Science.gov

Sample records for floating light activated

  1. Floating Light-Activated Micro Electrical Stimulators Tested in the Rat Spinal Cord

    PubMed Central

    Abdo, Ammar; Sahin, Mesut; Freedman, David S.; Cevik, Elif; Spuhler, Philipp S.; Unlu, M. Selim

    2011-01-01

    Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated micro electrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source. PMID:21914931

  2. Active floating micro electrode arrays (AFMA).

    PubMed

    Kim, T; Troyk, P R; Bak, M

    2006-01-01

    Neuroscientists have widely used metal microelectrodes inserted into the cortex to record neural signals from, and provide electrical stimulation to, neural tissue for many years. Recently, the demand for implanting electrode arrays within the cortex, for both stimulation and recording, has rapidly increased. We are developing Active-floating-micro-electrode-arrays (AFMA) that are intended for use as a multielectrode cortical interface while minimizing the number of wires leading from the array to extra-dural circuitry or connectors. When combined with a wireless module, these new microelectrode arrays should allow for simulation and recording within free-roaming animals. This paper mainly discusses the design, fabrication, and packing of the first generation AFMA. Our long-term vision is a wireless-transmission electrode system, for stimulation and recording in free-roaming animals, which uses a family of modular active implantable electrode arrays.

  3. Charge retention characteristics of silicide-induced crystallized polycrystalline silicon floating gate thin-film transistors for active matrix organic light-emitting diode.

    PubMed

    Park, Jae Hyo; Son, Se Wan; Byun, Chang Woo; Kim, Hyung Yoon; Joo, So Na; Lee, Yong Woo; Yun, Seung Jae; Joo, Seung Ki

    2013-10-01

    In this work, non-volatile memory thin-film transistor (NVM-TFT) was fabricated by nickel silicide-induced laterally crystallized (SILC) polycrystalline silicon (poly-Si) as the active layer. The nickel seed silicide-induced crystallized (SIC) poly-Si was used as storage layer which is embedded in the gate insulator. The novel unit pixel of active matrix organic light-emitting diode (AMOLED) using NVM-TFT is proposed and investigated the electrical and optical performance. The threshold voltage shift showed 17.2 V and the high reliability of retention characteristic was demonstrated until 10 years. The retention time can modulate the recharge refresh time of the unit pixel of AMOLED up to 5000 sec.

  4. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  5. Controlled-motion of floating macro-objects induced by light

    SciTech Connect

    Lucchetta, Daniele E. Simoni, Francesco; Nucara, Luca; Castagna, Riccardo

    2015-07-15

    Photons energy can be conventionally converted to mechanical work through a series of energy-expensive steps such as for example delivery and storage. However, these steps can be bypassed obtaining a straightforward conversion of photons energy to mechanical work. As an example, in literature, high power near infrared light is used to move small objects floating on fluid surfaces, exploiting the Marangoni effect. In this work we use a low power non-collimated visible laser-light to induce thermal surface tension gradients, resulting in the movement of objects floating on fluid surfaces. By real time tracking of the object trajectories, we evaluate the average applied driving force caused by the light irradiation. In addition we show how transparent objects can be moved by light when the supporting fluids are properly doped.

  6. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-06

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  7. Active motion and load control of floating offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jalili, Kaveh

    The research in this thesis is focused on stabilization and load reduction of floating offshore wind turbine (FOWT) structures for both the fore-aft (pitch) and side-to-side (roll) directions. Based on the Tuned Mass Damper (TMD) and Active Vane concepts recently proposed, two composite actuation schemes are investigated. The first scheme is to apply the horizontal vane and vertical vane to platform pitch and roll, respectively, resulting in the so-called Double Vane Actuation (DVA) scheme. The second scheme is the combination of the TMD based pitch control and active vertical vane based roll control, resulting in the so-called Hybrid Actuation (HA) scheme. Simulation results of DVA show great reductions of motions and loads in the fore-aft and side-to-side directions. Performance of HA is investigated by extensive simulations based on the IEC61400-3 standard and results show significant and consistent motions and loads reductions in both FA and SS directions.

  8. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration

  9. "JCE" Classroom Activity #108. Using Archimedes' Principle to Explain Floating and Sinking Cans

    ERIC Educational Resources Information Center

    Sanger, Michael J.

    2011-01-01

    In this activity, students (working alone or in groups) measure the mass of several soda cans (diet and regular soda) along with the mass of water that each can displaces. The students are then asked to compare these two mass values for the sinking cans and for the floating cans. The purpose of this activity is for students to determine that the…

  10. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Activity locations and float-funding. 570.301 Section 570.301 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Entitlement...

  11. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Activity locations and float-funding. 570.301 Section 570.301 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT, DEPARTMENT...

  12. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Presentation)

    SciTech Connect

    Rodriguez Tsouroukdissian, Arturo

    2016-05-02

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. (Presentation Format).

  13. Towards active microfluidics: Interface turbulence in thin liquid films with floating molecular machines

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Mikhailov, Alexander S.

    2009-06-01

    Thin liquid films with floating active protein machines are considered. Cyclic mechanical motions within the machines, representing microscopic swimmers, lead to molecular propulsion forces applied to the air-liquid interface. We show that when the rate of energy supply to the machines exceeds a threshold, the flat interface becomes linearly unstable. As a result of this instability, the regime of interface turbulence, characterized by irregular traveling waves and propagating machine clusters, is established. Numerical investigations of this nonlinear regime are performed. Conditions for the experimental observation of the instability are discussed.

  14. Light-Induced Carrier Transfer in NiSi-Nanodots/Si-Quantum-Dots Hybrid Floating Gate in Metal-Oxide-Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Morisawa, Naoya; Ikeda, Mitsuhisa; Nakanishi, Sho; Kawanami, Akira; Makihara, Katsunori; Miyazaki, Seiichi

    2010-04-01

    We have fabricated a metal-oxide-semiconductor (MOS) capacitor with a hybrid floating gate stack consisting of silicon quantum dots (Si-QDs) and NiSi Nanodots (NiSi-NDs) with a 3-nm-thick interlayer SiO2, and studied the effect of 1310 nm light irradiation on charge distribution in a hybrid floating gate. The light irradiation resulted in a reduced flat-band voltage shift due to the charging of the hybrid floating gate under the application of gate biases in comparison to the shift in the dark. This result can be interpreted in terms of the shift of the charge centroid toward the gate side in the hybrid floating gate caused by the photoexcitation of electrons in NiSi-NDs and the subsequent electron tunneling to Si-QDs. When the light irradiation was turned off, the transferred charges moved back from the Si-QDs to the NiSi-NDs without being emitted to the Si substrate.

  15. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... feet) above the water; (5) Approximately equally spaced; (6) Not more than 10 meters (32.8 feet) apart...) Two red lights at each end of the hose string, including the ends in a channel where the hose string... (3 feet) apart in a vertical line with the lower light at the same height above the water as...

  16. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... feet) above the water; (5) Approximately equally spaced; (6) Not more than 10 meters (32.8 feet) apart...) Two red lights at each end of the hose string, including the ends in a channel where the hose string... (3 feet) apart in a vertical line with the lower light at the same height above the water as...

  17. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... feet) above the water; (5) Approximately equally spaced; (6) Not more than 10 meters (32.8 feet) apart...) Two red lights at each end of the hose string, including the ends in a channel where the hose string... (3 feet) apart in a vertical line with the lower light at the same height above the water as...

  18. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... feet) above the water; (5) Approximately equally spaced; (6) Not more than 10 meters (32.8 feet) apart...) Two red lights at each end of the hose string, including the ends in a channel where the hose string... (3 feet) apart in a vertical line with the lower light at the same height above the water as...

  19. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation.

    PubMed

    Guo, Yong; Wang, Ruxia; Wang, Peifang; Li, Yi; Wang, Chao

    2017-03-27

    Polyetherimide-graphitic carbon nitride (PEI-g-C3N4) floating photocatalyst has been synthesized by using polyetherimide (PEI) as linker to bind graphitic carbon nitride (g-C3N4) together. XRD and XPS analysis for PEI-g-C3N4 show that the interaction between PEI and g-C3N4 does not disturb the structure of g-C3N4. FTIR, TEM and theoretical results suggest that the long chain PEI binds g-C3N4 particles together to form PEI-g-C3N4 via hydrogen bonding interaction. Based on photodegradation results of methyl orange (MO), PEI can not photodegrade MO and just works as linker in PEI-g-C3N4, while the photodegradation performance of PEI-g-C3N4 is from the contribution of g-C3N4. Total organic carbon (TOC) analysis show that nearly 47% organic carbon has been converted into inorganic carbon after photodegradation, suggesting that PEI-g-C3N4 can destroy both NN bond and aromatic rings in MO under light irradiation. The photodegradation efficiency (91%) of MO by g-C3N4 is higher than that (80%) by PEI-g-C3N4 with stirring. But, the photodegradation efficiency (37%) of MO by g-C3N4 is lower than that (55%) by PEI-g-C3N4 without stirring. This is the advantage of floating photocatalyst with respect to the powder photocatalyst since the former can utilize more solar energy than the latter when stirring is not available.

  20. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    PubMed

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming.

  1. Preparation, characterization, and photocatalytic activity evaluation of Fe-N-codoped TiO2/fly ash cenospheres floating photocatalyst.

    PubMed

    Song, Jingke; Wang, Xuejiang; Bu, Yunjie; Zhang, Jing; Wang, Xin; Huang, Jiayu; Chen, Jie; Zhao, Jianfu

    2016-11-01

    Nitrogen-doped titanium dioxide (TiO2) and Fe-N-codoped TiO2 layers on fly ash cenospheres (FAC) as floating photocatalyst were successfully prepared through sol-gel method. Photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)-Vis diffuse reflectance spectroscopy (DRS), and nitrogen adsorption analyses for Brunauer-Emmett-Teller (BET) specific surface area. Photocatalytic efficiency of the prepared catalyst was evaluated through using the decomposition of Rhodamine B (RhB) as a model compound under visible light irradiation. Photocatalytic activity and kinetics of catalyst under visible light were detected in details from different Fe/Ti mole ratios by detecting photodegradation of RhB. Experimental results show that when the calcination temperature was 550 °C, the dosage of FAC was 3.0 g, and the mole ratio of Fe/Ti was 0.71 %; the synthesized Fe-N-TiO2/FAC photocatalyst presented as anatase phase and that N and Fe ions were doped into TiO2 lattice. The material's specific surface area was 34.027 m(2)/g, and UV-Vis diffuse reflectance spectroscopy shows that the edge of the photon absorption has been red shifted up to 400-500 nm. Fe-N-codoped titanium dioxide on FAC had excellent photocatalytic activity during the process of photodegradation of RhB under visible light irradiation.

  2. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides

    PubMed Central

    Harpenslager, Sarah F.; Smolders, Alfons J. P.; Kieskamp, Ariët A. M.; Roelofs, Jan G. M.; Lamers, Leon P. M.

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  3. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides.

    PubMed

    Harpenslager, Sarah F; Smolders, Alfons J P; Kieskamp, Ariët A M; Roelofs, Jan G M; Lamers, Leon P M

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments.

  4. Does It Sink or Float?

    ERIC Educational Resources Information Center

    McDonald, Judith Richards

    2012-01-01

    This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging…

  5. Stools - floating

    MedlinePlus

    ... absorption of nutrients ( malabsorption ) or too much gas (flatulence). Considerations Most causes of floating stools are harmless. ... Elsevier Saunders; 2016:chap 140. Read More Gas - flatulence Malabsorption Review Date 5/11/2016 Updated by: ...

  6. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    SciTech Connect

    Rodriguez Tsouroukdissian, Arturo; Lackner, Mathew; Cross-Whiter, John; Park, Se Myung; Pourazarm, Pariya; La Cava, William; Lee, Sungho

    2016-05-02

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less than 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.

  7. Visible-light-active elemental photocatalysts.

    PubMed

    Liu, Gang; Niu, Ping; Cheng, Hui-Ming

    2013-04-02

    Seeking visible-light-active photocatalysts for efficient solar-energy conversion has become an intensifying endeavor worldwide. In this concept paper, general requirements for finding new visible-light-active photocatalysts are briefly introduced, and recent progress in exploring elemental photocatalysts for clean-energy generation and environmental remediation are reviewed. Finally, opportunities and challenges facing elemental photocatalysts are discussed.

  8. Insight into visible light-driven photocatalytic degradation of diesel oil by doped TiO2-PS floating composites.

    PubMed

    Wang, Xin; Wang, Wei; Wang, Xuejiang; Zhao, Jianfu; Zhang, Jing; Song, Jingke

    2016-09-01

    TiO2-pearlstone (PS) floatable photocatalysts were synthesized using a facile sol-gel method and confirmed by XRD, N2 adsorption-desorption, SEM, EDX, TEM, FT-IR, XPS, and UV-vis DRS measurements. It has been found that the photocatalysts composed of anatase TiO2 deposited on the surface of PS and formed mesoporous structure. By N or B/N doping, the band gap of the photocatalyst has been narrowed. The obtained floatable photocatalysts can be applied to solar light-driven remediation of oil-contaminated water. Diesel oil was chosen as the model pollutant to evaluate the photocatalytic activity. The results showed B/N-TiO2-PS exhibited the highest photocatalytic activity for diesel oil under visible light irradiation, which is 48 % removal rate for 9 h. The reaction rate constant k of B/N-TiO2-PS is 0.08423 h(-1), which is four times larger than that of pure TiO2-PS. Moreover, the characteristic of floatable makes the photocatalysts easier to separate and reuse, which showed great potential for practical applications in the field of environmental cleanup and solar energy conversion.

  9. Artificial light and nocturnal activity in gammarids

    PubMed Central

    Hölker, Franz; Heller, Stefan; Berghahn, Rüdiger

    2014-01-01

    Artificial light is gaining attention as a potential stressor to aquatic ecosystems. Artificial lights located near streams increase light levels experienced by stream invertebrates and we hypothesized light would depress night drift rates. We also hypothesized that the effect of light on drift rates would decrease over time as the invertebrates acclimated to the new light level over the course of one month’s exposure. These hypotheses were tested by placing Gammarus spp. in eight, 75 m × 1 m artificial flumes. One flume was exposed to strong (416 lx) artificial light at night. This strong light created a gradient between 4.19 and 0.04 lx over the neighboring six artificial flumes, while a control flume was completely covered with black plastic at night. Night-time light measurements taken in the Berlin area confirm that half the flumes were at light levels experienced by urban aquatic invertebrates. Surprisingly, no light treatment affected gammarid drift rates. In contrast, physical activity measurements of in situ individually caged G. roeseli showed they increased short-term activity levels in nights of complete darkness and decreased activity levels in brightly lit flumes. Both nocturnal and diurnal drift increased, and day drift rates were unexpectadly higher than nocturnal drift. PMID:24688857

  10. Artificial light and nocturnal activity in gammarids.

    PubMed

    Perkin, Elizabeth K; Hölker, Franz; Heller, Stefan; Berghahn, Rüdiger

    2014-01-01

    Artificial light is gaining attention as a potential stressor to aquatic ecosystems. Artificial lights located near streams increase light levels experienced by stream invertebrates and we hypothesized light would depress night drift rates. We also hypothesized that the effect of light on drift rates would decrease over time as the invertebrates acclimated to the new light level over the course of one month's exposure. These hypotheses were tested by placing Gammarus spp. in eight, 75 m × 1 m artificial flumes. One flume was exposed to strong (416 lx) artificial light at night. This strong light created a gradient between 4.19 and 0.04 lx over the neighboring six artificial flumes, while a control flume was completely covered with black plastic at night. Night-time light measurements taken in the Berlin area confirm that half the flumes were at light levels experienced by urban aquatic invertebrates. Surprisingly, no light treatment affected gammarid drift rates. In contrast, physical activity measurements of in situ individually caged G. roeseli showed they increased short-term activity levels in nights of complete darkness and decreased activity levels in brightly lit flumes. Both nocturnal and diurnal drift increased, and day drift rates were unexpectadly higher than nocturnal drift.

  11. On floats and float tests

    NASA Technical Reports Server (NTRS)

    Seewald, Friedrich

    1931-01-01

    The principal source of information on float resistance is the model test. In view of the insuperable difficulties opposing any attempt at theoretical treatment of the resistance problem, particularly at attitudes which tend toward satisfactory take-off, such as the transitory stage to planing, the towing test is and will remain the primary method for some time.

  12. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  13. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  14. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  15. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  16. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  17. Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.

    2016-11-01

    The floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is quite promising for the study of nonadiabatic processes. Use of this method directly in nonadiabatic dynamics simulations has been limited by the lack of available first-order nonadiabatic coupling vectors. Here, an analytic formulation of these derivative coupling vectors is presented for FOMO-CASCI wavefunctions using a simple Lagrangian-based approach. The derivative coupling vectors are applied in the optimization of minimum energy conical intersections of an aqueously solvated model compound for the chromophore of the green fluorescent protein (including 100 water molecules). The computational cost of the FOMO-CASCI derivative coupling vector is shown to scale quadratically, O ( N 2 ) , with system size and is applied to systems with up to 1000 atoms.

  18. Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals.

    PubMed

    Hohenstein, Edward G

    2016-11-07

    The floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is quite promising for the study of nonadiabatic processes. Use of this method directly in nonadiabatic dynamics simulations has been limited by the lack of available first-order nonadiabatic coupling vectors. Here, an analytic formulation of these derivative coupling vectors is presented for FOMO-CASCI wavefunctions using a simple Lagrangian-based approach. The derivative coupling vectors are applied in the optimization of minimum energy conical intersections of an aqueously solvated model compound for the chromophore of the green fluorescent protein (including 100 water molecules). The computational cost of the FOMO-CASCI derivative coupling vector is shown to scale quadratically, O(N(2)), with system size and is applied to systems with up to 1000 atoms.

  19. Evaluation of upgrading a full-scale activated sludge process integrated with floating biofilm carriers.

    PubMed

    Ge, Shijian; Zhu, Yunpeng; Qiu, Shuang; Yang, Xiong; Ma, Bin; Huang, Donghui; Peng, Yongzhen

    2014-01-01

    This study evaluated the performance of a full-scale upgrade of an existing wastewater treatment plant (WWTP) with the intermittent cyclic extended aeration system (ICEAS), located in Qingdao, China. The ICEAS system was not able to meet effluent standards; therefore, a series of modifications and control strategies were applied as follows: (1) floating plastic carriers were added to the tank to aid biofilm formation; (2) operation parameters such as mixing and aeration time, feeding rate, and settling time were adjusted and controlled with a real-time control system; (3) a sludge return system and submersible water impellers were added; (4) the aeration system was also improved to circulate carriers and prevent clogging. The modified ICEAS system exhibited efficient organic and nutrient removal, with high removal efficiencies of chemical oxygen demand (89.57 ± 4.10%), NH4(+)-N (95.46 ± 3.80%), and total phosphorus (91.90 ± 4.36%). Moreover, an annual power reduction of 1.04 × 10(7) kW·h was realized as a result of these modifications.

  20. Light activated nitric oxide releasing materials

    NASA Astrophysics Data System (ADS)

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  1. Green laser light activates the inner ear

    NASA Astrophysics Data System (ADS)

    Wenzel, Gentiana I.; Balster, Sven; Zhang, Kaiyin; Lim, Hubert H.; Reich, Uta; Massow, Ole; Lubatschowski, Holger; Ertmer, Wolfgang; Lenarz, Thomas; Reuter, Guenter

    2009-07-01

    The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices. Laser light can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. We sought to assess whether visible light with parameters that could induce an optoacoustic effect (532 nm, 10-ns pulses) would activate the cochlea. Auditory brainstem responses (ABRs) were recorded preoperatively in anesthetized guinea pigs to confirm normal hearing. After opening the bulla, a 50-μm core-diameter optical fiber was positioned in the round window niche and directed toward the basilar membrane. Optically induced ABRs (OABRs), similar in shape to those of acoustic stimulation, were elicited with single pulses. The OABR peaks increased with energy level (0.6 to 23 μJ/pulse) and remained consistent even after 30 minutes of continuous stimulation at 13 μJ, indicating minimal or no stimulation-induced damage within the cochlea. Our findings demonstrate that visible light can effectively and reliably activate the cochlea without any apparent damage. Further studies are in progress to investigate the frequency-specific nature and mechanism of green light cochlear activation.

  2. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic...

  3. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic...

  4. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic...

  5. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic...

  6. Chromospheric activity in sunspot light bridges

    NASA Astrophysics Data System (ADS)

    Louis, R. E.

    2016-11-01

    High-resolution filtergrams from Hinode were used to analyse the nature of chromospheric activity over a set of five sunspot light bridges. The broad-band Ca II H filtergrams depict a variety of phenomena which include large arc-shaped brightenings, bright patches, and small-scale jets. These strong brightenings are recurrent over a duration of several hours and appear to be a common attribute of a sunspot light bridge, independent of its photospheric morphology and horizontal flow pattern. Hinode spectro-polarimetric observations were used to construct far wing magnetograms from the Fe I line at 630.25 nm, which reveal the presence of small-scale magnetic and velocity inhomogeneities in the photosphere of the light bridges. Although there is strong evidence for a causal relation between the photospheric anomalies and the observed chromospheric activity, the physical mechanism responsible for the latter remains speculative.

  7. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  8. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  9. Light-activated communication in synthetic tissues

    PubMed Central

    Booth, Michael J.; Schild, Vanessa Restrepo; Graham, Alexander D.; Olof, Sam N.; Bayley, Hagan

    2016-01-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  10. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform.

    PubMed

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space.

  11. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform

    PubMed Central

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  12. Light and immune systems: activation of immunological activities

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Liu, Hong; Chen, Wei R.

    2006-02-01

    Light has been used to treat diseases for hundreds of years. Convenient and powerful light sources such as lasers make photomedicine a major branch in diseases treatment and detection. Originally, light was often used for local treatment, using photomechanical, photochemical, photothermal reactions and photomodulation as the major mechanisms. More and more investigators have become interested in the systemic effects of light, particularly in its effects on immune systems. Much work has been done to activate and/or enhance the host immune system to combat cancer, either using light as a direct tool or as an adjuvant method. Light has long been used for assisting disease detection and diagnosis. Advances in light technology have made photo-diagnostics ever more precise spatially and temporally. Many techniques facilitate observation of bio-molecule interactions and other biological processes at the cellular level, hence providing opportunities to detect and monitor immune activities. This manuscript will review recent photo-immunological research in treatment of cancer. The recent development of combination therapies involving lasers will be presented. Specifically, the results of cancer treatment using laser photothermal interaction, either with or without additional immunological stimulation will be discussed. The immunological effects of photodynamic therapy (PDT), and of its combination with immunotherapy in cancer treatment will also be discussed. Much interest has been recently concentrated in the immunological responses after laser treatment. Such responses at cellular and molecular levels will be discussed. The effect of these treatment modalities on the distant metastases also showed promise of light induced antitumor immunity. The combination therapy and induced immunological responses appear to be the key for long-term control of tumors.

  13. Flinking: Neither Floating nor Sinking.

    ERIC Educational Resources Information Center

    Wilson, Roger B.

    1993-01-01

    Describes an activity that challenges students to make an object that, when released under water, does not float up or sink down. The main concept this activity investigates is the density of ordinary objects in comparison to the density of water. (PR)

  14. "Floating shoulder" injuries.

    PubMed

    Heng, Kenneth

    2016-12-01

    "Floating shoulder" is a rare injury complex resulting from high-energy blunt force trauma to the shoulder, resulting in scapulothoracic dissociation. It is commonly associated with catastrophic neurovascular injury. Two cases of motorcyclists with floating shoulder injuries are described.

  15. WindWaveFloat

    SciTech Connect

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  16. Whatever Floats Your Boat: A Design Challenge

    ERIC Educational Resources Information Center

    Kornoelje, Joanne; Roman, Harry T.

    2012-01-01

    This article presents a simple design challenge, based on the PBS program "Design Squad's" "Watercraft" activity that will prove engaging to most technology and engineering students. In this floating boat challenge, students are to build a boat that can float and support 25 pennies for at least 10 seconds--without leaking, sinking, or tipping…

  17. Floating: sink or swim.

    PubMed

    Pronger, L

    1995-12-01

    Budget restrictions, fewer human resources and fluctuating patient populations have combined to increase the practice of floating general duty nurses. Floating occurs when a nurse from an overstaffed unit, based on patient load, is required to work in another unit that is understaffed. Floating is not a new practice, but it has always been an emotionally charged issue. Today, with more float pool nurses seeking the security of a permanent position in a home unit, the issue has increased in intensity.

  18. The Design of Floats

    NASA Technical Reports Server (NTRS)

    Sottorf, W

    1938-01-01

    Following a summary of the multiplicity of domestic and foreign floats and a brief enumeration of the requirements of floats, the essential form parameters and their effect on the qualities of floats are detailed. On this basis a standard float design is developed which in model families with varying length/beam ratio and angle of dead rise is analyzed by an experimental method which permits its best utilization on any airplane.

  19. Air-Track: a real-world floating environment for active sensing in head-fixed mice.

    PubMed

    Nashaat, Mostafa A; Oraby, Hatem; Sachdev, Robert N S; Winter, York; Larkum, Matthew E

    2016-10-01

    Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g., 2-photon imaging, patch recordings, etc.) that frequently requires head fixation. This limitation has been addressed with various approaches such as virtual reality/air ball or treadmill systems. However, achieving multimodal realistic behavior in these systems can be challenging. These systems are often also complex and expensive to implement. Here we present "Air-Track," an easy-to-build head-fixed behavioral environment that requires only minimal computational processing. The Air-Track is a lightweight physical maze floating on an air table that has all the properties of the "real" world, including multiple sensory modalities tightly coupled to motor actions. To test this system, we trained mice in Go/No-Go and two-alternative forced choice tasks in a plus maze. Mice chose lanes and discriminated apertures or textures by moving the Air-Track back and forth and rotating it around themselves. Mice rapidly adapted to moving the track and used visual, auditory, and tactile cues to guide them in performing the tasks. A custom-controlled camera system monitored animal location and generated data that could be used to calculate reaction times in the visual and somatosensory discrimination tasks. We conclude that the Air-Track system is ideal for eliciting natural behavior in concert with virtually any system for monitoring or manipulating brain activity.

  20. CMOS common-mode rejection filter with floating active transformer operation

    NASA Astrophysics Data System (ADS)

    Uchida, Daisuke; Ikebe, Masayuki; Motohisa, Junichi; Sano, Eiichi; Kondou, Akira

    2014-01-01

    We propose an inductorless common-mode rejection filter with a gyrator-C network for common-mode-noise reduction. By adopting a gyrator-C network and ladder structure, high-order and small filter circuits with active transformer operation were fabricated. The filter was designed and fabricated in a Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 µm CMOS process. This filter exhibited a CMRR of 80 dB, output noise voltage of 103 nV/Hz1/2, third-order input intercept point of 8.8 dBm at 1 MHz operation, and cutoff frequency of under 6 MHz. The total power consumption was 14.8 mW with a 2.5 V supply, and the chip area was 0.7 × 0.4 mm2.

  1. Floating sample-collection platform with stage-activated automatic water sampler for streams with large variation in stage

    USGS Publications Warehouse

    Tarte, Stephen R.; Schmidt, A.R.; Sullivan, Daniel J.

    1992-01-01

    A floating sample-collection platform is described for stream sites where the vertical or horizontal distance between the stream-sampling point and a safe location for the sampler exceed the suction head of the sampler. The platform allows continuous water sampling over the entire storm-runoff hydrogrpah. The platform was developed for a site in southern Illinois.

  2. Exploring Floating Concrete and Beam Design.

    ERIC Educational Resources Information Center

    Snell, Billie G.; Snell, Luke M.

    2002-01-01

    Presents two construction activities that address both state and federal science standards and encourage students to consider career options in mathematics and science. Includes floating concrete and paper bridge activities. (YDS)

  3. Floating Boats

    ERIC Educational Resources Information Center

    Waugh, Michael

    2007-01-01

    The purpose of this article is to describe a simple laboratory activity in which students collect a series of measurements and then use graphical analysis to determine the nature of the relationship between an object's mass and the volume of water it displaces. In this activity, students explore the relationships between the mass of a floating…

  4. Float It Down the River.

    ERIC Educational Resources Information Center

    Brendzel, Sharon; Orfan, Lucy; Schuhmacher, Robert

    2000-01-01

    Presents an activity that involves students in a hands-on, creative project in which they use higher order thinking skills while designing and studying the basics of floating devices. Focuses on inquiry, a number of scientific principles, and the relationship between mathematics and science. (ASK)

  5. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    PubMed

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses.

  6. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  7. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  8. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-08

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  9. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  10. Storage and retrieval of light pulses in a fast-light medium via active Raman gain

    NASA Astrophysics Data System (ADS)

    Xu, Datang; Bai, Zhengyang; Huang, Guoxiang

    2016-12-01

    We propose a scheme to realize the storage and retrieval of light pulses in a fast-light medium via a mechanism of active Raman gain (ARG). The system under consideration is a four-level atomic gas interacting with three (pump, signal, and control) laser fields. We show that a stable propagation of signal light pulses with superluminal velocity (i.e., fast-light pulses) is possible in such a system through the ARG contributed by the pump field and the quantum interference effect induced by the control field. We further show that a robust storage and retrieval of light pulses in such a fast-light medium can be implemented by switching on and off the pump and the control fields simultaneously. The results reported here may have potential applications for light information processing and transmission using fast-light media.

