy than the traditional cameras like CCD cameras. Reference (1) was not based on measurements made with a colorimeter. This paper focuses on the measurements of physical characteristics of the spatial resolution and noise performance of color and monochrome medical displays which were made with a colorimeter and we will after this meeting submit the data to an ROC study so we have again a paper to present at a future SPIE Conference.Specifically, Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) were evaluated and compared at different digital driving levels (DDL) between the two medical displays. This paper focuses on the measurements of physical characteristics of the spatial resolution and noise performance of color and monochrome medical displays which were made with a colorimeter and we will after this meeting submit the data to an ROC study so we have again a paper to present at a future Annual SPIE Conference. Specifically, Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) were evaluated and compared at different digital driving levels (DDL) between the two medical displays. The Imaging Colorimeter. Measurement of color image quality needs were done with an imaging colorimeter as it is shown below. Imaging colorimetry is ideally suited to FPD measurement because imaging systems capture spatial data generating millions of data points in a single measurement operation. The imaging colorimeter which was used was the PM-1423 from Radiant Imaging. It uses full-frame CCDs with 100% fill factor which makes it very suitable to measure luminance and chrominance of individual LCD pixels and sub-pixels on an LCD display. The CCDs used are 14-bit thermoelectrically cooled and temperature stabilized , scientific grade.
Display Considerations For Intravascular Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Gessert, James M.; Krinke, Charlie; Mallery, John A.; Zalesky, Paul J.
1989-08-01
A display has been developed for intravascular ultrasonic imaging. Design of this display has a primary goal of providing guidance information for therapeutic interventions such as balloons, lasers, and atherectomy devices. Design considerations include catheter configuration, anatomy, acoustic properties of normal and diseased tissue, catheterization laboratory and operating room environment, acoustic and electrical safety, acoustic data sampling issues, and logistical support such as image measurement, storage and retrieval. Intravascular imaging is in an early stage of development so design flexibility and expandability are very important. The display which has been developed is capable of acquisition and display of grey scale images at rates varying from static B-scans to 30 frames per second. It stores images in a 640 X 480 X 8 bit format and is capable of black and white as well as color display in multiplevideo formats. The design is based on the industry standard PC-AT architecture and consists of two AT style circuit cards, one for high speed sampling and the other for scan conversion, graphics and video generation.
High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)
2001-01-01
A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.
Digital Image Display Control System, DIDCS. [for astronomical analysis
NASA Technical Reports Server (NTRS)
Fischel, D.; Klinglesmith, D. A., III
1979-01-01
DIDCS is an interactive image display and manipulation system that is used for a variety of astronomical image reduction and analysis operations. The hardware system consists of a PDP 11/40 main frame with 32K of 16-bit core memory; 96K of 16-bit MOS memory; two 9 track 800 BPI tape drives; eight 2.5 million byte RKO5 type disk packs, three user terminals, and a COMTAL 8000-S display system which has sufficient memory to store and display three 512 x 512 x 8 bit images along with an overlay plane and function table for each image, a pseudo color table and the capability for displaying true color. The software system is based around the language FORTH, which will permit an open ended dictionary of user level words for image analyses and display. A description of the hardware and software systems will be presented along with examples of the types of astronomical research that are being performed. Also a short discussion of the commonality and exchange of this type of image analysis system will be given.
Image display device in digital TV
Choi, Seung Jong [Seoul, KR
2006-07-18
Disclosed is an image display device in a digital TV that is capable of carrying out the conversion into various kinds of resolution by using single bit map data in the digital TV. The image display device includes: a data processing part for executing bit map conversion, compression, restoration and format-conversion for text data; a memory for storing the bit map data obtained according to the bit map conversion and compression in the data processing part and image data inputted from an arbitrary receiving part, the receiving part receiving one of digital image data and analog image data; an image outputting part for reading the image data from the memory; and a display processing part for mixing the image data read from the image outputting part and the bit map data converted in format from the a data processing part. Therefore, the image display device according to the present invention can convert text data in such a manner as to correspond with various resolution, carry out the compression for bit map data, thereby reducing the memory space, and support text data of an HTML format, thereby providing the image with the text data of various shapes.
NASA Astrophysics Data System (ADS)
Mohon, N.
A 'simulator' is defined as a machine which imitates the behavior of a real system in a very precise manner. The major components of a simulator and their interaction are outlined in brief form, taking into account the major components of an aircraft flight simulator. Particular attention is given to the visual display portion of the simulator, the basic components of the display, their interactions, and their characteristics. Real image displays are considered along with virtual image displays, and image generators. Attention is given to an advanced simulator for pilot training, a holographic pancake window, a scan laser image generator, the construction of an infrared target simulator, and the Apollo Command Module Simulator.
Biocular vehicle display optical designs
NASA Astrophysics Data System (ADS)
Chu, H.; Carter, Tom
2012-06-01
Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.
Display technologies for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang
2018-02-01
With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.
Inspection of float glass using a novel retroreflective laser scanning system
NASA Astrophysics Data System (ADS)
Holmes, Jonathan D.
1997-07-01
Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.
NASA Astrophysics Data System (ADS)
Marcaccio, J. V.; Markle, C. E.; Chow-Fraser, P.
2015-08-01
With recent advances in technology, personal aerial imagery acquired with unmanned aerial vehicles (UAVs) has transformed the way ecologists can map seasonal changes in wetland habitat. Here, we use a multi-rotor (consumer quad-copter, the DJI Phantom 2 Vision+) UAV to acquire a high-resolution (< 8 cm) composite photo of a coastal wetland in summer 2014. Using validation data collected in the field, we determine if a UAV image and SWOOP (Southwestern Ontario Orthoimagery Project) image (collected in spring 2010) differ in their classification of type of dominant vegetation type and percent cover of three plant classes: submerged aquatic vegetation, floating aquatic vegetation, and emergent vegetation. The UAV imagery was more accurate than available SWOOP imagery for mapping percent cover of submergent and floating vegetation categories, but both were able to accurately determine the dominant vegetation type and percent cover of emergent vegetation. Our results underscore the value and potential for affordable UAVs (complete quad-copter system < 3,000 CAD) to revolutionize the way ecologists obtain imagery and conduct field research. In Canada, new UAV regulations make this an easy and affordable way to obtain multiple high-resolution images of small (< 1.0 km2) wetlands, or portions of larger wetlands throughout a year.
SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.
Li, Dengwang; Yin, Yong
2012-06-01
In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.
SEM image quality enhancement technology for bright field mask
NASA Astrophysics Data System (ADS)
Fukuda, Naoki; Chihara, Yuta; Shida, Soichi; Ito, Keisuke
2013-09-01
Bright-field photomasks are used to print small contact holes via ArF immersion multiple patterning lithography. There are some technical difficulties when small floating dots are to be measured by SEM tools because of a false imaging shadow. However, a new scan technology of Multi Vision Metrology SEMTM E3630 presents a solution for this issue. The combination of new scan technology and the other MVM-SEM® functions can provide further extended applications with more accurate measurement results.
EPA's Report on the Environment (ROE) 2014 Draft
EPA's ...
MS Kavandi with camera in Service Module
2001-07-16
STS104-E-5125 (16 July 2001) --- Astronaut Janet L. Kavandi, STS-104 mission specialist, uses a camera as she floats through the Zvezda service module aboard the International Space Station (ISS). The five STS-104 crew members were visiting the orbital outpost to perform various tasks. The image was recorded with a digital still camera.
Receptive fields selection for binary feature description.
Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal
2014-06-01
Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.
LCD displays performance comparison by MTF measurement using the white noise stimulus method
NASA Astrophysics Data System (ADS)
Mitjà, Carles; Escofet, Jaume
2011-01-01
The amount of images produced to be viewed as soft copies on output displays are significantly increasing. This growing occurs at the expense of the images targeted to hard copy versions on paper or any other physical support. Even in the case of high quality hard copy production, people working in professional imaging uses different displays in selecting, editing, processing and showing images, from laptop screen to specialized high end displays. Then, the quality performance of these devices is crucial in the chain of decisions to be taken in image production. Metrics of this quality performance can help in the equipment acquisition. Different metrics and methods have been described to determine the quality performance of CRT and LCD computer displays in clinical area. One of most important metrics in this field is the device spatial frequency response obtained measuring the modulation transfer function (MTF). This work presents a comparison between the MTF of three different LCD displays, Apple MacBook Pro 15", Apple LED Cinema Display 24" and Apple iPhone4, measured by the white noise stimulus method, over vertical and horizontal directions. Additionally, different displays show particular pixels structure pattern. In order to identify this pixel structure, a set of high magnification images is taken from each display to be related with the respective vertical and horizontal MTF.
Projection type transparent 3D display using active screen
NASA Astrophysics Data System (ADS)
Kamoshita, Hiroki; Yendo, Tomohiro
2015-05-01
Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.
Numerical image manipulation and display in solar astronomy
NASA Technical Reports Server (NTRS)
Levine, R. H.; Flagg, J. C.
1977-01-01
The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.
NASA Astrophysics Data System (ADS)
Rivers, M. L.; Gualda, G. A.
2009-05-01
One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk, and (3) generate MPEG movies for inclusion in presentations, publications, websites, etc. Both are freely available as run-time ('.sav') versions that can be run using the free IDL Virtual Machine TM, available from ITT Visual Information Solutions: http://www.ittvis.com/ProductServices/IDL/VirtualMachine.aspx The run-time versions of 'tomo_display' and 'vol_tools' can be downloaded from: http://cars.uchicago.edu/software/idl/tomography.html http://sites.google.com/site/voltools/
Hard copies for digital medical images: an overview
NASA Astrophysics Data System (ADS)
Blume, Hartwig R.; Muka, Edward
1995-04-01
This paper is a condensed version of an invited overview on the technology of film hard-copies used in radiology. Because the overview was given to an essentially nonmedical audience, the reliance on film hard-copies in radiology is outlined in greater detail. The overview is concerned with laser image recorders generating monochrome prints on silver-halide films. The basic components of laser image recorders are sketched. The paper concentrates on the physical parameters - characteristic function, dynamic range, digitization resolution, modulation transfer function, and noise power spectrum - which define image quality and information transfer capability of the printed image. A preliminary approach is presented to compare the printed image quality with noise in the acquired image as well as with the noise of state-of- the-art cathode-ray-tube display systems. High-performance laser-image- recorder/silver-halide-film/light-box systems are well capable of reproducing acquired radiologic information. Most recently development was begun toward a display function standard for soft-copy display systems to facilitate similarity of image presentation between different soft-copy displays as well as between soft- and hard-copy displays. The standard display function is based on perceptional linearization. The standard is briefly reviewed to encourage the printer industry to adopt it, too.
Digital image forensics for photographic copying
NASA Astrophysics Data System (ADS)
Yin, Jing; Fang, Yanmei
2012-03-01
Image display technology has greatly developed over the past few decades, which make it possible to recapture high-quality images from the display medium, such as a liquid crystal display(LCD) screen or a printed paper. The recaptured images are not regarded as a separate image class in the current research of digital image forensics, while the content of the recaptured images may have been tempered. In this paper, two sets of features based on the noise and the traces of double JPEG compression are proposed to identify these recaptured images. Experimental results showed that our proposed features perform well for detecting photographic copying.
Effect of Display Technology on Perceived Scale of Space.
Geuss, Michael N; Stefanucci, Jeanine K; Creem-Regehr, Sarah H; Thompson, William B; Mohler, Betty J
2015-11-01
Our goal was to evaluate the degree to which display technologies influence the perception of size in an image. Research suggests that factors such as whether an image is displayed stereoscopically, whether a user's viewpoint is tracked, and the field of view of a given display can affect users' perception of scale in the displayed image. Participants directly estimated the size of a gap by matching the distance between their hands to the gap width and judged their ability to pass unimpeded through the gap in one of five common implementations of three display technologies (two head-mounted displays [HMD] and a back-projection screen). Both measures of gap width were similar for the two HMD conditions and the back projection with stereo and tracking. For the displays without tracking, stereo and monocular conditions differed from each other, with monocular viewing showing underestimation of size. Display technologies that are capable of stereoscopic display and tracking of the user's viewpoint are beneficial as perceived size does not differ from real-world estimates. Evaluations of different display technologies are necessary as display conditions vary and the availability of different display technologies continues to grow. The findings are important to those using display technologies for research, commercial, and training purposes when it is important for the displayed image to be perceived at an intended scale. © 2015, Human Factors and Ergonomics Society.
Du, Weiqi; Zhang, Gaofei; Ye, Liangchen
2016-01-01
Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390
Du, Weiqi; Zhang, Gaofei; Ye, Liangchen
2016-05-11
Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.
Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors.
Teissier, Anne; Chemiakine, Alexei; Inbar, Benjamin; Bagchi, Sneha; Ray, Russell S; Palmiter, Richard D; Dymecki, Susan M; Moore, Holly; Ansorge, Mark S
2015-12-01
Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Jiang, Hao; Zhao, Dehua; Cai, Ying; An, Shuqing
2012-01-01
In previous attempts to identify aquatic vegetation from remotely-sensed images using classification trees (CT), the images used to apply CT models to different times or locations necessarily originated from the same satellite sensor as that from which the original images used in model development came, greatly limiting the application of CT. We have developed an effective normalization method to improve the robustness of CT models when applied to images originating from different sensors and dates. A total of 965 ground-truth samples of aquatic vegetation types were obtained in 2009 and 2010 in Taihu Lake, China. Using relevant spectral indices (SI) as classifiers, we manually developed a stable CT model structure and then applied a standard CT algorithm to obtain quantitative (optimal) thresholds from 2009 ground-truth data and images from Landsat7-ETM+, HJ-1B-CCD, Landsat5-TM and ALOS-AVNIR-2 sensors. Optimal CT thresholds produced average classification accuracies of 78.1%, 84.7% and 74.0% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. However, the optimal CT thresholds for different sensor images differed from each other, with an average relative variation (RV) of 6.40%. We developed and evaluated three new approaches to normalizing the images. The best-performing method (Method of 0.1% index scaling) normalized the SI images using tailored percentages of extreme pixel values. Using the images normalized by Method of 0.1% index scaling, CT models for a particular sensor in which thresholds were replaced by those from the models developed for images originating from other sensors provided average classification accuracies of 76.0%, 82.8% and 68.9% for emergent vegetation, floating-leaf vegetation and submerged vegetation, respectively. Applying the CT models developed for normalized 2009 images to 2010 images resulted in high classification (78.0%–93.3%) and overall (92.0%–93.1%) accuracies. Our results suggest that Method of 0.1% index scaling provides a feasible way to apply CT models directly to images from sensors or time periods that differ from those of the images used to develop the original models.
NASA Astrophysics Data System (ADS)
Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.
2015-10-01
Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure. Electronic supplementary information (ESI) available: Energy-dispersive X-ray spectroscopy (EDS) spectra of the metal NPs, SEM image of MoS2 on Au NPs, erasing operations of the metal NPs-MoS2 memory device, transfer characteristics of the standard FET devices and Ag NP devices under programming operation, tapping-mode AFM height image of the fabricated MoS2 film for pristine MoS2 flash memory, gate signals used for programming the Au NPs-MoS2 and Pt NPs-MoS2 flash memories, and data levels recorded for 100 sequential cycles. See DOI: 10.1039/c5nr05054e
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array
NASA Astrophysics Data System (ADS)
Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai
2017-05-01
The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.
Augmented reality 3D display based on integral imaging
NASA Astrophysics Data System (ADS)
Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua
2017-02-01
Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.
Accommodation measurements of horizontally scanning holographic display.
Takaki, Yasuhiro; Yokouchi, Masahito
2012-02-13
Eye accommodation is considered to function properly for three-dimensional (3D) images generated by holography. We developed a horizontally scanning holographic display technique that enlarges both the screen size and viewing zone angle. A 3D image generated by this technique can be easily seen by both eyes. In this study, we measured the accommodation responses to a 3D image generated by the horizontally scanning holographic display technique that has a horizontal viewing zone angle of 14.6° and screen size of 4.3 in. We found that the accommodation responses to a 3D image displayed within 400 mm from the display screen were similar to those of a real object.
Image Quality Characteristics of Handheld Display Devices for Medical Imaging
Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo
2013-01-01
Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113
Digital Image Processing Overview For Helmet Mounted Displays
NASA Astrophysics Data System (ADS)
Parise, Michael J.
1989-09-01
Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.
NASA Astrophysics Data System (ADS)
Laval, M.; Lüders, U.; Bobo, J. F.
2007-09-01
We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.
Star-Formation in Free-Floating Evaporating Gaseous Globules
NASA Astrophysics Data System (ADS)
Sahai, Raghvendra
2017-08-01
We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.
Method and apparatus for the simultaneous display and correlation of independently generated images
Vaitekunas, Jeffrey J.; Roberts, Ronald A.
1991-01-01
An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.
Experimental Optoelectronic Associative Memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1992-01-01
Optoelectronic associative memory responds to input image by displaying one of M remembered images. Which image to display determined by optoelectronic analog computation of resemblance between input image and each remembered image. Does not rely on precomputation and storage of outer-product synapse matrix. Size of memory needed to store and process images reduced.
Deng, William Nanqiao; Wang, Shuo; Ventrici de Souza, Joao; Kuhl, Tonya L; Liu, Gang-Yu
2018-06-25
Scanning probe microscopy (SPM), such as atomic force microscopy (AFM), is widely known for high-resolution imaging of surface structures and nanolithography in two dimensions (2D), providing important physical insights into surface science and material science. This work reports a new algorithm to enable construction and display of layer-by-layer 3D structures from SPM images. The algorithm enables alignment of SPM images acquired during layer-by-layer deposition and removal of redundant features and faithfully constructs the deposited 3D structures. The display uses a "see-through" strategy to enable the structure of each layer to be visible. The results demonstrate high spatial accuracy as well as algorithm versatility; users can set parameters for reconstruction and display as per image quality and research needs. To the best of our knowledge, this method represents the first report to enable SPM technology for 3D imaging construction and display. The detailed algorithm is provided to facilitate usage of the same approach in any SPM software. These new capabilities support wide applications of SPM that require 3D image reconstruction and display, such as 3D nanoprinting and 3D additive and subtractive manufacturing and imaging.
Secure Display of Space-Exploration Images
NASA Technical Reports Server (NTRS)
Cheng, Cecilia; Thornhill, Gillian; McAuley, Michael
2006-01-01
Java EDR Display Interface (JEDI) is software for either local display or secure Internet distribution, to authorized clients, of image data acquired from cameras aboard spacecraft engaged in exploration of remote planets. ( EDR signifies experimental data record, which, in effect, signifies image data.) Processed at NASA s Multimission Image Processing Laboratory (MIPL), the data can be from either near-realtime processing streams or stored files. JEDI uses the Java Advanced Imaging application program interface, plus input/output packages that are parts of the Video Image Communication and Retrieval software of the MIPL, to display images. JEDI can be run as either a standalone application program or within a Web browser as a servlet with an applet front end. In either operating mode, JEDI communicates using the HTTP(s) protocol(s). In the Web-browser case, the user must provide a password to gain access. For each user and/or image data type, there is a configuration file, called a "personality file," containing parameters that control the layout of the displays and the information to be included in them. Once JEDI has accepted the user s password, it processes the requested EDR (provided that user is authorized to receive the specific EDR) to create a display according to the user s personality file.