  11. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  12. An anion channel in Arabidopsis hypocotyls activated by blue light.

    PubMed Central

    Cho, M H; Spalding, E P

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition. PMID:8755616

  13. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided

  14. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  15. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  16. 50. (no plate) Lens, lens pedestal, mercury float, drawing # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. (no plate) Lens, lens pedestal, mercury float, drawing # 3101, sheet 1 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  17. 51. (no plate) Lens, lens pedestal, mercury float, shade holder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. (no plate) Lens, lens pedestal, mercury float, shade holder installation, drawing # 3101, sheet 2 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  18. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  19. Micromechanisms with floating pivot

    DOEpatents

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  20. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  1. Floating Magnet Demonstration.

    ERIC Educational Resources Information Center

    Wake, Masayoshi

    1990-01-01

    A room-temperature demonstration of a floating magnet using a high-temperature superconductor is described. The setup and operation of the apparatus are described. The technical details of the effect are discussed. (CW)

  2. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  3. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  4. Visible-Light-Triggered Activation of a Protein Kinase Inhibitor.

    PubMed

    Wilson, Danielle; Li, Jason W; Branda, Neil R

    2017-02-20

    A photoresponsive small molecule undergoes a ring-opening reaction when exposed to visible light and becomes an active inhibitor of the enzyme protein kinase C. This "turning on" of enzyme inhibition with light puts control into the hands of the user, creating the opportunity to regulate when and where enzyme catalysis takes place.

  5. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  6. Floating wind turbine system

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  7. Light activated liposomes: Functionality and prospects in ocular drug delivery.

    PubMed

    Lajunen, Tatu; Nurmi, Riikka; Kontturi, Leena; Viitala, Lauri; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2016-12-28

    Ocular drug delivery, especially to the retina and choroid, is a major challenge in drug development. Liposome technology may be useful in ophthalmology in enabling new routes of delivery, prolongation of drug action and intracellular drug delivery, but drug release from the liposomes should be controlled. For that purpose, light activation may be an approach to release drug at specified time and site in the eye. Technical advances have been made in the field of light activated drug release, particularly indocyanine green loaded liposomes are a promising approach with safe materials and effective light triggered release of small and large molecules. This review discusses the liposomal drug delivery with light activated systems in the context of ophthalmic drug delivery challenges.

  8. Blue Light Stimulates Cognitive Brain Activity in Visually Blind Individuals

    PubMed Central

    Vandewalle, Gilles; Collignon, Olivier; Hull, Joseph T.; Daneault, Véronique; Albouy, Geneviève; Lepore, Franco; Phillips, Christophe; Doyon, Julien; Czeisler, Charles A.; Dumont, Marie; Lockley, Steven W.; Carrier, Julie

    2015-01-01

    Light regulates multiple non-image-forming (or non-visual) circadian, neuroendocrine and neurobehavioral functions, via outputs from intrinsically-photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so that light is an important regulator of wakefulness and cognition. The roles of rods, cones and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose non-randomly about the presence of light despite their complete lack of sight. Furthermore, 2s of blue light modified EEG activity when administered simultaneously to auditory stimulations. FMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation, as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function. PMID:23859643

  9. DNA endonuclease activities on psoralen plus ultraviolet light treated DNA

    SciTech Connect

    Lambert, M.W.; Clark, M.

    1986-03-01

    Activities of nuclear DNA endonucleases (Endos) from normal human lymphoblastoid cells on DNA treated with the DNA interstrand cross-linking agents 4,5'8-trimethyl psoralen (TMP) or 8-methoxypsoralen (MOP) plus long-wavelength (320-400 nm) ultraviolet light (UVA) were examined. Chromatin-associated DNA Endos were isolated from both cell lines and subjected to isoelectric focusing (IF). Each IF fraction was assayed for DNA Endo activity. Peaks of activity were pooled and assayed for activity on undamaged PM2 bacteriophage DNA and on PM2 DNA that had been treated with 15 ..mu..g/ml TMP or MOP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given in order to increase the number of DNA cross-links. Two Endo activities were found which were active on TMP- and MOP-DNA: a major one, pI 4.6, which is also active on intercalated DNA, and a second, lesser one, pI 7.6, which is active on UVC (254 nm) light irradiated DNA. These results indicate that there are two different DNA Endos which act on both TMP- and MOP-treated DNA and that the major activity recognizes the intercalation of, and/or the cross-link produced by interaction of, psoralen with DNA.

  10. Advanced light source. Activity report 1995

    SciTech Connect

    1996-07-01

    The ALS Activity Report is designed to share the breadth, variety, and interest of the scientific program and ongoing R&D efforts in a form that is accessible to a broad audience. Recent research results are presented in six sections, each representing an important theme in ALS science. These results are designed to demonstrate the capabilities of the ALS, rather than to give a comprehensive review of 1995 experiments. Although the scientific program and facilities report are separate sections, in practice the achievements and accomplishments of users and ALS staff are interdependent. This user-staff collaboration is essential to help us direct our efforts toward meeting the needs of the user community, and to ensure the continued success of the ALS as a premier facility.

  11. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  12. A review on visible light active perovskite-based photocatalysts.

    PubMed

    Kanhere, Pushkar; Chen, Zhong

    2014-12-01

    Perovskite-based photocatalysts are of significant interest in the field of photocatalysis. To date, several perovskite material systems have been developed and their applications in visible light photocatalysis studied. This article provides a review of the visible light (λ > 400 nm) active perovskite-based photocatalyst systems. The materials systems are classified by the B site cations and their crystal structure, optical properties, electronic structure, and photocatalytic performance are reviewed in detail. Titanates, tantalates, niobates, vanadates, and ferrites form important photocatalysts which show promise in visible light-driven photoreactions. Along with simple perovskite (ABO3) structures, development of double/complex perovskites that are active under visible light is also reviewed. Various strategies employed for enhancing the photocatalytic performance have been discussed, emphasizing the specific advantages and challenges offered by perovskite-based photocatalysts. This review provides a broad overview of the perovskite photocatalysts, summarizing the current state of the work and offering useful insights for their future development.

  13. Ecological measurements of light exposure, activity, and circadian disruption.

    PubMed

    Miller, D; Bierman, A; Figueiro, Mg; Schernhammer, Es; Rea, Ms

    2010-09-01

    Circadian rhythms are biological rhythms that repeat at approximately 24 hours. In humans, circadian rhythms have an average period of 24.2 hours. The 24-hour patterns of light and dark on the retina synchronize circadian rhythms to the local time on earth. Lighting characteristics affecting circadian rhythms are very different than those affecting visual responses. Lack of synchronization between the endogenous clock and the local time has been associated with a host of maladies. Therefore, it is important to measure circadian light exposures over the course of the 24-hour day and to be able to assess circadian entrainment and disruption in actual living environments. Presented is an overview of the recently developed Daysimeter, a personal measurement device for recording activity and circadian light-exposure. When the Daysimeter is worn on the head, two light sensors near the eye are used to estimate circadian light (CLA) exposures over extended periods of time. Phasor analysis combines the measured periodic activity-rest patterns with the measured periodic light-dark patterns to assess behavioural circadian entrainment/disruption. As shown, day-shift and rotating-shift nurses exhibit remarkably different levels of behavioural circadian entrainment/disruption. These new ecological measurement and analysis techniques may provide important insights into the relationship between circadian disruption and well-being.

  14. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light.

    PubMed

    Karimi, Mahdi; Sahandi Zangabad, Parham; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R

    2017-04-05

    Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.

  15. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Floating OCS facilities. 143.120 Section 143.120 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS...

  16. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each...

  17. Floating Versus Sinking

    NASA Astrophysics Data System (ADS)

    Vella, Dominic

    2015-01-01

    Small objects that are more dense than water may still float at the air-water interface because of surface tension. Whether this is possible depends not only on the density and size of the object, but also on its shape and surface properties, whether other objects are nearby, and how gently the object is placed at the interface. This review surveys recent work to quantify when objects can float and when they must sink. Much interest in this area has been driven by studies of the adaptations of water-walking insects to life at interfaces. I therefore discuss these results in the context of this and other applications.

  18. Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-07-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol–gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m2 g‑1) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti–O–B–N and O–Ti–B–N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B–N–TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B–N–TiO2/EP has potential applications for practical environmental purification.

  19. Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity

    PubMed Central

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-01-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol–gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m2 g−1) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti–O–B–N and O–Ti–B–N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B–N–TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B–N–TiO2/EP has potential applications for practical environmental purification. PMID:27432460

  20. Floating photocatalyst of B-N-TiO2/expanded perlite: a sol-gel synthesis with optimized mesoporous and high photocatalytic activity.

    PubMed

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-07-19

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol-gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m(2) g(-1)) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti-O-B-N and O-Ti-B-N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B-N-TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B-N-TiO2/EP has potential applications for practical environmental purification.

  1. Effect of light units on tooth bleaching with visible-light activating titanium dioxide photocatalyst.

    PubMed

    Kishi, Ayaka; Otsuki, Masayuki; Sadr, Alireza; Ikeda, Masaomi; Tagami, Junji

    2011-01-01

    This study evaluated the influence of different light sources on the efficiency of an office bleaching agent containing visible-light activating titanium dioxide photocatalyst (VL-TiO(2)) using an artificial discoloration tooth model. Extracted bovine teeth were stained by black tea. The CIE L*a*b* values were measured before and after nine consecutive treatments by the VL-TiO(2)-containing bleaching agent (TiON in Office, GC, Tokyo, Japan). A halogen light unit (CB; CoBee, GC) or an LED unit (G-light, GC) with two modes (blue and violet: GL-BV, blue: GL-B) were used to activate the bleaching agent in three groups (n=8). Brightness (ΔL) and color difference (ΔE) increased as bleaching repeated in all groups. Two-way ANOVA showed that both number of treatments and light sources significantly affected ΔE (p<0.05). GL-BV showed better bleaching effect than GL-B. In measurement of irradiation spectra, CB showed a wide spectrum (380-530 nm), GL-B had a sharp peak at 470 nm and GL-BV showed an additional peak at 405 nm. It was concluded that the light source influenced the efficiency of the tooth bleaching with VL-TiO(2).

  2. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. I. OBSERVATION OF LIGHT BRIDGE AND ITS DYNAMIC ACTIVITY PHENOMENA

    SciTech Connect

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  3. Ultraviolet B light stimulates hornet activities - a review

    NASA Astrophysics Data System (ADS)

    Ishay, Jacob S.; Kirshboim, Shira

    2000-07-01

    For more than 30 years now, we have been gathering data on vespan activity in the field and laboratory under the influence of various factors. We found that light is most influential on the behaviour and activities of hornets (Hymenoptera, Vespinae); among various light wavelengths, the greatest influence was ascribed to the ultraviolet bandwidth (UVB). Prominent vespan activities outside their nest included digging, that is, the removal of soil from the nest, and we found this activity to take place at high noon, when the UV radiation, especially the UVB fraction, is maximal. In fact the digging activity of hornets was at times fully coordinated with the solar radiation, especially with the UVB portion of it, so that in daytime hours with diminished UV radiation, as in the morning or the afternoon, this activity and also flights outside the nest were accordingly curtailed, whereas at night there was no vespan flight at all. Under laboratory conditions, we found that hornets subjected to ether anaesthesia awaken faster when exposed to UV light than do control hornets left in the dark. In this connection, the exposure of pieces of hornet cuticle to UV light resulted in enhanced light absorption by the cuticle, but the absorption level reverted to normal after a period of rest in the dark. Tests for cuticular fluorescence after its irradiation with UVB light (290 nm) revealed a dominant emission in both UV and visible light. Furthermore, exposure of the cuticle of either live or dead hornets to light results in a photovoltaic effect which amplifies under UV irradiation. The hornet cuticle appears to behave like a semiconductor with traps and under the influence of light irradiation the electrical conductivity diminishes. The cuticle exposed to UV irradiation undergoes polarization, as do ferroelectric substances after being exposed to an electric field. The present paper summarizes the results of experiments and observations carried out on both live and dead hornets

  4. Tethered float liquid level sensor

    DOEpatents

    Daily, III, William Dean

    2016-09-06

    An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.

  5. Floated gravity gradiometer and method

    SciTech Connect

    Lautzenhiser, T.V.; Eisner, M.

    1990-09-11

    This patent describes a gravity gradiometer. It comprises: a housing containing a fluid; a float buoyantly supported within the fluid; means for varying the metacentric height of the float; and means for obtaining a measure of the gravitational gradient acting on the float resulting from varying the metacentric height.

  6. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  7. Why Do Things Float?

    ERIC Educational Resources Information Center

    Selley, Nicholas

    1993-01-01

    Combines two strands: one being an exposition of the variety of explanations which are given for the phenomenon of floating; the other being the pedagogical implications which arise from the use of alternative models in science. Attention is drawn to the ethical questions that may arise when primary science seems to conflict with accepted…

  8. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  9. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  10. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  11. The effect of light-activation sources on tooth bleaching

    PubMed Central

    Baroudi, Kusai; Hassan, Nadia Aly

    2014-01-01

    Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598

  12. Floating mechanism of a small liquid marble

    PubMed Central

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V.; Vadivelu, Raja K.; John, James A. St.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface. PMID:26902930

  13. Effects of light sources and visible light-activated titanium dioxide photocatalyst on bleaching.

    PubMed

    Suyama, Yuji; Otsuki, Masayuki; Ogisu, Shinichiro; Kishikawa, Ryuzo; Tagami, Junji; Ikeda, Masaomi; Kurata, Hiroshi; Cho, Takahiro

    2009-11-01

    The objective of this study was to evaluate, using methylene blue (MB), the effects of various light sources on the bleaching action of hydrogen peroxide (H(2)O(2)) with two titanium dioxide (TiO(2)) photocatalysts - an ultraviolet light-activated TiO(2) photocatalyst (UVTiO(2)) versus a visible light-activated TiO(2) photocatalyst (VL-TiO(2)). Five experimental solutions (VL-TiO(2)+H(2)O(2), UV-TiO(2)+H(2)O(2), H(2)O(2), VL-TiO(2), UV-TiO(2)) were prepared by mixing varying concentrations of H(2)O(2 )and/or TiO(2 )photocatalyst with MB solution. For H(2)O(2)-containing solutions (VL-TiO(2)+H(2)O(2), UV-TiO(2)+H(2)O(2), and H(2)O(2)), the concentration of H(2)O(2) was adjusted to 3.5%. For the four different light sources, low- and high-intensity halogen lamps and blue LED LCUs were used. All the experimental solutions were irradiated by each of the light sources for 7 minutes, and the absorbance at 660 nm was measured every 30 seconds to determine the concentration of MB as an indicator of the bleaching effect. On the interaction between the effects of light source and bleaching treatment, the high-intensity halogen with VL-TiO(2)+H(2)O(2) caused the most significant reduction in MB concentration. On the effect of light sources, the halogen lamps resulted in a greater bleaching effect than the blue LED LCUs.

  14. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  15. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  16. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  17. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  18. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  19. Bright Lights: Big Experiments! A public engagement activity for international year of light

    NASA Astrophysics Data System (ADS)

    Downie, Jonathan; Morton, Jonathan A. S.; McCoustra, Martin R. S.

    2017-01-01

    The Bright Lights: Big Experiments! public engagement project enabled high school students Scottish S2 to prepare a short, 5 min video using their own words and in their own style to present a scientific experiment on the theme of light to their contemporaries via YouTube. This paper describes the various experiments that we chose to deliver and our experiences in delivering them to our partner schools. The results of pre- and post-activity surveys of both the pupils and teachers are presented in an effort to understand the impact of the project on the students, staff and their schools. The quality of the final video product is shown to be a key factor, increasing the pupils’ likelihood of pursuing science courses and participating in further science engagement activities. Analysis of the evaluation methods used indicate the need for more sensitive tools to provide further insight into the impact of this type of engagement activity.

  20. Melatonin administration modifies circadian motor activity under constant light depending on the lighting conditions during suckling.

    PubMed

    Carpentieri, Agata R; Oliva, Clara; Díez-Noguera, Antoni; Cambras, Trinitat

    2015-01-01

    Early lighting conditions have been described to produce long-term effects on circadian behavior, which may also influence the response to agents acting on the circadian system. It has been suggested that melatonin (MEL) may act on the circadian pacemaker and as a scavenger of reactive oxygen and nitrogen species. Here, we studied the oxidative and behavioral changes caused by prolonged exposure to constant light (LL) in groups of rats that differed in MEL administration and in lighting conditions during suckling. The rats were exposed to either a light-dark cycle (LD) or LL. At 40 days old, rats were treated for 2 weeks with a daily subcutaneous injection of MEL (10 mg/kg body weight) or a vehicle at activity onset. Blood samples were taken before and after treatment, to determine catalase (CAT) activity and nitrite level in plasma. As expected, LL-reared rats showed a more stable motor activity circadian rhythm than LD rats. MEL treatment produced more reactivity in LD- than in LL rats, and was also able to alter the phase of the rhythm in LD rats. There were no significant differences in nitrite levels or CAT activity between the groups, although both variables increased with time. Finally, we also tested depressive signs by means of sucrose consumption, and anhedonia was found in LD males treated with MEL. The results suggest that the lighting conditions in early infancy are important for the long-term functionality of the circadian system, including rhythm manifestation, responses to MEL and mood alterations.

  1. Promotion of sink activity of developing rose shoots by light.

    PubMed

    Mor, Y; Halevy, A H

    1980-11-01

    Holding young rose shoots (Rosa hybrida cv. Marimba) in darkness while the rest of the plant was in light reduced the amount of (14)C assimilates recovered from the darkened shoot by half. Relative specific activity of the shoot tip grown in light was 13.5 times greater than that of the darkened one. The flower bud at the shoot tip degenerated in darkness and died. Shoots 2 to 3 centimeters long, after flower initiation, were most sensitive to the dark treatment. The degeneration is a gradual and reversible process in the first 8 days of darkness, followed by irreversible damage and atrophy. Darkening enhanced the ability of the young leaves to compete for the available assimilates over that of the darkened shoot tip. The enhancement of the mobilizing ability of the shoot tip by light is independent of photosynthesis since spraying with 3-(3,4-dichlorophenyl)-1,1-dimethylurea or holding shoots in a CO(2)-free atmosphere did not diminish the promoting effect of light on flower bud development or assimilate import. The possibility that light exerts its effect by photoproduction of ATP was also excluded inasmuch as no differences were found in ATP levels of shoot tips held in darkness and those held in light.

  2. Beyond Photodynamic Therapy: Light-Activated Cancer Chemotherapy.

    PubMed

    Szymanski, Wiktor; Reeßing, Friederike

    2016-09-06

    Light-activatable cytotoxic agents present a novel approach in targeted cancer therapy. The selectivity in addressing cancer cells is a crucial aspect in minimizing unwanted side effects that stem from unspecific cytotoxic activity of cancer chemotherapeutics. Photoactivated chemotherapy is based on the use of inactive prodrugs whose biological activity is significantly increased upon exposure to light. As light can be delivered with a very high spatiotemporal resolution, this technique is a promising approach to selectively activate cytotoxic drugs at their site of action and thus to improve the tolerability and safety of chemotherapy. This innovative strategy can be applied to both cytotoxic metal complexes and organic compounds. In the first case, the photoresponsive element can either be part of the ligand backbone or be the metal center itself. In the second case, the activity of a known organic, cytotoxic compound is caged with a photocleavable protecting group, providing the release of the active compound upon irradiation. Besides these approaches, also the use of photoswitchable (photopharmacological) chemotherapeutics, which allow an "on" and "off" switching of biological activity, is being developed. The aim of this review is to present the current state of photoactivated cancer therapy and to identify its challenges and opportunities.

  3. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation

    PubMed Central

    Kubota, Shunsuke; Kurihara, Toshihide; Ebinuma, Mari; Kubota, Miyuki; Yuki, Kenya; Sasaki, Mariko; Noda, Kousuke; Ozawa, Yoko; Oike, Yuichi; Ishida, Susumu; Tsubota, Kazuo

    2010-01-01

    Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein−1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage. PMID:20709795

  4. General Model for Light Curves of Chromospherically Active Binary Stars

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Henry, G. W.; Lehtinen, J.

    2017-04-01

    The starspots on the surface of many chromospherically active binary stars concentrate on long-lived active longitudes separated by 180°. Shifts in activity between these two longitudes, the “flip-flop” events, have been observed in single stars like FK Comae and binary stars like σ Geminorum. Recently, interferometry has revealed that ellipticity may at least partly explain the flip-flop events in σ Geminorum. This idea was supported by the double-peaked shape of the long-term mean light curve of this star. Here we show that the long-term mean light curves of 14 chromospherically active binaries follow a general model that explains the connection between orbital motion, changes in starspot distribution, ellipticity, and flip-flop events. Surface differential rotation is probably weak in these stars, because the interference of two constant period waves may explain the observed light curve changes. These two constant periods are the active longitude period ({P}{act}) and the orbital period ({P}{orb}). We also show how to apply the same model to single stars, where only the value of P act is known. Finally, we present a tentative interference hypothesis about the origin of magnetic fields in all spectral types of stars. The CPS results are available electronically at the Vizier database.

  5. Vitamin A activates rhodopsin and sensitizes it to ultraviolet light.

    PubMed

    Miyazono, Sadaharu; Isayama, Tomoki; Delori, François C; Makino, Clint L

    2011-11-01

    The visual pigment, rhodopsin, consists of opsin protein with 11-cis retinal chromophore, covalently bound. Light activates rhodopsin by isomerizing the chromophore to the all-trans conformation. The activated rhodopsin sets in motion a biochemical cascade that evokes an electrical response by the photoreceptor. All-trans retinal is eventually released from the opsin and reduced to vitamin A. Rod and cone photoreceptors contain vast amounts of rhodopsin, so after exposure to bright light, the concentration of vitamin A can reach relatively high levels within their outer segments. Since a retinal analog, β-ionone, is capable of activating some types of visual pigments, we tested whether vitamin A might produce a similar effect. In single-cell recordings from isolated dark-adapted salamander green-sensitive rods, exogenously applied vitamin A decreased circulating current and flash sensitivity and accelerated flash response kinetics. These changes resembled those produced by exposure of rods to steady light. Microspectrophotometric measurements showed that vitamin A accumulated in the outer segments and binding of vitamin A to rhodopsin was confirmed in in vitro assays. In addition, vitamin A improved the sensitivity of photoreceptors to ultraviolet (UV) light. Apparently, the energy of a UV photon absorbed by vitamin A transferred by a radiationless process to the 11-cis retinal chromophore of rhodopsin, which subsequently isomerized. Therefore, our results suggest that vitamin A binds to rhodopsin at an allosteric binding site distinct from the chromophore binding pocket for 11-cis retinal to activate the rhodopsin, and that it serves as a sensitizing chromophore for UV light.

  6. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  7. Analysis of an Anomaly: The Increase in Time Float following Consumption

    PubMed Central

    Qi, Jianxun; Su, Zhixiong

    2014-01-01

    One fundamental axiom for project plan and schedule relates to the notion that time float will be reduced following its consumption. However, an anomalous scenario can emerge in which an activity's time float increases following its consumption. By exploring the associations between time float and paths in activity networks, we (a) reveal the conditions under which the anomaly occurs and (b) summarize laws related to total float. An activity's total float increases in parallel with its duration prolongation within a given boundary but remains constant or decreases in parallel with a prolongation outside the boundary. Furthermore, whereas a prolongation of an activity's duration in excess of classic total float does not delay project completion time, a lag of its start time to a degree slightly greater than the total float does. This analysis reveals different types of total float that correspond to different ways of usage. From this, we offer definitions for translation total float and prolongation total float that deviate from traditional conventions regarding the uniqueness of total float. PMID:25250376

  8. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  9. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  10. FLOPAK: FLOATING POINT PROGRAMING PACKAGE,

    DTIC Science & Technology

    FLOPAK is a Packard-Bell 250 Computer semi-automatic, floating - point programing system which may be operated simultaneously in either of two modes...250 floating - point system available which may be used in real-time control. The system was originally designed to solve a real-time communication problem....The first is a non-time optimized mode which may be used by inex perienced coders; the second mode is a high-speed, fully time-optimized floating

  11. Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele

    2016-09-01

    The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.

  12. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  13. Genetics Home Reference: Floating-Harbor syndrome

    MedlinePlus

    ... Understand Genetics Home Health Conditions Floating-Harbor syndrome Floating-Harbor syndrome Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Floating-Harbor syndrome is a disorder involving short stature, ...

  14. Floating-diffusion electrometer with adjustable sensitivity

    NASA Technical Reports Server (NTRS)

    Tower, John R. (Inventor)

    1989-01-01

    The effective capacitance of the floating diffusion in a floating-diffusion electrometer is modified to adjust electrometer sensitivity. This is done by changing the direct potential applied to a gate electrode proximate to the floating diffusion.

  15. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  16. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  17. Slow-light-enhanced gain in active photonic crystal waveguides.

    PubMed

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-30

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  18. Slow-light-enhanced gain in active photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  19. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    SciTech Connect

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-15

    LiBiO{sub 3}, NaBiO{sub 3}, MgBi{sub 2}O{sub 6}, KBiO{sub 3}, ZnBi{sub 2}O{sub 6}, SrBi{sub 2}O{sub 6}, AgBiO{sub 3}, BaBi{sub 2}O{sub 6} and PbBi{sub 2}O{sub 6} were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO{sub 3} resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO{sub 3} showed the highest activity, while LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation. - Graphical abstract: Nine pentavalent bismuthates were synthesized and were examined for their photocatalytic activities by decomposition of phenol under visible light irradiation. NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated faster decomposition rate than that of anatase (P25) under UV-vis light irradiation. Highlights: > KBiO{sub 3} decolorize methylene blue aqueous solution immediately within 5 min. > NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated high decomposition rate of phenol. > The d electron of Zn, Ag and Pb form broad conduction band. > The broad conduction band poses to diminish photocatalytic activity.

  20. Permeability of enamel following light-activated power bleaching.

    PubMed

    Turssi, Cecilia P; Schiavoni, Renato J; Serra, Monica C; Froner, Izabel C

    2006-01-01

    This study sought to ascertain whether in-office photocured bleaching techniques would increase permeability to enamel. A 7.1 mm2 circular area located in the middle third of the coronal portion of 90 human canines was isolated by applying an acid-resistant varnish to the remaining surfaces of the tooth. According to a randomized complete block design (n = 15), specimens were treated using a 35% hydrogen peroxide bleaching product activated by an integrated LED/diode laser (LED/laser) source or a quartz tungsten halogen (QTH) light. Bleaching was accomplished by applying the 35% hydrogen peroxide agent to the enamel surface in three 10-minute sessions, conducted at one-week intervals over a period of three weeks. For the photocured bleached groups, a bleaching agent was applied to the specimen and irradiated with the LED/laser device or the QTH light for 30 seconds. Negative control groups were exposed to artificial saliva or irradiated by the LED/laser device or the QTH light. Specimens were subjected to a histochemical coloring method that employed copper sulfate and dithio-oxamide solutions. Three 300-microm thick sections taken from the exposed area were imaged in an optical microscope. Permeability was measured in the digitized images as the percentage of copper ions penetration over the total enamel thickness. Friedman's test (alpha = 0.05) showed significant difference among groups. Least significant difference test revealed that in comparison with the group treated with 35% hydrogen peroxide only, there was no significant increase in enamel permeability when bleaching was activated by either the LED/laser or QTH light devices but all bleached groups showed higher permeability than the unbleached/nonirradiated group.

  1. BEST POSSIBLE FLOATING POINT ARITHMETIC.

    DTIC Science & Technology

    The report presents an algorithm for floating point arithmetic, using single-length arithmetic registers, which yields the most accurate...approximation which can be expressed in the given floating point format, the greatest lower bound, or the least upper bound for the result of the operation

  2. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  3. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  4. A Spinel Oxynitride with Visible-Light Photocatalytic Activity

    SciTech Connect

    Boppana, V.; Doren, D; Lobo, R

    2010-01-01

    Spinel zinc gallium oxynitride photocatalysts are prepared by the sol-gel method, at 550 C. In these materials, of base composition ZnGa{sub 2}O{sub 4} (octahedral Ga), reaction with ammonia leads to ZnGa{sub 2}O{sub x}N{sub y}, with a dramatic reduction of the bandgap to 2.7 eV, with just 1.3% N and no loss of Zn. At 850 C this phase is converted into wurzite (tetrahedral Ga). The novel oxynitrides also show visible-light photocatalytic activity towards the degradation of methylene blue.

  5. Light Activated Serotonin for Exploring Its Action in Biological Systems

    PubMed Central

    Rea, Adam C.; Vandenberg, Laura N.; Ball, Rebecca E.; Snouffer, Ashley A.; Hudson, Alicia G.; Zhu, Yue; McLain, Duncan E.; Johnston, Lindsey L.; Lauderdale, James D.; Levin, Michael; Dore, Timothy M.

    2013-01-01

    Summary Serotonin (5-HT) is a neuromodulator involved in regulating mood, appetite, memory, learning, pain, and establishment of left-right (LR) asymmetry in embryonic development. To explore the role of 5-HT in a variety of physiological contexts, we have created two forms of “caged” 5-HT, BHQ-O-5HT and BHQ-N-5HT. When exposed to 365- or 740-nm light, BHQ-O-5HT releases 5-HT through 1- or 2-photon excitation, respectively. BHQ-O-5HT mediated changes in neural activity in cultured primary sensory neurons from mouse and the trigeminal ganglion and optic tectum of intact zebrafish larvae in the form of high amplitude spiking in response to light. In Xenopus laevis embryos, 5-HT released from BHQ-O-5HT upon exposure to light increased the occurrence of LR patterning defects. Maximal rates of LR defects were observed when 5-HT was released at stage 5 compared to stage 8. These experiments show the potential for BHQ-caged serotonins in studying 5-HT-regulated physiological processes. PMID:24333002

  6. Alternative chromophores for use in light-activated surgical adhesives

    NASA Astrophysics Data System (ADS)

    Byrd, Brian D.; Heintzelman, Douglas L.; McNally-Heintzelman, Karen M.

    2003-06-01

    A study was conducted to determine the feasibility of using alternative chromophores in light-activated surgical adhesives. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40, blue #1, and green food coloring consisting of yellow #5 and blue #1. The study consisted of three components. First, the absorption profiles of the five chromophores, both diluted in deionized water and bound to protein, were recorded with a UV-Vis-NIR spectrophotometer. Second, the effect of accumulated thermal dosages on the stability of the absorption profiles was investigated. Third, the stability of the absorption profiles of the chromophore solutions when exposed to ambient light for an extended period of time was investigated. The peak absorption wavelengths of ICG, MB, red #40, and blue #1, were found to be 780 nm, 665 nm, 500 nm, and 630 nm respectively. The green food coloring had two absorption peaks at 417 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of the ICG shifted to 805 nm when bound to protein. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperatures up to 100 degrees C. Negligible change in absorption with accumulated thermal dose was observed for any of the three food colorings investigated. Photobleaching was observed in both ICG and MB solutions with exposure to a white light source. An 88% decrease in absorption was seen in ICG deionized water solution after 7 days of exposure with a corresponding 33% decrease in absorption seen in the MB deionized water solution. A negligible drop in absorption was observed from exposure to ambient light for a 12-week period with the three food colorings investigated.

  7. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-01

    LiBiO 3, NaBiO 3, MgBi 2O 6, KBiO 3, ZnBi 2O 6, SrBi 2O 6, AgBiO 3, BaBi 2O 6 and PbBi 2O 6 were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO 3 resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO 3 showed the highest activity, while LiBiO 3, SrBi 2O 6 and BaBi 2O 6 possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation.

  8. Floating Silicon Method

    SciTech Connect

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  9. Floating into Deep Space

    NASA Astrophysics Data System (ADS)

    La Frenais, R.; Saraceno, T.; Powell, J.

    2014-04-01

    Is it possible for spaceflight to become more sustainable? Artist and architect Tomas Saraceno proposes a long-term artscience research project based on his initial work with solar balloons to join with the efforts of engineers such as John Powell, working on the Airship to Orbit experiments, which describe a three stage process of using airships to fly to a large suborbital "Dark Sky Station' then literally floating into orbit with additional electrical and chemical propulsion. (See: http://www.jpaerospace.com) In his artworks Tomás Saraceno proposes cell-like flying cities as possible architectonic living spaces in direct reference to Buckminster Fuller's Cloud Nine (circa 1960). The fantastic architectural utopia Cloud Nine consists of a freely floating sphere measuring one mile in diameter that offers living space to several autonomous communities encompassing thousands of inhabitants each. The notion of the cloud is essential to the artist's work. The cloud as metaphor stands for artistic intention, for the meaning of territory and border in today's (urban) society, and for exploring possibilities for the sustainable development of the human living environment. In Saraceno's work this environment is not limited to the earth, but is explicitly conceived to reach into outer space. (Biomimetic Constructions- On the works of Tomás Saraceno By Katharina Schlüter) Saraceno is also interested in human factors experiments using his existing constructions as analogue environments for living on Mars and is proposing carry out a series of workshops, experiments and solar balloon launces in White Sands desert in early 2016 in collaboration with the curator Dr Rob La Frenais, the Rubin Center at The University of Texas at El Paso and various scientific partners.

  10. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-12-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields.

  11. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    PubMed Central

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-01-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields. PMID:26657168

  12. Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways

    PubMed Central

    2008-01-01

    Summary Cytokines mediate key communication pathways essential for regulation of immune responses. Full activation of antigen-responding lymphocytes requires cooperating signals from the tumor necrosis factor (TNF)-related cytokines and their specific receptors. LIGHT, a lymphotoxin-β (LTβ)-related TNF family member, modulates T-cell activation through two receptors, the herpesvirus entry mediator (HVEM) and indirectly through the LT-β receptor. An unexpected finding revealed a non-canonical binding site on HVEM for the immunoglobulin superfamily member, B and T lymphocyte attenuator (BTLA), and an inhibitory signaling protein suppressing T-cell activation. Thus, HVEM can act as a molecular switch between proinflammatory and inhibitory signaling. The non-canonical HVEM-BTLA pathway also acts to counter LTβR signaling that promotes the proliferation of antigen-presenting dendritic cells (DCs) within lymphoid tissue microenvironments. These results indicate LTβ receptor and HVEM-BTLA pathways form an integrated signaling circuit. Targeting these cytokine pathways with specific antagonists (antibody or decoy receptor) can alter lymphocyte differentiation and activation. Alternately, agonists directed at their cell surface receptors can restore homeostasis and potentially reset immune and inflammatory processes, which may be useful in treating autoimmune and infectious diseases and cancer. PMID:18613837

  13. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  14. Electrically floating, near vertical incidence, skywave antenna

    SciTech Connect

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  15. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  16. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  17. NULL convention floating point multiplier.

    PubMed

    Albert, Anitha Juliette; Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.

  18. Control development for floating wind

    NASA Astrophysics Data System (ADS)

    Savenije, Feike; Peeringa, Johan

    2014-06-01

    Control of a floating wind turbine has proven to be challenging, but essential for lowering the cost of floating wind energy. Topic of a recent joint R&D project by GustoMSC, MARIN and ECN, is the concept design and verification with coupled simulations and model tests of the GustoMSC Tri-Floater. Only using an integral design approach, including mooring and control design, a cost effective system can be obtained. In this project, ECN developed a general floating wind turbine control strategy and applied this in a case study to the GustoMSC Tri-Floater and the OC3Hywind spar, both equipped with the NREL 5MW RWT. The designed controller ensures stable operation, while maintaining proper speed and power regulation. The motions of the floating support are reduced and substantial load reduction has been achieved.

  19. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  20. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated.

  1. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  2. Effects of size and light on respiration and activity of walleye pollock (Theragra chalcogramma) larvae.

    PubMed

    Porter, S M.

    2001-01-31

    The respiration rate and swimming activity of walleye pollock (Theragra chalcogramma) larvae were measured in the laboratory to determine how these were affected by body size (measured as dry weight), and amount of light. Size influenced respiration rates, but not activity. Activity increased with increased light, and as walleye pollock larvae developed, light had an increasingly important effect on respiration rate. For older larvae, light is an important factor affecting respiration rate and this may be due to an increased sensitivity to light. Thus, in addition to size, light plays an important role in the energetics of walleye pollock larvae.

  3. The dying of the light: crepuscular activity in Culicoides and impact on light trap efficacy at temperate latitudes.

    PubMed

    Meiswinkel, R; Elbers, A R W

    2016-03-01

    The light trap is the tool of choice for conducting large-scale Culicoides (Diptera: Ceratopogonidae) vector surveillance programmes. Its efficacy is in doubt, however. To assess this, hourly changes in Culicoides activity over the 24-h diel were determined comparatively by way of light trapping and aerial sweeping, and correlated against light intensity. In the Netherlands, sweeping around cattle at pasture revealed that, in early summer, Culicoides are active throughout the diel, and that their abundance peaks during the crepuscular period and falls to a low during the brightest hours of the day. By contrast, the light trap was able to accumulate Culicoides only at night (i.e. after illuminance levels had dropped to 0 lux and midge activity had begun to decline). Although Culicoides chiopterus and species of the Culicoides obsoletus complex were similarly abundant around livestock, they differed critically in their hours of peak activity, being largely diurnal and nocturnal, respectively. This polarity helps to explain why, routinely, the C. obsoletus complex dominates light trap collections and C. chiopterus does not. Inability to accumulate Culicoides at light intensity levels above 0 lux means that, at ever-higher latitudes, particularly beyond 45° N, the progressive northward lengthening of the twilight period will have an increasingly adverse impact upon the efficacy of the light trap as a vector surveillance tool.

  4. Some Activities with Polarized Light from a Laptop LCD Screen

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    2008-01-01

    The LCD screen of a laptop computer provides a broad, bright, and extended source of polarized light. A number of demonstrations on the properties of polarized light from a laptop computer screens are presented here.

  5. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  6. Floating into Thin Air

    SciTech Connect

    Hazi, A U

    2007-02-06

    On May 18, 2005, a giant helium balloon carrying the High Energy Focusing Telescope (HEFT) sailed into the spring sky over the deserts of New Mexico. The spindly steel and aluminum gondola that houses the optics, detectors, and other components of the telescope floated for 25 hours after its launch from Fort Sumner, New Mexico. For 21 of those hours, the balloon was nearly 40 kilometers above Earth's surface--almost four times higher than the altitude routinely flown by commercial jet aircraft. In the upper reaches of Earth's atmosphere, HEFT searched the universe for x-ray sources from highly energetic objects such as binary stars, galaxy clusters, and supermassive black holes. Before landing in Arizona, the telescope observed and imaged a dozen scientific targets by capturing photons emitted from these objects in the high-energy (hard) x-ray range (above 10 kiloelectronvolts). Among these targets were the Crab synchrotron nebula, the black hole Cygnus X-1 (one of the brightest x-ray sources in the sky), and the blazar 3C454.3. The scientific data gathered from these targets are among the first focused hard x-ray images returned from high altitudes.

  7. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  8. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  9. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems

    PubMed Central

    Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila

    2014-01-01

    The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X1) and L-HPC (X2) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms. PMID:26702261

  10. Advanced Light Source activity report 1996/97

    SciTech Connect

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  11. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  12. Light Bridge in a Developing Active Region. II. Numerical Simulation of Flux Emergence and Light Bridge Formation

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Cheung, Mark C. M.; Katsukawa, Yukio

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  13. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. II. NUMERICAL SIMULATION OF FLUX EMERGENCE AND LIGHT BRIDGE FORMATION

    SciTech Connect

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  14. Effects of light intensity on activity in four sympatric anuran tadpoles.

    PubMed

    Ding, Guo-Hua; Lin, Zhi-Hua; Zhao, Li-Hua; Fan, Xiao-Li; Wei, Li

    2014-07-01

    Though light conditions are known to affect the development and anti-predation strategies of several aquatic species, relatively little is known about how different species react to light, or how light can affect these species during different points in their life-cycle. In this study, we used four sympatric anuran tadpoles (Bufo gargarizans, B. melanostictus, Pelophylax nigromaculatus and Microhyla fissipes) as animal system to examine species-specific activities of the underdoing different light intensity treatments, so as to better understand how they respond to light. We exposed four different species of tadpoles to 1660 and 14 lux light intensity treatments and then measured several parameters including development stage, body length and tail length, and as well as their basic activities. The results of this observation and analysis showed that the activities of tadpoles were significantly greater in B. gargarizans and B. melanostictus than in P. nigromaculatus and M. fissipes; and were also significantly greater during times of high light intensity as compared to during low light intensity. Moreover, the observed relationship between species and light intensity was significant. The activities of B. gargarizans and B. melanostictus tadpoles were greater in high light, while the activity of P. nigromaculatus tadpoles was greater in low light intensity, while M. fissipes tadpoles showed no differences in either low or high intensity light. Furthermore, the activities of B. gargarizans, B. melanostictus and M. fissipes tadpoles in terms of developmental stage, body size or tail length did not seem to differ with light intensity, but during early larval developmental period of P. nigromaculatus, the activity of tadpoles was negatively correlated with development stage, but irrelevant to either body size or tail length in different light intensities. These results lead us to conclude the observed activities of the four sympatric anuran tadpoles are closely

  15. A laboratory study of floating lenticular anticyclones

    NASA Astrophysics Data System (ADS)

    Le Gal, Patrice; de La Rosa, Hector; Cros, Anne; Cruz-Gomez, Raúl; Le Bars, Michael

    2014-11-01

    Oceanic vortices play an important role in the redistribution of heat, salt and momentum in the oceans. Among these vortices, floating lenses or rings are often met in the meanders of warm currents. For instance the North Brazil Current rings are among the most intense and large anticyclonic vortices on Earth. In order to better describe these vortices, we propose here a laboratory study of these floating anticyclonic lenses. A blob of fresh water is slowly injected near the surface of a rotating layer of homogeneous salted water. Because of the opposite effects of rotation that tends to generate columnar structures and density stratification that spreads light water on the surface, the vortices take a finite size three dimensionnal typical shape. Visualization and PIV measurements of the shape, aspect ratios and vorticity profiles are compared to analytical predictions that use first a simple solid body rotation model and then a more realistic isolated Gaussian vorticity field inside the anticyclones. This work was carried out within the framework of a bilateral cooperation between CNRS (France) and CONACYT (Mexico).

  16. Detection of Floating Inputs in Logic Circuits

    NASA Technical Reports Server (NTRS)

    Cash, B.; Thornton, M. G.

    1984-01-01

    Simple modification of oscilloscope probe allows easy detection of floating inputs or tristate outputs in digital-IC's. Oscilloscope probe easily modified with 1/4 W resistor and switch for detecting floating inputs in CMOS logic circuits.

  17. Strength Tests on Hulls and Floats

    NASA Technical Reports Server (NTRS)

    Matthaes, K

    1942-01-01

    The present report deals with strength tests on hulls and floats intended in part for the collection of construction data for the design of these components and in part for the stress analysis of the finished hulls and floats.

  18. 33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS Facility safety zone. 147.815 Section 147.815 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone....

  19. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase.

    PubMed

    Gasser, Carlos; Taiber, Sandra; Yeh, Chen-Min; Wittig, Charlotte Helene; Hegemann, Peter; Ryu, Soojin; Wunder, Frank; Möglich, Andreas

    2014-06-17

    Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.

  20. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  1. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  2. Outreach activities on light science and technology at TecnOpto-UMH during the International Year of Light

    NASA Astrophysics Data System (ADS)

    Sánchez-López, María. del Mar; García-Martínez, Pascuala; Espinosa, Rocío.; Carnicer, Jesús; Arias, Julia; Moreno, Ignacio

    2016-09-01

    TecnOpto is a group of researchers and teachers with interests in Optics and Photonics, located at the University Miguel Hernández (UMH) of Elche (Spain). Here we report on our outreach activities carried out during the International Year of Light - 2015. They include experiments and demonstrations at elementary and secondary schools, seminars and exhibitions at the university, and the activity named the "Classroom for the Experience", targeted to elder people. We also report on our participation in the science fair in Elche and in the launching of "the Room of Light", a complete new section of the MUDIC science museum devoted to light and optics. MUDIC is located in the UMH campus of Orihuela, and receives visitors from all over the region, mainly young students from elementary and secondary schools. Finally, we report on the exhibition "Women in Light Science and Light Technologies" which was organized by members of our group in collaboration with RSEF - the Spanish Royal Physical Society and SEDOPTICA - the Spanish Optical Society and sponsored by SPIE. This exhibition consisting of twelve posters on relevant women scientists was inaugurated in the XI Spanish Meeting on Optics and has travelled around many universities and cultural centers in Spain. A summary of the contents, participation and developing of all these activities is presented.

  3. New Directions in Floating-Point Arithmetic

    NASA Astrophysics Data System (ADS)

    Beebe, Nelson H. F.

    2007-12-01

    This article briefly describes the history of floating-point arithmetic, the development and features of IEEE standards for such arithmetic, desirable features of new implementations of floating-point hardware, and discusses work-in-progress aimed at making decimal floating-point arithmetic widely available across many architectures, operating systems, and programming languages.

  4. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or beach any boat, barge, or other floating object...

  5. Have Floating Rates Been a Success?

    ERIC Educational Resources Information Center

    Higham, David

    1983-01-01

    Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)

  6. Airship-floated wind turbine

    SciTech Connect

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether line system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.

  7. Floating Ring-Groove Lapper

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., Sr.; Williams, Robert L., Jr.; Chase, Timothy L.

    1992-01-01

    Tool fits out-of-round seal groove and laps it to fine finish without binding. Includes floating lapping pieces riding freely in groove, and are curved to match nominal diameter of groove. One lapping piece tightened so it does not move relative to disk.

  8. Designing seaplane hulls and floats

    NASA Technical Reports Server (NTRS)

    Benoit,

    1926-01-01

    Experimental data, such as the results of tank tests of models, render it possible to predict, at least in principle, as to how a hull or float of a given shape will comport itself. We will see further along, however, how uncertain these methods are and how they leave room for empiricism, which will reign for a long time yet in seaplane research bureaus.

  9. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  10. Optoelectronic Chaos in a Simple Light Activated Feedback Circuit

    NASA Astrophysics Data System (ADS)

    Joiner, K. L.; Palmero, F.; Carretero-González, R.

    The nonlinear dynamics of an optoelectronic negative feedback switching circuit is studied. The circuit, composed of a bulb, a photoresistor, a thyristor and a linear resistor, corresponds to a nightlight device whose light is looped back into its light sensor. Periodic bifurcations and deterministic chaos are obtained by the feedback loop created when the thyristor switches on the bulb in the absence of light being detected by the photoresistor and the bulb light is then looped back into the nightlight to switch it off. The experimental signal is analyzed using tools of delay-embedding reconstruction that yield a reconstructed attractor with fractional dimension and positive Lyapunov exponent suggesting chaotic behavior for some parameter values. We construct a simple circuit model reproducing experimental results that qualitatively matches the different dynamical regimes of the experimental apparatus. In particular, we observe an order-chaos-order transition as the strength of the feedback is varied corresponding to varying the distance between the nightlight bulb and its photo-detector. A two-dimensional parameter diagram of the model reveals that the order-chaos-order transition is generic for this system.

  11. 33 CFR 144.01-10 - Equipment for life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Equipment for life floats. 144.01-10 Section 144.01-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-10...

  12. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Alternates for life floats. 144.01-15 Section 144.01-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-15...

  13. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate.

    PubMed

    Luarte, T; Bonta, C C; Silva-Rodriguez, E A; Quijón, P A; Miranda, C; Farias, A A; Duarte, C

    2016-11-01

    The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.

  14. Synthesis and polymorphic control for visible light active titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaewgun, Sujaree

    Titania (TiO2) is useful for many applications in photocatalysis, antimicrobials, pigment, deodorization, and decomposition of harmful organics and undesirable compounds in the air and waste water under UV irradiation. Among the three phases of TiO2, Rutile, Anatase, and Brookite, studies have been more focused on the anatase and rutile phases. Pure brookite is the most difficult phase to prepare, even under hydrothermal conditions. Predominantly brookite phase TiO2 nanoparticles were prepared by the Water-based Ambient Condition Sol (WACS) process in our laboratory. The objectives of this research were to enhance visible light active (VLA) photocatalytic properties of polymorphic brookite TiO2 by minimizing the lattice defects and narrowing band gap of titania by nitrogen and/or carbon chromophone, and to investigate the deactivation, reusability, and regeneration of the VLA titania in order to design better titania catalysts for organic compound degradation applications. In order to study the influence of hydroxyl content on photocatalytic activities (PCAs) of polymorphic titania nanoparticles, the WACS samples were post-treated by a Solvent-based Ambient Condition Sol (SACS) process in sec-butanol (sec-BuOH). All samples were characterized for phase composition, surface area, hydroxyl contamination, and particle morphology by x-ray diffraction, N2 physisorption, FT-IR, solid state 1H NMR and scanning electron microscopy, and then compared to a commercial titania, Degussa P25. Evaluation of methyl orange (MO) degradation under UV irradiation results showed that the lower lattice hydroxyl content in SACS titania enhanced the PCA. As-prepared titania and SACS samples, which have similar surface areas and crystallinity, were compared in order to prove that the superior PCA came from the reduction in the lattice hydroxyl content. To enhance PCA and VLA properties of WACS, an alternative high boiling point polar solvent, N-methylpyrrolidone (NMP), was utilized in the

  15. Will My Fossil Float?

    ERIC Educational Resources Information Center

    Riesser, Sharon; Airey, Linda

    1993-01-01

    Explains how young students can be introduced to fossils. Suggests books to read and science activities including "Fossils to Eat" where students make fossils from peanut butter, honey, and powdered milk. (PR)

  16. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  17. A Variable Light Domain Fluorogen Activating Protein Homodimerizes To Activate Dimethylindole Red

    SciTech Connect

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B.

    2012-07-11

    Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V{sub H}) and variable light (V{sub L}) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V{sub H}-V{sub L} M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V{sub L} domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V{sub L} forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V{sub L} homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V{sub H}-V{sub L} M8 and M8V{sub L}, led us to rationally design tandem, covalent homodimers of M8V{sub L} domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.

  18. LIGHT, a member of the TNF superfamily, activates Stat3 mediated by NIK pathway

    SciTech Connect

    Nadiminty, Nagalakshmi; Chun, Jae Yeon; Hu, Yan; Dutt, Smitha; Lin, Xin; Gao, Allen C. . E-mail: allen.gao@roswellpark.org

    2007-07-27

    Stat3, a member of the signal transducers and activators of transcription (STAT) family, is a key signal transduction protein activated by numerous cytokines, growth factors, and oncoproteins that controls cell proliferation, differentiation, development, survival, and inflammation. Constitutive activation of Stat3 has been found frequently in a wide variety of human tumors and induces cellular transformation and tumor formation. In this study, we demonstrated that LIGHT, a member of tumor necrosis factor superfamily, activates Stat3 in cancer cells. LIGHT induces dose-dependent activation of Stat3 by phosphorylation at both the tyrosine 705 and serine 727 residues. The activation of Stat3 by LIGHT appears to be mediated by NIK phosphorylation. Expression of a kinase-inactive NIK mutant abolished LIGHT induced Stat3 activation. Overexpression of an active NIK induces Stat3 activation by phosphorylation at the both tyrosine 705 and serine 727 residues. Activation of Stat3 by NIK requires NIK kinase activity as showed by kinase assays. In addition, LIGHT increases the expression of Stat3 target genes including cyclin D1, survivin, and Bcl-xL, and stimulates human LNCaP prostate cancer cell growth in vitro which can be blocked by expression of a dominant-negative Stat3 mutant. Taken together, these results indicate that in addition to activating NF-{kappa}B/p52, LIGHT also activates Stat3. Activation of Stat3 together with activating non-canonical NF-{kappa}B/p52 signaling by LIGHT may maximize its effects on cellular proliferation, survival, and inflammation.

  19. A CMOS floating point multiplier

    NASA Astrophysics Data System (ADS)

    Uya, M.; Kaneko, K.; Yasui, J.

    1984-10-01

    This paper describes a 32-bit CMOS floating point multiplier. The chip can perform 32-bit floating point multiplication (based on the proposed IEEE Standard format) and 24-bit fixed point multiplication (two's complement format) in less than 78.7 and 71.1 ns, respectively, and the typical power dissipation is 195 mW at 10 million operations per second. High-speed multiplication techniques - a modified Booth's allgorithm, a carry save adder scheme, a high-speed CMOS full adder, and a modified carry select adder - are used to achieve the above high performance. The chip is designed for compatibility with 16-bit microcomputer systems, and is fabricated in 2 micron n-well CMOS technology; it contains about 23000 transistors of 5.75 x 5.67 sq mm in size.

  20. Biological activity of photoproducts of merocyanine 540 generated by laser-light activation

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Chanh, Tran C.; Pervaiz, Shazib; Harriman, Anthony; Matthews, James Lester

    1992-08-01

    Controlled exposure of photoactive compounds to light prior to their use in biological targets results in the formation of heretofore unknown photoproducts. This process of photoproduct generation, termed "preactivation," renders the photactive compound capable of systemic use without further dependence on light. Preactivation of mercyanin 540 (MC540) and several other photoactive compounds is achievable by exposure to CW and pulse laser radiation. The singlet oxygen generated at excited states attacks the dye molucule itself, resulting in the formation of biologically active photoproducts. For preactivated MC540 (photoproducts of MC540) generated by exposure to argon laser light (514 nm) and light from free-electron laser, we have demonstrated its effectiveness in selective killing of certain types of cultured tumor cells as well as human immunodeficiency virus type 1 (HIV-1) with very low, if any, damage to normal cells and tisues. For example, approximately 90% of the Burkitt's lymphoma Daudi cells and HL-60 leukemic cells are killed by preactivated MC540 at a concentration of 120 μg/ml. A two-hour treatment of cultured cells with buthionine sulfoxamine followed by the treatement with preactivated MC540 reults in 99.99% inhibition of clonogenic tumor stem cell growth. We also have demonstrated that preactivated MC540 is very effective in killing cell-free and cell-associated HIV-1. It also is very effective in killing HIV-1 and simian immunodeficiency virus (SIV) in virus-infected blood in vitro as determined by reverse transcriptase, P24, P17, core antigen expression and synctium formation. Treatment of HIV-1 with preactivated MC540 renders the treated HIV-1 incapable of binding to CD4 target molecules on T cells as determined by immunofluorescence and radioimmunoprecipitation assays. In vivo toxicology studies show that preactivated MC540 is very well tolerated and does not produce any signs of adverse reaction at the therapeutic doses, as determined by

  1. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  2. Night-Time Light Data: A Good Proxy Measure for Economic Activity?

    PubMed Central

    Mellander, Charlotta; Lobo, José; Stolarick, Kevin; Matheson, Zara

    2015-01-01

    Much research has suggested that night-time light (NTL) can be used as a proxy for a number of variables, including urbanization, density, and economic growth. As governments around the world either collect census data infrequently or are scaling back the amount of detail collected, alternate sources of population and economic information like NTL are being considered. But, just how close is the statistical relationship between NTL and economic activity at a fine-grained geographical level? This paper uses a combination of correlation analysis and geographically weighted regressions in order to examine if light can function as a proxy for economic activities at a finer level. We use a fine-grained geo-coded residential and industrial full sample micro-data set for Sweden, and match it with both radiance and saturated light emissions. We find that the correlation between NTL and economic activity is strong enough to make it a relatively good proxy for population and establishment density, but the correlation is weaker in relation to wages. In general, we find a stronger relation between light and density values, than with light and total values. We also find a closer connection between radiance light and economic activity, than with saturated light. Further, we find the link between light and economic activity, especially estimated by wages, to be slightly overestimated in large urban areas and underestimated in rural areas. PMID:26496428

  3. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  4. Float zone experiments in space

    NASA Technical Reports Server (NTRS)

    Verhoeven, J. D.; Noack, M. A.; Gill, W. N.; Hau, C. C.

    1984-01-01

    The molten zone/freezing crystal interface system and all the mechanisms were examined. If Marangoni convection produces oscillatory flows in the float zone of semiconductor materials, such as silicon, then it is unlikely that superior quality crystals can be grown in space using this process. The major goals were: (1) to determine the conditions for the onset of Marangoni flows in molten tin, a model system for low Prandtl number molten semiconductor materials; (2) to determine whether the flows can be suppressed by a thin oxide layer; and (3) based on experimental and mathematical analysis, to predict whether oscillatory flows will occur in the float zone silicon geometry in space, and if so, could it be suppressed by thin oxide or nitride films. Techniques were developed to analyze molten tin surfaces in a UHV system in a disk float zone geometry to minimize buoyancy flows. The critical Marangoni number for onset of oscillatory flows was determined to be greater than 4300 on atomically clean molten tin surfaces.

  5. Float Zone Experiments in Space

    NASA Technical Reports Server (NTRS)

    Verhoeven, J. D.

    1985-01-01

    The objective of this work has been to evaluate whether or not Marangoni flow could be suppressed in molten metals by the presence of very thin oxide films. Experimental work has been carried out on molten Sn under UHV conditions. A disk floating zone arrangement was developed to allow in situ Auger examination of molten surfaces. An electron energy loss technique was developed which allows detection of continuous tin oxide films of 6 A or greater. Experiments were planned to detect the effects of oxide formation upon Marangoni flow by measuring: (1) temperature profiles, (2) solid liquid interface shapes, (3) macrosegregation, and (4) the onset of oscillatory Marangoni flow by detecting oscillating temperature variations. Work on (4) showed that oscillatory temperature variations of frequency or = 10 Hz were not present in the disk float zone geometry under conditions of Ma = 4300 with an oxide free molten surface. The disk float zone geometry was modeled with a finite element analysis and temperature and velocity profiles were determined.