Integrated clinical workstations for image and text data capture, display, and teleconsultation.
Dayhoff, R; Kuzmak, P M; Kirin, G
1994-01-01
The Department of Veterans Affairs (VA) DHCP Imaging System digitally records clinically significant diagnostic images selected by medical specialists in a variety of hospital departments, including radiology, cardiology, gastroenterology, pathology, dermatology, hematology, surgery, podiatry, dental clinic, and emergency room. These images, which include true color and gray scale images, scanned documents, and electrocardiogram waveforms, are stored on network file servers and displayed on workstations located throughout a medical center. All images are managed by the VA's hospital information system (HIS), allowing integrated displays of text and image data from all medical specialties. Two VA medical centers currently have DHCP Imaging Systems installed, and other installations are underway.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)
1991-01-01
A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.
Composite video and graphics display for camera viewing systems in robotics and teleoperation
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor); Venema, Steven C. (Inventor)
1993-01-01
A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera.
Multichannel seismic/oceanographic/biological monitoring of the oceans
NASA Astrophysics Data System (ADS)
Hello, Y.; Leymarie, E.; Ogé, A.; Poteau, A.; Argentino, J.; Sukhovich, A.; Claustre, H.; Nolet, G.
2011-12-01
Delays in seismic P wave are used to make scans or 3D images of the variations in seismic wave speed in the Earth's interior using the techniques of seismic tomography. Observations of such delays are ubiquitous on the continents but rare in oceanic regions. Free-drifting profiling floats that measure the temperature, salinity and current of the upper 2000 m of the ocean are used by physical oceanographers for continuous monitoring in the Argo program. Recently, seismologists developed the idea to use such floats in order to compensate for the lack of seismic delay observations, especially in the southern hemisphere. In project Globalseis, financed by a grant from the European Research Council (ERC), we have developed and tested a prototype of such a seismological sensor using an Apex float from Teledyne Webb Research, a Rafos hydrophone, and electronics developed in collaboration with Osean, a small engineering firm in France. `MERMAID', for `Mobile Earthquake Recorder in Marine Areas by Independent Divers' is approaching its final design and should become available off the shelf in 2012. In the meantime we initiated a collaboration between Globalseis and another ERC project, remOcean, for the acquisition of radiometric, bio-geochemical data and meteorological observations in addition to salinity and temperature (Bio-Argo program). In this collaboration of Geoazur and LOV (Laboratoire d'Océanologie de Villefranche sur mer), two laboratories located at the Observatory of Villefranche, we developed a multichannel acquisition hardware electronics called 'PAYLOAD' that allows commercial floats such as Apex (TWR) and Provor (NKE) to serve multiple observing missions simultaneously. Based on an algorithm using wavelet transforms PAYLOAD continuously analyzes acoustic signals to detect major seismic events and weather phenomena such rain, drizzle, open sea and ice during drift diving phase. The bio-geochemical and other parameters are recorded and analyzed during ascent. All data are transmitted using the Iridum satellite network in Rudics mode when the floats surface. Two-way communication with Iridium allows us to send new parameters to the float for its next mission. Dual project campaigns are envisaged for next year.
Orthoscopic real-image display of digital holograms.
Makowski, P L; Kozacki, T; Zaperty, W
2017-10-01
We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.
Conservation story takes to the road. [Potomac Edison Co. of Allegheny Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-02-15
Potomac Edison Co. personnel designed a compact mobile energy-conservation display that demonstrated energy conservation applications to industry, commerce, government, and educators; this van went on the road in December 1974. Among the displays in the vehicle were a working model of a liquid-heating tank that used floating plastic balls as a cover to conserve heat losses and evaporation, a microwave oven, types of insulation and their applications, and a demand controller designed to reduce consumer peak loads and demand charges. Other displays showed temperature and automatic time controls that could be used in locations unoccupied for various periods of timemore » and lighting applications that stressed use of the most efficient lamps and luminaires and emphasized equipment maintenance; a heat pump, a heat-recovery wheel, heat pipe, and model ''run-around system'' for recovering and reusing heat from various industrial processes were also included. (EAPA Ed. note: as of January 1976, plans were to refurbish, update, and put this van back on the road during the upcoming summer). (MCW)« less
Method and apparatus for an optical function generator for seamless tiled displays
NASA Technical Reports Server (NTRS)
Johnson, Michael (Inventor); Chen, Chung-Jen (Inventor)
2004-01-01
Producing seamless tiled images from multiple displays includes measuring a luminance profile of each of the displays, computing a desired luminance profile for each of the displays, and determining a spatial gradient profile of each of the displays based on the measured luminance profile and the computed desired luminance profile. The determined spatial gradient profile is applied to a spatial filter to be inserted into each of the displays to produce the seamless tiled display image.
[Development of a Text-Data Based Learning Tool That Integrates Image Processing and Displaying].
Shinohara, Hiroyuki; Hashimoto, Takeyuki
2015-01-01
We developed a text-data based learning tool that integrates image processing and displaying by Excel. Knowledge required for programing this tool is limited to using absolute, relative, and composite cell references and learning approximately 20 mathematical functions available in Excel. The new tool is capable of resolution translation, geometric transformation, spatial-filter processing, Radon transform, Fourier transform, convolutions, correlations, deconvolutions, wavelet transform, mutual information, and simulation of proton density-, T1-, and T2-weighted MR images. The processed images of 128 x 128 pixels or 256 x 256 pixels are observed directly within Excel worksheets without using any particular image display software. The results of image processing using this tool were compared with those using C language and the new tool was judged to have sufficient accuracy to be practically useful. The images displayed on Excel worksheets were compared with images using binary-data display software. This comparison indicated that the image quality of the Excel worksheets was nearly equal to the latter in visual impressions. Since image processing is performed by using text-data, the process is visible and facilitates making contrasts by using mathematical equations within the program. We concluded that the newly developed tool is adequate as a computer-assisted learning tool for use in medical image processing.
Development of Land Analysis System display modules
NASA Technical Reports Server (NTRS)
Gordon, Douglas; Hollaren, Douglas; Huewe, Laurie
1986-01-01
The Land Analysis System (LAS) display modules were developed to allow a user to interactively display, manipulate, and store image and image related data. To help accomplish this task, these modules utilize the Transportable Applications Executive and the Display Management System software to interact with the user and the display device. The basic characteristics of a display are outlined and some of the major modifications and additions made to the display management software are discussed. Finally, all available LAS display modules are listed along with a short description of each.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2017-06-14
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Analysis on the 3D crosstalk in stereoscopic display
NASA Astrophysics Data System (ADS)
Choi, Hee-Jin
2010-11-01
Nowadays, with the rapid progresses in flat panel display (FPD) technologies, the three-dimensional (3D) display is now becoming a next mainstream of display market. Among the various 3D display techniques, the stereoscopic 3D display shows different left/right images for each eye of observer using special glasses and is the most popular 3D technique with the advantages of low price and high 3D resolution. However, current stereoscopic 3D displays suffer with the 3D crosstalk which means the interference between the left eye mage and right eye images since it degrades the quality of 3D image severely. In this paper, the meaning and causes of the 3D crosstalk in stereoscopic 3D display are introduced and the pre-proposed methods of 3D crosstalk measurement vision science are reviewed. Based on them The threshold of 3D crosstalk to realize a 3D display with no degradation is analyzed.
Methods and apparatus for transparent display using scattering nanoparticles
Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin
2016-05-10
Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.
Interactive 3D display simulator for autostereoscopic smart pad
NASA Astrophysics Data System (ADS)
Choe, Yeong-Seon; Lee, Ho-Dong; Park, Min-Chul; Son, Jung-Young; Park, Gwi-Tae
2012-06-01
There is growing interest of displaying 3D images on a smart pad for entertainments and information services. Designing and realizing various types of 3D displays on the smart pad is not easy for costs and given time. Software simulation can be an alternative method to save and shorten the development. In this paper, we propose a 3D display simulator for autostereoscopic smart pad. It simulates light intensity of each view and crosstalk for smart pad display panels. Designers of 3D display for smart pad can interactively simulate many kinds of autostereoscopic displays interactively by changing parameters required for panel design. Crosstalk to reduce leakage of one eye's image into the image of the other eye, and light intensity for computing visual comfort zone are important factors in designing autostereoscopic display for smart pad. Interaction enables intuitive designs. This paper describes an interactive 3D display simulator for autostereoscopic smart pad.
Display of high dynamic range images under varying viewing conditions
NASA Astrophysics Data System (ADS)
Borer, Tim
2017-09-01
Recent demonstrations of high dynamic range (HDR) television have shown that superb images are possible. With the emergence of an HDR television production standard (ITU-R Recommendation BT.2100) last year, HDR television production is poised to take off. However research to date has focused principally on HDR image display only under "dark" viewing conditions. HDR television will need to be displayed at varying brightness and under varying illumination (for example to view sport in daytime or on mobile devices). We know, from common practice with conventional TV, that the rendering intent (gamma) should change under brighter conditions, although this is poorly quantified. For HDR the need to render images under varying conditions is all the more acute. This paper seeks to explore the issues surrounding image display under varying conditions. It also describes how visual adaptation is affected by display brightness, surround illumination, screen size and viewing distance. Existing experimental results are presented and extended to try to quantify these effects. Using the experimental results it is described how HDR images may be displayed so that they are perceptually equivalent under different viewing conditions. A new interpretation of the experimental results is reported, yielding a new, luminance invariant model for the appropriate display "gamma". In this way the consistency of HDR image reproduction should be improved, thereby better maintaining "creative intent" in television.
2001-03-31
ISS002-E-5084 (31 March 2001) --- Astronaut James S. Voss, Expedition Two flight engineer, floats in the Zvezda Service Module onboard the International Space Station (ISS). Voss, along with astronaut Susan J. Helms and cosmonaut Yury V. Usachev of Rosaviakosmos, recently replaced the initial three-member crew onboard the orbital outpost. The image was taken with a digital still camera.
A device-dependent interface for interactive image display
NASA Technical Reports Server (NTRS)
Perkins, D. C.; Szczur, M. R.; Owings, J.; Jamros, R. K.
1984-01-01
The structure of the device independent Display Management Subsystem (DMS) and the interface routines that are available to the applications programmer for use in developing a set of portable image display utility programs are described.
Low material budget floating strip Micromegas for ion transmission radiography
NASA Astrophysics Data System (ADS)
Bortfeldt, J.; Biebel, O.; Flierl, B.; Hertenberger, R.; Klitzner, F.; Lösel, Ph.; Magallanes, L.; Müller, R.; Parodi, K.; Schlüter, T.; Voss, B.; Zibell, A.
2017-02-01
Floating strip Micromegas are high-accuracy and discharge insensitive gaseous detectors, able to track single particles at fluxes of 7 MHz/cm2 with 100 μm resolution. We developed low-material-budget detectors with one-dimensional strip readout, suitable for tracking at highest particle rates as encountered in medical ion transmission radiography or inner tracker applications. Recently we additionally developed Kapton-based floating strip Micromegas with two-dimensional strip readout, featuring an overall thickness of 0.011 X0. These detectors were tested in high-rate proton and carbon-ion beams at the tandem accelerator in Garching and the Heidelberg Ion-Beam Therapy Center, operated with an optimized Ne:CF4 gas mixture. By coupling the Micromegas detectors to a new scintillator based range detector, ion transmission radiographies of PMMA and tissue-equivalent phantoms were acquired. The range detector with 18 layers is read out via wavelength shifting fibers, coupled to a multi-anode photomultiplier. We present the performance of the Micromegas detectors with respect to timing and single plane track reconstruction using the μTPC method. We discuss the range resolution of the scintillator range telescope and present the image reconstruction capabilities of the combined system.
Holographic Imaging In Dense Artificial Fog
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Marzwell, Neville
1996-01-01
Artificial fog serves as volume-projection medium for display of three-dimensional image. Projection technique enables display of images for variety of purposes, possibly including entertainment, indoor and outdoor advertising, medical diagnostics and image representations for surgical procedures, and education.
14 CFR 27.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
14 CFR 29.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
Automatic detection method for mura defects on display film surface using modified Weber's law
NASA Astrophysics Data System (ADS)
Kim, Myung-Muk; Lee, Seung-Ho
2014-07-01
We propose a method that automatically detects mura defects on display film surfaces using a modified version of Weber's law. The proposed method detects mura defects regardless of their properties and shapes by identifying regions perceived by human vision as mura using the brightness of pixel and image distribution ratio of mura in an image histogram. The proposed detection method comprises five stages. In the first stage, the display film surface image is acquired and a gray-level shift performed. In the second and third stages, the image histogram is acquired and analyzed, respectively. In the fourth stage, the mura range is acquired. This is followed by postprocessing in the fifth stage. Evaluations of the proposed method conducted using 200 display film mura image samples indicate a maximum detection rate of ˜95.5%. Further, the results of application of the Semu index for luminance mura in flat panel display (FPD) image quality inspection indicate that the proposed method is more reliable than a popular conventional method.
Discrete Fourier Transform in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
Comparative Study of the MTFA, ICS, and SQRI Image Quality Metrics for Visual Display Systems
1991-09-01
reasonable image quality predictions across select display and viewing condition parameters. 101 6.0 REFERENCES American National Standard for Human Factors Engineering of ’ Visual Display Terminal Workstations . ANSI
[Spatial domain display for interference image dataset].
Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia
2011-11-01
The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.
Imaging Systems: What, When, How.
ERIC Educational Resources Information Center
Lunin, Lois F.; And Others
1992-01-01
The three articles in this special section on document image files discuss intelligent character recognition, including comparison with optical character recognition; selection of displays for document image processing, focusing on paperlike displays; and imaging hardware, software, and vendors, including guidelines for system selection. (MES)
Three-dimensional ultrasonic scanning.
Fredfeldt, K E; Holm, H H; Pedersen, J F
1984-01-01
Simple experiments which form the basis for a true 3-D demonstration of sectional images are presented and a method for genuine 3-D display of dynamic ultrasound images is described. Eight ultrasound images are recorded with a slightly different angulation of the transducer. The images are extracted from the video signal from a conventional ultrasound scanner and stored in eight digital memories. After recording, each image is displayed on an oscilloscope screen, which is viewed via a fast oscillating mirror. The position of the mirror determines which of the eight images are to be displayed and thereby ensures a correct spatial relationship of the images, resulting in a true 3-D scan presentation.
NASA Astrophysics Data System (ADS)
Qin, Chen; Ren, Bin; Guo, Longfei; Dou, Wenhua
2014-11-01
Multi-projector three dimension display is a promising multi-view glass-free three dimension (3D) display technology, can produce full colour high definition 3D images on its screen. One key problem of multi-projector 3D display is how to acquire the source images of projector array while avoiding pseudoscopic problem. This paper analysis the displaying characteristics of multi-projector 3D display first and then propose a projector content synthetic method using tetrahedral transform. A 3D video format that based on stereo image pair and associated disparity map is presented, it is well suit for any type of multi-projector 3D display and has advantage in saving storage usage. Experiment results show that our method solved the pseudoscopic problem.
Integrated clinical workstations for image and text data capture, display, and teleconsultation.
Dayhoff, R.; Kuzmak, P. M.; Kirin, G.
1994-01-01
The Department of Veterans Affairs (VA) DHCP Imaging System digitally records clinically significant diagnostic images selected by medical specialists in a variety of hospital departments, including radiology, cardiology, gastroenterology, pathology, dermatology, hematology, surgery, podiatry, dental clinic, and emergency room. These images, which include true color and gray scale images, scanned documents, and electrocardiogram waveforms, are stored on network file servers and displayed on workstations located throughout a medical center. All images are managed by the VA's hospital information system (HIS), allowing integrated displays of text and image data from all medical specialties. Two VA medical centers currently have DHCP Imaging Systems installed, and other installations are underway. PMID:7949899
NASA Astrophysics Data System (ADS)
D'Haene, Nicky; Maris, Calliope; Rorive, Sandrine; Moles Lopez, Xavier; Rostang, Johan; Marchessoux, Cédric; Pantanowitz, Liron; Parwani, Anil V.; Salmon, Isabelle
2013-03-01
User experience with viewing images in pathology is crucial for accurate interpretation and diagnosis. With digital pathology, images are being read on a display system, and this poses new types of questions: such as what is the difference in terms of pixelation, refresh lag or obscured features compared to an optical microscope. Is there a resultant change in user performance in terms of speed of slide review, perception of adequacy and quality or in diagnostic confidence? A prior psychophysical study was carried out comparing various display modalities on whole slide imaging (WSI) in pathology at the University of Pittsburgh Medical Center (UPMC) in the USA. This prior study compared professional and non-professional grade display modalities and highlighted the importance of using a medical grade display to view pathological digital images. This study was duplicated in Europe at the Department of Pathology in Erasme Hospital (Université Libre de Bruxelles (ULB)) in an attempt to corroborate these findings. Digital WSI with corresponding glass slides of 58 cases including surgical pathology and cytopathology slides of varying difficulty were employed. Similar non-professional and professional grade display modalities were compared to an optical microscope (Olympus BX51). Displays ranged from a laptop (DELL Latitude D620), to a consumer grade display (DELL E248WFPb), to two professional grade monitors (Eizo CG245W and Barco MDCC-6130). Three pathologists were selected from the Department of Pathology in Erasme Hospital (ULB) in Belgium to view and interpret the pathological images on these different displays. The results show that non-professional grade displays (laptop and consumer) have inferior user experience compared to professional grade monitors and the optical microscope.
Real-time image reconstruction and display system for MRI using a high-speed personal computer.
Haishi, T; Kose, K
1998-09-01
A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.
40 CFR 65.45 - External floating roof converted into an internal floating roof.
Code of Federal Regulations, 2010 CFR
2010-07-01
... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...
NASA Astrophysics Data System (ADS)
Ito, Shusei; Uchida, Keitaro; Mizushina, Haruki; Suyama, Shiro; Yamamoto, Hirotsugu
2017-02-01
Security is one of the big issues in automated teller machine (ATM). In ATM, two types of security have to be maintained. One is to secure displayed information. The other is to secure screen contamination. This paper gives a solution for these two security issues. In order to secure information against peeping at the screen, we utilize visual cryptography for displayed information and limit the viewing zone. Furthermore, an aerial information screen with aerial imaging by retro-reflection, named AIRR enables users to avoid direct touch on the information screen. The purpose of this paper is to propose an aerial secure display technique that ensures security of displayed information as well as security against contamination problem on screen touch. We have developed a polarization-processing display that is composed of a backlight, a polarizer, a background LCD panel, a gap, a half-wave retarder, and a foreground LCD panel. Polarization angle is rotated with the LCD panels. We have constructed a polarization encryption code set. Size of displayed images are designed to limit the viewing position. Furthermore, this polarization-processing display has been introduced into our aerial imaging optics, which employs a reflective polarizer and a retro-reflector covered with a quarter-wave retarder. Polarization-modulated light forms the real image over the reflective polarizer. We have successfully formed aerial information screen that shows the secret image with a limited viewing position. This is the first realization of aerial secure display by use of polarization-processing display with retarder-film and retro-reflector.