  6. Active control of light based on polarization-coupling cascading

    NASA Astrophysics Data System (ADS)

    Huo, Juan; Zheng, Yuanlin; Chen, Xianfeng

    2014-10-01

    In this letter, we proposed a novel method for optical manipulation based on polarization-coupling cascading in MgO-doped periodically poled lithium niobate crystal. Polarization-coupling cascading, a series of energy exchanges between two orthogonally polarized beams close to phase matching condition, can also lead to phase shifts, in analogy with that in cascaded second-order nonlinearities. In addition, the parameters of light such as phase, amplitude, and group velocity can be modulated by changing the relative power ratio of the incident continuous wave beams. The phase control was demonstrated by Newton's rings experiment, which was in good agreement with the theoretical prediction.

  7. Near-infrared light activated delivery platform for cancer therapy.

    PubMed

    Lin, Min; Gao, Yan; Hornicek, Francis; Xu, Feng; Lu, Tian Jian; Amiji, Mansoor; Duan, Zhenfeng

    2015-12-01

    Cancer treatment using conventional drug delivery platforms may lead to fatal damage to normal cells. Among various intelligent delivery platforms, photoresponsive delivery platforms are becoming popular, as light can be easily focused and tuned in terms of power intensity, wavelength, and irradiation time, allowing remote and precise control over therapeutic payload release both spatially and temporally. This unprecedented controlled delivery manner is important to improve therapeutic efficacy while minimizing side effects. However, most of the existing photoactive delivery platforms require UV/visible excitation to initiate their function, which suffers from phototoxicity and low level of tissue penetration limiting their practical applications in biomedicine. With the advanced optical property of converting near infrared (NIR) excitation to localized UV/visible emission, upconversion nanoparticles (UCNPs) have emerged as a promising photoactive delivery platform that provides practical applications for remote spatially and temporally controlled release of therapeutic payload molecules using low phototoxic and high tissue penetration NIR light as the excitation source. This article reviews the state-of-the-art design, synthesis and therapeutic molecular payload encapsulation strategies of UCNP-based photoactive delivery platforms for cancer therapy. Challenges and promises for engineering of advanced delivery platforms are also highlighted.

  8. Effect of light on the development of the circadian rhythm of motor activity in the mouse.

    PubMed

    Canal-Corretger, M M; Vilaplana, J; Cambras, T; Díez-Noguera, A

    2001-07-01

    In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than chose raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker.

  9. 76 FR 10564 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... the Station's optical light system. The Station, which is listed in the National Park Service's... glazing); (3) maintenance activities (e.g., bulb replacement and automation of the light system); and (4) human presence, may have the potential to cause any pinnipeds hauled out on NWSR to flush into...

  10. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  11. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  12. A horizontal parallax table-top floating image system with freeform optical film structure

    NASA Astrophysics Data System (ADS)

    Chou, Ping-Yen; Huang, Yi-Pai; Liao, Chien-Chung; Chang, Chuan-Chung; Chuang, Fu-Ming Fleming; Tsai, Chao-Hsu

    2016-06-01

    In this paper, a new structure of horizontal parallax light field 3D floating image display system was proposed. The structure consists of pico-projectors, Fresnel lens, micro-lens array and sub-lens array with freeform shape. By the functions of optical components, each light field of projectors could be controlled as a fan ray, which has high directivity in horizontal and wide scattered angle in vertical. Furthermore, according to the reverse light tracing and integral image display technique, horizontal parallax floating 3D could be demonstrated in the system. Simulated results show that the proposed 3D display structure has a good image quality and the crosstalk is also limited below 22.9%. Compared with other 3D technologies, this structure could have more benefits, including displaying real high resolution floating image, unnecessary of physical hardware on the image plane, scalability of large size system, without the noise from spinning component, and so on.

  13. Floating Point Multiply-Add-Subtract Implementation

    DTIC Science & Technology

    2014-11-07

    implementation receives two floating point numbers Ain and Bin. The floating point number is separated into component parts for processing. For this purpose...in FIG. 2 the mantissa of Ain is identified as Aman, and the mantissa of Bin is identified as Bman. The exponent of Ain is identified as Aexp, and...unit implementation 10 receives Ain and Bin in a floating point format that can be broken up into signs, mantissas, and exponents. These numbers

  14. Tank Tests of Twin Seaplane Floats

    NASA Technical Reports Server (NTRS)

    Herrman, H; Kempf, G; Kloess, H

    1928-01-01

    The following report contains the most essential data for the hydrodynamic portion of the twin-float problem. The following points were successfully investigated: 1) difference between stationary and nonstationary flow; 2) effect of the shape of the step; 3) effect of distance between floats; 4) effect of nose-heavy and tail-heavy moments; 5) effect of the shape of floats; 6) maneuverability.

  15. Acoustic Float for Marine Mammal Monitoring

    DTIC Science & Technology

    2009-09-30

    a matured technology, and is manufactured mainly by two companies, Webb Research (APEX) and Martec (PROVOR). Our original acoustic float, the...adding another microprocessor inside the float as originally planned, we have reprogrammed the APEX float processor board itself (apf9) by changing... echolocation clicks. The analysis revealed that by using ICI information, the ERMA detector was able to reduce the number of false positive detections to less

  16. The impact on seaplane floats during landing

    NASA Technical Reports Server (NTRS)

    Von Karman, TH

    1929-01-01

    In order to make a stress analysis of seaplane floats, and especially of the members connecting the floats with the fuselage, it is of great importance to determine the maximum pressure acting on the floats during landing. Here, the author gives a formula for maximum pressures during landing that permits one to apply experimental results to different bodies and different velocities. The author notes that the formula checks very well with experimental results.

  17. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem

    PubMed Central

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-01-01

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. DOI: http://dx.doi.org/10.7554/eLife.17023.001 PMID:27400267

  18. Modeling International Space Station (ISS) Floating Potentials

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Gardner, Barbara

    2002-01-01

    The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.

  19. Modeling International Space Station (ISS) Floating Potentials

    NASA Astrophysics Data System (ADS)

    Ferguson, Dale C.; Gardner, Barbara

    2002-05-01

    The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.

  20. Judging disease activity in rheumatoid arthritis by serum free kappa and lambda light chain levels.

    PubMed

    Ye, Yun; Li, Su-Liang; Xie, Ming; Jiang, Ping; Liu, Kai-Ge; Li, Ya-Jun

    2013-10-01

    The study aimed to evaluate the levels of serum free kappa (κ) and lambda (λ) light chains in patients with rheumatoid arthritis (RA) as well as exploring the association between serum free κ and λ light chains and activity of RA. For this purpose, healthy individuals and patients with active RA and RA in remission were enrolled, and their serum levels of free κ and λ light chains were measured using rate nephelometry. The diagnostic accuracy of serum free κ and λ light chains was evaluated by receiver operating characteristic curves and 95% confidence intervals for areas under the curve (AUC). The results obtained indicated that the levels of serum free κ and λ light chains in patients with active RA were significantly higher than those of patients in remission and of healthy controls (p < 0.05). Further, the AUC values in patients with active RA were 0.871 for free κ light chain and 0.781 for free λ light chain. When the optimal cut-off point for serum κ light chain was 8.02 g/L, the maximum sensitivity and specificity were 82.5% and 82.5%, respectively, and when the optimal cut-off point for serum λ light chain was 3.57 g/L, the maximum sensitivity and specificity were 80% and 82.5%, respectively. It was thus found that serum levels of free κ and λ light chains were positively correlated with disease activity in RA, the Disease Activity Score 28 (DAS28), and values for C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), platelet count (PLT), rheumatoid factor (RF), and anticitrullinated protein antibody (ACPA) (p < 0.05). In conclusion, high serum levels of free κ and λ light chains in patients with active RA are closely correlated with disease activity parameters including DAS28, CRP, ESR, PLT, RF, and ACPA. Thus, the above-mentioned levels of serum free κ and λ light chains may be used as important indicators of activity of RA.

  1. Young Scientists Explore Light & Color. Book 12--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of light and color. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  2. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light.

    PubMed

    Jones, Matthew Alan; Hu, Wei; Litthauer, Suzanne; Lagarias, J Clark; Harmer, Stacey Lynn

    2015-09-01

    The sensitivity of the circadian system to light allows entrainment of the clock, permitting coordination of plant metabolic function and flowering time across seasons. Light affects the circadian system via both photoreceptors, such as phytochromes and cryptochromes, and sugar production by photosynthesis. In the present study, we introduce a constitutively active version of phytochrome B-Y276H (YHB) into both wild-type and phytochrome null backgrounds of Arabidopsis (Arabidopsis thaliana) to distinguish the effects of photoreceptor signaling on clock function from those of photosynthesis. We find that the YHB mutation is sufficient to phenocopy red light input into the circadian mechanism and to sustain robust rhythms in steady-state mRNA levels even in plants grown without light or exogenous sugars. The pace of the clock is insensitive to light intensity in YHB plants, indicating that light input to the clock is constitutively activated by this allele. Mutation of YHB so that it is retained in the cytoplasm abrogates its effects on clock function, indicating that nuclear localization of phytochrome is necessary for its clock regulatory activity. We also demonstrate a role for phytochrome C as part of the red light sensing network that modulates phytochrome B signaling input into the circadian system. Our findings indicate that phytochrome signaling in the nucleus plays a critical role in sustaining robust clock function under red light, even in the absence of photosynthesis or exogenous sources of energy.

  3. Solar Active Longitudes from Kodaikanal White-light Digitized Data

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar

    2017-01-01

    The study of solar active longitudes has generated great interest in recent years. In this work we have used a unique, continuous sunspot data series obtained from the Kodaikanal observatory and revisited the problem. An analysis of the data shows a persistent presence of active longitudes during the whole 90 years of data. We compared two well-studied analysis methods and presented their results. The separation between the two most active longitudes is found be roughly 180° for the majority of time. Additionally, we also find a comparatively weaker presence of separations at 90° and 270°. The migration pattern of these active longitudes as revealed by our data is found to be consistent with the solar differential rotation curve. We also study the periodicities in the active longitudes and found two dominant periods of ≈1.3 and ≈2.2 years. These periods, also found in other solar proxies, indicate their relation with the global solar dynamo mechanism.

  4. Time place learning and activity profile under constant light and constant dark in zebrafish (Danio rerio).

    PubMed

    Moura, Clarissa de Almeida; Lima, Jéssica Polyana da Silva; Silveira, Vanessa Augusta Magalhães; Miguel, Mário André Leocadio; Luchiari, Ana Carolina

    2017-05-01

    The ability to learn about the signs of variability in space and time is known as time place learning (TPL). To adjust their circadian rhythms, animals use stimuli that change regularly, such as the light-dark cycle, temperature, food availability or even social stimuli. Because light-dark cycle is the most important environmental temporal cue, we asked how a diurnal animal would perform TPL if this cue was removed. Zebrafish has been extensively studied in the chronobiology area due to it diurnal chronotype, thus, we studied the effects of constant light and constant dark on the time-place learning and activity profile in zebrafish. Our data show that while under constant light and dark condition zebrafish was not able of TPL, after 30days under the constant conditions, constant light led to higher activity level and less significant (robust) 24h rhythm.

  5. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  6. Light and Excess Manganese1

    PubMed Central

    González, Alonso; Steffen, Kenneth L.; Lynch, Jonathan P.

    1998-01-01

    The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype. PMID:9765534

  7. BLOCK-FLOATING-POINT REALIZATION OF DIGITAL FILTERS

    DTIC Science & Technology

    A realization for digital filters using block- floating - point arithmetic is proposed. A statistical model for roundoff noise is presented and used to compare block- floating - point with fixed-point and floating - point realizations.

  8. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  9. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  10. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  11. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  12. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  13. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  14. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  15. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential that might be developed at the maximum altitude for which certification with that float is...

  16. Floating patella associated with lymphoedema

    PubMed Central

    Vun, Shen Hwa; Bayam, Levent; Drampalos, Efstathios; Jesry, Mohammed; Fadel, George

    2015-01-01

    Ipsilateral injury of more than one component of the knee extensor apparatus is rare. It is mostly associated with previous trauma, surgery, immunosuppression therapy and systemic disease. We present the first documented case of a spontaneous bifocal disruption of the knee extensor apparatus (i.e. floating patella) associated with lymphoedema. This case highlights the importance of considering lymphoedema as another risk factor for rupture of the knee extensor apparatus. It also highlights the importance of assessing all components of the knee extensor apparatus in patients presenting with acute knee injuries. PMID:25802253

  17. Self-stabilizing floating tower

    SciTech Connect

    Mougin, G.L.

    1980-12-30

    An offshore floating tower comprises two coaxial cylindrical enclosures interconnected by continuous radial bulkheads forming in the upper portion a ring of damping chambers and in the lower portion a ring of buoyancy tanksaround a bell-shaped chamber which is partially filled with air to produce pneumatic damping of vertical movement of the tower. The upper portion of the tower is separated from the lower portion by a horizontal slab. The upper portion of the internal enclosure is perforated in the vicinity of the horizontal slab.

  18. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light.

    PubMed

    Li, Hao; Guo, Sijie; Li, Chuanxi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-05-13

    The phosphate functionalized carbon dots (PCDs) with high biocompatibility and low toxicity can be used as efficient additives for the construction of laccase/PCDs hybrids catalyst. A series of experiments indicated that the activity of laccase/PCDs was higher than that of free laccase (increased by 47.7%). When laccase/PCDs hybrids catalyst was irradiated with visible light (laccase/PCDs-Light), its activity was higher than that of laccase/PCDs hybrids without light irradiation (increased by 92.1%). In the present system, the T1 Cu in laccase was combined with the phosphate group on PCDs, which can increase binding capacity of laccase/PCDs hybrids and substrate. Further, the visible light irradiation increased the donating and accepting electronic capability of the laccase/PCDs hybrids, improving their catalytic activity.

  19. Activating neurons by light in free-moving adult flies

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chin; Hsiao, Po-Yen; Chu, Li-An; Lin, Yen-Yin; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    In this presentation, we show our preliminary results which is related to neurons activation in vivo by laser. A laser scanning system was adopted to guide laser beam to an assigned fly and an assigned position. A 473-nm laser can be a heat punishment source to restrain a wild-type fly's moving area. Furthermore, neurons in optogenetics transgene flies can be triggered by the blue laser in this system.

  20. Evaluation of dentin permeability after light activated internal dental bleaching.

    PubMed

    Carrasco, Laise Daniela; Zanello Guerisoli, Danilo M; Pécora, Jesus Djalma; Fröner, Izabel Cristina

    2007-02-01

    The aim of this in vitro study was to assess quantitatively the dentin permeability of human teeth after intracoronal bleaching therapy with 35% hydrogen peroxide activated by LEDs, halogen lamp or using the walking bleach technique. Forty human maxillary central incisors had standard access cavities performed and the cervical thirds of the canals were prepared with Gates-Glidden drills up to a size 130. Roots were resected between the coronal and middle thirds and the apical portions were discarded. A glass ionomer, 2 mm thick cervical plug was placed inside the canal, at the cement-enamel junction level. Group I received 35% hydrogen peroxide gel activated by LEDs. Group II was submitted to 35% hydrogen peroxide gel activated by halogen lamp. Group III received 35% hydrogen peroxide gel and the walking bleach technique was followed. Group IV (control) received a dry cotton pellet inside the pulp chamber with temporary restoration. Dentinal permeability was quantified by copper ion penetration. Linear measurements were obtained by analysis of digital images under x 5 magnification. Mean values and SD for the experimental groups were: I, 7.1% (+/-3.2%); II, 8.4% (+/-3.0%); III, 9.1% (+/-3.0%); IV, 1.3% (+/-2.8%). One-way ANOVA was used to analyze the results. Results showed an increase of permeability values for groups I, II and III when compared to group IV (control); however, no statistical differences were found between the three tested bleaching techniques. It can be concluded that 35% hydrogen peroxide activated by LED, halogen lamp or used following the walking bleach technique produced similar increase in dentinal permeability.

  1. Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors.

    PubMed

    Kim, Kyung-Tai; Song, Mi-Ryoung

    2016-10-28

    Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.

  2. Daily activity and light exposure levels for five species of lemurs at the Duke Lemur Center.

    PubMed

    Rea, Mark S; Figueiro, Mariana G; Jones, Geoffrey E; Glander, Kenneth E

    2014-01-01

    Light is the primary synchronizer of all biological rhythms, yet little is known about the role of the 24-hour luminous environment on nonhuman primate circadian patterns, making it difficult to understand the photic niche of the ancestral primate. Here we present the first data on proximate light-dark exposure and activity-rest patterns in free-ranging nonhuman primates. Four individuals each of five species of lemurs at the Duke Lemur Center (Eulemur mongoz, Lemur catta, Propithecus coquereli, Varecia rubra, and Varecia variegata variegata) were fitted with a Daysimeter-D pendant that contained light and accelerometer sensors. Our results reveal common as well as species-specific light exposure and behavior patterns. As expected, all five species were more active between sunrise and sunset. All five species demonstrated an anticipatory increase in their pre-sunrise activity that peaked at sunrise with all but V. rubra showing a reduction within an hour. All five species reduced activity during mid-day. Four of the five stayed active after sunset, but P. coquereli began reducing their activity about 2 hours before sunset. Other subtle differences in the recorded light exposure and activity patterns suggest species-specific photic niches and behaviors. The eventual application of the Daysimeter-D in the wild may help to better understand the adaptive evolution of ancestral primates.

  3. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification. PMID:27684063

  4. The Light Wavelength Affects the Ontogeny of Clock Gene Expression and Activity Rhythms in Zebrafish Larvae.

    PubMed

    Di Rosa, Viviana; Frigato, Elena; López-Olmeda, José F; Sánchez-Vázquez, Francisco J; Bertolucci, Cristiano

    2015-01-01

    Light plays a key role in synchronizing rhythms and setting the phase of early development. However, to date, little is known about the impact of light wavelengths during the ontogeny of the molecular clock and the behavioural rhythmicity. The aim of this research was to determine the effect of light of different wavelengths (white, blue and red) on the onset of locomotor activity and clock gene (per1b, per2, clock1, bmal1 and dbp) expression rhythms. For this purpose, 4 groups of zebrafish embryo/larvae were raised from 0 to 7 days post-fertilization (dpf) under the following lighting conditions: three groups maintained under light:dark (LD) cycles with white (full visible spectrum, LDW), blue (LDB), or red light (LDR), and one group raised under constant darkness (DD). The results showed that lighting conditions influenced activity rhythms. Larvae were arrhythmic under DD, while under LD cycles they developed wavelength-dependent daily activity rhythms which appeared earlier under LDB (4 dpf) than under LDW or LDR (5 dpf). The results also revealed that development and lighting conditions influenced clock gene expression. While clock1 rhythmic expression appeared in all lighting conditions at 7 dpf, per1b, per2 and dbp showed daily variations already at 3 dpf. Curiously, bmal1 showed consistent rhythmic expression from embryonic stage (0 dpf). Summarizing, the data revealed that daily rhythms appeared earlier in the larvae reared under LDB than in those reared under LDW and LDR. These results emphasize the importance of lighting conditions and wavelengths during early development for the ontogeny of daily rhythms of gene expression and how these rhythms are reflected on the behavioural rhythmicity of zebrafish larvae.

  5. Activation of sperm EGFR by light irradiation is mediated by reactive oxygen species.

    PubMed

    Shahar, Shiran; Hillman, Pnina; Lubart, Rachel; Ickowicz, Debby; Breitbart, Haim

    2014-01-01

    To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive-oxygen-species (ROS), Ca(2+) influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS-dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS-mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS-dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin-severing protein, gelsolin, and causes actin-depolymerization in human sperm. Light-stimulated tyrosine phosphorylation of Src-dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src-mediated actin polymerization. Light-stimulated HAM and in vitro-fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM.

  6. Effects of dim or bright-light exposure during the daytime on human gastrointestinal activity.

    PubMed

    Sone, Yoshiaki; Hyun, Ki-Ja; Nishimura, Shinya; Lee, Young-Ah; Tokura, Hiromi

    2003-01-01

    On the basis of our previous findings that bright-light exposure during the daytime has profound influence on physiological parameters such as melatonin secretion and tympanic temperature in humans, we proposed the hypothesis that bright vs. dim light-exposure during the daytime has a different influence on the activity of the digestive system via the endocrine and/or autonomic nervous system. To examine this hypothesis, we conducted a series of counterbalanced experiments in which subjects stayed the daytime (7:00 to 15:00h) under either a dim (80 lux) or bright (5,000 lux) light condition. We measured gastrointestinal activity using a breath hydrogen (indicative of carbohydrate malabsorption) and an electrogastrography (EGG, indicative of gastric myoelectric activity) test. The results showed the postprandial breath hydrogen excretion during the following nighttime period after daytime exposure to the dim-light condition was significantly higher than under the bright-light condition (p < 0.05). In addition, the spectrum total power of the EGG recorded after taking the evening meal was significantly lower for the dim than bright-light condition (p < 0.05). These results support our hypothesis and indicate that dim-light exposure during the daytime suppresses the digestion of the evening meal, resulting in malabsorption of dietary carbohydrates in it.

  7. 2001 NSLS ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE).

    SciTech Connect

    CORWIN, M.A.

    2002-05-01

    The year 2001 has been another highly productive year at the NSLS, with over 2500 users, including 720 first time users, conducting nearly 1200 experiments in fields ranging from the life, materials, chemical, and environmental sciences to applied science and technology. An impressive array of highlights from this scientific activity is included in this Activity Report. They include the first demonstration of a direct structural probe of the superconducting ground state in the cuprates by utilizing anomalous soft x-ray resonance effects to selectively enhance the scattering from doped holes. Another highly significant result was the determination of the structure of the potassium channel membrane protein. This is especially significant as it provides insight into how the channel functions and how it selects a particular kind of ion. In the nanoscience area, small angle x-ray scattering measurements played an essential role in determining that preferential sequestering of tailored metal nanocrystals into a self-assembled lamellar diblock copolymer can produce high quality metallodielectric photonic bandgap structures, demonstrating the potential of these nanocomposites for photonic crystal engineering. The infrared microscopy program continued to yield noteworthy results, including an important study that characterized the types and abundances of organic materials in contaminated and uncontaminated sediments from the New York/New Jersey Harbor. These results will be useful in devising improved methods for the destruction or removal of these environmental contaminants.

  8. Evaluation of Light-Activated Provisional Resin Materials for Periodontal Soft Tissue Management

    PubMed Central

    Jun, Soo-Kyung; Lee, Hae-Hyoung

    2016-01-01

    The purpose of this study was to determine mechanical properties using a compressive test with cylinder specimen (h = 6 mm and ϕ = 4 mm) as well as cytotoxicity using elutes from disk specimen (ϕ = 10 mm and h = 2 mm) against human gingival fibroblasts and oral keratinocytes with light-activated provisional resin materials (Revotek LC and Luxatemp Solar) compared to chemically activated counterpart (Snap, Trim II, and Jet). Significantly increased compressive strength (210~280 MPa) was detected in light-activated products compared to chemically activated ones (20~65 MPa, P < 0.05) and similar compressive modulus was detected in both types (0.8~1.5 and 0.5~1.3 GPa). Simultaneously, the light-activated products showed less adverse effects on the periodontal soft tissue cells in any polymerization stage compared to the chemically activated products. Particularly, chemically activated products had significantly greater adverse effects during the “polymerizing” phase compared to those that were “already set” (P < 0.05), as shown in confocal microscopic images of live and dead cells. In conclusion, light-activated provisional resin materials have better mechanical properties as well as biocompatibility against two tested types of oral cells compared to the chemically activated counterpart, which are considered as more beneficial choice for periodontal soft tissue management. PMID:27672651

  9. Towards sensible floating-point arithmetic

    SciTech Connect

    Cody, W.J.

    1980-01-01

    Efforts to promote the development of high-quality transportable numerical software show that few, if any, of the floating-point arithmetic systems in existing computers are completely satisfactory for serious numerical computation. Examination of the defects in these systems leads to specifications for a sensible floating-point system from a numerical analyst's viewpoint. 1 table.

  10. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  11. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  12. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  13. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  14. Future float zone development in industry

    NASA Technical Reports Server (NTRS)

    Sandfort, R. M.

    1980-01-01

    The present industrial requirements for float zone silicon are summarized. Developments desired by the industry in the future are reported. The five most significant problems faced today by the float zone crystal growth method in industry are discussed. They are economic, large diameter, resistivity uniformity, control of carbon, and swirl defects.

  15. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  16. Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light

    PubMed Central

    Smith, J. L.; Palermo, N. A.; Theobald, J. C.; Wells, J. D.

    2015-01-01

    Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions. PMID:26411786

  17. Weak-light solitons and their active control in a parity-time-symmetric atomic system

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2015-04-01

    We propose a realistic physical scheme to produce one-dimensional and two-dimensional weak-light solitons in an atomic system with PT symmetry. The system we suggest is a cold three-level atomic gas with two species and is driven by control and probe laser fields. We show that by the interference of two Raman resonances a highly adjustable probe-field refractive index with PT symmetry in one and two dimensions can be realized. We further show that it is possible to produce various light solitons when the weak nonlinearity of the probe field is taken into account. Due to the resonant character of the system, the light solitons obtained in one and two dimensions have extremely low light power (at the level of nanowatts). In addition, we demonstrate that the stability of these light solitons can be actively controlled via PT phase transition of the system.

  18. Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration.

    PubMed

    Toychiev, Abduqodir H; Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2013-08-28

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors.

  19. Light-activated hypericin induces cellular destruction of nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Xu, C. S.; Leung, A. W. N.

    2010-01-01

    Hypericin from Hypericum perforatum plants shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that light-activated hypericin induced the cellular destruction of nasopharyngeal carcinoma cells. The result showed that hypericin resulted in a drug- and light-dose dependent cytotoxicity in the CNE-2 cells, meaning the photocytotoxicity of hypericin depends on both of the drug concentration (0 - 2.5 μM) and light-doses (1 - 8 J/cm2). We further investigated the apoptosis of the CNE-2 cells 8 hours after photosensitization of hypericin using fluorescence microscopy with Hoechst 33258 staining. Flow cytometry with annexin V-FITC and PI staining was used to analyze early and late apoptosis. These data demonstrated that light-activated hypericin could significantly lead to the cellular destruction of the CNE-2 cells and induce early apoptosis as a prominent mode of cell death.

  20. Visual ecology of Indian carpenter bees I: light intensities and flight activity.

    PubMed

    Somanathan, Hema; Borges, Renee M; Warrant, Eric J; Kelber, Almut

    2008-01-01

    Bees are mostly active during the daytime, but nocturnality has been reported in some bee families. We studied temporal flight activity in three species of carpenter bees (genus Xylocopa) in relation to light intensities. X. leucothorax is diurnal, X. tenuiscapa is largely diurnal being only occasionally crepuscular, while X. tranquebarica is truly nocturnal. Occasional forays into dim light by X. tenuiscapa are likely to be due to the availability of richly rewarding Heterophragma quadriloculare (Bignoniaceae) flowers, which open at night. X. tranquebarica can fly even during the moonless parts of nights when light intensities were lower than 10(-5) cd m(-2), which makes this species the only truly nocturnal bee known so far. Other known dim-light species fly during crepuscular or moonlit periods. We compare eye and body sizes with other known diurnal and dim-light bees. We conclude that while extremely large ocellar diameters, large eye size:body size ratio, large number of ommatidia and large ommatidial diameters are all adaptations to dim-light foraging, these alone do not sufficiently explain the flights of X. tranquebarica in extremely dim light. We hypothesise that additional adaptations must confer extreme nocturnality in X. tranquebarica.

  1. [Studies on preparation of CdS/TiO2/float pearls coupled photocatalyst and degradation of beta-cypermethrin].

    PubMed

    Yao, Bing-hua; Zheng, Huai-li; Yang, Li-qin; Tian, Ping; Pang, Xiu-fen

    2007-05-01

    The coupled photocatalyst of CdS/TiO2/float pearls was prepared by sol-gel-dipping method, and its structure characterization was carried out with SEM and XRD analysis. As a model reaction, the photocatalytic degradation of beta-cypermethrin (BEC) was investigated in CdS/TiO2/float pearls powder suspension irradiated by different light sources. The effects of influence factors on the photocatalytic activity were discussed for the prepared photocatalyst. The results showed that under the following conditions: amount of photocatalyst 3000 mg x L(-1), initial concentration of BEC 45 mg x L(-1), initial pH 6. 5, and air flow rate 200 mL x min(-1), the degradation rate of BEC reached 87.9% (125 W Hg lamp in 1 hour), 79.3% (5 W UV lamp in 1 hour) and 93.4% (solar light in 5 hours), respectively. The photocatalytic degradation of BEC was experimentally demonstrated to follow the Langmuir-Hinshelwood kinetic model, and the reaction rate constant (9.80 mg x (L x min)(-1)) and the adsorption constant (4.36 x 10(-3) L x mg(-1)) were determined, respectively.

  2. KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light

    PubMed Central

    Bozhanova, Nina G.; Sharonov, George V.; Staroverov, Dmitriy B.; Egorov, Evgeny S.; Ryabova, Anastasia V.; Solntsev, Kyril M.; Mishin, Alexander S.; Lukyanov, Konstantin A.

    2015-01-01

    Genetically encoded photosensitizers, proteins that produce reactive oxygen species when illuminated with visible light, are increasingly used as optogenetic tools. Their applications range from ablation of specific cell populations to precise optical inactivation of cellular proteins. Here, we report an orange mutant of red fluorescent protein KillerRed that becomes toxic when illuminated with blue or green light. This new protein, KillerOrange, carries a tryptophan-based chromophore that is novel for photosensitizers. We show that KillerOrange can be used simultaneously and independently from KillerRed in both bacterial and mammalian cells offering chromatic orthogonality for light-activated toxicity. PMID:26679300

  3. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light

    PubMed Central

    Grusch, Michael; Schelch, Karin; Riedler, Robert; Reichhart, Eva; Differ, Christopher; Berger, Walter; Inglés-Prieto, Álvaro; Janovjak, Harald

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour. PMID:24986882

  4. Lactate dehydrogenase activity of rat epididymis and spermatozoa: effect of constant light.

    PubMed

    Ponc, R H; Carriazo, C S; Vermouth, N T

    2001-01-01

    During its passage through the epididymis, the gamete undergoes a process of "maturation" leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and released by the pineal gland. Constant lighting disrupts melatonin synthesis and secretion. We have studied the effect of constant light on lactate dehydrogenase (LDH; EC 1.1.1.27) and its isozyme C4 activities and protein content in whole epididymis, epididymal tissue and in spermatozoa from caput and cauda segments. Animals were exposed from birth to an illumination schedule of 14 h light:10 h dark (group L:D). At 60 days of age one group of animals was submitted to constant light over 50 days (group L:L). In order to test the fertilizing ability, the rats of each group were mated with soliciting estrous females. The percentage of pregnancies in females mated with males maintained in L:L was remarkably lower than those in females mated with males maintained in the L:D photoperiod (44% and 88% respectively). Constant light increased protein concentration and LDH activity in caput as well as in cauda of total epididymis. On the contrary, in epididymal tissue, the protein content decreased in both epididymal sections compared with controls. When enzymatic activity was expressed in Units per spermatozoa, constant light induced a significant reduction of total LDH and LDHC4 in caput and cauda spermatozoa while LDH activity of epididymal tissue was not affected. In spite of the decrease in LDH per sperm cell when rats were exposed to constant light, in total epididymis (epididymis tissue plus sperm cells content) and in spermatozoa, values of enzyme activities expressed per weight unit were

  5. In vitro study of the pulp chamber temperature rise during light-activated bleaching.

    PubMed

    Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina

    2008-01-01

    This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38+/-0.66 degrees C). The LED unit produced the lowest temperature increase (0.29+/-0.13 degrees C); but there was no significant difference between LED unit and LED-laser system (0.35+/-0.15 degrees C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41+/-0.64 degrees C), and LED-laser system the lowest (0.33+/-0.12 degrees C); however, there was no difference between LED-laser system and LED unit (0.44+/-0.11 degrees C

  6. The International Year of Light 2015 and its impact on educational activities

    NASA Astrophysics Data System (ADS)

    Curticapean, Dan; Vauderwange, Oliver; Wozniak, Peter; Mandal, Avikarsha

    2016-09-01

    The International Year of Light and Light-Based Technologies 2015 (IYL 2015) was celebrated around the world. Worldwide activities were organized to highlight the impact of optics and photonics on life, science, economics, arts and culture, and also in education. With most of our activities at Offenburg University of Applied Sciences (Offenburg/Germany), we reached our own students and the general population of our region: - University for Children: "The Magic of Light" winter lecture program and "Across the Universe with Relativity and Quantum Theory" summer lecture program - "Students Meet Scientists" - "A Century of General Relativity Theory" lecture program Nevertheless, with some of our activities we also engaged a worldwide audience: - IYL 2015 art poster collection (Magic of Light and No Football, Just Photonics) - Smart Interactive Projection - Twitter Wall - "Invisible Light" - Live broadcasting of the total lunar eclipse - Film Festival Merida Mexico The authors will highlight recent activities at our university dedicated to promote, celebrate, and create a legacy for the IYL 2015.

  7. Visible light photocatalytic activity of TiO2 nanoparticles hybridized by conjugated derivative of polybutadiene

    NASA Astrophysics Data System (ADS)

    Liu, Guoquan; Liu, Longchen; Song, Jinran; Liang, Jiudi; Luo, Qingzhi; Wang, Desong

    2014-05-01

    A series of conjugated polymer/TiO2 (CP/TiO2) nanocomposites were prepared from TiO2 and commercial polybutadiene. The as-prepared CP/TiO2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman Spectroscopy, UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of CP/TiO2 nanocomposites were investigated by monitoring the degradation of methyl orange aqueous solution under visible light irradiation. The effects of preparation conditions (such as the mass ratio of PB to TiO2 in suspensions for PB/TiO2 preparation, heat-treatment temperature and time) of CP/TiO2 nanocomposites on their visible light photocatalytic activity were investigated. The results show that the CP/TiO2 nanocomposites have excellent visible light photocatalytic activity. As the content of conjugated polymer on the TiO2 surface, heat-treatment temperature and time increase, the visible light photocatalytic activity increases at first and then decreases. The visible light photocatalytic mechanism of the CP/TiO2 nanocomposites has been discussed.

  8. Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material.

    PubMed

    Xia, Qi; Batentschuk, Miroslaw; Osvet, Andres; Richter, Peter; Häder, Donat P; Schneider, Juergen; Brabec, Christoph J; Wondraczek, Lothar; Winnacker, Albrecht

    2013-11-04

    The spectral conversion of incident sunlight by appropriate photoluminescent materials has been a widely studied issue for improving the efficiency of photovoltaic solar energy harvesting. By using phosphors with suitable excitation/emission properties, also the light conditions for plants can be adjusted to match the absorption spectra of chlorophyll dyes, in this way increasing the photosynthetic activity of the plant. Here, we report on the application of this principle to a high plant, Spinacia oleracea. We employ a calcium strontium sulfide phosphor doped with divalent europium (Ca0.4Sr0.6S:Eu(2+), CSSE) on a backlight conversion foil in photosynthesis experiments. We show that this phosphor can be used to effectively convert green to red light, centering at a wavelength of ~650 nm which overlaps the absorption peaks of chlorophyll a/b pigments. A measurement system was developed to monitor the photosynthetic activity, expressed as the CO2 assimilation rate of spinach leaves under various controlled light conditions. Results show that under identical external light supply which is rich in green photons, the CO2 assimilation rate can be enhanced by more than 25% when the actinic light is modified by the CSSE conversion foil as compared to a purely reflecting reference foil. These results show that the phosphor could be potentially applied to modify the solar spectrum by converting the green photons into photosynthetically active red photons for improved photosynthetic activity.

  9. Pattern of stylet penetration activity by Homalodisca vitripennis (Hemiptera: Cicadellidae) adults in relation to environmental temperature and light conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of ambient spring air temperature and light intensity on stylet penetration activities of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) were studied outdoors, at ambient light and temperatures, using an electrical penetration graph (EPG). EPG waveforms representing saliva...

  10. Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.

    2011-01-01

    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.

  11. Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes

    SciTech Connect

    Baer, K.M.; Saibil, H.R.

    1988-01-05

    Light stimulates the hydrolysis of exogenous, (/sup 3/H)inositol-labeled phosphatidylinositol bisphosphate (PtdInsP2) added to squid photoreceptor membranes, releasing inositol trisphosphate (InsP3). At free calcium levels of 0.05 microM or greater, hydrolysis of the labeled lipid is stimulated up to 4-fold by GTP and light together, but not separately. This activity is the biochemical counterpart of observations on intact retina showing that a rhodopsin-activated GTP-binding protein is involved in visual transduction in invertebrates, and that InsP3 release is correlated with visual excitation and adaptation. Using an in vitro assay, we investigated the calcium and GTP dependence of the phospholipase activity. At calcium concentrations between 0.1 and 0.5 microM, some hydrolysis occurs independently of GTP and light, with a light- and GTP-activated component superimposed. At 1 microM calcium there is no background activity, and hydrolysis absolutely requires both GTP and light. Ion exchange chromatography on Dowex 1 (formate form) of the water-soluble products released at 1 microM calcium reveals that the product is almost entirely InsP3. Invertebrate rhodopsin is homologous in sequence and function to vertebrate visual pigment, which modulates the concentration of cyclic GMP through the mediation of the GTP-binding protein transducin. While there is some evidence that light also modulates PtdInsP2 content in vertebrate photoreceptors, the case for its involvement in phototransduction is stronger for the invertebrate systems. The results reported here support the scheme of rhodopsin----GTP-binding protein----phospholipase C activation in invertebrate photoreceptors.

  12. Extended Onshore Control of a Floating Wind Turbine with Wave Disturbance Reduction

    NASA Astrophysics Data System (ADS)

    Christiansen, S.; Knudsen, T.; Bak, T.

    2014-12-01

    Reaching for higher wind resources beyond the water depth limitations of monopile wind turbines, there has arisen the alternative of using floating wind turbines. But the response of wave induced loads significantly increases for floating wind turbines. Applying conventional onshore control strategies to floating wind turbines has been shown to impose negative damped oscillations in fore-aft due to the low natural frequency of the floating structure. Thus, we suggest a control loop extension of the onshore controller which stabilizes the system and reduces the wave disturbance. The results shows that when adding the suggested control loop with disturbance reduction to the system, improved performance is observed in power fluctuations, blade pitch activity, and platform oscillations.

  13. ADHESIVES WITH DIFFERENT PHS: EFFECT ON THE MTBS OF CHEMICALLY ACTIVATED AND LIGHT-ACTIVATED COMPOSITES TO HUMAN DENTIN

    PubMed Central

    Mallmann, André; de Melo, Renata Marques; Estrela, Verbênia; Pelogia, Fernanda; Campos, Laura; Bottino, Marco Antonio; Valandro, Luiz Felipe

    2007-01-01

    Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37°C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm2. Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min−1). Data were analyzed using two-way ANOVA and Tukey’s tests (p<0.05). Results: The anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7±7.1ª; PB+Z100 = 23.8±5.7ª). However, with use of the chemically activated composite (B2B), PB (7.8±3.6b MPa) showed significantly lower dentin bond strengths than OS (32.2±7.6ª). Conclusion: The low pH of the adhesive system can affect the bond of chemically activated composite to dentin. On the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly. PMID:19089142

  14. Comparison of self-cleaning properties of three titania coatings on float glass

    NASA Astrophysics Data System (ADS)

    Piispanen, Minna; Hupa, Leena

    2011-11-01

    This work compares the self-cleaning properties of experimental TiO2 and TiO2-Ag coatings on float glass with a commercial self-cleaning glass. In the experimental surfaces, TiO2 coating was applied to float glass via the sol-gel route, while TiO2-Ag coating was applied by the liquid flame spray method, which deposits TiO2-Ag composite nanoparticles on the surface. The effect of the coatings on the surface wettability and the activation time for achieving hydrophilicity was studied through water contact angle as a function of exposure time to UV light. The surface morphology was investigated by using scanning electron microscopy (SEM) and confocal optical microscopy. The photocatalytic activity of the coatings was examined with methylene blue and stearic acid degradation tests. Finally, the soil attachment to the surfaces was tested with a sebum-based model soil. The sol-gel TiO2 coating became superhydrophilic within a few hours, while the activation time needed for the commercial titania coated glass was several days. The surface with the TiO2-Ag nanoparticles did not show any marked changes in the water contact angle. The commercial titania coated and the sol-gel TiO2 surfaces showed self-cleaning properties and clearly lower attachment of soil than the uncoated and TiO2-Ag coated surfaces. The difference in the interaction of the surfaces with the organic contaminants was assumed to depend mainly on differences in the thickness of the coatings.

  15. A device to improve the SNR of the measurement of the positional floating reference point

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Rong, Xuzheng; Zhang, Hao; Xu, Kexin

    2013-02-01

    Previous studies have preliminarily validated the floating reference method and shown that it has the potential to improve the accuracy of non-invasive blood glucose sensing by Near-Infrared Spectroscopy. In order to make this method practical, it is necessary to precisely verify and measure the existence and variation features of the positional floating reference point. In this talk, a device which can precisely verify and measure the positional floating reference point is built. Since the light intensity of diffuse reflectance from the tested sample is very weak, a multipath detecting fibers system was built to improve signal-to-noise ratio. In this system, the fibers encircle the light source fiber which is regarded as the reference center of detecting fibers while they are moving. In addition, the position of each fiber is accurately controlled by manual translation stage to keep all detecting fibers always in the same radius around light source fiber. This ensures that received signal is coming from the same radial distance of light source. The variation of signal-to-noise ratio along with the different radial distance was investigated based on experiments. Results show that the application of this device could improve signal-to-noise ratio, and provide a new experimental method for the further study of positional floating reference point.

  16. Floating point arithmetic in future supercomputers

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.

    1989-01-01

    Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.

  17. New CFOA-based floating immittance emulators

    NASA Astrophysics Data System (ADS)

    Taher Abuelma'atti, Muhammad; Dhar, Sagar Kumar

    2016-12-01

    This paper presents four new topologies for emulating floating immittance functions. Each circuit uses two or three current-feedback operational-amplifiers (CFOAs) and three passive elements. The proposed topologies can emulate positive/negative lossless and lossy floating inductances, and positive/negative capacitance, resistance and inductance multipliers in addition to floating frequency-dependent positive and negative resistances. The functionality of the proposed circuits is verified using the Advanced Design System software and the AD844 CFOA. The simulation results are in excellent agreement with the theoretical calculations.

  18. Used float shoe recovered and tested

    SciTech Connect

    Colvard, R.L.

    1986-02-01

    A cement float valve has been recovered after it was circulated through and cemented downhole. It was retrieved by coring as part of an investigation into a cementing failure. The float equipment was then analyzed for downhole performance. This is believed to be the first instance of intact recovery of full-scale cementing hardware after it has been cemented in place. In this instance, the valve performed as designed. Flash set proved to be the probable cause of job failure. This article documents the job and includes photographs of the used float shoe and its components.

  19. Program Converts VAX Floating-Point Data To UNIX

    NASA Technical Reports Server (NTRS)

    Alves, Marcos; Chapman, Bruce; Chu, Eugene

    1996-01-01

    VAX Floating Point to Host Floating Point Conversion (VAXFC) software converts non-ASCII files to unformatted floating-point representation of UNIX machine. This is done by reading bytes bit by bit, converting them to floating-point numbers, then writing results to another file. Useful when data files created by VAX computer must be used on other machines. Written in C language.

  20. 14 CFR 23.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521....

  1. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  2. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  3. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  4. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  5. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  6. 14 CFR 23.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521....

  7. Blue-light-activated histidine kinases: two-component sensors in bacteria.

    PubMed

    Swartz, Trevor E; Tseng, Tong-Seung; Frederickson, Marcus A; Paris, Gastón; Comerci, Diego J; Rajashekara, Gireesh; Kim, Jung-Gun; Mudgett, Mary Beth; Splitter, Gary A; Ugalde, Rodolfo A; Goldbaum, Fernando A; Briggs, Winslow R; Bogomolni, Roberto A

    2007-08-24

    Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.

  8. Floating-gated memory based on carbon nanotube field-effect transistors with Si floating dots

    NASA Astrophysics Data System (ADS)

    Seike, Kohei; Fujii, Yusuke; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2014-01-01

    We have fabricated a carbon nanotube field-effect transistor (CNTFET)-based nonvolatile memory device with Si floating dots. The electrical characteristics of this memory device were compared with those of devices with a HfO2 charge storage layer or Au floating dots. For a sweep width of 6 V, the memory window of the devices with the Si floating dots increased twofold as compared with that of the devices with the HfO2 layer. Moreover, the retention characteristics revealed that, for the device with the Au floating dots, the off-state had almost the same current as the on-state at the 400th s. However, the devices with the Si floating dots had longer-retention characteristics. The results indicate that CNTFET-based devices with Si floating dots are promising candidates for low-power consumption nonvolatile memory devices.

  9. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize

  10. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  11. Fos-tau-LacZ mice expose light-activated pathways in the visual system.

    PubMed

    Greferath, Ursula; Nag, Nupur; Zele, Andrew J; Bui, Bang V; Wilson, Yvette; Vingrys, Algis J; Murphy, Mark

    2004-11-01

    We have employed fos-tau-LacZ (FTL) transgenic mice to examine functional activation in the visual areas of the nervous system. The FTL mice express the marker gene lacZ in neurons and their processes following many different stimuli, and allow the imaging of activation from the level of the entire brain surface through individual neurons and their projections. Analysis of FTL expression in the retinas of mice following diurnal exposure to light shows that bipolar cells, specific classes of amacrine cells, ganglion cells, and a dense network of processes in the inner plexiform layer are functionally activated. In animals deprived of light, there is almost no activity in the retina. In the lateral geniculate nucleus (LGN), light exposure appears responsible for FTL expression in dorsal nuclei, but not for expression in the ventral nuclei or the intergeniculate leaflet. In the superficial layers of the superior colliculus, FTL expression is highly dependent on light exposure. Similarly, light exposure is required for FTL expression in primary visual cortex (area 17), but some expression remains in area 18 of dark-adapted animals. Finally, using mice with one or both eyes missing, we have determined which parts of the visual system are dependent on the presence of a functional connectivity from the eye. These data demonstrate the usefulness of the FTL mice to map functional activation within the entire visual system. Furthermore, we can capture visual activation in a conscious animal. Our findings give an insight into the architecture of activity within the retina and throughout the visual system.

  12. Tests find hammering, fluid cutting, erosion cause float shoe failures

    SciTech Connect

    Stringfellow, B.

    1985-01-21

    The results of a systematic test program to evaluate float equipment performance are presented. The testing has destroyed, over an eightmonth period, 160 float valves, float shoes and float collars. A new float valve design with greater resistance to failure has been developed as a result of the testing. New float collars and float shoes are expected to provide the operator with a failure rate of less than 1 1/2% when used within design limits and under normal cementing conditions. Further testing objectives include: extension of operating temperature limits to include deep well and geothermal conditions, and evaluation of the effects of more abrasive mud and cement systems.

  13. Construction of Control System for Floating High Energy Capacitors

    NASA Astrophysics Data System (ADS)

    Tobin, Zachary; Bellan, Paul

    2011-10-01

    The circuitry for the Caltech magnetic reconnection experiment under construction requires two independent floating high energy capacitor power supplies to create linked plasma loops. This project requires the building of systems for controlling plasma generation, including timing circuitry to control the sequences of operation. Unlike with previous designs, timing functions are completely contained on a single printed circuit board. This allows the design to be easily replicated for use with the multiple independent capacitor involved. The timing circuitry first activates a high voltage power supply, then connects the power supply to the capacitor, and then disconnects the power supply so that the charged capacitor is floating. The circuitry then sends out a ``ready'' signal to a sequencer, which sequentially triggers the gas puff valves, bias magnetic field supply, and ignitron switch for the capacitor. The control circuit sequencing has been tested successfully with the capacitor discharging into a dummy load.

  14. Activation Counter Using Liquid Light-Guide for Dosimetry of Neutron Burst

    NASA Astrophysics Data System (ADS)

    Hayashi, Mitsunobu; Kawarabayashi, Jun; Tomita, Hideki; Asai, Keisuke; Maeda, Shigetaka; Tsuji, Hiroki; Iguchi, Tetsuo

    2009-08-01

    A novel activation counter is proposed using a liquid light-guide (LLG) and a suitable group of activation foils for dosimetry of neutron burst. The LLG that works as a position sensitive radiation detector, has been covered with appropriate activation materials whose threshold energies are different to each other, with a distance of a few tens of cm between them. Since the induced activities of activation foils irradiated by neutrons are detected independently by the LLG, the neutron energy distribution and its flux can be derived from the activities and their neutron cross-sections by numerical de-convolution calculation. The proposed activation counter would be suitable for the dosimetry of intense neutron burst including fast neutrons because the LLG and the activation foils have a high tolerance for radiation damage. We have designed the system configuration of the proposed activation counter. The preliminary results of the responses due to thermal and fast neutrons have been obtained successfully.

  15. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect

    Jan Talbot; Kailash Mishra

    2007-12-31

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples

  16. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further

  17. Light and maternal influence in the entrainment of activity circadian rhythm in infants 4-12 weeks of age.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2016-07-01

    The influence of light and maternal activity on early infant activity rhythm were studied in 43 healthy, maternal-infant pairs. Aims included description of infant and maternal circadian rhythm of environmental light, assessing relations among of activity and light circadian rhythm parameters, and exploring the influence of light on infant activity independent of maternal activity. Three-day light and activity records were obtained using actigraphy monitors at infant ages 4, 8, and 12 weeks. Circadian rhythm timing, amplitude, 24-hour fit, rhythm center, and regularity were determined using cosinor and nonparametric circadian rhythm analyses (NPCRA). All maternal and infant circadian parameters for light were highly correlated. When maternal activity was controlled, the partial correlations between infant activity and light rhythm timing, amplitude, 24-hour fit, and rhythm center demonstrated significant relation (r = .338 to .662) at infant age 12 weeks, suggesting entrainment. In contrast, when maternal light was controlled there was significant relation between maternal and infant activity rhythm (r = 0.470, 0.500, and 0.638 at 4, 8 and 12 weeks, respectively) suggesting the influence of maternal-infant interaction independent of photo entrainment of cycle timing over the first 12 weeks of life. Both light and maternal activity may offer avenues for shaping infant activity rhythm during early infancy.

  18. Photosynthetic activity and growth analysis of the plant {Costus spicatus} cultivated under different light conditions

    NASA Astrophysics Data System (ADS)

    Campos, V. M.; Pasin, L. A. A. P.; Barja, P. R.

    2008-01-01

    The aim of the present work was to evaluate the effect of different radiance levels (25%, 50% and 100% of full sunlight) in growth (height, leaf area, number of leaves) and photosynthetic activity of the plant Costus spicatus, popularly known in Brazil as Caninha do Brejo. Photoacoustic (PA) measurements were performed in order to evaluate comparatively the photosynthetic activity rate of plants submitted to different light intensity regimes. The results obtained show that plants maintained under low light intensity levels (25% of sunlight) presented higher height, leaf area and number of leaves, while plants grown under full sunlight presented higher radicular length. PA measurements indicated higher photosynthetic rate for plants grown under 50% of full sunlight, but plants developed under 25% of full sunlight (75% shading) presented the fastest response to light incidence (photosynthetic induction).

  19. Energetic analysis of the white light emission associated to seismically active flares in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, Juan Camilo; Martinez Oliveros, Juan Carlos; Glesener, Lindsay; Krucker, Sam

    2014-06-01

    Solar flares are explosive phenomena, thought to be driven by magnetic free energy accumulated in the solar corona. Some flares release seismic transients, "sunquakes", into the Sun's interior. Different mechanisms are being considered to explain how sunquakes are generated. We are conducting an analysis of white-light emission associated with those seismically active solar flares that have been reported by different authors within the current solar cycle. Seismic diagnostics are based upon standard time-distance techniques, including seismic holography, applied to Dopplergrams obtained by SDO/HMI and GONG. The relation between white-light emissions and seismic activity may provide important information on impulsive chromospheric heating during flares, a prospective contributor to seismic transient emission, at least in some instances. We develop a method to get an estimation of Energy associated whit white-light emission and compare those results whit values of energy needed to generate a sunquake according with holographic helioseismology techniques.

  20. Treatment of actinic cheilitis by photodynamic therapy with 5-aminolevulinic acid and blue light activation.

    PubMed

    Zaiac, Martin; Clement, Annabelle

    2011-11-01

    Actinic cheilitis (AC), a common disorder of the lower lip, should be treated early to prevent progression to invasive squamous cell carcinoma. This study evaluated the safety and efficacy of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) activated by blue light for the treatment of AC. Fifteen patients with clinically evident or biopsy-proven AC received two treatments with ALA PDT with blue light activation. Treatments were spaced three to five weeks apart. Most patients achieved 65% to 75% clearance three to five weeks after the first treatment and all achieved more than 75% clearance one month after the second treatment. Three patients achieved complete clearance. Pain and burning during irradiation were absent or mild. All patients said they would repeat the procedure. ALA PDT with 417 nm blue light is a promising option for the treatment of AC of the lower lip.

  1. Towards an understanding of light activation processes in titanium oxide based inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Chambon, S.; Destouesse, E.; Pavageau, B.; Hirsch, L.; Wantz, G.

    2012-11-01

    The light activation phenomenon in inverted P3HT:PCBM bulk heterojunction organic solar cells based on titanium oxide sublayer (TiOx) is characterized by fast acquisition of current-voltage (J-V) curves under light bias as function of time. TiOx layers were thermally treated under inert atmosphere at different temperatures prior active layer deposition and for every device an activation time was extracted. It is shown that the higher the TiOx annealing temperature, the faster the activation. The improvement of the overall device performances is also observed for devices with TiOx layers baked above 100 °C. The evolution of the characteristic of the organic semiconductors (OSC) device, from dielectric to diode, is attributed to the increase of TiOx conductivity by three orders of magnitude upon white light illumination. Additionally, devices based on baked TiOx present higher conductivity than those based on unbaked TiOx which would explain the gain in performances and the short activation time of the OSC. In order to understand the origin of the phenomenon, deactivation experiments were also performed under different conditions on OSC. The deactivation process was shown to be thermally dependent and fully reversible under inert atmosphere, which suggest that deep traps are responsible for the activation phenomenon. An optimal annealing temperature was found at 120 °C and gives a reasonable short activation time of approximately 1 min and photo conversion efficiency up to 4%.

  2. Fast optical recording of light-flash evoked neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2005-08-01

    Imaging of fast intrinsic optical responses closely associated with neural activation promises important technical advantages over traditional single and multi-channel electrophysiological techniques for dynamic measurements of visual processing and early detection of eye diseases. We have developed a fast, no-moving-parts optical coherence tomography (OCT), system based on an electro-optic phase modulator, and used it to record dynamic near infrared (NIR) light scattering changes in frog retina activated by a visible light-flash. We also employed transmitted light for highly sensitive measurement and imaging of neural activation, and to optimize illumination and optical configuration. Using a photodiode detector, we routinely measured dynamic NIR transmitted optical responses in single passes. When the whole retina was illuminated by a visible light-flash, a positive peak was typically observed in transmitted light measurements. CCD image sequences disclosed larger fractional responses, in some cases exceeding 0.5% in individual pixels, and showed evidence of multiple response components with both negative- and positive-going signals with different timescales and complex but consistent spatial organization. The fast negative-going signals are highly correlated with the a-wave of the electrophysiological signals, and may reflect the activation of photoreceptors. The fast positive-going responses are related to the b-wave of the electrophysiological signals, and may result from the activation of ON bipolar cells. Slow optical responses may signal metabolic changes of retinal tissue. Our experimental results and theoretical analysis suggest that the optical responses may result from dynamic volume changes associated with neural activation, corresponding to ion and water flow across the cell membrane.

  3. Verification of floating-point software

    NASA Technical Reports Server (NTRS)

    Hoover, Doug N.

    1990-01-01

    Floating point computation presents a number of problems for formal verification. Should one treat the actual details of floating point operations, or accept them as imprecisely defined, or should one ignore round-off error altogether and behave as if floating point operations are perfectly accurate. There is the further problem that a numerical algorithm usually only approximately computes some mathematical function, and we often do not know just how good the approximation is, even in the absence of round-off error. ORA has developed a theory of asymptotic correctness which allows one to verify floating point software with a minimum entanglement in these problems. This theory and its implementation in the Ariel C verification system are described. The theory is illustrated using a simple program which finds a zero of a given function by bisection. This paper is presented in viewgraph form.

  4. Floating patterns of metered dose inhalers.

    PubMed

    Wolf, B L; Cochran, K R

    1997-01-01

    As long as metered dose inhalers have existed, patients have sought a reliable method to determine if a given canister was still potent. Concerning beta agonists, the answer to this question may be lifesaving. Issues of compliance have made dating canisters or counting doses impractical. Likewise, previous claims of floating characteristics are unreliable. In tap water, we float-tested 13 commonly used inhalers three times each, observing variations as they were incrementally actuated, emptying their contents. One essential pattern was observed. Almost all prescription-size canisters sink when full; all float by the time one-third of their contents is gone. Orientation of prescription-size canisters changes in a distinct pattern especially near 90% depletion. Sample-size canisters showed some variance. Results suggest that the pharmaceutical industry should include individual floating characteristics as part of the package insert as they provide a reproducible means of gauging contents.

  5. Thumb polydactyly with a floating ulnar thumb.

    PubMed

    Hasegawa, Kenjiro; Namba, Yuzaburo; Kimata, Yoshihiro

    2013-01-01

    Thumb polydactyly is reported to be the most common congenital anomaly of the hand in Japan. The floating type is not particularly rare, accounting for 0.9 to 15% of all cases of thumb polydactyly. However, to the best of our knowledge, there has been only one case of thumb polydactyly with a floating ulnar thumb, reported by Onizuka. Herein, we report a case very similar to that reported by Onizuka. In our case, the vessels feeding the floating ulnar thumb branched from the superficial palmar arterial arch, and X-rays revealed triphalangism. In surgery, we not only reconstructed the morphology of the thumb, but also tried to preserve the sensation in the reconstructed thumb by transposing the digital nerve of the floating ulnar thumb to the radial thumb. In addition to thumb polydactyly, our case also showed hypoplasia of the thenar muscles.