Buck, Ross; Powers, Stacie R; Hull, Kyle S
2017-10-01
Most measures of nonverbal receiving ability use posed expressions as stimuli. As empathy measures, such stimuli lack ecological validity, as the participant is not actually experiencing emotion. An alternative approach uses natural and dynamic displays of spontaneous expressions. The Communication of Affect Receiving Ability Test (CARAT) uses as stimuli spontaneous facial expressions and gestures filmed by an unobtrusive camera of solitary participants responding to emotional images. This article reports the development and initial validation of the CARAT-Spontaneous, Posed, Regulated (CARAT-SPR), which measures both abilities to detect emotion from spontaneous displays (emotion communication accuracy) and to differentiate spontaneous, posed, and regulated displays (expression categorization ability). Although spontaneous displays are natural responses to emotional images, posed displays involve asking the sender to display "as if" responding to a particular sort of image when no image is in fact present (simulation), while Regulated displays involve asking the sender to display "as if" responding to a particular sort of image when an image of opposite valence is in fact present (masking). Expression categorization ability involves judging deception-simulation and masking-and conceptually involves a kind of perspective-taking or cognitive empathy. Emotion communication using spontaneous clips achieved a high level of accuracy and was strongly correlated with ratings of sender expressivity. Expression categorization ability was not significantly correlated with expressivity ratings and was modestly negatively correlated with emotion communication accuracy. In a brief version of the CARAT-SPR, women showed evidence of greater emotion signal detection, whereas men reported greater confidence in expression categorization. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
Heuer, Sabine; Ivanova, Maria V.; Hallowell, Brooke
2017-01-01
Purpose: Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiser, L.; Veligdan, J.
A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic opticalmore » system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.« less
Ultrasonic Waves in Water Visualized With Schlieren Imaging
NASA Technical Reports Server (NTRS)
Juergens, Jeffrey R.
2000-01-01
The Acoustic Liquid Manipulation project at the NASA Glenn Research Center at Lewis Field is working with high-intensity ultrasound waves to produce acoustic radiation pressure and acoustic streaming. These effects can be used to propel liquid flows to manipulate floating objects and liquid surfaces. Interest in acoustic liquid manipulation has been shown in acoustically enhanced circuit board electroplating, microelectromechanical systems (MEMS), and microgravity space experiments. The current areas of work on this project include phased-array ultrasonic beam steering, acoustic intensity measurements, and schlieren imaging of the ultrasonic waves.
Small real time detection satellites for MDA using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Nakaya, Daiki; Yanagida, Hiroki; Shin, Satori; Ito, Tomonori; Takeuchi, Yusuke
2017-10-01
Hyperspectral Images are now used in the field of agriculture, cosmetics, and space exploring. Behind this fact, there is a result of efforts to contrive miniaturization and decrease in costs. This paper describes low-cost and small Hyperspectral Camera (HSC) under development and a method of utilizing it. Real Time Detection System for MDA is that government agencies put those cameras in small satellites and use them for MDA (Maritime Domain Awareness). We assume early detection of unidentified floating objects to find out disguised fishing ships and submarines.
PTSD in Limb Trauma and Recovery
2008-10-16
field of view, much greater image fidelity and more comfortable viewing than the Emagin head-mounted display, and is well-suited to deployment in a...run on display platforms other than the eMagin Head-Mounted Display (HMD). This will include Brown University’s Cave, an eight- foot immersive VR...Samsung display provides wider field of view, much greater image fidelity and more comfortable viewing than the Emagin head-mounted display, and is
NASA Astrophysics Data System (ADS)
Plant, Joshua N.; Johnson, Kenneth S.; Sakamoto, Carole M.; Jannasch, Hans W.; Coletti, Luke J.; Riser, Stephen C.; Swift, Dana D.
2016-06-01
Six profiling floats equipped with nitrate and oxygen sensors were deployed at Ocean Station P in the Gulf of Alaska. The resulting six calendar years and 10 float years of nitrate and oxygen data were used to determine an average annual cycle for net community production (NCP) in the top 35 m of the water column. NCP became positive in February as soon as the mixing activity in the surface layer began to weaken, but nearly 3 months before the traditionally defined mixed layer began to shoal from its winter time maximum. NCP displayed two maxima, one toward the end of May and another in August with a summertime minimum in June corresponding to the historical peak in mesozooplankton biomass. The average annual NCP was determined to be 1.5 ± 0.6 mol C m-2 yr-1 using nitrate and 1.5 ± 0.7 mol C m-2 yr-1 using oxygen. The results from oxygen data proved to be quite sensitive to the gas exchange model used as well as the accuracy of the oxygen measurement. Gas exchange models optimized for carbon dioxide flux generally ignore transport due to gas exchange through the injection of bubbles, and these models yield NCP values that are two to three time higher than the nitrate-based estimates. If nitrate and oxygen NCP rates are assumed to be related by the Redfield model, we show that the oxygen gas exchange model can be optimized by tuning the exchange terms to reproduce the nitrate NCP annual cycle.
Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display.
Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu
2015-05-18
We present a image quality improvement in a parallax barrier (PB)-based multiview autostereoscopic 3D display system under a real-time tracking of positions of a viewer's eyes. The system presented exploits a parallax barrier engineered to offer significantly improved quality of three-dimensional images for a moving viewer without an eyewear under the dynamic eye tracking. The improved image quality includes enhanced uniformity of image brightness, reduced point crosstalk, and no pseudoscopic effects. We control the relative ratio between two parameters i.e., a pixel size and the aperture of a parallax barrier slit to improve uniformity of image brightness at a viewing zone. The eye tracking that monitors positions of a viewer's eyes enables pixel data control software to turn on only pixels for view images near the viewer's eyes (the other pixels turned off), thus reducing point crosstalk. The eye tracking combined software provides right images for the respective eyes, therefore producing no pseudoscopic effects at its zone boundaries. The viewing zone can be spanned over area larger than the central viewing zone offered by a conventional PB-based multiview autostereoscopic 3D display (no eye tracking). Our 3D display system also provides multiviews for motion parallax under eye tracking. More importantly, we demonstrate substantial reduction of point crosstalk of images at the viewing zone, its level being comparable to that of a commercialized eyewear-assisted 3D display system. The multiview autostereoscopic 3D display presented can greatly resolve the point crosstalk problem, which is one of the critical factors that make it difficult for previous technologies for a multiview autostereoscopic 3D display to replace an eyewear-assisted counterpart.
Implementation of a Landscape Lighting System to Display Images
NASA Astrophysics Data System (ADS)
Sun, Gi-Ju; Cho, Sung-Jae; Kim, Chang-Beom; Moon, Cheol-Hong
The system implemented in this study consists of a PC, MASTER, SLAVEs and MODULEs. The PC sets the various landscape lighting displays, and the image files can be sent to the MASTER through a virtual serial port connected to the USB (Universal Serial Bus). The MASTER sends a sync signal to the SLAVE. The SLAVE uses the signal received from the MASTER and the landscape lighting display pattern. The video file is saved in the NAND Flash memory and the R, G, B signals are separated using the self-made display signal and sent to the MODULE so that it can display the image.
Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim
2016-01-01
Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.
NASA Technical Reports Server (NTRS)
Potter, Christopher
2016-01-01
Waterways of the Sacramento San Joaquin Delta have recently become infested with invasive aquatic weeds such as floating water hyacinth (Eichhoria crassipes) and water primrose (Ludwigia peploides). These invasive plants cause many negative impacts, including, but not limited to: the blocking of waterways for commercial shipping and boating; clogging of irrigation screens, pumps and canals; and degradation of biological habitat through shading. Zhang et al. (1997, Ecological Applications, 7(3), 1039-1053) used NASA Landsat satellite imagery together with field calibration measurements to map physical and biological processes within marshlands of the San Francisco Bay. Live green biomass (LGB) and related variables were correlated with a simple vegetation index ratio of red and near infra-red bands from Landsat images. More recently, the percent (water area) cover of water hyacinth plotted against estimated LGB of emergent aquatic vegetation in the Delta from September 2014 Landsat imagery showed an 80 percent overall accuracy. For the past two years, we have partnered with the U. S. Department of Agriculture (USDA) and the Department of Plant Sciences, University of California at Davis to conduct new validation surveys of water hyacinth and water primrose coverage and LGB in Delta waterways. A plan is underway to transfer decision support tools developed at NASA's Ames Research Center based on Landsat satellite images to improve Delta-wide integrated management of floating aquatic weeds, while reducing chemical control costs. The main end-user for this application project will be the Division of Boating and Waterways (DBW) of the California Department of Parks and Recreation, who has the responsibility for chemical control of water hyacinth in the Delta.
Flow produced by a free-moving floating magnet driven electromagnetically
NASA Astrophysics Data System (ADS)
Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio
2018-04-01
The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.
NASA Astrophysics Data System (ADS)
Drabik, Timothy J.; Lee, Sing H.
1986-11-01
The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.
Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha
2017-01-01
Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures. PMID:28788081
Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha
2017-07-28
Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures.
Setti, E; Musumeci, R
2001-06-01
The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.
NASA Astrophysics Data System (ADS)
Ferreira, Flávio P.; Forte, Paulo M. F.; Felgueiras, Paulo E. R.; Bret, Boris P. J.; Belsley, Michael S.; Nunes-Pereira, Eduardo J.
2017-02-01
An Automatic Optical Inspection (AOI) system for optical inspection of imaging devices used in automotive industry using an inspecting optics of lower spatial resolution than the device under inspection is described. This system is robust and with no moving parts. The cycle time is small. Its main advantage is that it is capable of detecting and quantifying defects in regular patterns, working below the Shannon-Nyquist criterion for optical resolution, using a single low resolution image sensor. It is easily scalable, which is an important advantage in industrial applications, since the same inspecting sensor can be reused for increasingly higher spatial resolutions of the devices to be inspected. The optical inspection is implemented with a notch multi-band Fourier filter, making the procedure especially fitted for regular patterns, like the ones that can be produced in image displays and Head Up Displays (HUDs). The regular patterns are used in production line only, for inspection purposes. For image displays, functional defects are detected at the level of a sub-image display grid element unit. Functional defects are the ones impairing the function of the display, and are preferred in AOI to the direct geometric imaging, since those are the ones directly related with the end-user experience. The shift in emphasis from geometric imaging to functional imaging is critical, since it is this that allows quantitative inspection, below Shannon-Nyquist. For HUDs, the functional detect detection addresses defects resulting from the combined effect of the image display and the image forming optics.
Method and apparatus for reflection mode imaging
NASA Technical Reports Server (NTRS)
Heyser, Richard C. (Inventor); Rooney, James A. (Inventor)
1989-01-01
A volume is scanned with a raster scan about a center of rotation using a transmitter/receiver at a selected range while gating a range window on the receiver with a selected range differential. The received signals are then demodulated to obtain signals representative of a property within the volume being scanned such as the density of a tumor. The range is varied until the entire volume has been scanned at all ranges to be displayed. An imaging display is synchronously scanned together with the raster scan to display variations of the property on the display. A second transmitter/receiver with associated equipment may be offset from the first and variations displayed from each of the transmitter/receivers on its separate display. The displays may then be combined stereoscopically to provide a three-dimensional image representative of variations of the property.
Spaceborne Imaging Radar-C instrument
NASA Technical Reports Server (NTRS)
Huneycutt, Bryan L.
1993-01-01
The Spaceborne Imaging Radar-C is the next radar in the series of spaceborne radar experiments, which began with Seasat and continued with SIR-A and SIR-B. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar that will be flown during at least two different seasons. The instrument operates in the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument uses engineering techniques such as beam nulling for echo tracking, pulse repetition frequency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating-point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.
Front and rear projection autostereoscopic 3D displays based on lenticular sheets
NASA Astrophysics Data System (ADS)
Wang, Qiong-Hua; Zang, Shang-Fei; Qi, Lin
2015-03-01
A front projection autostereoscopic display is proposed. The display is composed of eight projectors and a 3D-imageguided screen which having a lenticular sheet and a retro-reflective diffusion screen. Based on the optical multiplexing and de-multiplexing, the optical functions of the 3D-image-guided screen are parallax image interlacing and viewseparating, which is capable of reconstructing 3D images without quality degradation from the front direction. The operating principle, optical design calculation equations and correction method of parallax images are given. A prototype of the front projection autostereoscopic display is developed, which enhances the brightness and 3D perceptions, and improves space efficiency. The performance of this prototype is evaluated by measuring the luminance and crosstalk distribution along the horizontal direction at the optimum viewing distance. We also propose a rear projection autostereoscopic display. The display consists of eight projectors, a projection screen, and two lenticular sheets. The operation principle and calculation equations are described in detail and the parallax images are corrected by means of homography. A prototype of the rear projection autostereoscopic display is developed. The normalized luminance distributions of viewing zones from the measurement are given. Results agree well with the designed values. The prototype presents high resolution and high brightness 3D images. The research has potential applications in some commercial entertainments and movies for the realistic 3D perceptions.
3D Image Display Courses for Information Media Students.
Yanaka, Kazuhisa; Yamanouchi, Toshiaki
2016-01-01
Three-dimensional displays are used extensively in movies and games. These displays are also essential in mixed reality, where virtual and real spaces overlap. Therefore, engineers and creators should be trained to master 3D display technologies. For this reason, the Department of Information Media at the Kanagawa Institute of Technology has launched two 3D image display courses specifically designed for students who aim to become information media engineers and creators.
Using Online Citizen Science to Assess Giant Kelp Abundances Across the Globe with Satellite Imagery
NASA Astrophysics Data System (ADS)
Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Rosenthal, I.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.
2017-12-01
Global scale long-term data sets that document the patterns and variability of human impacts on marine ecosystems are rare. This lack is particularly glaring for underwater species - even moreso for ecologically important ones. Here we demonstrate how online Citizen Science combined with Landsat satellite imagery can help build a picture of change in the dynamics of giant kelp, an important coastal foundation species around the globe, from the 1984 to the present. Giant kelp canopy is visible from Landsat images, but these images defy easy machine classification. To get useful data, images must be processed by hand. While academic researchers have applied this method successfully at sub-regional scales, unlocking the value of the full global dataset has not been possible until given the massive effort required. Here we present Floating Forests (http://floatingforests.org), an international collaboration between kelp forest researchers and the citizen science organization Zooniverse. Floating Forests provides an interface that allows citizen scientists to identify canopy cover of giant kelp on Landsat images, enabling us to scale up the dataset to the globe. We discuss lessons learned from the initial version of the project launched in 2014, a prototype of an image processing pipeline to bring Landsat imagery to citizen science platforms, methods of assessing accuracy of citizen scientists, and preliminary data from our relaunch of the project. Through this project we have developed generalizable tools to facilitate citizen science-based analysis of Landsat and other satellite and aerial imagery. We hope that this create a powerful dataset to unlock our understanding of how global change has altered these critically important species in the sea.
Contrast Transmission In Medical Image Display
NASA Astrophysics Data System (ADS)
Pizer, Stephen M.; Zimmerman, John B.; Johnston, R. Eugene
1982-11-01
The display of medical images involves transforming recorded intensities such at CT numbers into perceivable intensities such as combinations of color and luminance. For the viewer to extract the most information about patterns of decreasing and increasing recorded intensity, the display designer must pay attention to three issues: 1) choice of display scale, including its discretization; 2) correction for variations in contrast sensitivity across the display scale due to the observer and the display device (producing an honest display); and 3) contrast enhancement based on the information in the recorded image and its importance, determined by viewing objectives. This paper will present concepts and approaches in all three of these areas. In choosing display scales three properties are important: sensitivity, associability, and naturalness of order. The unit of just noticeable difference (jnd) will be carefully defined. An observer experiment to measure the jnd values across a display scale will be specified. The overall sensitivity provided by a scale as measured in jnd's gives a measure of sensitivity called the perceived dynamic range (PDR). Methods for determining the PDR fran the aforementioned PDR values, and PDR's for various grey and pseudocolor scales will be presented. Methods of achieving sensitivity while retaining associability and naturalness of order with pseudocolor scales will be suggested. For any display device and scale it is useful to compensate for the device and observer by preceding the device with an intensity mapping (lookup table) chosen so that perceived intensity is linear with display-driving intensity. This mapping can be determined from the aforementioned jnd values. With a linearized display it is possible to standardize display devices so that the same image displayed on different devices or scales (e.g. video and hard copy) will be in sane sense perceptually equivalent. Furthermore, with a linearized display, it is possible to design contrast enhancement mappings that optimize the transmission of information from the recorded image to the display-driving signal with the assurance that this information will not then be lost by a -further nonlinear relation between display-driving and perceived intensity. It is suggested that optimal contrast enhancement mappings are adaptive to the local distribution of recorded intensities.
A Magnetic Set-Up to Help Teach Newton's Laws
ERIC Educational Resources Information Center
Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai
2009-01-01
A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…
2014-06-30
steganalysis) in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty actors...guilty’ user (of steganalysis) in large-scale datasets such as might be obtained by monitoring a corporate network or social network. Identifying guilty...floating point operations (1 TFLOPs) for a 1 megapixel image. We designed a new implementation using Compute Unified Device Architecture (CUDA) on NVIDIA
2008-07-31
Unlike the Lyrtech, each DSP on a Bittware board offers 3 MB of on-chip memory and 3 GFLOPs of 32-bit peak processing power. Based on the performance...Each NVIDIA 8800 Ultra features 576 GFLOPS on 128 612-MHz single-precision floating-point SIMD processors, arranged in 16 clusters of eight. Each
Transformation optics with windows
NASA Astrophysics Data System (ADS)
Oxburgh, Stephen; White, Chris D.; Antoniou, Georgios; Orife, Ejovbokoghene; Courtial, Johannes
2014-09-01
Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.
Color Imaging management in film processing
NASA Astrophysics Data System (ADS)
Tremeau, Alain; Konik, Hubert; Colantoni, Philippe
2003-12-01
The latest research projects in the laboratory LIGIV concerns capture, processing, archiving and display of color images considering the trichromatic nature of the Human Vision System (HSV). Among these projects one addresses digital cinematographic film sequences of high resolution and dynamic range. This project aims to optimize the use of content for the post-production operators and for the end user. The studies presented in this paper address the use of metadata to optimise the consumption of video content on a device of user's choice independent of the nature of the equipment that captured the content. Optimising consumption includes enhancing the quality of image reconstruction on a display. Another part of this project addresses the content-based adaptation of image display. Main focus is on Regions of Interest (ROI) operations, based on the ROI concepts of MPEG-7. The aim of this second part is to characterize and ensure the conditions of display even if display device or display media changes. This requires firstly the definition of a reference color space and the definition of bi-directional color transformations for each peripheral device (camera, display, film recorder, etc.). The complicating factor is that different devices have different color gamuts, depending on the chromaticity of their primaries and the ambient illumination under which they are viewed. To match the displayed image to the aimed appearance, all kind of production metadata (camera specification, camera colour primaries, lighting conditions) should be associated to the film material. Metadata and content build together rich content. The author is assumed to specify conditions as known from digital graphics arts. To control image pre-processing and image post-processing, these specifications should be contained in the film's metadata. The specifications are related to the ICC profiles but need additionally consider mesopic viewing conditions.