  6. Preview of Mars Curiosity Parade Float

    NASA Video Gallery

    Jim Green, Director of the Science Mission Directorate Planetary Systems Division at NASA Headquarters, describes the replica of the Mars Curiosity Rover on the second NASA float in Monday's inaugu...

  7. The Examination of the Educational Effects of Some Writing Activities in the Light of Student Opinions

    ERIC Educational Resources Information Center

    Ozturan Sagirli, Meryem

    2010-01-01

    The aim of this research is to discover and compare the effects of writing prompt and expository writing from an educational perspective in the light of student opinions. The study was conducted according to qualitative research approach and content analysis was conducted. Two activities which were prepared with respect to objectives of writing…

  8. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    ERIC Educational Resources Information Center

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  9. Effect of sprouting and light cycle on antioxidant activity of Brassica oleracea varieties.

    PubMed

    Vale, Ana Paula; Cidade, Honorina; Pinto, Madalena; Oliveira, M Beatriz P P

    2014-12-15

    The antioxidant activity of sprouts from four Brassica oleracea varieties was evaluated using "in vitro" methods (total phenolic and flavonoid content; radical scavenging assays: DPPH, hydroxyl and peroxyl; and Ferrous Ion-chelating Ability Assay). Light cycles and sprouting influenced the potential antioxidant activity of sprouts and significant differences were observed between varieties. Generally, antioxidant activity decreased with sprouting and increased in the presence of light, whose discriminant effect was highly significant (P<0.001). Red cabbage sprouts produced under light cycles showed the highest antioxidant activity (57.11 μg mL(-1) Ferrous Ion-chelating Ability, 221.46 μg mL(-1) Hydroxyl radical scavenging, 279.02 μg mL(-1) Peroxyl radical scavenging). Among the traditional Portuguese brassica varieties, Penca cabbage sprouts produced under light presented higher antioxidant capacity, and also higher phenolic and flavonoid content (54.04 mg GAEg(-1) d.w. extract and 21.33 QEg(-1) d.w. extract, respectively) than Galega kale. The phenolic content of Brassica sprouts had a significant contribution to the antioxidant capacity.

  10. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  11. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis.

    PubMed

    Mao, Wen-Xin; Lin, Xi-Jie; Zhang, Wei; Chi, Zi-Xiang; Lyu, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2016-06-04

    This communication reports that the TiO2@polydopamine nanocomposite with a core-shell structure could be a highly active photocatalyst working under visible light. A very thin layer of polydopamine at around 1 nm was found to be critical for the degradation of Rhodamine B.

  12. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  13. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  14. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity.

    PubMed

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R; Kuipers, Eline N; Loef, Marieke; Zonneveld, Tom C M; Lucassen, Eliane A; Sips, Hetty C M; Chatzispyrou, Iliana A; Houtkooper, Riekelt H; Meijer, Johanna H; Coomans, Claudia P; Biermasz, Nienke R; Rensen, Patrick C N

    2015-05-26

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.

  15. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  16. Optics: Light, Color, and Their Uses. An Educator's Guide With Activities In Science and Mathematics

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document includes information on the Chandra X-Ray Observatory, the Hubble Space Telescope, the Next Generation Space Telescope, Soft X-Ray Imager, and the Lightning Imaging System. Classroom activities from grades K-12 are included, focusing on light and color, using mirrors, lenses, prisms, and filters.

  17. Genetic Algorithms, Floating Point Numbers and Applications

    NASA Astrophysics Data System (ADS)

    Hardy, Yorick; Steeb, Willi-Hans; Stoop, Ruedi

    The core in most genetic algorithms is the bitwise manipulations of bit strings. We show that one can directly manipulate the bits in floating point numbers. This means the main bitwise operations in genetic algorithm mutations and crossings are directly done inside the floating point number. Thus the interval under consideration does not need to be known in advance. For applications, we consider the roots of polynomials and finding solutions of linear equations.

  18. Archimedes' floating bodies on a spherical Earth

    NASA Astrophysics Data System (ADS)

    Rorres, Chris

    2016-01-01

    Archimedes was the first to systematically find the centers of gravity of various solid bodies and to apply this concept in determining stable configurations of floating bodies. In this paper, we discuss an error in a proof developed by Archimedes that involves determining whether a uniform, spherical cap will float stably with its base horizontal in a liquid on a spherical Earth. We present a simpler, corrected proof and discuss aspects of his proof regarding a spherical cap that is not uniform.

  19. Multiple valued floating potentials of Langmuir probes

    NASA Technical Reports Server (NTRS)

    Nam, Cheol-Hee; Hershkowitz, N.; Cho, M. H.; Intrator, T.; Diebold, D.

    1988-01-01

    It is shown that Langmuir probes can have three different floating potentials in plasmas produced by a hot filament discharge in a multi-dipole device when the primary and secondary electron currents are comparable. The measured floating potential depends on the probe's initial condition - the most negative and the least negative potentials are found to be stable and the in-between value is found to be unstable. Results are compared to a simple theoretical model.

  20. Light controls shoot meristem organogenic activity and leaf primordia growth during bud burst in Rosa sp.

    PubMed

    Girault, Tiffanie; Bergougnoux, Veronique; Combes, Didier; Viemont, Jean-Daniel; Leduc, Nathalie

    2008-11-01

    Light controls bud burst in many plants, which subsequently affects their architecture. Nevertheless, very little is known about this photomorphogenic process. This study ascertains the effects of light on bud burst and on two of its components, i.e. growth of preformed leaves and meristem organogenesis in six cultivars from three Rosa species (R. hybrida L., R. chinensis L., R. wichurana L.). Defoliated plants were severed above the third basal bud and exposed, either to darkness or to different intensities of white light, to blue, red or to FR, at constant temperature. Bud bursting was inhibited in darkness in the six cultivars of Rosa, but not in Arabidopsis, tomato and poplar plants under the same condition. In all Rosa cultivars, bud burst, growth of preformed leaves and meristem organogenesis were triggered by blue and red lights, and extended by increasing light intensities. FR was inhibitory of bud burst. Partial shading experiments demonstrated that bud and not stem was the active site for light perception in bud burst.

  1. Promotion of Sink Activity of Developing Rose Shoots by Light 1

    PubMed Central

    Mor, Yoram; Halevy, Abraham H.

    1980-01-01

    Holding young rose shoots (Rosa hybrida cv. Marimba) in darkness while the rest of the plant was in light reduced the amount of 14C assimilates recovered from the darkened shoot by half. Relative specific activity of the shoot tip grown in light was 13.5 times greater than that of the darkened one. The flower bud at the shoot tip degenerated in darkness and died. Shoots 2 to 3 centimeters long, after flower initiation, were most sensitive to the dark treatment. The degeneration is a gradual and reversible process in the first 8 days of darkness, followed by irreversible damage and atrophy. Darkening enhanced the ability of the young leaves to compete for the available assimilates over that of the darkened shoot tip. The enhancement of the mobilizing ability of the shoot tip by light is independent of photosynthesis since spraying with 3-(3,4-dichlorophenyl)-1,1-dimethylurea or holding shoots in a CO2-free atmosphere did not diminish the promoting effect of light on flower bud development or assimilate import. The possibility that light exerts its effect by photoproduction of ATP was also excluded inasmuch as no differences were found in ATP levels of shoot tips held in darkness and those held in light. PMID:16661566

  2. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus.

    PubMed

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-06-23

    Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates.

  3. Leishmania tropica: the effect of darkness and light on biological activities in vitro.

    PubMed

    Allahverdiyev, Adil M; Koc, Rabia Cakir; Ates, Sezen Canim; Bagirova, Malahat; Elcicek, Serhat; Oztel, Olga Nehir

    2011-08-01

    Leishmania parasites can be exposed to effects of light in their vectors and hosts, at various periods. However, there is no information about the effects of light on Leishmania parasites. The aim of this study is to investigate the effects of light on various cell parameters of Leishmania tropica, in vitro. All experiments were conducted on L. tropica promastigotes and amastigote-macrophage cultures, using flow cytometric analysis, MTT and phenol-sulfuric acid assay, DAPI and Giemsa. The results showed that the morphology of parasites has changed; the cell cycle has been affected and this caused parasites to remain at G0/G1 phase. Furthermore the proliferation, infectivity, glucose consumption and mitochondrial dehydrogenase activities of parasites were decreased. Thus, for the first time, in this study, the effects of light on biological activities of Leishmania parasites were shown. These new information about parasites' biology, would be very important to investigate the effects of light on the parasites in infected vectors and hosts.

  4. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus

    PubMed Central

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-01-01

    Melanopsin, the photopigment of the “circadian” receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca2+ fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates. PMID:26056310

  5. Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway.

    PubMed

    Gao, Yaowen; Li, Yixi; Yao, Linyu; Li, Simiao; Liu, Jin; Zhang, Hui

    2017-05-05

    Catalysts are known to activate peroxides to generate active radicals (i.e., hydroxyl radical (OH) and sulfate radical (SO4(-))) under certain conditions, but the activation of peroxides in the absence of catalysts under visible light irradiation has been rarely reported. This work demonstrates a catalyst-free activation of peroxides for the generation of OH and/or SO4(-) through photoexcited electron transfer from organic dyes to peroxides under visible LED light irradiation, where Rhodamine B (RhB) and Eosin Y (EY) were selected as model dyes. The formation of OH and/or SO4(-) in the reactions and the electron transfer from the excited dyes to peroxides were validated via electron paramagnetic resonance (EPR), photoluminescence (PL) spectra and cyclic voltammetry (CV). The performance of the peroxide/dye/Vis process was demonstrated to be altered depending on the target substrate. Meanwhile, the peroxide/dye/Vis process was effective for simultaneous decolorization of dyes and production of active radicals under neutral even or basic conditions. The findings of this study clarified a novel photoexcitation pathway for catalyst-free activation of peroxides under visible light irradiation, which could avoid the secondary metal ion (dissolved or leached) pollution from the metal-based catalysts and expand the application range of the peroxide-based catalytic process.

  6. Floating assembly of diatom Coscinodiscus sp. microshells.

    PubMed

    Wang, Yu; Pan, Junfeng; Cai, Jun; Zhang, Deyuan

    2012-03-30

    Diatoms have silica frustules with transparent and delicate micro/nano scale structures, two dimensional pore arrays, and large surface areas. Although, the diatom cells of Coscinodiscus sp. live underwater, we found that their valves can float on water and assemble together. Experiments show that the convex shape and the 40 nm sieve pores of the valves allow them to float on water, and that the buoyancy and the micro-range attractive forces cause the valves to assemble together at the highest point of water. As measured by AFM calibrated glass needles fixed in manipulator, the buoyancy force on a single floating valve may reach up to 10 μN in water. Turning the valves over, enlarging the sieve pores, reducing the surface tension of water, or vacuum pumping may cause the floating valves to sink. After the water has evaporated, the floating valves remained in their assembled state and formed a monolayer film. The bonded diatom monolayer may be valuable in studies on diatom based optical devices, biosensors, solar cells, and batteries, to better use the optical and adsorption properties of frustules. The floating assembly phenomenon can also be used as a self-assembly method for fabricating monolayer of circular plates.

  7. The In vitro/vivo Evaluation of Prepared Gastric Floating Tablets of Berberine Hydrochloride.

    PubMed

    Ji, Jun; He, Xin; Yang, Xiao-Lin; Du, Wen-Juan; Cui, Cheng-Long; Wang, Ling; Wang, Xue; Zhang, Chun-Feng; Guo, Chang-Run

    2016-12-29

    Currently available antiulcer drugs suffered from serious side effects which limited their uses and prompted the need for a safe and efficient new antiulcer agent. The objective of this project work was to retain the drug in the stomach for better antiulcer activity and less side effects. Hence, the aim of our present work was to prepare a gastric floating tablet of Berberine hydrochloride (Ber) with suitable in vitro/vivo properties. In this study, different Ber gastric floating tablets were prepared by simple direct compression using various amounts of HPMCK15M and Carbopol 971PNF combined with other tablet excipients. The properties of the tablets including hardness, buoyancy, swelling ability, in vitro drug release, and in vivo pharmacokinetic study were evaluated. The obtained results disclosed that hardness, floating, swelling, and in vitro drug release of the Ber tablets depended mainly on the ratio of polymer combinations. Moreover, among six formulations, F3 exhibited desirable floating, swelling, and extended drug release. In addition, in vivo pharmacokinetic study suggested that prepared gastric floating tablets had significantly sustained-releasing effects compared with market tablets. Therefore, the developed gastric floating tablets of Ber could be an alternative dosage form for treatment of gastrointestinal disease.

  8. Formulation and evaluation of sustained release floating capsules of nicardipine hydrochloride.

    PubMed

    Moursy, N M; Afifi, N N; Ghorab, D M; El-Saharty, Y

    2003-01-01

    Nicardipine hydrochloride, a calcium channel blocker with significant vasodilating and antihypertensive activities, was formulated in this work as sustained release floating capsules. A hydrocolloid of high viscosity grade was used for the floating systems. The inclusion of sodium bicarbonate to allow evolution of CO2 to aid buoyancy was studied. Polymers that retard drug release were included as coprecipitates with the drug and/or as additives in the formulated capsules. Both simple powder mixing of the ingredients and granule preparation via wet granulation were used. Seven capsule formulae were prepared. The prepared capsules were evaluated in vitro by testing drug dissolution, floating time and the kinetics of drug release. In vitro evaluation of a commercially available conventional 20 mg capsule of nicardipine hydrochloride, "Micard", was carried out for comparison. The hydrocolloid used succeeded in effecting capsule buoyancy. Floating time increased with increasing the proportion of the hydrocolloid. Inclusion of sodium bicarbonate increased buoyancy. All of the seven floating capsule formulae prepared proved efficient in controlling drug release. The sustained release floating capsule formulation of choice was evaluated in vivo in comparison to "Micard" capsules using rabbits. Reversed phase HPLC with UV detection was used for drug determination in rabbit plasma. Plasma concentration time curves revealed a longer drug duration for administration in the sustained release formula than the conventional "Micard" capsule being 16 h in the former versus 8 h for the latter.

  9. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Zhang, Dawei; Liu, Yanju; Yu, Kai; Lan, Xin

    2010-03-01

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  10. Highly Active TiO2-Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration

    SciTech Connect

    Zhang, Qiao; Lima, Diana Q.; Chi, Miaofang; Yin, Yadong

    2011-01-01

    A sandwich-structured photocatalyst shows an excellent performance in degradation reactions of a number of organic compounds under UV, visible light, and direct sunlight (see picture). The catalyst was synthesized by a combination of nonmetal doping and plasmonic metal decoration of TiO2 nanocrystals, which improves visible-light activity and enhances light harvesting and charge separation, respectively.

  11. Contribution of Occupation to High Doses of Light-Intensity Activity and Cardiovascular Risk Factors among Mexican American Adults

    PubMed Central

    Gay, Jennifer L.; Kohl, Harold W.; Salinas, Jennifer J.; McCormick, Joseph B.; Fisher-Hoch, Susan P.

    2015-01-01

    Background The association between light-intensity activity and cardiovascular disease risk is not well understood. The purpose of this study was to determine the association of light-intensity activity with census-based occupational activity classifications and cardiovascular risk factors among Mexican American adults. Methods 118 Mexican American adults (68.6% female) provided cross-sectional accelerometer and biological data. Self-reported occupations were classified by activity level (sedentary, low, moderate). Participants were classified as At-Risk for BMI, glucose, triglycerides, HDL, blood pressure, waist circumference, and percent body fat. Results Participants engaged in > 5 hours of light-intensity activity on average, and those in sedentary occupations engaged in fewer light-intensity activity minutes than low-active or moderately active workers (P < .001). Self-reported occupation explained 14% of the variation in light-intensity activity (P < .001). Participants in moderately active occupations were at increased risk for high %body fat than other workers (P = .01), but no other associations between occupation and cardiovascular risk were detected. Conclusion Early work in physical activity underscored the importance of occupational activity. This study presents evidence of a dose-response association for light-intensity activity by occupational category such that workers in sedentary occupations had less light-intensity activity than employees in more active occupations. Future research on how light-intensity activity derived from occupation may reduce the risk of chronic disease will contribute to improved interventions as light-intensity activity participation may be more feasible than meeting current physical activity guidelines. PMID:24368819

  12. Light is an active contributor to the vital effects of coral skeleton proxies

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, Anne; Reynaud, Stéphanie; Dissard, Delphine; Tisserand, Guillaume; Ferrier-Pagès, Christine

    2014-09-01

    Symbiotic colonies of the coral Acropora sp. were cultured in a factorial design of three temperatures (21, 25 and 28 °C) and two light intensities (200 and 400 μmol photon m-2 s-1), under constant conditions. A temperature of 25 °C and a light intensity of 200 μmol photon m-2 s-1 was the starting culture condition. Metabolic (photosynthesis, respiration, calcification and surface expansion rate) and geochemical measurements (δ18O, δ13C, Sr/Ca and Mg/Ca) were conducted on 6 colonies for each experimental condition. Metabolic measurements confirmed that respiration, photosynthesis, calcification and surface expansion rate responded to the combined effect of temperature and light. Under each light intensity, mean calcification rate was linearly correlated with mean photosynthetic activity. Geochemical measurements were also influenced by temperature and, to a lesser degree, by light. All geochemical proxies measured on 6 nubbins showed a wide scattering of values, regardless of the environmental condition. Compared to the other proxies, δ18O exhibited a different behavior. It was the only proxy exhibiting temperature tracer behavior. However, while mean values of Sr/Ca, Mg/Ca and δ13C were well correlated, the correlation between the later and mean δ18O differed with light level. This suggests that both skeleton deposition and temperature oxygen fractionation differs according to light intensity. Overall, the effect of light on geochemical values seems to compromise the use of proxy calibrations solely based on temperature influence. Under high light conditions, the great amplitude shown by individual net photosynthesis is directly proportional to the highly variable zooxanthellae density. As light is affecting all of the proxies, we thus assume that the strong geochemical variability observed could be explained by various algae densities, each nubbin responding according to its zooxanthellae amount. Accordingly, we suggest that each symbiosome (the

  13. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  14. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  15. Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability

    PubMed Central

    Vieira, Jacqueline; Jones, Alex R.; Danon, Antoine; Sakuma, Michiyo; Hoang, Nathalie; Robles, David; Tait, Shirley; Heyes, Derren J.; Picot, Marie; Yoshii, Taishi; Helfrich-Förster, Charlotte; Soubigou, Guillaume; Coppee, Jean-Yves; Klarsfeld, André; Rouyer, Francois; Scrutton, Nigel S.; Ahmad, Margaret

    2012-01-01

    Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism. PMID:22427812

  16. Photochemotherapy of intimal hyperplasia using psoralen activated by uv light in porcine model

    NASA Astrophysics Data System (ADS)

    Buckley, Lisa A.; Gregory, Kenton W.; Bahlman, Deborah T.; Shangguan, HanQun; Fahrenbach, Henner; Rosenthal, Eli; Block, Peter C.

    1996-05-01

    Psoralen activated by UVA light (PUVA) was investigated as a means of inhibiting smooth muscle cell proliferation resulting from balloon injury. Twenty kilogram domestic swine were anesthetized and underwent balloon angioplasty to create a 133% overstretch injury. Assignments of treatment and control were randomized between the left anterior descending (LAD) and circumflex (LCX) coronaries arteries. The animals were given with 5 mg/kg of 8- methoxypsoralen eternally. Treatment vessels received 600 mJ/cm2 of 364 nm light during balloon inflation to activate the psoralen. Control vessels received drug and balloon injury only. Serum was obtained during the light delivery to assess psoralen levels. At 30 days, animals were sacrificed and the coronary arteries perfusion fixed. Five sections per vessel were analyzed morphometrically to determine percent intimal area and extent of injury. The restenosis injury index was 0.21 plus or minus .02 in treatment vessels and 0.14 plus or minus .01 in the controls with a p-value less than .02. In this large animal model of balloon angioplasty injury, psoralen activated by ultraviolet light increased intimal hyperplasia.

  17. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  18. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina.

    PubMed

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and "hot spot" extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes.

  19. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    PubMed

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min.

  20. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.

  1. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  2. A spinal opsin controls early neural activity and drives a behavioral light response

    PubMed Central

    Friedmann, Drew; Hoagland, Adam; Berlin, Shai; Isacoff, Ehud Y.

    2014-01-01

    Non-visual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors [1]. However, the expression of opsins in multiple other brain structures [2–4] suggests a more expansive repertoire for light-regulation of physiology, behavior, and development. Translucent zebrafish embryos express extra-retinal opsins early on [5, 6], at a time when spontaneous activity in the developing central nervous system plays a role in neuronal maturation and circuit formation [7]. Though the presence of extra-retinal opsins is well documented, the function of direct photoreception by the central nervous system remains largely unknown. Here we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photo-sensitivity of this circuit is conferred by vertebrate ancient long opsin (VALopA), which we show to be a Gαi-coupled receptor that is expressed in the neurons of the spinal network. Sustained photo-activation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for non-visual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs. PMID:25484291

  3. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR).

    PubMed

    Menon, Binuraj R K; Hardman, Samantha J O; Scrutton, Nigel S; Heyes, Derren J

    2016-08-01

    Protochlorophyllide oxidoreductase (POR) catalyzes the light-driven reduction of protochlorophyllide (Pchlide), an essential, regulatory step in chlorophyll biosynthesis. The unique requirement of the enzyme for light has provided the opportunity to investigate how light energy can be harnessed to power biological catalysis and enzyme dynamics. Excited state interactions between the Pchlide molecule and the protein are known to drive the subsequent reaction chemistry. However, the structural features of POR and active site residues that are important for photochemistry and catalysis are currently unknown, because there is no crystal structure for POR. Here, we have used static and time-resolved spectroscopic measurements of a number of active site variants to study the role of a number of residues, which are located in the proposed NADPH/Pchlide binding site based on previous homology models, in the reaction mechanism of POR. Our findings, which are interpreted in the context of a new improved structural model, have identified several residues that are predicted to interact with the coenzyme or substrate. Several of the POR variants have a profound effect on the photochemistry, suggesting that multiple residues are important in stabilizing the excited state required for catalysis. Our work offers insight into how the POR active site geometry is finely tuned by multiple active site residues to support enzyme-mediated photochemistry and reduction of Pchlide, both of which are crucial to the existence of life on Earth.

  4. Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity.

    PubMed

    Xing, Chengfen; Xu, Qingling; Tang, Hongwei; Liu, Libing; Wang, Shu

    2009-09-16

    With the increasing antibiotic resistance of microorganisms, there is a growing interest in the design and development of new materials that are effective in killing bacteria to replace conventional antibiotics. Herein, a new anionic water-soluble polythiophene (PTP) and a cationic porphyrin (TPPN) are synthesized and characterized. They can form a complex through electrostatic interactions, and efficient energy transfer from PTP to TPPN occurs upon irradiation under white light (400-800 nm). The energy of TPPN transfers to triplet by intersystem crossing, followed by sensitization of oxygen molecule to enhance the efficiency of singlet oxygen generation related to TPPN itself. The positive charges of PTP/TPPN complex promote its adsorption to the negatively charged bacteria membranes of gram-negative Escherichia coli and gram-positive Bacillus subtilis through electrostatic interactions, and the singlet oxygen effectively kills the bacteria. The photosensitized inactivation of bacteria for the PTP/TPPN complex is efficient, and about 70% reduction of bacterial viability is observed after only 5 min of irradiation with white light at a fluence rate of 90 mW x cm(-2) (27 J x cm(-2)). The technique provides a promising application in photodynamic inactivation of bacteria on the basis of enhanced energy transfer offered by light-harvesting conjugated polymers.

  5. Enhanced visible-light activity of titania via confinement inside carbon nanotubes.

    PubMed

    Chen, Wei; Fan, Zhongli; Zhang, Bei; Ma, Guijun; Takanabe, Kazuhiro; Zhang, Xixiang; Lai, Zhiping

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.

  6. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  7. AgVO3 nanorods: Synthesis, characterization and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Suresh, R.; Giribabu, K.; Narayanan, V.

    2015-01-01

    Large scale and high purity silver vanadate (AgVO3) nanorods were synthesized by thermal decomposition method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, Ultraviolet-Visible (DRS-UV-Visible) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the structure, light absorption capacity and morphology of the as-synthesized sample. The photocatalytic activity of AgVO3 nanorods was examined by degradation of methylene blue (MB) as a model organic pollutant. The degradation efficiency is 85.02% in the 120 min visible light illumination. Further, the AgVO3 nanorods were used as a photocatalyst for industrial effluent. 95.4% degradation efficiency was obtained within the visible light irradiation of 120 min. The possible photocatalytic mechanism has also been proposed.

  8. Disentangling planetary and stellar activity features in the CoRoT-2 light curve

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Deleuil, M.; Almenara, J.-M.; Barros, S. C. C.; Lanza, A. F.; Montalto, M.; Boisse, I.; Santerne, A.; Lagrange, A.-M.; Meunier, N.

    2016-11-01

    Aims: Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction. Methods: We have developed a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity. Results: We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits are not normalized and are fitted together with the activity features, and occulted features are taken into account during the transit fit. In the second, we normalize the transits with a model of the non-occulted activity features, and then we apply a standard transit fit, which does not take the occulted features into account. Conclusions: Our model recovers the activity features coverage of the stellar surface and different rotation periods for different features. We find variations in the transit parameters of different segments and show that they are likely due to the division applied to the light curve. Neglecting stellar activity or even only bright spots while normalizing the transits yields a 1.2σ larger and 2.3σ smaller transit depth, respectively. The stellar density also presents up to 2.5σ differences depending on the normalization technique. Our analysis confirms the inflated radius of the planet (1.475 ± 0.031RJ) found by other authors. We show that

  9. Traumatic Floating Clavicle- A case report

    PubMed Central

    Sopu, Alexandra; Green, Connor; Molony, Diarmuid

    2015-01-01

    Introduction: Shoulder injuries after high velocity trauma are common. Clavicle is affected in almost half of these cases. Even so, bipolar dislocation of the clavicle is an unusual injury and seldom reported in the literature. Conservative management is used for almost all the cases and only selected cases will undergo surgical treatment. Case Report: A 52 year old right electrician presented to the emergency department following a fall from a push bicycle. Plain radiographs identified a left first metacarpal (MC) fracture and a bipolar fracture of his right clavicle. Following Fracture Clinic review, significant deformity of the medial clavicle was noted and a CT scan showed anterior dislocation of the medial fragment. Given the degree of deformity and this functional requirement we felt that operative treatment was most appropriate for his unstable medial clavicle fracture dislocation. Conclusion: Surgical treatment of floating clavicle has an important role in the management of fit and active patients. It is important to identify the mechanism of injury and deforming forces in fractures and only after this to plan to neutralise these where appropriate. PMID:27299032

  10. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

    PubMed

    Sun, Hang; Zeng, Shan; He, Qinrong; She, Ping; Xu, Kongliang; Liu, Zhenning

    2017-03-21

    A facile approach for the preparation of spiky TiO2/Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2/AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2/AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2/Au nanosphere photocatalysts, the spiky TiO2/AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2/AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2/AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

  11. Synchronous activation of cell division by light or temperature stimuli in the dimorphic yeast Schizosaccharomyces japonicus.

    PubMed

    Okamoto, Sho; Furuya, Kanji; Nozaki, Shingo; Aoki, Keita; Niki, Hironori

    2013-09-01

    Many fungi respond to light and regulate fungal development and behavior. A blue light-activated complex has been identified in Neurospora crassa as the product of the wc-1 and wc-2 genes. Orthologs of WC-1 and WC-2 have hitherto been found only in filamentous fungi and not in yeast, with the exception of the basidiomycete pathogenic yeast Cryptococcus. Here, we report that the fission yeast Schizosaccharomyces japonicus responds to blue light depending on Wcs1 and Wcs2, orthologs of components of the WC complex. Surprisingly, those of ascomycete S. japonicus are more closely related to those of the basidiomycete. S. japonicus reversibly changes from yeast to hyphae in response to environmental stresses. After incubation at 30°C, a colony of yeast was formed, and then hyphal cells extended from the periphery of the colony. When light cycles were applied, distinct dark- and bright-colored hyphal cell stripes were formed because the growing hyphal cells had synchronously activated cytokinesis. In addition, temperature cycles of 30°C for 12 h and 35°C for 12 h or of 25°C for 12 h and 30°C for 12 h during incubation in the dark induced a response in the hyphal cells similar to that of light. The stripe formation of the temperature cycles was independent of the wcs genes. Both light and temperature, which are daily external cues, have the same effect on growing hyphal cells. A dual sensing mechanism of external cues allows organisms to adapt to daily changes of environmental alteration.

  12. Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana.

    PubMed

    Saari, Paulus; French, Andrew S; Torkkeli, Päivi H; Liu, Hongxia; Immonen, Esa-Ville; Frolov, Roman V

    2017-04-03

    Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s(1) because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.

  13. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J. E-mail: robin.colaninno@nrl.navy.mil E-mail: jli@igpp.ucla.edu

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  14. Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single synaptic activation

    PubMed Central

    Hou, Qingming; Gilbert, James; Man, Heng-Ye

    2011-01-01

    During homeostatic adjustment in response to alterations in neuronal activity, synaptic expression of AMPA receptors (AMPARs) is globally tuned up- or down so that the neuronal activity is restored to a physiological range. Given that a central neuron receives multiple presynaptic inputs, whether and how AMPAR synaptic expression is homeostatically regulated at individual synapses remains unclear. In cultured hippocampal neurons, we report that when activity of an individual presynaptic terminal is selectively elevated by light-controlled excitation, AMPAR abundance at the excited synapses is selectively down-regulated in an NMDAR-dependent manner. The reduction in surface AMPARs is accompanied by enhanced receptor endocytosis and dependent on proteasomal activity. Synaptic activation also leads to a site-specific increase in the ubiquitin ligase Nedd4 and polyubiquitination levels, consistent with AMPAR ubiquitination and degradation in the spine. These results indicate that AMPAR accumulation at individual synapses is subject to autonomous homeostatic regulation in response to synaptic activity. PMID:22153376

  15. Light-Intensity Activity Attenuates Functional Decline in Older Cancer Survivors

    PubMed Central

    Blair, Cindy K.; Morey, Miriam C.; Desmond, Renee A.; Cohen, Harvey Jay; Sloane, Richard; Snyder, Denise C.; Demark-Wahnefried, Wendy

    2014-01-01

    While moderate-vigorous intensity physical activities (MVPA) confer the greatest health benefits, evidence suggests that light-intensity activities are also beneficial, particularly for older adults and individuals with moderate-severe comorbidities. Purpose To examine cross-sectional and longitudinal associations between light-intensity activity and physical function in older cancer survivors at increased risk for age- and treatment-related comorbidities, including accelerated functional decline. Methods The analysis included data from 641 breast, prostate, and colorectal cancer survivors (54% female) aged 65 and older who participated in a 1-year, home-based diet and exercise intervention designed to reduce the rate of physical function decline. ANCOVA was used to compare means of physical function across levels of PA intensity (low-light (LLPA): 1.5-2.0 METs; high-light (HLPA): 2.1-2.9 METs; MVPA: ≥3.0 METs). Results In cross-sectional analyses, increasing tertiles of light-intensity activity were associated with higher scores for all 3 measures of physical function (all p-values <0.005), after adjustment for age, sex, BMI, comorbidity, symptoms, and MVPA. Associations were stronger for HLPA than for LLPA. Compared with survivors who decreased or remained stable in MVPA and HLPA at the post-intervention follow-up, those who increased in HLPA, but decreased or remained stable in MVPA, reported higher physical function scores (LSMeans (95% CI): SF-36 physical function subscale: -5.58 (-7.96, -3.20) vs. -2.54 (-5.83, 0.75), p=0.14; basic lower extremity function: -2.00 (-3.45, -0.55) vs. 0.28 (-1.72, 2.28), p=0.07; advanced lower extremity function: -2.58 (-4.00, -1.15) vs. 0.44 (-1.52, 2.40), p=0.01). Conclusion Our findings suggest that increasing light-intensity activities, especially HLPA, may be a viable approach to reducing the rate of physical function decline in individuals who are unable or reluctant to initiate or maintain adequate levels of moderate

  16. Plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Park, Young-Jin; Cho, Hui-Sup; Jo, Sung-Hyun; Lee, Hee-Ho; Shin, Jang-Kyoo

    2014-09-01

    In this paper, we proposed the plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors for a large-area multi-touch display system. Although the strong point of the touch display system in the area of education and exhibition there are some limits of the ambient light. When an unexpected ambient light incidents into the display the touch recognition system can make errors classifying the touch point in the unexpected ambient light area. We proposed a new touch recognition image sensor system to decrease the ambient light error and investigated the optical transmission properties of plasmonic color filters for IR image sensor. To find a proper structure of the plasmonic color filters we used a commercial computer simulation tool utilizing finite-difference time-domain (FDTD) method as several thicknesses and whit the cover passivation layer or not. Gold (Au) applied for the metal film and the dispersion information associated with was derived from the Lorentz-Drude model. We also described the mechanism applied the double band filter on the IR image sensors.

  17. Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions.

    PubMed

    Zhang, Shengqu; Yang, Yuxin; Guo, Yingna; Guo, Wan; Wang, Mei; Guo, Yihang; Huo, Mingxin

    2013-10-15

    A series of graphitic carbon nitride/bismuth niobate (g-C3N4/Bi5Nb3O15) heterojunctions with g-C3N4 doping level of 10-90 wt% were prepared by a facile milling-heat treatment method. The phase and chemical structures, surface compositions, electronic and optical properties as well as morphologies of the prepared g-C3N4/Bi5Nb3O15 were well-characterized. Subsequently, the photocatalytic activity and stability of g-C3N4/Bi5Nb3O15 were evaluated by the degradation of aqueous methyl orange (MO) and 4-chlorophenol (4-CP) under the visible-light irradiation. At suitable g-C3N4 doping levels, g-C3N4/Bi5Nb3O15 exhibited enhanced visible-light photocatalytic activity compared with pure g-C3N4 or Bi5Nb3O15. This excellent photocatalytic activity was revealed in terms of the extension of visible-light response and efficient separation and transportation of the photogenerated electrons and holes due to coupling of g-C3N4 and Bi5Nb3O15. Additionally, the active species yielded in the pure g-C3N4- and g-C3N4/Bi5Nb3O15-catalyzed 4-CP photodegradation systems were investigated by the free radical and hole scavenging experiments.

  18. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  19. Light-dependent activation of G proteins by two isoforms of chicken melanopsins.

    PubMed

    Torii, Masaki; Kojima, Daisuke; Nishimura, Akiyuki; Itoh, Hiroshi; Fukada, Yoshitaka

    2015-11-01

    In the chicken pineal gland, light stimuli trigger signaling pathways mediated by two different subtypes, Gt and G11. These G proteins may be activated by any of the three major pineal opsins, pinopsin, OPN4-1 and OPN4-2, but biochemical evidence for the coupling has been missing except for functional coupling between pinopsin and Gt. Here we investigated the relative expression levels and the functional difference among the three pineal opsins. In the chicken pineal gland, the pinopsin mRNA level was significantly more abundant than the others, of which the OPN4-2 mRNA level was higher than that of OPN4-1. In G protein activation assays, Gt was strongly activated by pinopsin in a light-dependent manner, being consistent with previous studies, and weakly activated by OPN4-2. Unexpectedly, illuminated OPN4-2 more efficiently activated G protein(s) that was endogenously expressed in HEK293T cells in culture. On the other hand, Gq, the closest analogue of G11, was activated only by OPN4-1 although the activity was relatively weak under these conditions. These results suggest that OPN4-1 and OPN4-2 couple with Gq and Gt, respectively. Two melanopsins, OPN4-1 and OPN4-2, appear to have acquired mutually different functions through the evolution.

  20. Property Characterization and Photocatalytic Activity Evaluation of BiGdO₃ Nanoparticles under Visible Light Irradiation.

    PubMed

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-09-08

    BiGdO₃ nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO₃ was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO₃ crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO₃ was 5.465 angstrom. The band gap of BiGdO₃ was estimated to be 2.25 eV. BiGdO₃ showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO₃ was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO₃ demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min(-1) with BiGdO₃ as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO₃ particles were also discussed in detail. BiGdO₃/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment.

  1. Visible-Light-Induced Bactericidal Activity of Titanium Dioxide Co-doped with Nitrogen and Silver

    PubMed Central

    Wu, Pinggui; Xie, Rongcai; Imlay, Kari; Shang, Jian-Ku

    2011-01-01

    Titanium dioxide nanoparticles co-doped with nitrogen and silver (Ag2O/TiON) were synthesized by the sol-gel process and found to be an effective visible light driven photocatalyst. The catalyst showed strong bactericidal activity against Escherichia coli (E. coli) under visible light irradiation (λ> 400 nm). In x-ray photoelectron spectroscopy and x-ray diffraction characterization of the samples, the as-added Ag species mainly exist as Ag2O. Spin trapping EPR study showed Ag addition greatly enhanced the production of hydroxyl radicals (•OH) under visible light irradiation. The results indicate that the Ag2O species trapped eCB− in the process of Ag2O/TiON photocatalytic reaction, thus inhibiting the recombination of eCB− and hVB+ in agreement with the stronger photocatalytic bactericidal activity of Ag2O/TiON. The killing mechanism of Ag2O/TiON under visible light irradiation is shown to be related to oxidative damages in the forms of cell wall thinning and cell disconfiguration. PMID:20726520

  2. Photo-induced bending in a light-activated polymer laminated composite.

    PubMed

    Mu, Xiaoming; Sowan, Nancy; Tumbic, Julia A; Bowman, Christopher N; Mather, Patrick T; Qi, H Jerry

    2015-04-07

    Light activated polymers (LAPs) have attracted increasing attention since these materials change their shape and/or behavior in response to light exposure, which serves as an instant, remote and precisely controllable stimulus that enables non-contact control of the material shape and behavior through simple variation in light intensity, wavelength and spatially controlled exposure. These features distinguish LAPs from other active polymers triggered by other stimuli such as heat, electrical field or humidity. Previous examples have resulted in demonstrations in applications such as surface patterning, photo-induced shape memory behavior, and photo-origami. However, in many of these applications, an undesirable limitation has been the requirement to apply and maintain an external load during light irradiation. In this paper, a laminated structure is introduced to provide a pre-programmed stress field, which is then used for photo-induced deformation. This laminated structure is fabricated by bonding a stretched elastomer (NOA65) sheet between two LAP layers. Releasing the elastomer causes contraction and introduces a compressive stress in the LAPs, which are relaxed optically to trigger the desired deformation. A theoretical model is developed to quantitatively examine the laminated composite system, allowing exploration of the design space and optimum design of the laminate.

  3. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  4. Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo).

    PubMed

    Forreiter, C; Apel, K

    1993-01-01

    Lower plants and gymnosperms synthesize chlorophyll and develop photosynthetically competent chloroplasts even when grown in the dark. In cell-free extracts of pine (Pinus mugo, Turra, ssp. mugo) seedlings, light-independent and light-dependent protochlorophyllide-reducing activities are present. Two distinct NADPH-protochlorophyllide-oxidoreductase (POR) polypeptides can be detected immunologically with an antiserum raised against the POR of barley. The subcellular localization and amounts of the two POR polypeptides are differentially affected by light: one of them is predominantly present in prolamellar bodies of etiochloroplasts and its abundance rapidly declines once the pine seedlings are exposed to light; the other is found in thylakoid membranes and its amount does not change during illumination of dark-grown seedlings. Two types of cDNA sequences are identified that encode two distinct POR polypeptides in pine. The relevance of these POR polypeptides for the two chlorophyll biosynthetic pathways active in gymnosperms is discussed.

  5. Activation of retinal tyrosine hydroxylase: tolerance induced by chronic treatment with haloperidol does not modify response to light

    SciTech Connect

    Cohen, J.; Neff, N.H.

    1982-05-01

    A single dose of haloperidol administered to rats in the dark increases the activity of retinal tyrosine hydroxylase. The ability of haloperidol to activate the enzyme is diminished 24 hr after terminating 22 to 30 days of treatment with haloperidol. The retinal enzyme is also tolerant to activation by treatment with chlorpromazine. In contrast, exposure of the animals to light activates the enzyme to the same extent in chronic haloperidol-treated and control animals. Thus, chronic haloperidol treatment does not modify the ability of the retinal enzyme system to respond to the physiological stimulus, light. Apparently, activation of retinol tyrosine hydroxylase by haloperidol and light occurs by independent mechanisms.

  6. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light1[OPEN

    PubMed Central

    Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari

    2015-01-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, PROTON GRADIENT REGULATION5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery. PMID:25902812

  7. Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light.

    PubMed

    Mekala, Nageswara Rao; Suorsa, Marjaana; Rantala, Marjaana; Aro, Eva-Mari; Tikkanen, Mikko

    2015-06-01

    Photosystem II (PSII) core and light-harvesting complex II (LHCII) proteins in plant chloroplasts undergo reversible phosphorylation upon changes in light intensity (being under control of redox-regulated STN7 and STN8 kinases and TAP38/PPH1 and PSII core phosphatases). Shift of plants from growth light to high light results in an increase of PSII core phosphorylation, whereas LHCII phosphorylation concomitantly decreases. Exactly the opposite takes place when plants are shifted to lower light intensity. Despite distinct changes occurring in thylakoid protein phosphorylation upon light intensity changes, the excitation balance between PSII and photosystem I remains unchanged. This differs drastically from the canonical-state transition model induced by artificial states 1 and 2 lights that concomitantly either dephosphorylate or phosphorylate, respectively, both the PSII core and LHCII phosphoproteins. Analysis of the kinase and phosphatase mutants revealed that TAP38/PPH1 phosphatase is crucial in preventing state transition upon increase in light intensity. Indeed, tap38/pph1 mutant revealed strong concomitant phosphorylation of both the PSII core and LHCII proteins upon transfer to high light, thus resembling the wild type under state 2 light. Coordinated function of thylakoid protein kinases and phosphatases is shown to secure balanced excitation energy for both photosystems by preventing state transitions upon changes in light intensity. Moreover, proton gradient regulation5 (PGR5) is required for proper regulation of thylakoid protein kinases and phosphatases, and the pgr5 mutant mimics phenotypes of tap38/pph1. This shows that there is a close cooperation between the redox- and proton gradient-dependent regulatory mechanisms for proper function of the photosynthetic machinery.

  8. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    PubMed

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring.

  9. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.)

    PubMed Central

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-01-01

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1) and was lowered with decreased light intensity (70–80 μmol m−2 s−1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment. PMID:24642884

  10. Nickel(II) oxide surface-modified titanium(IV) dioxide as a visible-light-active photocatalyst.

    PubMed

    Jin, Qiliang; Ikeda, Takuro; Fujishima, Musashi; Tada, Hiroaki

    2011-08-21

    The electronic modification of TiO(2) with highly dispersed NiO particles smaller than ca. 2 nm by the chemisorption-calcination-cycle technique has given rise to a high level of visible-light-activity exceeding that of iron oxide-surface modified TiO(2) simultaneously with the UV-light-activity being significantly increased.

  11. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking.

    PubMed

    Jeon, Eun Young; Hwang, Byeong Hee; Yang, Yun Jung; Kim, Bum Jin; Choi, Bong-Hyuk; Jung, Gyu Yong; Cha, Hyung Joon

    2015-10-01

    Currently approved surgical tissue glues do not satisfy the requirements for ideal bioadhesives due to limited adhesion in wet conditions and severe cytotoxicity. Herein, we report a new light-activated, mussel protein-based bioadhesive (LAMBA) inspired by mussel adhesion and insect dityrosine crosslinking chemistry. LAMBA exhibited substantially stronger bulk wet tissue adhesion than commercially available fibrin glue and good biocompatibility in both in vitro and in vivo studies. Besides, the easily tunable, light-activated crosslinking enabled an effective on-demand wound closure and facilitated wound healing. Based on these outstanding properties, LAMBA holds great potential as an ideal surgical tissue glue for diverse medical applications, including sutureless wound closures of skin and internal organs.

  12. Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film

    NASA Astrophysics Data System (ADS)

    Xu, Qing Chi; Wellia, Diana V.; Amal, Rose; Liao, Dai Wei; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2010-07-01

    A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti precursors and organic solvents. The N-doped titania films were prepared from heating aqueous peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure glass substrates were superhydrophilic after being heated at 500 °C for 1 h. Nitrogen concentrations in the titania films were adjusted by changing the amount of ammonia solution. The optimal photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial self-cleaning glass under the same visible light illumination. The current reported preparative technique is generally applicable for the preparation of other thin films.

  13. Improved visible light photocatalytic activity of WO3 through CuWO4 for phenol degradation

    NASA Astrophysics Data System (ADS)

    Chen, Haihang; Xiong, Xianqiang; Hao, Linlin; Zhang, Xiao; Xu, Yiming

    2016-12-01

    Development of a visible light photocatalyst is challenging. Herein, we report a significant activity enhancement of WO3 upon addition of CuWO4. Reaction was carried out under visible light for phenol degradation in aqueous suspension in the presence of H2O2. A maximum reaction rate was observed at 1.0 wt% CuWO4, which was 2.1 and 4.3 times those measured with WO3 and CuWO4, respectively. Similar results were also obtained from the photocatalytic formation of OH radicals, and from the electrochemical reduction of O2. A possible mechanism responsible for the improved activity of WO3 is proposed, involving the electron transfer from CuWO4 to WO3, followed by the reduction of H2O2 over WO3.

  14. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  15. Battery charging in float vs. cycling environments

    SciTech Connect

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  16. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  17. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  18. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  19. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  20. A Palladium-Binding Deltarhodopsin for Light-Activated Conversion of Protonic to Electronic Currents.

    PubMed

    Soto-Rodríguez, Jessica; Hemmatian, Zahra; Josberger, Erik E; Rolandi, Marco; Baneyx, François

    2016-08-01

    Fusion of a palladium-binding peptide to an archaeal rhodopsin promotes intimate integration of the lipid-embedded membrane protein with a palladium hydride protonic contact. Devices fabricated with the palladium-binding deltarhodopsin enable light-activated conversion of protonic currents to electronic currents with on/off responses complete in seconds and a nearly tenfold increase in electrical signal relative to those made with the wild-type protein.

  1. Studies of High Power Density, Pico-Second Rise-Time Light Activated Semiconductor Switch

    DTIC Science & Technology

    1988-12-31

    34 Proceedings of the IEEE, vol.55, pp.2192-2193, 1967. 3. McKay, K., K. McAfee, "Electron Multiplication in Silicon and Germanium ," Physical Review...Conwell, E., "Properties of Silicon and Germanium : II," Proceedings of the Institute of Radio Engineers. vol.46, pp.1281-1300, 1958. 6. Zucker, 0...light activated semiconductor switches made of silicon junction diode have been demonstrated. A novel optical delay line has been designed in sampling

  2. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands.

    PubMed

    Siritanaratkul, Bhavin; Maeda, Kazuhiko; Hisatomi, Takashi; Domen, Kazunari

    2011-01-17

    Photocatalytic activities of perovskite-type niobium oxynitrides (CaNbO₂N, SrNbO₂N, BaNbO₂N, and LaNbON₂) were examined for hydrogen and oxygen evolution from water under visible-light irradiation. These niobium oxynitrides were prepared by heating the corresponding oxide precursors, which were synthesized using the polymerized complex method, for 15 h under a flow of ammonia. They possess visible-light absorption bands between 600-750 nm, depending on the A-site cations in the structures. The oxynitride CaNbO₂N, was found to be active for hydrogen and oxygen evolution from methanol and aqueous AgNO₃, respectively, even under irradiation by light at long wavelengths (λ<560 nm). The nitridation temperature dependence of CaNbO₂N was investigated and 1023 K was found to be the optimal temperature. At lower temperatures, the oxynitride phase is not adequately produced, whereas higher temperatures produce more reduced niobium species (e. g., Nb³(+) and Nb⁴(+)), which can act as electron-hole recombination centers, resulting in a decrease in activity.

  3. Improved expression of halorhodopsin for light-induced silencing of neuronal activity.

    PubMed

    Zhao, Shengli; Cunha, Catarina; Zhang, Feng; Liu, Qun; Gloss, Bernd; Deisseroth, Karl; Augustine, George J; Feng, Guoping

    2008-08-01

    The ability to control and manipulate neuronal activity within an intact mammalian brain is of key importance for mapping functional connectivity and for dissecting the neural circuitry underlying behaviors. We have previously generated transgenic mice that express channelrhodopsin-2 for light-induced activation of neurons and mapping of neural circuits. Here we describe transgenic mice that express halorhodopsin (NpHR), a light-driven chloride pump that can be used to silence neuronal activity via light. Using the Thy-1 promoter to target NpHR expression to neurons, we found that neurons in these mice expressed high levels of NpHR-YFP and that illumination of cortical pyramidal neurons expressing NpHR-YFP led to rapid, reversible photoinhibition of action potential firing in these cells. However, NpHR-YFP expression led to the formation of numerous intracellular blebs, which may disrupt neuronal function. Labeling of various subcellular markers indicated that the blebs arise from retention of NpHR-YFP in the endoplasmic reticulum. By improving the signal peptide sequence and adding an ER export signal to NpHR-YFP, we eliminated the formation of blebs and dramatically increased the membrane expression of NpHR-YFP. Thus, the improved version of NpHR should serve as an excellent tool for neuronal silencing in vitro and in vivo.

  4. UV and visible light active aqueous titanium dioxide colloids stabilized by surfactants.

    PubMed

    Pacia, Michał; Warszyński, Piotr; Macyk, Wojciech

    2014-09-07

    Attempts to increase the stability of photocatalytically active nanodispersions of titanium dioxide over a wide range of pH (3-10) were undertaken. Polyethylene glycols (PEGs) with different molecular weights and polyoxyethylenesorbitan monooleate (Tween® 80) were tested as stabilizing agents of TiO2 nanoparticles. The results of DLS measurements proved the stabilizing effect of Tween® 80 while the systems involving PEGs, independently of the polymer concentration, showed a tendency to form aggregates in neutral solutions. The colloids stabilized with Tween® 80 were photosensitized with 2,3-naphthalenediol (nd) or 2-hydroxy-3-naphthoic acid (hn) or catechol (cat). The photocatalytic activity of such colloids has been assessed in an azure B degradation reaction using both UV and visible light. The nd@TiO2 + Tween colloid appeared particularly photoactive upon visible light irradiation. Moreover, the comparison of activities of nd@TiO2 + Tween and TiO2 + Tween revealed a significantly better performance of the former nanodispersion, independently of the irradiation conditions (UV or visible light). This effect has been explained by different structures of micelles formed in the case of TiO2 and nd@TiO2 stabilized with Tween® 80.

  5. Visible-light-driven Bi 2 O 3 /WO 3 composites with enhanced photocatalytic activity

    DOE PAGES

    Adhikari, Shiba P.; Dean, Hunter; Hood, Zachary D.; ...

    2015-10-19

    Semiconductor heterojunctions (composites) have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from electron–hole recombination and narrow photo-response range. We prepared a novel visible-light-driven Bi2O3/WO3 composite photocatalyst by hydrothermal synthesis. The composite was characterized by scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy (EIS) to better understand the structures, compositions, morphologies and optical properties. Bi2O3/WO3 heterojunction was found to exhibit significantly higher photocatalytic activity towards the decomposition of Rhodaminemore » B (RhB) and 4-nitroaniline (4-NA) under visible light irradiation compared to that of Bi2O3 and WO3. A tentative mechanism for the enhanced photocatalytic activity of the heterostructured composite is discussed based on observed activity, band position calculations, photoluminescence, and electrochemical impedance data. Our study provides a new strategy for the design of composite materials with enhanced visible light photocatalytic performance.« less

  6. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  7. Light intensity exposure, sleep duration, physical activity, and biomarkers of melatonin among rotating shift nurses.

    PubMed

    Grundy, Anne; Sanchez, Maria; Richardson, Harriet; Tranmer, Joan; Borugian, Marilyn; Graham, Charles H; Aronson, Kristan J

    2009-10-01

    Long-term, night shiftwork has been identified as a potential carcinogenic risk factor. It is hypothesized that increased light at night exposure during shiftwork reduces melatonin production, which is associated with increased cancer risk. Sleep duration has been hypothesized to influence both melatonin levels and cancer risk, and it has been suggested that sleep duration could be used as a proxy for melatonin production. Finally, physical activity has been shown to reduce cancer risk, and laboratory studies indicate it may influence melatonin levels. A cross-sectional study of light exposure, sleep duration, physical activity, and melatonin levels was conducted among 61 female rotating shift nurses (work schedule: two 12 h days, two 12 h nights, five days off). Light intensity was measured using a light-intensity data logger, and sleep duration and physical activity were self-reported in a study diary and questionnaire. Melatonin concentrations were measured from urine and saliva samples. The characteristics of nurses working day and night shifts were similar. Light intensity was significantly higher during sleep for those working at night (p< 0.0001), while urinary melatonin levels following sleep were significantly higher among those working days (p = 0.0003). Mean sleep duration for nurses working during the day (8.27 h) was significantly longer than for those working at night (4.78 h, p< 0.0001). An inverse association (p = 0.002) between light exposure and urinary melatonin levels was observed; however, this was not significant when stratified by shift group. There was no significant correlation between sleep duration and melatonin, and no consistent relationship between physical activity and melatonin. Analysis of salivary melatonin levels indicated that the circadian rhythms of night workers were not altered, meaning peak melatonin production occurred at night. This study indicates that two nights of rotating shift work may not change the timing of

  8. The effect of power bleaching actived by several light sources on enamel microhardness

    NASA Astrophysics Data System (ADS)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Andrade, M. F.

    2010-07-01

    The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 ± 13.1 KHN; B 95.5 ± 12.7 KHN; C 84.2 ± 13.6 KHN; D 128.6 ± 20.5 KHN; E 133.9 ± 14.2 KHN; F 123.9 ± 14.2 KHN; G 129.8 ± 18.8 KHN. Statistical analysis ( p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.

  9. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  10. Reciprocal light-dark transcriptional control of nif and rbc expression and light-dependent posttranslational control of nitrogenase activity in Synechococcus sp. strain RF-1.

    PubMed

    Chow, T J; Tabita, F R

    1994-10-01

    Synechococcus sp. strain RF-1 exhibits a circadian rhythm of N2 fixation when cells are grown under a light-dark cycle, with nitrogenase activity observed only during the dark period. This dark-dependent activity correlated with nif gene transcription in strain RF-1. By using antibodies against dinitrogenase reductase (the Fe protein of the nitrogenase complex), it was found that there was a distinct shift in the mobility of this protein on sodium dodecyl sulfate gels during the light-dark cycle. The Fe protein was present only when cells were incubated in the dark. Upon illumination, there was a conversion of all Fe protein to a modified form, after which it rapidly disappeared from extracts. These studies indicated that all nitrogenase activity present during the dark cycle resulted from de novo synthesis of nitrogenase. Upon entering the light phase, cells appeared to quickly degrade the modified form of Fe protein, perhaps as a result of activating or inducing a protease. By contrast, transcription of the rbcL gene, which encodes the catalytic subunit of the key enzyme of CO2 fixation (a light-dependent process), was enhanced in the light.

  11. Floating zone melting of cadmium telluride

    NASA Technical Reports Server (NTRS)

    Chang, Wen-Ming; Regel, L. L.; Wilcox, W. R.

    1992-01-01

    To produce superior crystals of cadmium telluride, floating zone melting in space has been proposed. Techniques required for floating zone melting of cadmium telluride are being developed. We have successfully float-zoned cadmium telluride on earth using square rods. A resistance heater was constructed for forming the molten zone. Evaporation of the molten zone was controlled by adding excess cadmium to the growth ampoule combined with heating of the entire ampoule. An effective method to hold the feed rod was developed. Slow rotation of the growth ampoule was proven experimentally to be necessary to achieve a complete symmetric molten zone. Most of the resultant cylindrical rods were single crystals with twins. Still needed is a suitable automatic method to control the zone length. We tried a fiber optical technique to control the zone length, but experiments showed that application of this technique to automate zone length control is unlikely to be successful.

  12. Cephalometric floating norms for North American adults.

    PubMed

    Franchi, L; Baccetti, T; McNamara, J A

    1998-12-01

    Floating norms provide a method of analysis that uses the variability of the associations among suitable cephalometric measures, on the basis of a regression model combining both sagittal and vertical skeletal parameters. This study establishes floating norms for the description of the individual skeletal pattern in North American adults. The method is based on the correlations among the following craniofacial measurements: SNA, SNB, NL-NSL, ML-NSL, and NSBa. The results are given in a graphical box-like form. This easy, practical procedure allows for the identification of either individual harmonious craniofacial features or anomalous deviations from the individual norm. The use of cephalometric floating norms may be helpful for diagnosis and treatment planning in orthognathic surgery and dentofacial orthopedics.

  13. Laser light induced modulations in metabolic activities in human brain cancer

    NASA Astrophysics Data System (ADS)

    Tata, Darrell B.; Waynant, Ronald W.