Phage display and molecular imaging: expanding fields of vision in living subjects.
Cochran, R; Cochran, Frank
2010-01-01
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, Kyeoreh; Park, Jongchan; Park, Yongkeun
2017-01-01
Holographic displays generate realistic 3D images that can be viewed without the need for any visual aids. They operate by generating carefully tailored light fields that replicate how humans see an actual environment. However, the realization of high-performance, dynamic 3D holographic displays has been hindered by the capabilities of present wavefront modulator technology. In particular, spatial light modulators have a small diffraction angle range and limited pixel number limiting the viewing angle and image size of a holographic 3D display. Here, we present an alternative method to generate dynamic 3D images by controlling volume speckle fields significantly enhancing image definition. We use this approach to demonstrate a dynamic display of micrometre-sized optical foci in a volume of 8 mm × 8 mm × 20 mm.
A system for the real-time display of radar and video images of targets
NASA Technical Reports Server (NTRS)
Allen, W. W.; Burnside, W. D.
1990-01-01
Described here is a software and hardware system for the real-time display of radar and video images for use in a measurement range. The main purpose is to give the reader a clear idea of the software and hardware design and its functions. This system is designed around a Tektronix XD88-30 graphics workstation, used to display radar images superimposed on video images of the actual target. The system's purpose is to provide a platform for tha analysis and documentation of radar images and their associated targets in a menu-driven, user oriented environment.
Spatial noise in microdisplays for near-to-eye applications
NASA Astrophysics Data System (ADS)
Hastings, Arthur R., Jr.; Draper, Russell S.; Wood, Michael V.; Fellowes, David A.
2011-06-01
Spatial noise in imaging systems has been characterized and its impact on image quality metrics has been addressed primarily with respect to the introduction of this noise at the sensor component. However, sensor fixed pattern noise is not the only source of fixed pattern noise in an imaging system. Display fixed pattern noise cannot be easily mitigated in processing and, therefore, must be addressed. In this paper, a thorough examination of the amount and the effect of display fixed pattern noise is presented. The specific manifestation of display fixed pattern noise is dependent upon the display technology. Utilizing a calibrated camera, US Army RDECOM CERDEC NVESD has developed a microdisplay (μdisplay) spatial noise data collection capability. Noise and signal power spectra were used to characterize the display signal to noise ratio (SNR) as a function of spatial frequency analogous to the minimum resolvable temperature difference (MRTD) of a thermal sensor. The goal of this study is to establish a measurement technique to characterize μdisplay limiting performance to assist in proper imaging system specification.
Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao
2015-03-09
Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.
Migration of the digital interactive breast-imaging teaching file
NASA Astrophysics Data System (ADS)
Cao, Fei; Sickles, Edward A.; Huang, H. K.; Zhou, Xiaoqiang
1998-06-01
The digital breast imaging teaching file developed during the last two years in our laboratory has been used successfully at UCSF (University of California, San Francisco) as a routine teaching tool for training radiology residents and fellows in mammography. Building on this success, we have ported the teaching file from an old Pixar imaging/Sun SPARC 470 display system to our newly designed telemammography display workstation (Ultra SPARC 2 platform with two DOME Md5/SBX display boards). The old Pixar/Sun 470 system, although adequate for fast and high-resolution image display, is 4- year-old technology, expensive to maintain and difficult to upgrade. The new display workstation is more cost-effective and is also compatible with the digital image format from a full-field direct digital mammography system. The digital teaching file is built on a sophisticated computer-aided instruction (CAI) model, which simulates the management sequences used in imaging interpretation and work-up. Each user can be prompted to respond by making his/her own observations, assessments, and work-up decisions as well as the marking of image abnormalities. This effectively replaces the traditional 'show-and-tell' teaching file experience with an interactive, response-driven type of instruction.
A programmable display layer for virtual reality system architectures.
Smit, Ferdi Alexander; van Liere, Robert; Froehlich, Bernd
2010-01-01
Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.
Attentional Bias for Exercise-Related Images
ERIC Educational Resources Information Center
Berry, Tanya R.; Spence, John C.; Stolp, Sean M.
2011-01-01
This research examined attentional bias toward exercise-related images using a visual probe task. It was hypothesized that more-active participants would display attentional bias toward the exercise-related images. The results showed that men displayed attentional bias for the exercise images. There was a significant interaction of activity level…
Floating Algae Blooms in the East China Sea
NASA Astrophysics Data System (ADS)
Qi, Lin; Hu, Chuanmin; Wang, Mengqiu; Shang, Shaoling; Wilson, Cara
2017-11-01
A floating algae bloom in the East China Sea was observed in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in May 2017. Using satellite imagery from MODIS, Visible Infrared Imaging Radiometer Suite, Geostationary Ocean Color Imager, and Ocean Land Imager, and combined with numerical particle tracing experiments and laboratory experiments, we examined the history of this bloom as well as similar blooms in previous years and attempted to trace the bloom source and identify the algae type. Results suggest that one bloom origin is offshore Zhejiang coast where algae slicks have appeared in satellite imagery almost every February-March since 2012. Following the Kuroshio Current and Taiwan Warm Current, these "initial" algae slicks are first transported to the northeast to reach South Korea (Jeju Island) and Japan coastal waters (up to 135°E) by early April 2017, and then transported to the northwest to enter the Yellow Sea by the end of April. The transport pathway covers an area known to be rich in Sargassum horneri, and spectral analysis suggests that most of the algae slicks may contain large amount of S. horneri. The bloom covers a water area of 160,000 km2 with pure algae coverage of 530 km2, which exceeds the size of most Ulva blooms that occur every May-July in the Yellow Sea. While blooms of smaller size also occurred in previous years and especially in 2015, the 2017 bloom is hypothesized to be a result of record-high water temperature, increased light availability, and continuous expansion of Porphyra aquaculture along the East China Sea coast.
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
Combining volumetric edge display and multiview display for expression of natural 3D images
NASA Astrophysics Data System (ADS)
Yasui, Ryota; Matsuda, Isamu; Kakeya, Hideki
2006-02-01
In the present paper the authors present a novel stereoscopic display method combining volumetric edge display technology and multiview display technology to realize presentation of natural 3D images where the viewers do not suffer from contradiction between binocular convergence and focal accommodation of the eyes, which causes eyestrain and sickness. We adopt volumetric display method only for edge drawing, while we adopt stereoscopic approach for flat areas of the image. Since focal accommodation of our eyes is affected only by the edge part of the image, natural focal accommodation can be induced if the edges of the 3D image are drawn on the proper depth. The conventional stereo-matching technique can give us robust depth values of the pixels which constitute noticeable edges. Also occlusion and gloss of the objects can be roughly expressed with the proposed method since we use stereoscopic approach for the flat area. We can attain a system where many users can view natural 3D objects at the consistent position and posture at the same time in this system. A simple optometric experiment using a refractometer suggests that the proposed method can give us 3-D images without contradiction between binocular convergence and focal accommodation.
NASA Astrophysics Data System (ADS)
Good, Walter F.; Herron, John M.; Maitz, Glenn S.; Gur, David; Miller, Stephen L.; Straub, William H.; Fuhrman, Carl R.
1990-08-01
We designed and implemented a high-resolution video workstation as the central hardware component in a comprehensive multi-project program comparing the use of digital and film modalities. The workstation utilizes a 1.8 GByte real-time disk (RCI) capable of storing 400 full-resolution images and two Tektronix (GMA251) display controllers with 19" monitors (GMA2O2). The display is configured in a portrait format with a resolution of 1536 x 2048 x 8 bit, and operates at 75 Hz in a noninterlaced mode. Transmission of data through a 12 to 8 bit lookup table into the display controllers occurs at 20 MBytes/second (.35 seconds per image). The workstation allows easy use of brightness (level) and contrast (window) to be manipulated with a trackball, and various processing options can be selected using push buttons. Display of any of the 400 images is also performed at 20MBytes/sec (.35 sec/image). A separate text display provides for the automatic display of patient history data and for a scoring form through which readers can interact with the system by means of a computer mouse. In addition, the workstation provides for the randomization of cases and for the immediate entry of diagnostic responses into a master database. Over the past year this workstation has been used for over 10,000 readings in diagnostic studies related to 1) image resolution; 2) film vs. soft display; 3) incorporation of patient history data into the reading process; and 4) usefulness of image processing.
Quality metrics for sensor images
NASA Technical Reports Server (NTRS)
Ahumada, AL
1993-01-01
Methods are needed for evaluating the quality of augmented visual displays (AVID). Computational quality metrics will help summarize, interpolate, and extrapolate the results of human performance tests with displays. The FLM Vision group at NASA Ames has been developing computational models of visual processing and using them to develop computational metrics for similar problems. For example, display modeling systems use metrics for comparing proposed displays, halftoning optimizing methods use metrics to evaluate the difference between the halftone and the original, and image compression methods minimize the predicted visibility of compression artifacts. The visual discrimination models take as input two arbitrary images A and B and compute an estimate of the probability that a human observer will report that A is different from B. If A is an image that one desires to display and B is the actual displayed image, such an estimate can be regarded as an image quality metric reflecting how well B approximates A. There are additional complexities associated with the problem of evaluating the quality of radar and IR enhanced displays for AVID tasks. One important problem is the question of whether intruding obstacles are detectable in such displays. Although the discrimination model can handle detection situations by making B the original image A plus the intrusion, this detection model makes the inappropriate assumption that the observer knows where the intrusion will be. Effects of signal uncertainty need to be added to our models. A pilot needs to make decisions rapidly. The models need to predict not just the probability of a correct decision, but the probability of a correct decision by the time the decision needs to be made. That is, the models need to predict latency as well as accuracy. Luce and Green have generated models for auditory detection latencies. Similar models are needed for visual detection. Most image quality models are designed for static imagery. Watson has been developing a general spatial-temporal vision model to optimize video compression techniques. These models need to be adapted and calibrated for AVID applications.
Three-dimensional image display system using stereogram and holographic optical memory techniques
NASA Astrophysics Data System (ADS)
Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong
2001-09-01
In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
14 CFR 29.757 - Hull and auxiliary float strength.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
46 CFR 160.027-3 - Additional requirements for life floats.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Additional requirements for life floats. 160.027-3..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Life Floats for Merchant Vessels § 160.027-3 Additional requirements for life floats. (a) Each life float must have a platform designed...
Load assumptions for the landing impact of seaplanes
NASA Technical Reports Server (NTRS)
Taub, Josef
1931-01-01
The formula for the impact of floats must include the enlargement factor itself as well as the type of enlargement. The latter is preferably characterized by the change in surface loading. It is shown that the enlargement of a small seaplane generally results in a changed float (or boat) loading as well as wing loading. The conditions of starting stipulate the retention of the float loading when changing from single-float (boat) to twin-float arrangement. This contingency is followed by an increased impact factor in the twin-float type against the otherwise equivalent single-float type.
Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.
1996-01-01
In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.
Design of an open-ended plenoptic camera for three-dimensional imaging of dusty plasmas
NASA Astrophysics Data System (ADS)
Sanpei, Akio; Tokunaga, Kazuya; Hayashi, Yasuaki
2017-08-01
Herein, the design of a plenoptic imaging system for three-dimensional reconstructions of dusty plasmas using an integral photography technique has been reported. This open-ended system is constructed with a multi-convex lens array and a typical reflex CMOS camera. We validated the design of the reconstruction system using known target particles. Additionally, the system has been applied to observations of fine particles floating in a horizontal, parallel-plate radio-frequency plasma. Furthermore, the system works well in the range of our dusty plasma experiment. We can identify the three-dimensional positions of dust particles from a single-exposure image obtained from one viewing port.
Crew Earth Observations (CEO) taken during Expedition 8
2004-01-06
ISS008-E-12109 (6 January 2004) --- Five year old icebergs near South Georgia Island are featured in this image photographed by an Expedition 8 crewmember onboard the International Space Station (ISS). This oblique image shows two pieces of a massive iceberg that broke off from the Antarctica Ronne Ice Shelf in October 1998. The pieces of iceberg A-38 have floated relatively close to South Georgia Island. After five years and 3 months, they are approximately 1500 nautical miles from their origin. The cloud pattern is indicative of the impact of the mountainous islands on the local wind field. At the time this image was taken, the icebergs were sheltered in the lee side of the island.
Robust obstacle detection for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Qin, Yueming; Zhang, Xiuzhi
2018-03-01
Obstacle detection is of essential importance for Unmanned Surface Vehicles (USV). Although some obstacles (e.g., ships, islands) can be detected by Radar, there are many other obstacles (e.g., floating pieces of woods, swimmers) which are difficult to be detected via Radar because these obstacles have low radar cross section. Therefore, detecting obstacle from images taken onboard is an effective supplement. In this paper, a robust vision-based obstacle detection method for USVs is developed. The proposed method employs the monocular image sequence captured by the camera on the USVs and detects obstacles on the sea surface from the image sequence. The experiment results show that the proposed scheme is efficient to fulfill the obstacle detection task.
Paradigms of perception in clinical practice.
Jacobson, Francine L; Berlanstein, Bruce P; Andriole, Katherine P
2006-06-01
Display strategies for medical images in radiology have evolved in tandem with the technology by which images are made. The close of the 20th century, nearly coincident with the 100th anniversary of the discovery of x-rays, brought radiologists to a new crossroad in the evolution of image display. The increasing availability, speed, and flexibility of computer technology can now revolutionize how images are viewed and interpreted. Radiologists are not yet in agreement regarding the next paradigm for image display. The possibilities are being explored systematically through the Society for Computer Applications in Radiology's Transforming the Radiological Interpretation Process initiative. The varied input of radiologists who work in a large variety of settings will enable new display strategies to best serve radiologists in the detection and quantification of disease. Considerations and possibilities for the future are presented in this paper.
Piloted studies of Enhanced or Synthetic Vision display parameters
NASA Technical Reports Server (NTRS)
Harris, Randall L., Sr.; Parrish, Russell V.
1992-01-01
This paper summarizes the results of several studies conducted at Langley Research Center over the past few years. The purposes of these studies were to investigate parameters of pictorial displays and imaging sensors that affect pilot approach and landing performance. Pictorial displays have demonstrated exceptional tracking performance and improved the pilots' spatial awareness. Stereopsis cueing improved pilot flight performance and reduced pilot stress. Sensor image parameters such as increased field-of-view. faster image update rate, and aiding symbology improved flare initiation. Finer image resolution and magnification improved attitude control performance parameters.
A study of payload specialist station monitor size constraints. [space shuttle orbiters
NASA Technical Reports Server (NTRS)
Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.
1975-01-01
Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.
White constancy method for mobile displays
NASA Astrophysics Data System (ADS)
Yum, Ji Young; Park, Hyun Hee; Jang, Seul Ki; Lee, Jae Hyang; Kim, Jong Ho; Yi, Ji Young; Lee, Min Woo
2014-03-01
In these days, consumer's needs for image quality of mobile devices are increasing as smartphone is widely used. For example, colors may be perceived differently when displayed contents under different illuminants. Displayed white in incandescent lamp is perceived as bluish, while same content in LED light is perceived as yellowish. When changed in perceived white under illuminant environment, image quality would be degraded. Objective of the proposed white constancy method is restricted to maintain consistent output colors regardless of the illuminants utilized. Human visual experiments are performed to analyze viewers'perceptual constancy. Participants are asked to choose the displayed white in a variety of illuminants. Relationship between the illuminants and the selected colors with white are modeled by mapping function based on the results of human visual experiments. White constancy values for image control are determined on the predesigned functions. Experimental results indicate that propsed method yields better image quality by keeping the display white.
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron
2014-03-01
Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.
NASA Technical Reports Server (NTRS)
Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)
2011-01-01
A standardized acquisition methodology assists operators to accurately replicate high resolution B-mode ultrasound images obtained over several spaced-apart examinations utilizing a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, dynamic material properties of arterial structures, such as IMT and diameter, are measured in a standard region over successive image frames. Each frame of the sequence has its echo edge boundaries automatically determined by using the immediately prior frame's true echo edge coordinates as initial boundary conditions. Computerized echo edge recognition and tracking over multiple successive image frames enhances measurement of arterial diameter and IMT and allows for improved vascular dimension measurements, including vascular stiffness and IMT determinations.
Three-Dimensional Tactical Display and Method for Visualizing Data with a Probability of Uncertainty
2009-08-03
replacing the more complex and less intuitive displays presently provided in such contexts as commercial aircraft , marine vehicles, and air traffic...free space-virtual reality, 3-D image display system which is enabled by using a unique form of Aerogel as the primary display media. A preferred...generates and displays a real 3-D image in the Aerogel matrix. [0014] U.S. Patent No. 6,285,317, issued September 4, 2001, to Ong, discloses a
Three-Dimensional Tactical Display and Method for Visualizing Data with a Probability of Uncertainty
2009-08-03
replacing the more complex and less intuitive displays presently provided in such contexts as commercial aircraft , marine vehicles, and air traffic...space-virtual reality, 3-D image display system which is enabled by using a unique form of Aerogel as the primary display media. A preferred...and displays a real 3-D image in the Aerogel matrix. [0014] U.S. Patent No. 6,285,317, issued September 4, 2001, to Ong, discloses a navigation
Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy.
Christopher, Lauren A; William, Albert; Cohen-Gadol, Aaron A
2013-01-01
Recent advances in 3-dimensional (3-D) stereoscopic imaging have enabled 3-D display technologies in the operating room. We find 2 beneficial applications for the inclusion of 3-D imaging in clinical practice. The first is the real-time 3-D display in the surgical theater, which is useful for the neurosurgeon and observers. In surgery, a 3-D display can include a cutting-edge mixed-mode graphic overlay for image-guided surgery. The second application is to improve the training of residents and observers in neurosurgical techniques. This article documents the requirements of both applications for a 3-D system in the operating room and for clinical neurosurgical training, followed by a discussion of the strengths and weaknesses of the current and emerging 3-D display technologies. An important comparison between a new autostereoscopic display without glasses and current stereo display with glasses improves our understanding of the best applications for 3-D in neurosurgery. Today's multiview autostereoscopic display has 3 major benefits: It does not require glasses for viewing; it allows multiple views; and it improves the workflow for image-guided surgery registration and overlay tasks because of its depth-rendering format and tools. Two current limitations of the autostereoscopic display are that resolution is reduced and depth can be perceived as too shallow in some cases. Higher-resolution displays will be available soon, and the algorithms for depth inference from stereo can be improved. The stereoscopic and autostereoscopic systems from microscope cameras to displays were compared by the use of recorded and live content from surgery. To the best of our knowledge, this is the first report of application of autostereoscopy in neurosurgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, H.E.; Lin, J.W. III; Macha, E.S.
1984-12-04
A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approachingmore » ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.« less
Display management subsystem, version 1: A user's eye view
NASA Technical Reports Server (NTRS)
Parker, Dolores
1986-01-01
The structure and application functions of the Display Management Subsystem (DMS) are described. The DMS, a subsystem of the Transportable Applications Executive (TAE), was designed to provide a device-independent interface for an image processing and display environment. The system is callable by C and FORTRAN applications, portable to accommodate different image analysis terminals, and easily expandable to meet local needs. Generic applications are also available for performing many image processing tasks.
NASA Technical Reports Server (NTRS)
Roscoe, Stanley N.
1989-01-01
For better or worse, virtual imaging displays are with us in the form of narrow-angle combining-glass presentations, head-up displays (HUD), and head-mounted projections of wide-angle sensor-generated or computer-animated imagery (HMD). All military and civil aviation services and a large number of aerospace companies are involved in one way or another in a frantic competition to develop the best virtual imaging display system. The success or failure of major weapon systems hangs in the balance, and billions of dollars in potential business are at stake. Because of the degree to which national defense is committed to the perfection of virtual imaging displays, a brief consideration of their status, an investigation and analysis of their problems, and a search for realistic alternatives are long overdue.
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
Strübing, Sandra; Abboud, Tâmara; Contri, Renata Vidor; Metz, Hendrik; Mäder, Karsten
2008-06-01
The purpose of this study was to investigate the mechanism of floating and drug release behaviour of poly(vinyl acetate)-based floating tablets with membrane controlled drug delivery. Propranolol HCl containing tablets with Kollidon SR as an excipient for direct compression and different Kollicoat SR 30 D/Kollicoat IR coats varying from 10 to 20mg polymer/cm2 were investigated regarding drug release in 0.1N HCl. Furthermore, the onset of floating, the floating duration and the floating strength of the device were determined. In addition, benchtop MRI studies of selected samples were performed. Coated tablets with 10mg polymer/cm2 SR/IR, 8.5:1.5 coat exhibited the shortest lag times prior to drug release and floating onset, the fastest increase in and highest maximum values of floating strength. The drug release was delayed efficiently within a time interval of 24 h by showing linear drug release characteristics. Poly(vinyl acetate) proved to be an appropriate excipient to ensure safe and reliable drug release. Floating strength measurements offered the possibility to quantify the floating ability of the developed systems and thus to compare different formulations more efficiently. Benchtop MRI studies allowed a deeper insight into drug release and floating mechanisms noninvasively and continuously.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
Nonportable computed radiography of the chest--radiologists' acceptance
NASA Astrophysics Data System (ADS)
Gennari, Rose C.; Gur, David; Miketic, Linda M.; Campbell, William L.; Oliver, James H., III; Plunkett, Michael B.
1994-04-01
Following a large ROC study to assess diagnostic accuracy of PA chest computed radiography (CR) images displayed in a variety of formats, we asked nine experienced radiologists to subjectively assess their acceptance of and preferences for display modes in primary diagnosis of erect PA chest images. Our results indicate that radiologists felt somewhat less comfortable interpreting CR images displayed on either laser-printed films or workstations as compared to conventional films. The use of four minified images were thought to somewhat decrease diagnostic confidence, as well as to increase the time of interpretation. The reverse mode (black bone) images increased radiologists' confidence level in the detection of soft tissue abnormalities.
14 CFR 23.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...
de Lima, Camila; Salomão Helou, Elias
2018-01-01
Iterative methods for tomographic image reconstruction have the computational cost of each iteration dominated by the computation of the (back)projection operator, which take roughly O(N 3 ) floating point operations (flops) for N × N pixels images. Furthermore, classical iterative algorithms may take too many iterations in order to achieve acceptable images, thereby making the use of these techniques unpractical for high-resolution images. Techniques have been developed in the literature in order to reduce the computational cost of the (back)projection operator to O(N 2 logN) flops. Also, incremental algorithms have been devised that reduce by an order of magnitude the number of iterations required to achieve acceptable images. The present paper introduces an incremental algorithm with a cost of O(N 2 logN) flops per iteration and applies it to the reconstruction of very large tomographic images obtained from synchrotron light illuminated data.
Volumetric 3D display using a DLP projection engine
NASA Astrophysics Data System (ADS)
Geng, Jason
2012-03-01
In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.
Atmospheric Modeling And Sensor Simulation (AMASS) study
NASA Technical Reports Server (NTRS)
Parker, K. G.
1984-01-01
The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.
The Floating Potential Probe (FPP) taken during the third EVA of STS-97
2000-12-07
STS097-376-029 (7 December 2000) --- Space walking Endeavour astronauts topped off their scheduled space walk activities with an image of an evergreen tree placed atop the P6 solar array structure, the highest point in their construction project. They then took this photo of the "tree" before returning to the shirt-sleeve environment of the Space Shuttle Endeavour.
NASA Astrophysics Data System (ADS)
McNabb, R. W.; Womble, J. N.; Prakash, A.; Gens, R.; Ver Hoef, J.
2014-12-01
Tidewater glaciers play an important role in many landscape and ecosystem processes in fjords, terminating in the sea and calving icebergs and discharging meltwater directly into the ocean. Tidewater glaciers provide floating ice for use as habitat for harbor seals (Phoca vitulina richardii) for resting, pupping, nursing, molting, and avoiding predators. Tidewater glaciers are found in high concentrations in Southeast and Southcentral Alaska; currently, many of these glaciers are retreating or have stabilized in a retracted state, raising questions about the future availability of ice in these fjords as habitat for seals. Our primary objective is to investigate the relationship between harbor seal distribution and ice availability at an advancing tidewater glacier in Johns Hopkins Inlet, Glacier Bay National Park, Alaska. To this end, we use a combination of visible and infrared aerial photographs, object-based image analysis (OBIA), and statistical modeling techniques. We have developed a workflow to automate the processing of the imagery and the classification of the fjordscape (e.g., individual icebergs, brash ice, and open water), providing quantitative information on ice coverage as well as properties not typically found in traditional pixel-based classification techniques, such as block angularity and seal density across the fjord. Reflectance variation in the red channel of the optical images has proven to be the most important first-level criterion to separate open water from floating ice. This first-level criterion works well in areas without dense brash ice, but tends to misclassify dense brash ice as single icebergs. Isolating these large misclassified regions and applying a higher reflectance threshold as a second-level criterion helps to isolate individual ice blocks surrounded by dense brash ice. We present classification results from surveys taken during June and August, 2007-2013, as well as preliminary results from statistical modeling of the spatio-temporal distribution of seals and ice. OBIA is a powerful method of habitat classification and offers an effective approach to compare the spatio-temporal distribution and availability of glacial ice habitats for harbor seals in tidewater glacial fjords.
NASA Astrophysics Data System (ADS)
Hello, Y.; Nolet, G.; Bonnieux, S.; Yegikyan, M.; Chao, Y.; Chen, J.
2016-12-01
Mermaids have been developed to improve seismic data coverage in the oceanic domain for imaging of the Earth's interior. The first generation of Mermaids was housed in conventional Argo-type floats, while hardware and software was developed to analyze acoustic signals, determine whether an earthquake has been recorded, and whether the Mermaid should to come up to the surface and transmit to the satellite. Since 2012, we have deployed small test networks of Mermaids in the Indian Ocean, and in the Mediterranean sea, and we present at this meeting the result from a main network of 9 Mermaids deployed since mid 2014 in the Galapagos archipelago to image the deep plume structure. Since then, we have moved from typical cylinder container, which equips most of the Argo Floats, to a more suitable spherical design, which allows for a larger power supply and more versatile payload. The life time of the new Mermaids is 6 years if sampling continuously for seismic signals, e.g. for seismic tomography by providing worldwide coverage of P wave arrival times. The passband can be widened to allow for monitoring of whale and dolphin sounds. An interface board allows to connect up to 8 external sensors to serve other goals (bio-Argo, geochemical, meteorological). This year we have started collaboration with Sea-Trec to equip the Mermaids with an optional new green renewable power source to guaranty its 6 years lifetime even with a full payload. The Mermaids monitor continuously during the parking phase when drifting freely at a depth down to 3000m, but also provide Argo profiles during the descent. We are collaborating with Sea-Bird to customize an SBE37 to equip the Mermaid for salinity measurements. The new Mermaid has all the features to answer many scientific goals, and a project to develop a user-friendly, adaptable, software system has begun in collaboration with i3s. The first stage of a global network, EarthScope-Oceans, will be launched in 2017, and is planned to grow to 500 units to image the deep interior of the Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehder, J.B.
The project focuses on an appropriate technology for small-scale hydro power: floating waterwheels and turbines. For background, relic and existing systems such as early floating mills, traditional Amish waterwheels, and micro-hydro systems are examined. In the design phase of the project, new designs for Floating Hydro Power Systems include: an analysis of floatation materials and systems; a floating undershot waterwheel design; a floating cylinder (fiberglass storage tank) design; a submerged tube design; and a design for a floating platform with submerged propellers. Finally, in the applications phase, stream flow data from East Tennessee streams are used in a discussion ofmore » the potential applications of floating hydro power systems in small streams.« less
Real-Time Visualization of Tissue Ischemia
NASA Technical Reports Server (NTRS)
Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)
2000-01-01
A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.
Superhydrophobic floatability of a hydrophilic object driven by edge effect
NASA Astrophysics Data System (ADS)
Chang, Feng-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong
2009-11-01
It is generally believed that a water-repellent surface is necessary for small insects to stand on water. Through a combined experimental and theoretical study, we demonstrate that an object with hydrophilic surface can float with apparent contact angle greater than 90° due to edge effect. The apparent contact angle rises with increasing loading even to a value typically displayed only by superhydrophobic surfaces. On the basis of free energy minimization, two regimes are identified. When buoyancy controls, the meniscus meets the object with the intrinsic contact angle. As surface tension dominates, however, contact angle is regulated by total force balance.
Finding-specific display presets for computed radiography soft-copy reading.
Andriole, K P; Gould, R G; Webb, W R
1999-05-01
Much work has been done to optimize the display of cross-sectional modality imaging examinations for soft-copy reading (i.e., window/level tissue presets, and format presentations such as tile and stack modes, four-on-one, nine-on-one, etc). Less attention has been paid to the display of digital forms of the conventional projection x-ray. The purpose of this study is to assess the utility of providing presets for computed radiography (CR) soft-copy display, based not on the window/level settings, but on processing applied to the image optimized for visualization of specific findings, pathologies, etc (i.e., pneumothorax, tumor, tube location). It is felt that digital display of CR images based on finding-specific processing presets has the potential to: speed reading of digital projection x-ray examinations on soft copy; improve diagnostic efficacy; standardize display across examination type, clinical scenario, important key findings, and significant negatives; facilitate image comparison; and improve confidence in and acceptance of soft-copy reading. Clinical chest images are acquired using an Agfa-Gevaert (Mortsel, Belgium) ADC 70 CR scanner and Fuji (Stamford, CT) 9000 and AC2 CR scanners. Those demonstrating pertinent findings are transferred over the clinical picture archiving and communications system (PACS) network to a research image processing station (Agfa PS5000), where the optimal image-processing settings per finding, pathologic category, etc, are developed in conjunction with a thoracic radiologist, by manipulating the multiscale image contrast amplification (Agfa MUSICA) algorithm parameters. Soft-copy display of images processed with finding-specific settings are compared with the standard default image presentation for 50 cases of each category. Comparison is scored using a 5-point scale with the positive scale denoting the standard presentation is preferred over the finding-specific processing, the negative scale denoting the finding-specific processing is preferred over the standard presentation, and zero denoting no difference. Processing settings have been developed for several findings including pneumothorax and lung nodules, and clinical cases are currently being collected in preparation for formal clinical trials. Preliminary results indicate a preference for the optimized-processing presentation of images over the standard default, particularly by inexperienced radiology residents and referring clinicians.
Color standardization and optimization in whole slide imaging.
Yagi, Yukako
2011-03-30
Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves. We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research. As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available. We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality - color.
Hsieh, K S; Lin, C C; Liu, W S; Chen, F L
1996-01-01
Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.
NASA Astrophysics Data System (ADS)
Langhans, Knut; Bezecny, Daniel; Homann, Dennis; Bahr, Detlef; Vogt, Carsten; Blohm, Christian; Scharschmidt, Karl-Heinz
1998-04-01
An improved generation of our 'FELIX 3D Display' is presented. This system is compact, light, modular and easy to transport. The created volumetric images consist of many voxels, which are generated in a half-sphere display volume. In that way a spatial object can be displayed occupying a physical space with height, width and depth. The new FELIX generation uses a screen rotating with 20 revolutions per second. This target screen is mounted by an easy to change mechanism making it possible to use appropriate screens for the specific purpose of the display. An acousto-optic deflection unit with an integrated small diode pumped laser draws the images on the spinning screen. Images can consist of up to 10,000 voxels at a refresh rate of 20 Hz. Currently two different hardware systems are investigated. The first one is based on a standard PCMCIA digital/analog converter card as an interface and is controlled by a notebook. The developed software is provided with a graphical user interface enabling several animation features. The second, new prototype is designed to display images created by standard CAD applications. It includes the development of a new high speed hardware interface suitable for state-of-the- art fast and high resolution scanning devices, which require high data rates. A true 3D volume display as described will complement the broad range of 3D visualization tools, such as volume rendering packages, stereoscopic and virtual reality techniques, which have become widely available in recent years. Potential applications for the FELIX 3D display include imaging in the field so fair traffic control, medical imaging, computer aided design, science as well as entertainment.
Pore Formation and Mobility Investigation video images
NASA Technical Reports Server (NTRS)
2003-01-01
Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.
4K Video of Colorful Liquid in Space
2015-10-09
Once again, astronauts on the International Space Station dissolved an effervescent tablet in a floating ball of water, and captured images using a camera capable of recording four times the resolution of normal high-definition cameras. The higher resolution images and higher frame rate videos can reveal more information when used on science investigations, giving researchers a valuable new tool aboard the space station. This footage is one of the first of its kind. The cameras are being evaluated for capturing science data and vehicle operations by engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama.
Distributed file management for remote clinical image-viewing stations
NASA Astrophysics Data System (ADS)
Ligier, Yves; Ratib, Osman M.; Girard, Christian; Logean, Marianne; Trayser, Gerhard
1996-05-01
The Geneva PACS is based on a distributed architecture, with different archive servers used to store all the image files produced by digital imaging modalities. Images can then be visualized on different display stations with the Osiris software. Image visualization require to have the image file physically present on the local station. Thus, images must be transferred from archive servers to local display stations in an acceptable way, which means fast and user friendly where the notion of file must be hidden to users. The transfer of image files is done according to different schemes including prefetching and direct image selection. Prefetching allows the retrieval of previous studies of a patient in advance. A direct image selection is also provided in order to retrieve images on request. When images are transferred locally on the display station, they are stored in Papyrus files, each file containing a set of images. File names are used by the Osiris viewing software to open image sequences. But file names alone are not explicit enough to properly describe the content of the file. A specific utility has been developed to present a list of patients, and for each patient a list of exams which can be selected and automatically displayed. The system has been successfully tested in different clinical environments. It will be soon extended on a hospital wide basis.
Silosky, Michael S; Marsh, Rebecca M; Scherzinger, Ann L
2016-07-08
When The Joint Commission updated its Requirements for Diagnostic Imaging Services for hospitals and ambulatory care facilities on July 1, 2015, among the new requirements was an annual performance evaluation for acquisition workstation displays. The purpose of this work was to evaluate a large cohort of acquisition displays used in a clinical environment and compare the results with existing performance standards provided by the American College of Radiology (ACR) and the American Association of Physicists in Medicine (AAPM). Measurements of the minimum luminance, maximum luminance, and luminance uniformity, were performed on 42 acquisition displays across multiple imaging modalities. The mean values, standard deviations, and ranges were calculated for these metrics. Additionally, visual evaluations of contrast, spatial resolution, and distortion were performed using either the Society of Motion Pictures and Television Engineers test pattern or the TG-18-QC test pattern. Finally, an evaluation of local nonuniformities was performed using either a uniform white display or the TG-18-UN80 test pattern. Displays tested were flat panel, liquid crystal displays that ranged from less than 1 to up to 10 years of use and had been built by a wide variety of manufacturers. The mean values for Lmin and Lmax for the displays tested were 0.28 ± 0.13 cd/m2 and 135.07 ± 33.35 cd/m2, respectively. The mean maximum luminance deviation for both ultrasound and non-ultrasound displays was 12.61% ± 4.85% and 14.47% ± 5.36%, respectively. Visual evaluation of display performance varied depending on several factors including brightness and contrast settings and the test pattern used for image quality assessment. This work provides a snapshot of the performance of 42 acquisition displays across several imaging modalities in clinical use at a large medical center. Comparison with existing performance standards reveals that changes in display technology and the move from cathode ray tube displays to flat panel displays may have rendered some of the tests inappropriate for modern use. © 2016 The Authors.
A novel emissive projection display (EPD) on transparent phosphor screen
NASA Astrophysics Data System (ADS)
Cheng, Botao; Sun, Leonard; Yu, Ge; Sun, Ted X.
2017-03-01
A new paradigm of digital projection is on the horizon, based on innovative emissive screen that are made fully transparent. It can be readily applied and convert any surface to a high image quality emissive digital display, without affecting the surface appearance. For example, it can convert any glass window or windshield to completely see-through display, with unlimited field of view and viewing angles. It also enables a scalable and economic projection display on a pitch-black emissive screen with black level and image contrast that rivals other emissive displays such as plasma display or OLED.
Medical color displays and their calibration
NASA Astrophysics Data System (ADS)
Fan, Jiahua; Roehrig, Hans; Dallas, W.; Krupinski, Elizabeth
2009-08-01
Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.
Secure information display with limited viewing zone by use of multi-color visual cryptography.
Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo
2004-04-05
We propose a display technique that ensures security of visual information by use of visual cryptography. A displayed image appears as a completely random pattern unless viewed through a decoding mask. The display has a limited viewing zone with the decoding mask. We have developed a multi-color encryption code set. Eight colors are represented in combinations of a displayed image composed of red, green, blue, and black subpixels and a decoding mask composed of transparent and opaque subpixels. Furthermore, we have demonstrated secure information display by use of an LCD panel.
Wentink, M; Jakimowicz, J J; Vos, L M; Meijer, D W; Wieringa, P A
2002-08-01
Compared to open surgery, minimally invasive surgery (MIS) relies heavily on advanced technology, such as endoscopic viewing systems and innovative instruments. The aim of the study was to objectively compare three technologically advanced laparoscopic viewing systems with the standard viewing system currently used in most Dutch hospitals. We evaluated the following advanced laparoscopic viewing systems: a Thin Film Transistor (TFT) display, a stereo endoscope, and an image projection display. The standard viewing system was comprised of a monocular endoscope and a high-resolution monitor. Task completion time served as the measure of performance. Eight surgeons with laparoscopic experience participated in the experiment. The average task time was significantly greater (p <0.05) with the stereo viewing system than with the standard viewing system. The average task times with the TFT display and the image projection display did not differ significantly from the standard viewing system. Although the stereo viewing system promises improved depth perception and the TFT and image projection displays are supposed to improve hand-eye coordination, none of these systems provided better task performance than the standard viewing system in this pelvi-trainer experiment.
The relationship between ambient illumination and psychological factors in viewing of display Images
NASA Astrophysics Data System (ADS)
Iwanami, Takuya; Kikuchi, Ayano; Kaneko, Takashi; Hirai, Keita; Yano, Natsumi; Nakaguchi, Toshiya; Tsumura, Norimichi; Yoshida, Yasuhiro; Miyake, Yoichi
2009-01-01
In this paper, we have clarified the relationship between ambient illumination and psychological factors in viewing of display images. Psychological factors were obtained by the factor analysis with the results of the semantic differential (SD) method. In the psychological experiments, subjects evaluated the impressions of displayed images with changing ambient illuminating conditions. The illumination conditions were controlled by a fluorescent ceiling light and a color LED illumination which was located behind the display. We experimented under two kinds of conditions. One was the experiment with changing brightness of the ambient illumination. The other was the experiment with changing the colors of the background illumination. In the results of the experiment, two factors "realistic sensation, dynamism" and "comfortable," were extracted under different brightness of the ambient illumination of the display surroundings. It was shown that the "comfortable" was improved by the brightness of display surroundings. On the other hand, when the illumination color of surroundings was changed, three factors "comfortable," "realistic sensation, dynamism" and "activity" were extracted. It was also shown that the value of "comfortable" and "realistic sensation, dynamism" increased when the display surroundings were illuminated by the average color of the image contents.
Turbine with radial acting seal
Eng, Darryl S; Ebert, Todd A
2016-11-22
A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.
Enhanced interfaces for web-based enterprise-wide image distribution.
Jost, R Gilbert; Blaine, G James; Fritz, Kevin; Blume, Hartwig; Sadhra, Sarbjit
2002-01-01
Modern Web browsers support image distribution with two shortcomings: (1) image grayscale presentation at client workstations is often sub-optimal and generally inconsistent with the presentation state on diagnostic workstations and (2) an Electronic Patient Record (EPR) application usually cannot directly access images with an integrated viewer. We have modified our EPR and our Web-based image-distribution system to allow access to images from within the EPR. In addition, at the client workstation, a grayscale transformation is performed that consists of two components: a client-display-specific component based on the characteristic display function of the class of display system, and a modality-specific transformation that is downloaded with every image. The described techniques have been implemented in our institution and currently support enterprise-wide clinical image distribution. The effectiveness of the techniques is reviewed.
Dynamic feature analysis for Voyager at the Image Processing Laboratory
NASA Technical Reports Server (NTRS)
Yagi, G. M.; Lorre, J. J.; Jepsen, P. L.
1978-01-01
Voyager 1 and 2 were launched from Cape Kennedy to Jupiter, Saturn, and beyond on September 5, 1977 and August 20, 1977. The role of the Image Processing Laboratory is to provide the Voyager Imaging Team with the necessary support to identify atmospheric features (tiepoints) for Jupiter and Saturn data, and to analyze and display them in a suitable form. This support includes the software needed to acquire and store tiepoints, the hardware needed to interactively display images and tiepoints, and the general image processing environment necessary for decalibration and enhancement of the input images. The objective is an understanding of global circulation in the atmospheres of Jupiter and Saturn. Attention is given to the Voyager imaging subsystem, the Voyager imaging science objectives, hardware, software, display monitors, a dynamic feature study, decalibration, navigation, and data base.
High-resolution, continuous field-of-view (FOV), non-rotating imaging system
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)
2010-01-01
A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.
A full-parallax 3D display with restricted viewing zone tracking viewer's eye
NASA Astrophysics Data System (ADS)
Beppu, Naoto; Yendo, Tomohiro
2015-03-01
The Three-Dimensional (3D) vision became widely known as familiar imaging technique now. The 3D display has been put into practical use in various fields, such as entertainment and medical fields. Development of 3D display technology will play an important role in a wide range of fields. There are various ways to the method of displaying 3D image. There is one of the methods that showing 3D image method to use the ray reproduction and we focused on it. This method needs many viewpoint images when achieve a full-parallax because this method display different viewpoint image depending on the viewpoint. We proposed to reduce wasteful rays by limiting projector's ray emitted to around only viewer using a spinning mirror, and to increase effectiveness of display device to achieve a full-parallax 3D display. We propose a method by using a tracking viewer's eye, a high-speed projector, a rotating mirror that tracking viewer (a spinning mirror), a concave mirror array having the different vertical slope arranged circumferentially (a concave mirror array), a cylindrical mirror. About proposed method in simulation, we confirmed the scanning range and the locus of the movement in the horizontal direction of the ray. In addition, we confirmed the switching of the viewpoints and convergence performance in the vertical direction of rays. Therefore, we confirmed that it is possible to realize a full-parallax.
On-demand server-side image processing for web-based DICOM image display
NASA Astrophysics Data System (ADS)
Sakusabe, Takaya; Kimura, Michio; Onogi, Yuzo
2000-04-01
Low cost image delivery is needed in modern networked hospitals. If a hospital has hundreds of clients, cost of client systems is a big problem. Naturally, a Web-based system is the most effective solution. But a Web browser could not display medical images with certain image processing such as a lookup table transformation. We developed a Web-based medical image display system using Web browser and on-demand server-side image processing. All images displayed on a Web page are generated from DICOM files on a server, delivered on-demand. User interaction on the Web page is handled by a client-side scripting technology such as JavaScript. This combination makes a look-and-feel of an imaging workstation not only for its functionality but also for its speed. Real time update of images with tracing mouse motion is achieved on Web browser without any client-side image processing which may be done by client-side plug-in technology such as Java Applets or ActiveX. We tested performance of the system in three cases. Single client, small number of clients in a fast speed network, and large number of clients in a normal speed network. The result shows that there are very slight overhead for communication and very scalable in number of clients.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)
1994-01-01
The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.
The Aerodynamic Drag of Five Models of Side Floats N.A.C.A. Models 51-E, 51-F, 51-G, 51-H, 51-J
NASA Technical Reports Server (NTRS)
House, R O
1938-01-01
The drag of five models of side floats was measured in the N.A.C.A. 7- by 10-foot wind tunnel. The most promising method of reducing the drag of floats indicated by these tests is lowering the angle at which the floats are rigged. The addition of a step to a float does not always increase the drag in the flying range, floats with steps sometimes having lower drag than similar floats without steps. Making the bow chine no higher than necessary might result in a reduction in air drag because of the lower angle of pitch of the chines. Since side floats are used formally to obtain lateral stability when the seaplane is operating on the water at slow speeds or at rest, greater consideration can be given to factors affecting aerodynamic drag than is possible for other types of floats and hulls.
NASA Technical Reports Server (NTRS)
Parkinson, J B; HOUSE R O
1938-01-01
Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.
Restoration of moving binary images degraded owing to phosphor persistence.
Cherri, A K; Awwal, A A; Karim, M A; Moon, D L
1991-09-10
The degraded images of dynamic objects obtained by using a phosphor-based electro-optical display are analyzed in terms of dynamic modulation transfer function (DMTF) and temporal characteristics of the display system. The direct correspondence between the DMTF and image smear is used in developing real-time techniques for the restoration of degraded images.
Method and apparatus for providing a seamless tiled display
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Johnson, Michael J. (Inventor)
2002-01-01
A display for producing a seamless composite image from at least two discrete images. The display includes one or more projectors for projecting each of the discrete images separately onto a screen such that at least one of the discrete images overlaps at least one other of the discrete images by more than 25 percent. The amount of overlap that is required to reduce the seams of the composite image to an acceptable level over a predetermined viewing angle depends on a number of factors including the field-of-view and aperture size of the projectors, the screen gain profile, etc. For rear-projection screens and some front projection screens, an overlap of more than 25 percent is acceptable.
NASA Astrophysics Data System (ADS)
Baca, Michael J.
1990-09-01
A system to display images generated by the Naval Postgraduate School Infrared Search and Target Designation (a modified AN/SAR-8 Advanced Development Model) in near real time was developed using a 33 MHz NIC computer as the central controller. This computer was enhanced with a Data Translation DT2861 Frame Grabber for image processing and an interface board designed and constructed at NPS to provide synchronization between the IRSTD and Frame Grabber. Images are displayed in false color in a video raster format on a 512 by 480 pixel resolution monitor. Using FORTRAN, programs have been written to acquire, unscramble, expand and display a 3 deg sector of data. The time line for acquisition, processing and display has been analyzed and repetition periods of less than four seconds for successive screen displays have been achieved. This represents a marked improvement over previous methods necessitating slower Direct Memory Access transfers of data into the Frame Grabber. Recommendations are made for further improvements to enhance the speed and utility of images produced.
Adaptive controller for volumetric display of neuroimaging studies
NASA Astrophysics Data System (ADS)
Bleiberg, Ben; Senseney, Justin; Caban, Jesus
2014-03-01
Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.
NASA Astrophysics Data System (ADS)
Xing, Xiaogang; Morel, André; Claustre, Hervé; D'Ortenzio, Fabrizio; Poteau, Antoine
2012-04-01
Eight autonomous profiling "Bio-Argo" floats were deployed offshore during about 2 years (2008-2010) in Pacific, Atlantic, and Mediterranean zones. They were equipped with miniaturized bio-optical sensors, namely a radiometer measuring within the upper layer the downward irradiance at 412, 490, and 555 nm, and two fluorometers for detection of chlorophyll-a (Chla) and colored dissolved organic matter (CDOM; profiles from 400 m to surface). A first study dealt with the interpretation of the Chla fluorescence signal in terms of concentration, using for this purpose the diffuse attenuation coefficient for irradiance at 490 nm, Kd(490), taken as a proxy for the Chla absorption. The present study examines the possibility of similarly using the Kd(412) values combined with retrieved Chla profiles to convert the CDOM fluorometric qualitative information into a CDOM absorption coefficient (ay). The rationale is to take advantage of the fact that Kd is more sensitive to CDOM presence at 412 nm than at 490 nm. A validation of this method is tested through its application to field data, collected from a ship over a wide range of trophic conditions (Biogeochemistry and Optics South Pacific Experiment (BIOSOPE) cruise); these data include both in situ fluorescence profiles and CDOM absorption as measured on discrete samples. In addition, near-surface ay values retrieved from the floats agree with those derivable from ocean color imagery (Moderate Resolution Imaging Spectroradiometer (MODIS-A)). The low sensitivity of commercially available CDOM fluorometers presently raises difficulties when applying this technique to open ocean waters. It was nevertheless possible to derive from the floats records meaningful time series of CDOM vertical distribution.
Yusif, Rehab Mohammad; Abu Hashim, Irhan Ibrahim; Mohamed, Elham Abdelmonem; El Rakhawy, Mohamed Magdy
2016-01-01
Carbopol (CP) is a biocompatible bioadhesive polymer used as a matrix for gastroretentive (GR) tablets, however, its rapid hydration shortens its bioadhesion and floating when incorporated in effervescent formulae. The interpolymer complexation of CP with polyvinylpyrrolidone (PVP) significantly reduced the excessive hydration of CP, prolonging floating and maintaining the mucoadhesiveness. In early attempts, a lengthy process was followed to prepare such an interpolymer complex. In this study, an in situ interpolymer complexation between CP and two grades of PVP (K25 and K90) in 0.1 N HCl was investigated and characterized by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Hence, directly compressed GR tablets of different combinations of PVP and CP with sodium bicarbonate (SB) as an effervescent agent were examined for prolonged gastroretention and sustained release of ranitidine hydrochloride (RHCl) as a model drug. Tablets were evaluated for in vitro buoyancy, bioadhesiveness, swelling, and drug release in 0.1 N HCl. All GR tablets containing PVP-CP combinations achieved more prolonged floating (>24 h) than CP tablets (5.2 h). Their bioadhesiveness, swelling, and drug release were dependent on the PVP molecular weight and its ratio to CP. Drug release profiles of all formulae followed non-Fickian diffusion. Formula containing the PVP K90-CP combination at a respective ratio of 1 : 3 (P90C13) was a promising system, exhibiting good floating and bioadhesive properties as well as sustained drug release. Abdominal X-ray imaging of P90C13 formula, loaded with barium sulfate, in six healthy volunteers showed a mean gastric retention period of 6.8±0.3 h.
Research of an optimization design method of integral imaging three-dimensional display system
NASA Astrophysics Data System (ADS)
Gao, Hui; Yan, Zhiqiang; Wen, Jun; Jiang, Guanwu
2016-03-01
The information warfare needs a highly transparent environment of battlefield, it follows that true three-dimensional display technology has obvious advantages than traditional display technology in the current field of military science and technology. It also focuses on the research progress of lens array imaging technology and aims at what restrict the development of integral imaging, main including low spatial resolution, narrow depth range and small viewing angle. This paper summarizes the principle, characteristics and development history of the integral imaging. A variety of methods are compared and analyzed that how to improve the resolution, extend depth of field, increase scope and eliminate the artifact aiming at problems currently. And makes a discussion about the experimental results of the research, comparing the display performance of different methods.
Program Converts VAX Floating-Point Data To UNIX
NASA Technical Reports Server (NTRS)
Alves, Marcos; Chapman, Bruce; Chu, Eugene
1996-01-01
VAX Floating Point to Host Floating Point Conversion (VAXFC) software converts non-ASCII files to unformatted floating-point representation of UNIX machine. This is done by reading bytes bit by bit, converting them to floating-point numbers, then writing results to another file. Useful when data files created by VAX computer must be used on other machines. Written in C language.
Illuminant-adaptive color reproduction for mobile display
NASA Astrophysics Data System (ADS)
Kim, Jong-Man; Park, Kee-Hyon; Kwon, Oh-Seol; Cho, Yang-Ho; Ha, Yeong-Ho
2006-01-01
This paper proposes an illuminant-adaptive reproduction method using light adaptation and flare conditions for a mobile display. Mobile displays, such as PDAs and cellular phones, are viewed under various lighting conditions. In particular, images displayed in daylight are perceived as quite dark due to the light adaptation of the human visual system, as the luminance of a mobile display is considerably lower than that of an outdoor environment. In addition, flare phenomena decrease the color gamut of a mobile display by increasing the luminance of dark areas and de-saturating the chroma. Therefore, this paper presents an enhancement method composed of lightness enhancement and chroma compensation. First, the ambient light intensity is measured using a lux-sensor, then the flare is calculated based on the reflection ratio of the display device and the ambient light intensity. The relative cone response is nonlinear to the input luminance. This is also changed by the ambient light intensity. Thus, to improve the perceived image, the displayed luminance is enhanced by lightness linearization. In this paper, the image's luminance is transformed by linearization of the response to the input luminance according to the ambient light intensity. Next, the displayed image is compensated according to the physically reduced chroma, resulting from flare phenomena. The reduced chroma value is calculated according to the flare for each intensity. The chroma compensation method to maintain the original image's chroma is applied differently for each hue plane, as the flare affects each hue plane differently. At this time, the enhanced chroma also considers the gamut boundary. Based on experimental observations, the outer luminance-intensity generally ranges from 1,000 lux to 30,000 lux. Thus, in the case of an outdoor environment, i.e. greater than 1,000 lux, this study presents a color reproduction method based on an inverse cone response curve and flare condition. Consequently, the proposed algorithm improves the quality of the perceived image adaptive to an outdoor environment.
Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki
2016-01-01
Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.
Can Thermal Bending Fracture Ice Shelves?
NASA Astrophysics Data System (ADS)
MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.
2017-12-01
Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.
Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert
1996-01-01
The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.
NASA Astrophysics Data System (ADS)
Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo
2012-02-01
As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.
Zheden, Vanessa; Kovalev, Alexander; Gorb, Stanislav N; Klepal, Waltraud
2015-02-06
Dosima fascicularis is the only barnacle which can drift autonomously at the water surface with a foam-like cement float. The cement secreted by the animal contains numerous gas-filled cells of different size. When several individuals share one float, their size and not their number is crucial for the production of both volume and mass of the float. The gas content within the cells of the foam gives positive static buoyancy to the whole float. The volume of the float, the gas volume and the positive static buoyancy are positively correlated. The density of the cement float without gas is greater than that of seawater. This study shows that the secreted cement consists of more than 90% water and the gas volume is on average 18.5%. Our experiments demonstrate that the intact foam-like cement float is sealed to the surrounding water.
Zheden, Vanessa; Kovalev, Alexander; Gorb, Stanislav N.; Klepal, Waltraud
2015-01-01
Dosima fascicularis is the only barnacle which can drift autonomously at the water surface with a foam-like cement float. The cement secreted by the animal contains numerous gas-filled cells of different size. When several individuals share one float, their size and not their number is crucial for the production of both volume and mass of the float. The gas content within the cells of the foam gives positive static buoyancy to the whole float. The volume of the float, the gas volume and the positive static buoyancy are positively correlated. The density of the cement float without gas is greater than that of seawater. This study shows that the secreted cement consists of more than 90% water and the gas volume is on average 18.5%. Our experiments demonstrate that the intact foam-like cement float is sealed to the surrounding water. PMID:25657839
Ice Island calves off Petermann Glacier
2010-08-09
NASA image acquired August 5, 2010 On August 5, 2010, an enormous chunk of ice, roughly 97 square miles (251 square kilometers) in size, broke off the Petermann Glacier, along the northwestern coast of Greenland. The Canadian Ice Service detected the remote event within hours in near real-time data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. The Peterman Glacier lost about one-quarter of its 70-kilometer (40-mile) long floating ice shelf, said researchers who analyzed the satellite data at the University of Delaware. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured these natural-color images of Petermann Glacier 18:05 UTC on August 5, 2010 (top), and 17:15 UTC on July 28, 2010 (bottom). The Terra image of the Petermann Glacier on August 5 was acquired almost 10 hours after the Aqua observation that first recorded the event. By the time Terra took this image, skies were less cloudy than they had been earlier in the day, and the oblong iceberg had broken free of the glacier and moved a short distance down the fjord. Icebergs calving off the Petermann Glacier are not unusual. Petermann Glacier’s floating ice tongue is the Northern Hemisphere’s largest, and it has occasionally calved large icebergs. The recently calved iceberg is the largest to form in the Arctic since 1962, said the University of Delaware. To read more and or to download the high res go here: www.nasa.gov/topics/earth/features/petermann-calve.html or Click here to see more images from NASA Goddard’s Earth Observatory NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using data obtained from the Goddard Level 1 and Atmospheric Archive and Distribution System (LAADS). Caption by Holli Riebeek and Michon Scott. Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Autonomous Microstructure EM-APEX Floats
2016-01-01
Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats
First measurements with Argo flots in the Southern Baltic Sea
NASA Astrophysics Data System (ADS)
Walczowski, Waldemar; Goszczko, Ilona; Wieczorek, Piotr; Merchel, Malgorzata; Rak, Daniel
2017-04-01
The Argo programme is one of the most important elements of the ocean observing system. Currently almost 4000 Argo floats profile global oceans and deliver real time data. Originally Argo floats were developed for open ocean observations. Therefore a standard float can dive up to 2000 m and deep Argo floats are under development. However in the last years the shallow shelf seas become also interesting for Argo users. Institute of Oceanology Polish Academy of Sciences (IOPAN) participates in the Euro-Argo research infrastructure, the European contribution to Argo system. A legal and governance framework (Euro-Argo ERIC) was set up in May 2014. For a few years IOPAN has deployed floats mostly in the Nordic Seas and the European Arctic region. In the end of 2016 the first Polish Argo float was deployed in the Southern Baltic Sea. Building on the successful experience with Argo floats deployed by the Finnish oceanographers in the Bothnian Sea and Gotland Basin, the IOPAN float was launched in the Bornholm Deep during the fall cruise of IOPAN research vessel Oceania. The standard APEX float equipped with 2-way Iridium communication was used and different modes of operation, required for the specific conditions in the shallow and low saline Baltic Sea, were tested. Settings for the Baltic float are different than for the oceanic mode and were frequently changed during the mission to find the optimum solution. Changing the float parking depth during the mission allows for the limited control of the float drift direction. Results of a high resolution numerical forecast model for the Baltic Sea proved to be a valuable tool for determining the parking depth of the float in the different flow regimes. Trajectory and drift velocity of the Argo float deployed in the Southern Baltic depended strongly on the atmospheric forcing (in particular wind speed and direction), what was clearly manifested during the 'Axel' storm passing over the deployment area in January 2017. The first deployment showed clearly that Argo floats can be a useful tool for the Baltic Sea monitoring as the important element of a more complex, multidisciplinary observing system.
NASA Astrophysics Data System (ADS)
Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing
2014-07-01
Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.
Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera
NASA Astrophysics Data System (ADS)
Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.
2007-09-01
We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.
Volumetric 3D Display System with Static Screen
NASA Technical Reports Server (NTRS)
Geng, Jason
2011-01-01
Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous approaches, so there is no image jitter, and has an inherent parallel mechanism for 3D voxel addressing. High spatial resolution is possible with a full color display being easy to implement. The system is low-cost and low-maintenance.
Dunham, C Michael; McClain, Jesse V; Burger, Amanda
2017-11-29
To determine whether Bispectral Index™ values obtained during flotation-restricted environment stimulation technique have a similar profile in a single observation compared to literature-derived results found during sleep and other relaxation-induction interventions. Bispectral Index™ values were as follows: awake-state, 96.6; float session-1, 84.3; float session-2, 82.3; relaxation-induction, 82.8; stage I sleep, 86.0; stage II sleep, 66.2; and stages III-IV sleep, 45.1. Awake-state values differed from float session-1 (%difference 12.7%; Cohen's d = 3.6) and float session-2 (%difference 14.8%; Cohen's d = 4.6). Relaxation-induction values were similar to float session-1 (%difference 1.8%; Cohen's d = 0.3) and float session-2 (%difference 0.5%; Cohen's d = 0.1). Stage I sleep values were similar to float session-1 (%difference 1.9%; Cohen's d = 0.4) and float session-2 (%difference 4.3%; Cohen's d = 1.0). Stage II sleep values differed from float session-1 (%difference 21.5%; Cohen's d = 4.3) and float session-2 (%difference 19.6%; Cohen's d = 4.0). Stages III-IV sleep values differed from float session-1 (%difference 46.5%; Cohen's d = 5.6) and float session-2 (%difference 45.2%; Cohen's d = 5.4). Bispectral Index™ values during flotation were comparable to those found in stage I sleep and nadir values described with other relaxation-induction techniques.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-807] Certain Digital Photo Frames and Image Display Devices and Components Thereof; Commission Determination Not To Review an Initial... importation, and the sale within the United States after importation of certain digital photo frames and image...
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
Achieving consistent color and grayscale presentation on medial color displays
NASA Astrophysics Data System (ADS)
Fan, Jiahua; Roehrig, Hans; Dallas, William; Krupinski, Elizabeth A.
2008-03-01
Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.
Micromirror-based real image laser automotive head-up display
NASA Astrophysics Data System (ADS)
Fan, Chao; He, Siyuan
2017-01-01
This paper reports a micromirror-based real image laser automotive head-up display (HUD), which overcomes the limitations of the previous designs by: (1) implementing an advanced display approach which is able to display sharp corners while the previous designs can only display curved lines such as to improve the display fidelity and (2) Optimizing the optical configuration to significantly reduce the HUD module size. The optical design in the HUD is simulated to choose the off-the-shelf concave lens. The vibration test is conducted to verify that the micromirror can survive 5 g. The prototype of the HUD system is fabricated and tested.
Development and evaluation of amusement machine using autostereoscopic 3D display
NASA Astrophysics Data System (ADS)
Kawai, Takashi; Shibata, Takashi; Shimizu, Yoichi; Kawata, Mitsuhiro; Suto, Masahiro
2004-05-01
Pachinko is a pinball-like game peculiar to Japan, and is one of the most common pastimes around the country. Recently, with the videogame market contracting, various multimedia technologies have been introduced into Pachinko machines. The authors have developed a Pachinko machine incorporating an autostereoscopic 3D display, and evaluated its effect on the visual function. As of April 2003, the new Pachinko machine has been on sale in Japan. The stereoscopic 3D image is displayed using an LCD. Backlighting for the right and left images is separate, and passes through a polarizing filter before reaching the LCD, which is sandwiched with a micro polarizer. The content selected for display was ukiyoe pictures (Japanese traditional woodblocks). The authors intended to reduce visual fatigue by presenting 3D images with depth "behind" the display and switching between 3D and 2D images. For evaluation of the Pachinko machine, a 2D version with identical content was also prepared, and the effects were examined and compared by testing psycho-physiological responses.
Image degradation by glare in radiologic display devices
NASA Astrophysics Data System (ADS)
Badano, Aldo; Flynn, Michael J.
1997-05-01
No electronic devices are currently available that can display digital radiographs without loss of visual information compared to traditional transilluminated film. Light scattering within the glass faceplate of cathode-ray tube (CRT) devices causes excessive glare that reduces image contrast. This glare, along with ambient light reflection, has been recognized as a significant limitation for radiologic applications. Efforts to control the effect of glare and ambient light reflection in CRTs include the use of absorptive glass and thin film coatings. In the near future, flat panel displays (FPD) with thin emissive structures should provide very low glare, high performance devices. We have used an optical Monte Carlo simulation to evaluate the effect of glare on image quality for typical CRT and flat panel display devices. The trade-off between display brightness and image contrast is described. For CRT systems, achieving good glare ratio requires a reduction of brightness to 30-40 percent of the maximum potential brightness. For FPD systems, similar glare performance can be achieved while maintaining 80 percent of the maximum potential brightness.
Floating electrode dielectrophoresis.
Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri
2006-12-01
In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.
MACS-Mar: a real-time remote sensing system for maritime security applications
NASA Astrophysics Data System (ADS)
Brauchle, Jörg; Bayer, Steven; Hein, Daniel; Berger, Ralf; Pless, Sebastian
2018-04-01
The modular aerial camera system (MACS) is a development platform for optical remote sensing concepts, algorithms and special environments. For real-time services for maritime security (EMSec joint project), a new multi-sensor configuration MACS-Mar was realized. It consists of four co-aligned sensor heads in the visible RGB, near infrared (NIR, 700-950 nm), hyperspectral (HS, 450-900 nm) and thermal infrared (TIR, 7.5-14 µm) spectral range, a mid-cost navigation system, a processing unit and two data links. On-board image projection, cropping of redundant data and compression enable the instant generation of direct-georeferenced high-resolution image mosaics, automatic object detection, vectorization and annotation of floating objects on the water surface. The results were transmitted over a distance up to 50 km in real-time via narrow and broadband data links and were visualized in a maritime situation awareness system. For the automatic onboard detection of floating objects, a segmentation and classification workflow based on RGB, IR and TIR information was developed and tested. The completeness of the object detection in the experiment resulted in 95%, the correctness in 53%. Mostly, bright backwash of ships lead to an overestimation of the number of objects, further refinement using water homogeneity in the TIR, as implemented in the workflow, couldn't be carried out due to problems with the TIR sensor, else distinctly better results could have been expected. The absolute positional accuracy of the projected real-time imagery resulted in 2 m without postprocessing of images or navigation data, the relative measurement accuracy of distances is in the range of the image resolution, which is about 12 cm for RGB imagery in the EMSec experiment.
Touchscreen everywhere: on transferring a normal planar surface to a touch-sensitive display.
Dai, Jingwen; Chung, Chi-Kit Ronald
2014-08-01
We address how a human-computer interface with small device size, large display, and touch-input facility can be made possible by a mere projector and camera. The realization is through the use of a properly embedded structured light sensing scheme that enables a regular light-colored table surface to serve the dual roles of both a projection screen and a touch-sensitive display surface. A random binary pattern is employed to code structured light in pixel accuracy, which is embedded into the regular projection display in a way that the user perceives only regular display but not the structured pattern hidden in the display. With the projection display on the table surface being imaged by a camera, the observed image data, plus the known projection content, can work together to probe the 3-D workspace immediately above the table surface, like deciding if there is a finger present and if the finger touches the table surface, and if so, at what position on the table surface the contact is made. All the decisions hinge upon a careful calibration of the projector-camera-table surface system, intelligent segmentation of the hand in the image data, and exploitation of the homography mapping existing between the projector's display panel and the camera's image plane. Extensive experimentation including evaluation of the display quality, hand segmentation accuracy, touch detection accuracy, trajectory tracking accuracy, multitouch capability and system efficiency are shown to illustrate the feasibility of the proposed realization.
Vergence-accommodation conflicts hinder visual performance and cause visual fatigue.
Hoffman, David M; Girshick, Ahna R; Akeley, Kurt; Banks, Martin S
2008-03-28
Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.
Tyurin gives Culbertson a haircut in the Service Module during Expedition Three
2001-09-22
ISS003-E-5901 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely, as Mikhail Tyurin cuts his hair in the Zvezda Service Module on the International Space Station (ISS). Tyurin is a flight engineer representing Rosaviakosmos. This image was taken with a digital still camera.
Tyurin gives Dezhurov a haircut in the Service Module during Expedition Three
2001-09-22
ISS003-E-5891 (22 September 2001) --- Cosmonauts Mikhail Tyurin (left) and Vladimir N. Dezhurov, Expedition Three flight engineers representing Rosaviakosmos, take turns cutting each others hair in the Zvezda Service Module on the International Space Station (ISS). Dezhurov holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely. This image was taken with a digital still camera.
Tyurin gives Culbertson a haircut in the Service Module during Expedition Three
2001-09-22
ISS003-E-5896 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely, as Mikhail Tyurin cuts his hair in the Zvezda Service Module on the International Space Station (ISS). Tyurin is a flight engineer representing Rosaviakosmos. This image was taken with a digital still camera.
MS Reilly at work on Endeavour
1998-03-04
S89-E-5534 (22-31 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut James F. Reilly, mission specialist, floating in the tunnel connecting the Spacehab module to the mid-deck of the Earth-orbiting Space Shuttle Endeavour. Having disconnected from the Russian Mir Space Station a day earlier, the STS-89 crew was in a mode of wrapping up final chores before a scheduled January 31st landing.
Earth Observations taken by Expedition 47 Crewmember.
2016-03-27
ISS047e22133 (03/27/2016) ---The crew of Expedition 47 aboard the International Space Station captured this image of a massive iceberg causing shipping to pay close attention. It is floating in the southern Atlantic Ocean, near the South Georgia and South Sandwich Islands. Smaller pieces cluster around the main iceberg. causing further shipping concern. The closest continent is the bottom tip of South America (Argentina) and the Falkland Islands.
Stabilized display of coronary x-ray image sequences
NASA Astrophysics Data System (ADS)
Close, Robert A.; Whiting, James S.; Da, Xiaolin; Eigler, Neal L.
2004-05-01
Display stabilization is a technique by which a feature of interest in a cine image sequence is tracked and then shifted to remain approximately stationary on the display device. Prior simulations indicate that display stabilization with high playback rates ( 30 f/s) can significantly improve detectability of low-contrast features in coronary angiograms. Display stabilization may also help to improve the accuracy of intra-coronary device placement. We validated our automated tracking algorithm by comparing the inter-frame difference (jitter) between manual and automated tracking of 150 coronary x-ray image sequences acquired on a digital cardiovascular X-ray imaging system with CsI/a-Si flat panel detector. We find that the median (50%) inter-frame jitter between manual and automatic tracking is 1.41 pixels or less, indicating a jump no further than an adjacent pixel. This small jitter implies that automated tracking and manual tracking should yield similar improvements in the performance of most visual tasks. We hypothesize that cardiologists would perceive a benefit in viewing the stabilized display as an addition to the standard playback of cine recordings. A benefit of display stabilization was identified in 87 of 101 sequences (86%). The most common tasks cited were evaluation of stenosis and determination of stent and balloon positions. We conclude that display stabilization offers perceptible improvements in the performance of visual tasks by cardiologists.
Yoon, Ki-Hyuk; Ju, Heongkyu; Kwon, Hyunkyung; Park, Inkyu; Kim, Sung-Kyu
2016-02-22
We present optical characteristics of view image provided by a high-density multi-view autostereoscopic 3D display (HD-MVA3D) with a parallax barrier (PB). Diffraction effects that become of great importance in such a display system that uses a PB, are considered in an one-dimensional model of the 3D display, in which the numerical simulation of light from display panel pixels through PB slits to viewing zone is performed. The simulation results are then compared to the corresponding experimental measurements with discussion. We demonstrate that, as a main parameter for view image quality evaluation, the Fresnel number can be used to determine the PB slit aperture for the best performance of the display system. It is revealed that a set of the display parameters, which gives the Fresnel number of ∼ 0.7 offers maximized brightness of the view images while that corresponding to the Fresnel number of 0.4 ∼ 0.5 offers minimized image crosstalk. The compromise between the brightness and crosstalk enables optimization of the relative magnitude of the brightness to the crosstalk and lead to the choice of display parameter set for the HD-MVA3D with a PB, which satisfies the condition where the Fresnel number lies between 0.4 and 0.7.
Alam, Md Ashraful; Piao, Mei-Lan; Bang, Le Thanh; Kim, Nam
2013-10-01
Viewing-zone control of integral imaging (II) displays using a directional projection and elemental image (EI) resizing method is proposed. Directional projection of EIs with the same size of microlens pitch causes an EI mismatch at the EI plane. In this method, EIs are generated computationally using a newly introduced algorithm: the directional elemental image generation and resizing algorithm considering the directional projection geometry of each pixel as well as an EI resizing method to prevent the EI mismatch. Generated EIs are projected as a collimated projection beam with a predefined directional angle, either horizontally or vertically. The proposed II display system allows reconstruction of a 3D image within a predefined viewing zone that is determined by the directional projection angle.
Compact touchless fingerprint reader based on digital variable-focus liquid lens
NASA Astrophysics Data System (ADS)
Tsai, C. W.; Wang, P. J.; Yeh, J. A.
2014-09-01
Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.
ARE LARGE, COMETARY-SHAPED PROPLYDS REALLY (FREE-FLOATING) EVAPORATING GAS GLOBULES?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, R.; Guesten, R.; Morris, M. R., E-mail: raghvendra.sahai@jpl.nasa.gov
2012-12-20
We report the detection of strong and compact molecular line emission (in the CO J = 3-2, 4-3, 6-5, 7-6, {sup 13}CO J = 3-2, HCN, and HCO{sup +} J = 4-3 transitions) from a cometary-shaped object (Carina-frEGG1) in the Carina star-forming region (SFR) previously classified as a photoevaporating protoplanetary disk (proplyd). We derive a molecular mass of 0.35 M{sub Sun} for Carina-frEGG1, which shows that it is not a proplyd, but belongs to a class of free-floating evaporating gas globules (frEGGs) recently found in the Cygnus SFR by Sahai et al. Archival adaptive optics near-IR (Ks) images show amore » central hourglass-shaped nebula. The derived source luminosity (about 8-18 L{sub Sun }), the hourglass morphology, and the presence of collimated jets seen in Hubble Space Telescope images imply the presence of a jet-driving, young, low-mass star deeply embedded in the dust inside Carina-frEGG1. Our results suggest that the true nature of many or most such cometary-shaped objects seen in massive SFRs and previously labeled as proplyds has been misunderstood, and that these are really frEGGs.« less
Development of a 32-bit UNIX-based ELAS workstation
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.
1987-01-01
A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.
Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon
2009-10-07
We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.
Real-time blind image deconvolution based on coordinated framework of FPGA and DSP
NASA Astrophysics Data System (ADS)
Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun
2015-10-01
Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.
Demonstration of a real-time implementation of the ICVision holographic stereogram display
NASA Astrophysics Data System (ADS)
Kulick, Jeffrey H.; Jones, Michael W.; Nordin, Gregory P.; Lindquist, Robert G.; Kowel, Stephen T.; Thomsen, Axel
1995-07-01
There is increasing interest in real-time autostereoscopic 3D displays. Such systems allow 3D objects or scenes to be viewed by one or more observers with correct motion parallax without the need for glasses or other viewing aids. Potential applications of such systems include mechanical design, training and simulation, medical imaging, virtual reality, and architectural design. One approach to the development of real-time autostereoscopic display systems has been to develop real-time holographic display systems. The approach taken by most of the systems is to compute and display a number of holographic lines at one time, and then use a scanning system to replicate the images throughout the display region. The approach taken in the ICVision system being developed at the University of Alabama in Huntsville is very different. In the ICVision display, a set of discrete viewing regions called virtual viewing slits are created by the display. Each pixel is required fill every viewing slit with different image data. When the images presented in two virtual viewing slits separated by an interoccular distance are filled with stereoscopic pair images, the observer sees a 3D image. The images are computed so that a different stereo pair is presented each time the viewer moves 1 eye pupil diameter (approximately mm), thus providing a series of stereo views. Each pixel is subdivided into smaller regions, called partial pixels. Each partial pixel is filled with a diffraction grating that is just that required to fill an individual virtual viewing slit. The sum of all the partial pixels in a pixel then fill all the virtual viewing slits. The final version of the ICVision system will form diffraction gratings in a liquid crystal layer on the surface of VLSI chips in real time. Processors embedded in the VLSI chips will compute the display in real- time. In the current version of the system, a commercial AMLCD is sandwiched with a diffraction grating array. This paper will discuss the design details of a protable 3D display based on the integration of a diffractive optical element with a commercial off-the-shelf AMLCD. The diffractive optic contains several hundred thousand partial-pixel gratings and the AMLCD modulates the light diffracted by the gratings.
Nakamura, N; Nakano, K; Sugiura, N; Matsumura, M
2003-12-01
A process using a floating carrier for immobilization of cyanobacteriolytic bacteria, B.cereus N-14, was proposed to realize an effective in situ control of natural floating cyanobacterial blooms. The critical concentrations of the cyanobacteriolytic substance and B.cereus N-14 cells required to exhibit cyanobacteriolytic activity were investigated. The results indicated the necessity of cell growth to produce sufficiently high amounts of the cyanobacteriolytic substance to exhibit its activity and also for conditions enabling good contact between high concentrations of the cyanobacteriolytic substance and cyanobacteria. Floating biodegradable plastics made of starch were applied as a carrier material to maintain close contact between the immobilized cyanobacteriolytic bacteria and floating cyanobacteria. The floating starch-carriers could eliminate 99% of floating cyanobacteria in 4 d. Since B.cereus N-14 could produce the cyanobacteriolytic substance under the presence of starch and some amino acids, the cyanobacteriolytic activity could be attributed to carbon source fed from starch carrier and amino acids eluted from lysed cyanobacteria. Therefore, the effect of using a floating starch-carrier was confirmed from both view points as a carrier for immobilization and a nutrient source to stimulate cyanobacteriolytic activity. The new concept to apply a floating carrier immobilizing useful microorganisms for intensive treatment of a nuisance floating target was demonstrated.
A large flat panel multifunction display for military and space applications
NASA Astrophysics Data System (ADS)
Pruitt, James S.
1992-09-01
A flat panel multifunction display (MFD) that offers the size and reliability benefits of liquid crystal display technology while achieving near-CRT display quality is presented. Display generation algorithms that provide exceptional display quality are being implemented in custom VLSI components to minimize MFD size. A high-performance processor converts user-specified display lists to graphics commands used by these components, resulting in high-speed updates of two-dimensional and three-dimensional images. The MFD uses the MIL-STD-1553B data bus for compatibility with virtually all avionics systems. The MFD can generate displays directly from display lists received from the MIL-STD-1553B bus. Complex formats can be stored in the MFD and displayed using parameters from the data bus. The MFD also accepts direct video input and performs special processing on this input to enhance image quality.
High-performance large-area AMLCD avionic display module
NASA Astrophysics Data System (ADS)
Syroid, Daniel D.; Hansen, Glenn A.
1995-06-01
There is a need for a reliable source of high performance large area sunlight readable active matrix liquid crystal displays (AMLCDs) for avionic and military land vehicle applications. Image Quest has developed an avionic display module (ADM) to demonstrate the capability to produce high performance avionic displays to satisfy this need. The ADM is a large area (6.24 X 8.32 inch) display with VGA compatible interface, 640 X 480 color pixels and 64 gray shades per primary color. The display features excellent color discrimination in full sunlight due to a saturated color gamut, very low specular reflectance (< 1%) and high output white luminance (200 fL). The ADM is designed from the glass up to fully meet the avionic and military application and environment. Control over all the display performance parameters including contrast, transmission, chroma, resolution, active size and packaging configuration is ensured because Image Quest produces all of the critical elements of the display. These elements include the a-Si TFT AMLCD glass, RGB color filter matrix, bonding of folded back driver TABs, anti-reflective cover glass, LC heater and integration of high luminance hot cathode backlight with thermal controls. The display features rugged compact packaging, 2000:1 luminance dimming range and wide operating temperature range (-40 to +71 $DRGC). In the immediate future Image Quest plans to expand the development efforts to other similar custom high resolution and high performance avionic display module configurations including 4 X 4 inch delta triad, 6.7 X 6.7 inch delta triad and 16.5 inch diagonal with 1280 X 1024 pixels. Image Quest can deliver up to 10,000 displays per year on a timely basis at a reasonable cost.
Visualizing the anatomical-functional correlation of the human brain
NASA Astrophysics Data System (ADS)
Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.
1995-04-01
Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.
NASA Astrophysics Data System (ADS)
Muka, Edward; Mertelmeier, Thomas; Slone, Richard M.; Senol, Evren
1997-05-01
We studied the impact of CRT spot size, phosphor luminance noise and image noise on the specification of high- resolution CRT displays that address the critical needs of general chest radiography. Using Argus CRT simulation software, the design of high-resolution CRTs for the display of adult chest radiographs was studied. The simulated images were printed on a laser printer and evaluated by a board- certified radiologist, RMS. The validity of the Argus simulation was assessed by modeling a 1k X 1k pixels CRT, whose technical parameters were sufficiently well known. Comments from the observer are presented comparing the simulated 2k display and a size-matched replicate of the original screen/film image. Critical parameters like phosphor luminance efficiency and its impact on electron beam size and phosphor luminance noise and its impact on radiographic image noise are discussed. We conclude that Argus CRT simulation software can successfully model the performance of CRTs intended to display medical images permitting consideration of critical parameters without costly manufacturing trials. Based on the 2k CRT simulation results, we suggest that a low luminance noise phosphor such as type p45 be used to ensure that specifying a small spot size would yield the anticipated sharpness improvements.
Region of interest based robust watermarking scheme for adaptation in small displays
NASA Astrophysics Data System (ADS)
Vivekanandhan, Sapthagirivasan; K. B., Kishore Mohan; Vemula, Krishna Manohar
2010-02-01
Now-a-days Multimedia data can be easily replicated and the copyright is not legally protected. Cryptography does not allow the use of digital data in its original form and once the data is decrypted, it is no longer protected. Here we have proposed a new double protected digital image watermarking algorithm, which can embed the watermark image blocks into the adjacent regions of the host image itself based on their blocks similarity coefficient which is robust to various noise effects like Poisson noise, Gaussian noise, Random noise and thereby provide double security from various noises and hackers. As instrumentation application requires a much accurate data, the watermark image which is to be extracted back from the watermarked image must be immune to various noise effects. Our results provide better extracted image compared to the present/existing techniques and in addition we have done resizing the same for various displays. Adaptive resizing for various size displays is being experimented wherein we crop the required information in a frame, zoom it for a large display or resize for a small display using a threshold value and in either cases background is not given much importance but it is only the fore-sight object which gains importance which will surely be helpful in performing surgeries.
Use of mobile devices for medical imaging.
Hirschorn, David S; Choudhri, Asim F; Shih, George; Kim, Woojin
2014-12-01
Mobile devices have fundamentally changed personal computing, with many people forgoing the desktop and even laptop computer altogether in favor of a smaller, lighter, and cheaper device with a touch screen. Doctors and patients are beginning to expect medical images to be available on these devices for consultative viewing, if not actual diagnosis. However, this raises serious concerns with regard to the ability of existing mobile devices and networks to quickly and securely move these images. Medical images often come in large sets, which can bog down a network if not conveyed in an intelligent manner, and downloaded data on a mobile device are highly vulnerable to a breach of patient confidentiality should that device become lost or stolen. Some degree of regulation is needed to ensure that the software used to view these images allows all relevant medical information to be visible and manipulated in a clinically acceptable manner. There also needs to be a quality control mechanism to ensure that a device's display accurately conveys the image content without loss of contrast detail. Furthermore, not all mobile displays are appropriate for all types of images. The smaller displays of smart phones, for example, are not well suited for viewing entire chest radiographs, no matter how small and numerous the pixels of the display may be. All of these factors should be taken into account when deciding where, when, and how to use mobile devices for the display of medical images. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Electro-holographic display using a ZBLAN glass as the image space.
Son, Jung-Young; Lee, Hyoung; Byeon, Jina; Zhao, Jiangbo; Ebendorff-Heidepriem, Heike
2017-04-01
An Er3+-doped ZBLAN glass is used to display a 360° viewable reconstructed image from a hologram on a DMD. The reconstructed image, when the hologram is illuminated by a 852 nm wavelength laser beam, is situated at the inside of the glass, and then a 1530 nm wavelength laser beam is crossed through the image to light it with an upconversion green light, which is viewable at all surrounding directions. This enables us to eliminate the limitation of the viewing zone angle imposed by the finite size of pixels in electro-holographic displays based on digital display chips/panels. The amount of the green light is much higher than that known previously. This is partly caused by the upconversion luminescence induced by 852 and 1530 nm laser beams.
40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float glass...
40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float glass...
Tethered float liquid level sensor
Daily, III, William Dean
2016-09-06
An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.
40 CFR 264.1085 - Standards: Surface impoundments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the surface impoundment by installing and operating either of the following: (1) A floating membrane... from a surface impoundment using a floating membrane cover shall meet the requirements specified in... floating membrane cover designed to meet the following specifications: (i) The floating membrane cover...
Preliminary results from DIMES: Dispersion in the ACC
NASA Astrophysics Data System (ADS)
Balwada, D.; Speer, K.; LaCasce, J. H.; Owens, B.
2012-04-01
The Diapycnal and Isopynal Mixing Experiment in the Southern Ocean (DIMES) is a CLIVAR process study designed to study mixing in the Antarctic Circumpolar Current. The experiment includes tracer release, float, and small-scale turbulence components. This presentation will report on some results of the float component, from floats deployed across the ACC in the Southeast Pacific Ocean. These are the first subsurface Lagrangian trajectories from the ACC. Floats were deployed to follow approximately a constant density surface for a period of 1-3 years. To help aid the experimental results virtual floats were advected using AVISO data and basic statistics were derived from both deployed and virtual float trajectories. Experimental design, initial results, comparison to virtual floats and single particle and relative dispersion calculations will be presented.
Digital 3D holographic display using scattering layers for enhanced viewing angle and image size
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun
2017-05-01
In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.
Red Sea Outflow Experiment (REDSOX): DLD2 RAFOS Float Data Report February 2001 - March 2003
2005-01-01
1 2. Description of the DLD2 Float and Dual-Release System ................................................................... 2 3. Sound Sources...processing are described in detail. 2. Description of the DLD2 Float and Dual-Release System The DLD2 is a second-generation RAFOS (Ranging And Fixing Of...Sound) float with several improvements over the traditional RAFOS float (see Rossby et al., 1986, for a complete description of the RAFOS system ). A
Clinical evaluation of a medical high dynamic range display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchessoux, Cedric, E-mail: cedric.marchessoux@ba
Purpose: Recent new medical displays do have higher contrast and higher luminance but do not have a High Dynamic Range (HDR). HDR implies a minimum luminance value close to zero. A medical HDR display prototype based on two Liquid Crystal layers has been developed. The goal of this study is to evaluate the potential clinical benefit of such display in comparison with a low dynamic range (LDR) display. Methods: The study evaluated the clinical performance of the displays in a search and detection task. Eight radiologists read chest x-ray images some of which contained simulated lung nodules. The study usedmore » a JAFROC (Jacknife Free Receiver Operating Characteristic) approach for analyzing FROC data. The calculated figure of merit (FoM) is the probability that a lesion is rated higher than all rated nonlesions on all images. Time per case and accuracy for locating the center of the nodules were also compared. The nodules were simulated using Samei’s model. 214 CR and DR images [half were “healthy images” (chest nodule-free) and half “diseased images”] were used resulting in a total number of nodules equal to 199 with 25 images with 1 nodule, 51 images with 2 nodules, and 24 images with 3 nodules. A dedicated software interface was designed for visualizing the images for each session. For the JAFROC1 statistical analysis, the study is done per nodule category: all nodules, difficult nodules, and very difficult nodules. Results: For all nodules, the averaged FoM{sub HDR} is slightly higher than FoM{sub LDR} with 0.09% of difference. For the difficult nodules, the averaged FoM{sub HDR} is slightly higher than FoM{sub LDR} with 1.38% of difference. The averaged FoM{sub HDR} is slightly higher than FoM{sub LDR} with 0.71% of difference. For the true positive fraction (TPF), both displays (the HDR and the LDR ones) have similar TPF for all nodules, but looking at difficult and very difficult nodules, there are more TP for the HDR display. The true positive fraction has been also computed in function of the local average luminance around the nodules. For the lowest luminance range, there is more than 30% in favor of the HDR display. For the highest luminance range, there is less than 6% in favor of the LDR display. Conclusions: This study shows the potential benefit of using a HDR display in radiology.« less
NASA Technical Reports Server (NTRS)
Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.
1993-01-01
A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.
Development of an image operation system with a motion sensor in dental radiology.
Sato, Mitsuru; Ogura, Toshihiro; Yasumoto, Yoshiaki; Kadowaki, Yuta; Hayashi, Norio; Doi, Kunio
2015-07-01
During examinations and/or treatment, a dentist in the examination room needs to view images with a proper display system. However, they cannot operate the image display system by hands, because dentists always wear gloves to be kept their hands away from unsanitized materials. Therefore, we developed a new image operating system that uses a motion sensor. We used the Leap motion sensor technique to read the hand movements of a dentist. We programmed the system using C++ to enable various movements of the display system, i.e., click, double click, drag, and drop. Thus, dentists with their gloves on in the examination room can control dental and panoramic images on the image display system intuitively and quickly with movement of their hands only. We investigated the time required with the conventional method using a mouse and with the new method using the finger operation. The average operation time with the finger method was significantly shorter than that with the mouse method. This motion sensor method, with appropriate training for finger movements, can provide a better operating performance than the conventional mouse method.
Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.
Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho
2016-04-18
We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.
WE-E-12A-01: Medical Physics 1.0 to 2.0: MRI, Displays, Informatics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickens, D; Flynn, M; Peck, D
Medical Physics 2.0 is a bold vision for an existential transition of clinical imaging physics in face of the new realities of value-based and evidence-based medicine, comparative effectiveness, and meaningful use. It speaks to how clinical imaging physics can expand beyond traditional insular models of inspection and acceptance testing, oriented toward compliance, towards team-based models of operational engagement, prospective definition and assurance of effective use, and retrospective evaluation of clinical performance. Organized into four sessions of the AAPM, this particular session focuses on three specific modalities as outlined below. MRI 2.0: This presentation will look into the future of clinicalmore » MR imaging and what the clinical medical physicist will need to be doing as the technology of MR imaging evolves. Many of the measurement techniques used today will need to be expanded to address the advent of higher field imaging systems and dedicated imagers for specialty applications. Included will be the need to address quality assurance and testing metrics for multi-channel MR imagers and hybrid devices such as MR/PET systems. New pulse sequences and acquisition methods, increasing use of MR spectroscopy, and real-time guidance procedures will place the burden on the medical physicist to define and use new tools to properly evaluate these systems, but the clinical applications must be understood so that these tools are use correctly. Finally, new rules, clinical requirements, and regulations will mean that the medical physicist must actively work to keep her/his sites compliant and must work closely with physicians to ensure best performance of these systems. Informatics Display 1.0 to 2.0: Medical displays are an integral part of medical imaging operation. The DICOM and AAPM (TG18) efforts have led to clear definitions of performance requirements of monochrome medical displays that can be followed by medical physicists to ensure proper performance. However, effective implementation of that oversight has been challenging due to the number and extend of medical displays in use at a facility. The advent of color display and mobile displays has added additional challenges to the task of the medical physicist. This informatics display lecture first addresses the current display guidelines (the 1.0 paradigm) and further outlines the initiatives and prospects for color and mobile displays (the 2.0 paradigm). Informatics Management 1.0 to 2.0: Imaging informatics is part of every radiology practice today. Imaging informatics covers everything from the ordering of a study, through the data acquisition and processing, display and archiving, reporting of findings and the billing for the services performed. The standardization of the processes used to manage the information and methodologies to integrate these standards is being developed and advanced continuously. These developments are done in an open forum and imaging organizations and professionals all have a part in the process. In the Informatics Management presentation, the flow of information and the integration of the standards used in the processes will be reviewed. The role of radiologists and physicists in the process will be discussed. Current methods (the 1.0 paradigm) and evolving methods (the 2.0 paradigm) for validation of informatics systems function will also be discussed. Learning Objectives: Identify requirements for improving quality assurance and compliance tools for advanced and hybrid MRI systems. Identify the need for new quality assurance metrics and testing procedures for advanced systems. Identify new hardware systems and new procedures needed to evaluate MRI systems. Understand the components of current medical physics expectation for medical displays. Understand the role and prospect fo medical physics for color and mobile display devices. Understand different areas of imaging informatics and the methodology for developing informatics standards. Understand the current status of informatics standards and the role of physicists and radiologists in the process, and the current technology for validating the function of these systems.« less
Nakashima, Etsuko; Isobe, Atsuhiko; Kako, Shin'ichiro; Itai, Takaaki; Takahashi, Shin; Guo, Xinyu
2016-06-15
The long-distance transport potential of toxic lead (Pb) by plastic marine debris was examined by pure water leaching experiments using plastic fishery floats containing high level of additive-Pb such as 5100±74.3mgkg(-1). The leaching of Pb ended after sequential 480-h leaching experiments, and the total leaching amount is equivalent to approximately 0.1% of total Pb in a float. But it recovered when the float was scratched using sandpaper. We propose that a "low-Pb layer," in which Pb concentration is negligibly small, be generated on the float surface by the initial leaching process. Thickness of the layer is estimated at 2.5±1.2μm, much shallower than flaws on floats scratched by sandpaper and floats littering beaches. The result suggests that the low-Pb layer is broken by physical abrasion when floats are washed ashore, and that Pb inside the floats can thereafter leach into beaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Apparatus for monitoring crystal growth
Sachs, Emanual M.
1981-01-01
A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.
Method of monitoring crystal growth
Sachs, Emanual M.
1982-01-01
A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.
[A solution for display and processing of DICOM images in web PACS].
Xue, Wei-jing; Lu, Wen; Wang, Hai-yang; Meng, Jian
2009-03-01
Use the technique of Java Applet to realize the supporting of DICOM image in ordinary Web browser, thereby to expand the processing function of medical image. First analyze the format of DICOM file and design a class which can acquire the pixels, then design two Applet classes, of which one is used to disposal the DICOM image, the other is used to display DICOM image that have been disposaled in the first Applet. They all embedded in the View page, and they communicate by Applet Context object. The method designed in this paper can make users display and process DICOM images directly by using ordinary Web browser, which makes Web PACS not only have the advantages of B/S model, but also have the advantages of the C/S model. Java Applet is the key for expanding the Web browser's function in Web PACS, which provides a guideline to sharing of medical images.
Identification of mothball powder composition by float tests and melting point tests.
Tang, Ka Yuen
2018-07-01
The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can identify camphor mothballs but melting point tests cannot. We suggest melting point tests for identifying mothball powder and tiny fragments while float tests are recommended for intact mothball and large fragments.
Han, Kaiyi; Yao, Jingjing; Yin, Xiao; Zhao, Mei; Sun, Qiang
2017-01-01
To give a comprehensive and basic understanding of diabetes and its risk factors in floating people in China. We use "(diabetes or type 2 diabetes or chronic disease) and (floating population or employed floating population)" as the key words to search in the China academic literature database (CNKI), Wan Fang database, PubMed and Web of Science for relevant literature and extract the data about the prevalence of diabetes, relevant risk factors and disease management of the floating population in China. Twenty-one literatures are entered into analysis finally, one is English and the rest are Chinese. According to the national survey, the prevalence rate of diabetes in floating population in China was 5. 1% (95%CI, 4.9% - 5.3%), which is lower than that of the general population(11.6%,95%CI, 11.3%-11.8%),and is consistent with the results of the local surveys. The comparison result between the prevalence of floating population and that of local population in each region differs in local surveys. In addition, the prevalence of male floating population is lower than that of the female population. Finally, as the age of the population rises, so does the prevalence of diabetes. As for the risk factors of chronical diseases, the overweight rate in every region is similar but the obesity rate differs in different regions (Ningxia,26.0%;Xiangshan,14.0%), and the obesity rate of the floating population is less than half of that of the general people(4.7%,11.9%). The awareness rate, treatment rate and control rate in the floating patients differ in the regional researches, but they all can't meet the goals set by the local health departments. Compared with the general population, the prevalence of diabetes in the floating population are lower. However, Considering the growing population number and the poor disease management of the floating patients, the potential threat brought by the diabetes in floating population is imponderable. The government should establish the national surveillance system of diabetes for the floating population, strengthen the construction of the primary medical institutions, and optimize the existing funding system.