    2008-03-01

    The role of low visible or near infra-red laser intensity in suppressing metabolic activity of malignant human brain cancer (glioblastoma) cells was investigated through the application of either a continuous wave 633nm HeNe or a pulsed picosecond 1,552nm wavelength laser. Human glioblastomas were exposed in their growth culture medium with serum for several energy doses. For both types of laser exposures the glioblastomas exhibited a maximal decline in the metabolic activity relative to their respective sham control counterparts at 10 J/cm2. The cellular metabolic activities for various treatment doses were measured through the colorimetric MTS metabolic assay after the laser exposure. Interestingly, addition of (the enzyme) catalase in the growth medium prior to the laser exposure was found to diminish the laser induced metabolic suppression for all fluence treatment conditions, thus suggesting a functional role of H IIO II in the metabolic suppression. Taken together, our findings reveal that visible or near infra-red low level light exposures could potentially be a viable tool in reducing the metabolic activity of cancers; evidence at hand implicates a role of light induced H IIO II in bringing about in part, suppression in the metabolic activity. Due to the cellular "biphasic" response to the laser exposure, further research needs to be undertaken to determine exposure parameters which would optimize metabolic and cellular growth suppression in-vivo.

  14. Effect of light activation on tooth sensitivity after in-office bleaching.

    PubMed

    Kossatz, S; Dalanhol, A P; Cunha, T; Loguercio, A; Reis, A

    2011-01-01

    This clinical study evaluated the effects of light-emitting diode (LED)/laser activation on bleaching effectiveness (BE) and tooth sensitivity (TS) during in-office bleaching. Thirty caries-free patients were divided into two groups: light-activated (LA) and non-activated (NA) groups. A 35% hydrogen peroxide gel (Whiteness HP Maxx, FGM Dental Products, Joinville SC, Brazil) was used in three 15-minute applications for both groups. For the LA group, LED/laser energy (Whitening Lase Light Plus, DMC Odontológica, São Carlos SP, Brazil) was used, in accordance with the manufacturer's directions. Two sessions of bleaching were performed at one-week intervals. Color was registered at baseline and after the first and second bleaching sessions using a Vita shade guide. Patients recorded TS on a 0 to 4 scale during bleaching and within the next 24 and 48 hours of each session. BE at recall each week and intensity of TS were evaluated by repeated measures analysis of variance (ANOVA) and Tukey tests (α=0.05). Tooth sensitivity was compared using the Friedman repeated measures analysis of variance by rank and the Wilcoxon sign-ranked test. Faster bleaching was observed for the LA group than for the NA group after the first session (4.8 and 3.8 shade guide units [SGUs]; p=0.0001). However, both techniques were capable of bleaching the same number of SGUs after the second bleaching session (p=0.52). Most of the LA group (53.3%) had sensitivity even 24 hours after each bleaching session, but only 26.6% from the NA group reported TS. The intensity of TS was similar for both groups immediately after bleaching but significantly higher for the LA group 24 hours after each bleaching session (p=0.001). After two bleaching sessions, the use of LED/laser light activation did not improve bleaching speed. Persistent tooth sensitivity and higher tooth sensitivity after 24 hours of bleaching were observed when light activation was used.

  15. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems.

    PubMed

    Bagheri, Ali; Arandiyan, Hamidreza; Boyer, Cyrille; Lim, May

    2016-07-01

    The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR-initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light-based DDSs-NIR offers better tissue penetration depth and a reduced risk of cellular photo-damage caused by exposure to light at high-energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo-responsive materials with red-shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR-initiated DDS, with emphasis on the use of photo-responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted.

  16. Imaging of optically active biological structures by use of circularly polarized light.

    PubMed Central

    Keller, D; Bustamante, C; Maestre, M F; Tinoco, I

    1985-01-01

    If an optically active (chiral) sample is placed in a microscope and illuminated with circularly polarized light, an image can be formed that is related to the circular dichroism of each feature of the sample. A theoretical investigation has been done for the circular differential image obtained by subtracting the images formed under right- and left-circularly polarized light. Two types of differential images are possible: (i) dark-field images formed from light reflected or scattered by the sample and (ii) bright-field images formed from light transmitted through the sample. The sign and magnitude of each feature in a circular differential image strongly depend on the structure of the sample. The dark-field circular differential images are most sensitive to large features with dimensions similar to the wavelength of illumination whereas the bright-field images are most sensitive to the short-range molecular order. Applications of circular differential imaging may include clinical fingerprinting of normal and transformed cells and structural analysis of individual cellular components. PMID:3855558

  17. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light

    PubMed Central

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Malahat; Ustundag, Cem B; Kaya, Cengiz; Kaya, Figen; Rafailovich, Miriam

    2011-01-01

    Leishmaniasis is a protozoan vector-borne disease and is one of the biggest health problems of the world. Antileishmanial drugs have disadvantages such as toxicity and the recent development of resistance. One of the best-known mechanisms of the antibacterial effects of silver nanoparticles (Ag-NPs) is the production of reactive oxygen species to which Leishmania parasites are very sensitive. So far no information about the effects of Ag-NPs on Leishmania tropica parasites, the causative agent of leishmaniasis, exists in the literature. The aim of this study was to investigate the effects of Ag-NPs on biological parameters of L. tropica such as morphology, metabolic activity, proliferation, infectivity, and survival in host cells, in vitro. Consequently, parasite morphology and infectivity were impaired in comparison with the control. Also, enhanced effects of Ag-NPs were demonstrated on the morphology and infectivity of parasites under ultraviolet (UV) light. Ag-NPs demonstrated significant antileishmanial effects by inhibiting the proliferation and metabolic activity of promastigotes by 1.5- to threefold, respectively, in the dark, and 2- to 6.5-fold, respectively, under UV light. Of note, Ag-NPs inhibited the survival of amastigotes in host cells, and this effect was more significant in the presence of UV light. Thus, for the first time the antileishmanial effects of Ag-NPs on L. tropica parasites were demonstrated along with the enhanced antimicrobial activity of Ag-NPs under UV light. Determination of the antileishmanial effects of Ag-NPs is very important for the further development of new compounds containing nanoparticles in leishmaniasis treatment. PMID:22114501

  18. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women.

    PubMed

    Curry, Brad S; Chengkalath, Devendra; Crouch, Gordon J; Romance, Michelle; Manns, Patricia J

    2009-09-01

    The purpose of this study was to compare three warm-up protocols--static stretching, dynamic stretching, and light aerobic activity--on selected measures of range of motion and power in untrained females and to investigate the sustained effects at 5 and 30 minutes after warm-up. A total of 24 healthy females (ages 23-29 years) attended one familiarization session and three test sessions on nonconsecutive days within 2 weeks. A within-subject design protocol with the testing investigators blinded to the subjects' warm-up was followed. Each session started with 5 minutes of light aerobic cycling followed by pretest baseline measures. Another 5 minutes of light aerobic cycling was completed and followed by one of the three randomly selected warm-up interventions (static stretching, dynamic stretching, or light aerobic activity). The following posttest outcome measures were collected 5 and 30 minutes following the intervention: modified Thomas test, countermovement jump, and isometric time to peak force knee extension measured by dynamometer. Analysis of the data revealed significant time effects on range of motion and countermovement jump changes. No significant differences (p > 0.05) were found between the warm-up conditions on any of the variables. The variation in responses to warm-up conditions emphasizes the unique nature of individual reactions to different warm-ups; however, there was a tendency for warm-ups with an active component to have beneficial effects. The data suggests dynamic stretching has greater applicability to enhance performance on power outcomes compared to static stretching.

  19. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk.

    PubMed

    Keum, NaNa; Cao, Yin; Oh, Hannah; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Cho, Eunyoung; Giovannucci, Edward L

    2016-05-01

    A recent meta-analysis found that sedentary behaviors are associated with an increased colorectal cancer (CRC) risk. Yet, the finding on TV viewing time, the most widely used surrogate of sedentary behaviors, was based on only two studies. Furthermore, light-intensity activities (e.g., standing and slow walking), non-sedentary by posture but close to sedentary behaviors by Metabolic Equivalent Task values, have not been investigated in relation to CRC risk. Thus, we prospectively analyzed the relationships based on 69,715 women from Nurses' Health Study (1992-2010) and 36,806 men from Health Professionals Follow-Up Study (1988 - 2010). Throughout follow-up, time spent on sedentary behaviors including sitting watching TV and on light-intensity activities were assessed repeatedly; incidence of CRC was ascertained. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models from each cohort. A total of 1,119 and 913 incident cases were documented from women and men, respectively. The multivariable HR comparing ≥ 21 versus < 7 hr/week of sitting watching TV was 1.21 (95% CI = 1.02 to 1.43, ptrend =.01) in women and 1.06 (95% CI = 0.84 to 1.34, ptrend =.93) in men. In women, those highly sedentary and physically less active had an approximately 41% elevated risk of CRC (95% CI = 1.03 to 1.92) compared with those less sedentary and physically more active. The other sedentary behaviors and light-intensity activities were not related to CRC risk in women or men. In conclusion, we found that prolonged sitting time watching TV was associated with an increased CRC risk in women but not in men.

  20. Improvements in floating point addition/subtraction operations

    DOEpatents

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  1. Visible light activated photocatalytic behaviour of rare earth modified commercial TiO{sub 2}

    SciTech Connect

    Tobaldi, D.M.; Seabra, M.P.; Labrincha, J.A.

    2014-02-01

    Highlights: • RE gave more surface hydroxyl groups attached to the photocatalyst's surface. • RE gave the modified and fired samples a high specific surface area. • Photocatalytic activity was assessed in gas–solid phase under visible-light exposure. • Thermal treated RE-TiO{sub 2}s showed a superior visible-light photocatalytic activity. • La-TiO{sub 2} was the best performing photocatalyst. - Abstract: A commercial TiO{sub 2} nanopowder, Degussa P25, was modified with several rare earth (RE) elements in order to extend its photocatalytic activity into the visible range. The mixtures were prepared via solid-state reaction of the precursor oxides, and thermally treated at high temperature (900 and 1000 °C), with the aim of investigating the photocatalytic activity of the thermally treated samples. This thermal treatment was chosen for a prospective application as a surface layer in materials that need to be processed at high temperatures. The photocatalytic activity (PCA) of the samples was assessed in gas–solid phase – monitoring the degradation of isopropanol (IPA) – under visible-light irradiation. Results showed that the addition of the REs lanthanum, europium and yttrium to TiO{sub 2} greatly improved its photocatalytic activity, despite the thermal treatment, because of the presence of more surface hydroxyl groups attached to the photocatalyst's surface, together with a higher specific surface area (SSA) of the modified and thermally treated samples, with regard to the unmodified and thermally treated Degussa P25. The samples doped with La, Eu and Y all had excellent PCA under visible-light irradiation, even higher than the untreated Degussa P25 reference sample, despite their thermal treatment at 900 °C, with lanthanum producing the best results (i.e. the La-, Eu- and Y-TiO{sub 2} samples, thermally treated at 900 °C, had, respectively, a PCA equal to 26, 27 and 18 ppm h{sup −1} – in terms of acetone formation – versus 15 ppm h

  2. Hydrodynamic Tests of Models of Seaplane Floats

    NASA Technical Reports Server (NTRS)

    Eula, Antonio

    1935-01-01

    This report contains the results of tank tests carried out at free trim on seventeen hulls and floats of various types. The data as to the weight on water, trim, and relative resistance for each model are plotted nondimensionally and are referenced both to the total weight and to the weight on water. Despite the fact that the experiments were not made systematically, a study of the models and of the test data permits nevertheless some general deductions regarding the forms of floats and their resistance. One specific conclusion is that the best models have a maximum relative resistance not exceeding 20 percent of the total weight.

  3. Well casing float shoe or collar

    SciTech Connect

    Kaufman, H. J.

    1985-08-06

    A well casing float shoe which is adapted for a variety of well installations consists of a tubular metal shoe member filled with cementitious material having a longitudinal bore surrounding and securing in place a tubular metal sleeve. The metal sleeve is threaded at the top and bottom ends to receive a variety of sizes and types of check valves. A well casing float collar has the same construction, but the tubular shoe member is replaced with a tubular metal collar with threaded connections both above and below the cementitious filler material.

  4. Investigation of gender- and age-related preferences of men and women regarding lighting conditions for activation and relaxation

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Schinagl, C.; Djuras, G.; Frühwirth, M.; Hoschopf, H.; Wagner, F.; Schulz, B.; Nemitz, W.; Grote, V.; Reidl, S.; Pritz, P.; Moser, M.; Wenzl, F. P.

    2016-09-01

    In recent years, LED lighting became an indispensable alternative to conventional lighting systems. Sophisticated solutions offer not only comfortable white light with a good color rendering. They also provide the possibility of changing illuminance and color temperature. Some systems even simulate daylight over the entire day, some including natural variations as due to clouds. Such systems are supposed to support the chronobiological needs of human and to have a positive effect on well-being, performance, sleep-quality and health. Lighting can also be used to support specific aims in a situation, like to improve productivity in activation or to support recreation in relaxation. Research regarding suitable light-settings for such situations and superordinate questions like their influence on well-being and health is still incomplete. We investigated the subjective preferences of men and women regarding light-settings for activation and relaxation. We supplied two rooms and four cubes with light sources that provide the possibility of tuning illuminance, color temperature and deviation from Plackian locus. More than 80 individuals - belonging to four groups differing in gender and age - were asked to imagine activating and recovering situations for which they should adjust suitable and pleasant lighting by tuning the above mentioned light properties. It was shown that there are clear differences in the lighting conditions preferred for these two situations. Also some combined gender- and age-specific differences became apparent.

  5. Socially adjusted synchrony in the activity profiles of common marmosets in light-dark conditions.

    PubMed

    Melo, Paula; Gonçalves, Bruno; Menezes, Alexandre; Azevedo, Carolina

    2013-07-01

    Synchronized state of activity and rest might be attained by mechanisms of entrainment and masking. Most zeitgebers not only act to entrain but also to mask circadian rhythms. Although the light-dark (LD) cycle is the main zeitgeber of circadian rhythms in marmosets, social cues can act as weaker zeitgebers. Evidence on the effects of social entrainment in marmosets has been collected in isolated animals or in pairs where activity is not individually recorded. To characterize the synchronization between the daily activity profiles of individuals in groups under LD conditions, the motor activity of animals from five groups was continuously monitored using actiwatches for 15 days during the 5th, 8th, and 11th months of life of juveniles. Families consisting of twins (4 ♂♀/1 ♂♂) and their parents were maintained under controlled lighting (LD 12:12 h), temperature, and humidity conditions. Synchronization was evaluated through the synchrony between the circadian activity profiles obtained from the Pearson correlation index between possible pairs of activity profiles in the light and dark phases. We also calculated the phase-angle differences between the activity onset of one animal in relation to the activity onset of each animal in the group (ψ(on)). A similar procedure was performed for activity offset (ψ(off)). By visual analysis, the correlation between the activity profiles of individuals within each family was stronger than that of individuals from different families. A mixed-model analysis showed that within the group, the correlation was stronger between twins than between twins and their parents in all families, except for the family in which both juveniles were males. Because a twin is an important social partner for juveniles, a sibling is likely to have a stronger influence on its twin's activity rhythm than other family members. Considering only the light phase, the second strongest correlation was observed between the activity profiles of the

  6. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering

    NASA Astrophysics Data System (ADS)

    Moskalensky, Alexander E.; Yurkin, Maxim A.; Konokhova, Anastasiya I.; Strokotov, Dmitry I.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  7. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  8. A novel orange phosphor of Eu 2+-activated calcium chlorosilicate for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ding, Weijia; Wang, Jing; Zhang, Mei; Zhang, Qiuhong; Su, Qiang

    2006-11-01

    Novel orange phosphor of Eu 2+-activated calcium chlorosilicate was synthesized at 1273 K by conventional solid-state reactions under reductive atmosphere and investigated by means of photoluminescence excitation, diffuse reflectance and emission spectroscopies. These results show that this phosphor can be efficiently excited by the incident light of 300-450 nm, well matched with the emission band of 395 nm-emitting InGaN chip, and emits an intense orange light peaking at 585 nm. By combining this phosphor with a 395 nm-emitting InGaN chip, an intense orange light-emitting diode (LED) was fabricated. Under 20 mA forward-bias current, its CIE chromaticity coordinates are (0.486, 0.446). The dependence of as-fabricated orange LED on forward-bias current indicates that it shows excellent chromaticity stability and luminance saturation. These results show that this Eu 2+-activated calcium chlorosilicate is a promising orange-emitting phosphor for near-ultraviolet (UV) InGaN-based white LED.

  9. Dark/light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories

    SciTech Connect

    Vu, J.C.V.; Allen, L.H. Jr.; Bowes, G.

    1984-11-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from light-exposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO/sub 3//sup -/ and Mg/sup 2 +/ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C/sub 3/); P. maximum (C/sub 4/ phosphoenolpyruvate carboxykinase); P. milioides (C/sub 3//C/sub 4/); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C/sub 3/); P. miliaceum (C/sub 4/ NAD malic enzyme); Zea mays and Sorghum bicolor (C/sub 4/ NADP malic enzyme); Moricandia arvensis (C/sub 3//C/sub 4/); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C/sub 3/ species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO/sub 2/ and Mg/sup 2 +/ activation, but which can be converted to an activatable state upon exposure of the leaf to light. 16 references, 2 tables.

  10. Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wang, Peng; Huang, Baibiao; Ma, Xiaojuan; Wang, Gang; Dai, Ying; Zhang, Xiaoyang; Qin, Xiaoyan

    2017-01-01

    ZnS microspheres with a series of Mn-doping concentration were synthesized via a facile solvothermal route. The phase structures, morphologies, and chemical states were characterized by X-ray powder diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The phase structure of the synthesized Mn-ZnS microspheres is hexagonal from the XRD patterns. UV-vis diffuse reflectance spectra were employed to analyze the absorption properties of the samples. The Mn-doped ZnS exhibited stronger visible light absorption with the increasing of Mn content. Their photocatalytic activities were evaluated by H2 production from water and reducing Cr6+ under visible light irradiation. The as-prepared Mn-doped ZnS exhibited better photocatalytic performance than that of pure ZnS and the optimal doping concentration was 7%. The enhancement in photocatalytic activity can be attributed to the expansion of light absorption and the increase in life time of photogenerated carriers.

  11. Visible light active photocatalytic degradation of bisphenol-A using nitrogen doped TiO2.

    PubMed

    Venkatachalam, N; Vinu, A; Anandan, S; Arabindoo, Banumathi; Murugesan, V

    2006-08-01

    Nitrogen doped titania was prepared by low temperature sol-gel method using titanium precursor and nitrogen containing bases like triethylamine and tetramethyl ammonium hydroxide compounds. The materials were characterized by XRD, BET, SEM, XPS, DRS-UV, and FT-IR techniques. DRS-UV study substantially indicates shift of the absorption edge of TiO2 to lower energy region. The phase composition, crystallinity, specific surface area, and visible light activity of nitrogen doped titania depend upon the preparation conditions. Photocatalytic degradation of bisphenol-A in aqueous medium was investigated by TiO2 and nitrogen doped TiO2 under visible light irradiation in a batch photocatalytic reactor. The results indicate higher visible light activity for nitrogen doped TiO2 than commercial TiO2 (Degussa P25) for bisphenol-A degradation. The influence of various parameters such as initial concentration of bisphenol-A, catalyst loading and pH was examined for maximum degradation efficiency.

  12. Light-evoked synaptic activity of retinal ganglion and amacrine cells is regulated in developing mouse retina

    PubMed Central

    He, Quanhua; Wang, Ping; Tian, Ning

    2010-01-01

    Recent studies have shown a continued maturation of visual responsiveness and synaptic activity of retina after eye opening, including the size of receptive fields of retinal ganglion cells (RGCs), light-evoked synaptic output of RGCs, bipolar cell spontaneous synaptic inputs to RGCs, and the synaptic connections between RGCs and ON and OFF bipolar cells. Light deprivation retarded some of these age-dependent changes. However, many other functional and morphological features of RGCs are not sensitive to visual experience. To determine whether light-evoked synaptic responses of RGCs undergo developmental change, we directly examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to RGCs in developing retinas and found that both light-evoked excitatory and inhibitory synaptic currents decreased, but not increased, with age. We also examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to amacrine cells in developing retinas and found that the light-evoked synaptic input of amacrine cells is also down-regulated in developing mouse retina. Different from the developmental changes of RGC spontaneous synaptic activity, dark rearing has little effect on the developmental changes of light-evoked synaptic activity of both RGCs and amacrine cells. Therefore, we concluded that the synaptic mechanisms mediating spontaneous and light-evoked synaptic activity of RGCs and amacrine cells are likely to be different. PMID:21091802

  13. Effect of Light and NO3− on Wheat Leaf Phosphoenolpyruvate Carboxylase Activity

    PubMed Central

    Le Van Quy; Foyer, Christine; Champigny, Marie-Louise

    1991-01-01

    Phosphoenolpyruvate carboxylase (PEPcase) activity was studied in excised leaves of wheat (Triticum aestivum L.) in the dark and in the light, in presence of either N-free (low-NO3− leaves) or 40 millimolar KNO3 (high-NO3− leaves) nutrient solutions. PEPcase activity increased to 2.7-fold higher than that measured in dark-adapted tissue (control) during the first 60 minutes and continued to increase more slowly to 3.8-fold that of the control. This level was reached after 200 minutes exposure of the leaves to light and high NO3−. In contrast, the lower rate of increase recorded for low-NO3− leaves ceased after 60 minutes of exposure to light at 2.3-fold the control level. The short-term NO3− effect increased linearly with the level of NO3− uptake. In immunoprecipitation experiments, the antibody concentration for PEPcase precipitation increased with the protein extracts from the different treatments in the order: control, illuminated low-NO3− leaves, illuminated high-NO3− leaves. This order also applied with regard to a decreasing sensitivity to malate and an increasing stimulation by okadaic acid (an inhibitor of P-protein phosphatases). Following these studies, 32P labeling experiments were carried out in vivo. These showed that the light-induced change in the properties of the PEPcase was due to an alteration in the phosphorylation state of the protein and that this effect was enhanced in high-NO3− conditions. Based on the responses of PEPcase and sucrose phosphate synthase in wheat leaves to light and NO3−, an interpretation of the role of NO3− as either an inhibitor of P-protein phosphatase(s) or activator of protein kinase(s) is inferred. In the presence of NO3−, the phosphorylation state of both PEPcase and sucrose phosphate synthase is increased. This causes activation of the former enzyme and inhibition of the latter. We suggest that NO3− modulates the relative protein kinase/protein phosphatase ratio to favor increased

  14. Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light

    NASA Astrophysics Data System (ADS)

    Ashkarran, Ali Akbar; Hamidinezhad, Habib; Haddadi, Hedayat; Mahmoudi, Morteza

    2014-05-01

    Silver and nitrogen doped TiO2 nanoparticles (NPs) were synthesized via sol-gel method. The physicochemical properties of the achieved NPs were characterized by various methods including X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultra violet-visible absorption spectroscopy (UV-vis). Both visible-light photocatalytic activity and antimicrobial properties were successfully demonstrated for the degradation of Rhodamine B (Rh. B.), as a model dye, and inactivation of Escherichia coli (E. coli), as a representative of microorganisms. The concentration of the employed dopant was optimized and the results revealed that the silver and nitrogen doped TiO2 NPs extended the light absorption spectrum toward the visible region and significantly enhanced the photodegradation of model dye and inactivation of bacteria under visible-light irradiation while double-doped TiO2 NPs exhibited highest photocatalytic and antibacterial activity compared with single doping. The significant enhancement in the photocatalytic activity and antibacterial properties of the double doped TiO2 NPs, under visible-light irradiation, can be attributed to the generation of two different electronic states acting as electron traps in TiO2 and responsible for narrowing the band gap of TiO2 and shifting its optical response from UV to the visible-light region.

  15. Masking of circadian activity rhythms in canaries by light and dark.

    PubMed

    Aschoff, J; von Goetz, C

    1989-01-01

    Canaries (Serinus canaria) were kept singly in cages placed in an artificially illuminated, soundproof cabinet. Perch-hopping activity was recorded by means of a computer system. In three series of experiments, the activity rhythms of the birds were entrained to 24 hr by light-dark (LD) cycles with 4, 12, or 20 hr of light (L), respectively. The intensity of illumination was 10 lux in L and 0.25 lux in darkness (D). Under LD 4:20 and 12:12, the intensity of D was increased daily at the same zeitgeber time to 1 lux for 1 hr (L pulse) during about 8 consecutive days. This sequence was followed by 8 days without L pulses before giving another series of L pulses at a different zeitgeber time. Under LD 20:4, the intensity of L was decreased to 1 lux for 1 hr (D pulse). The activity of all birds was more or less increased by the L pulses (positive masking) and decreased by the D pulses (negative masking). The level of masking activity during the L and D pulses depended on the circadian phase at which the pulses were administered. Positive masking by L pulses was minimal about 5 hr after the beginning of D, and increased steadily thereafter. Negative masking by D pulses was maximal at the beginning and the end of L, and minimal during the middle.

  16. An in vitro thermal analysis during different light-activated hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Pereira, T. M.; Andrade, M. F.

    2010-09-01

    This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups ( n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED ( p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study.

  17. Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation

    PubMed Central

    2012-01-01

    Cu2O p-type semiconductor hollow porous microspheres have been prepared by using a simple soft-template method at room temperature. The morphology of as-synthesized samples is hollow spherical structures with the diameter ranging from 200 to 500 nm, and the surfaces of the spheres are rough, porous and with lots of channels and folds. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was investigated by UV-visible spectroscopy. The results show that the hollow porous Cu2O particles were uniform in diameters and have an excellent ability in visible light-induced degradation of MO. Meanwhile, the growth mechanism of the prepared Cu2O was also analyzed. We find that sodium dodecyl sulfate acted the role of soft templates in the synthesis process. The hollow porous structure was not only sensitive to the soft template but also to the amount of reagents. PMID:22738162

  18. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    PubMed

    Wong, Michael Y; Zysman-Colman, Eli

    2017-03-03

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs.

  19. Earthquake lights and the stress-activation of positive hole charge carriers in rocks

    USGS Publications Warehouse

    St-Laurent, F.; Derr, J.S.; Freund, F.T.

    2006-01-01

    Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.

  20. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response

    PubMed Central

    Barrionuevo, Pablo A.; Cao, Dingcai

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a “winner-takes-all” process, suggesting the integration with PC signals might be mediated by a postretinal site. PMID:27690169

  1. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings.

    PubMed

    Pavlovič, Andrej; Stolárik, Tibor; Nosek, Lukáš; Kouřil, Roman; Ilík, Petr

    2016-06-01

    Gymnosperms, unlike angiosperms, are able to synthesize chlorophyll and form photosystems in complete darkness. Photosystem I (PSI) formed under such conditions is fully active, but photosystem II (PSII) is present in its latent form with inactive oxygen evolving complex (OEC). In this work we have studied light-induced gradual changes in PSII function in dark-grown cotyledons of Norway spruce (Picea abies) via the measurement of chlorophyll a fluorescence rise, absorption changes at 830 nm, thermoluminescence glow curves (TL) and protein analysis. The results indicate that in dark-grown cotyledons, alternative reductants were able to act as electron donors to PSII with inactive OEC. Illumination of cotyledons for 5 min led to partial activation of PSII, which was accompanied by detectable oxygen evolution, but still a substantial number of PSII centers remained in the so called PSII-Q(B)-non-reducing form. Interestingly, even 24 h long illumination was not sufficient for the full activation of PSII centers. This was evidenced by a weak attachment of PsbP protein and the absence of PsbQ protein in PSII particles, the absence of PSII supercomplexes, the suboptimal maximum yield of PSII photochemistry, the presence of C band in TL curve and also the presence of up-shifted Q band in TL in DCMU-treated cotyledons. This slow light-induced activation of PSII in dark-grown cotyledons could contribute to the prevention of PSII overexcitation before the light-induced increase in PSI/PSII ratio allows effective operation of linear electron flow.

  2. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof (EFR). 65.44... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.44 External floating roof (EFR). (a) EFR... emissions by using an external floating roof shall comply with the design requirements listed in...

  3. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When...

  4. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When...

  5. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When...

  6. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When...

  7. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  8. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  9. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  10. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant apparatus... 46 Shipping 4 2011-10-01 2011-10-01 false Life floats and buoyant apparatus. 131.870 Section...

  11. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant apparatus... 46 Shipping 4 2010-10-01 2010-10-01 false Life floats and buoyant apparatus. 131.870 Section...

  12. Improving the performance of floating solar pool covers

    SciTech Connect

    Cole, M.A.; Lowrey, P. . Dept. of Mechanical Engineering)

    1992-11-01

    Experimental and analytical analyses are presented for the evaluation of heat transfer through floating solar swimming pool covers. Two improved floating solar swimming pool cover designs are proposed and investigated in this paper. The results conclusively show that both new cover designs should have significantly better performance than conventional floating solar swimming pool covers.

  13. 14 CFR 25.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float...

  14. 14 CFR 25.753 - Main float design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float...

  15. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757 Section 29.757 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand...

  16. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts.

    PubMed

    Deng, Mingdan; Qian, Hongmei; Chen, Lili; Sun, Bo; Chang, Jiaqi; Miao, Huiying; Cai, Congxi; Wang, Qiaomei

    2017-05-01

    The effects of pre-harvest red light irradiation on main healthy phytochemicals as well as antioxidant activity of Chinese kale sprouts during postharvest storage were investigated. 6-day-old sprouts were treated by red light for 24h before harvest and sampled for further analysis of nutritional quality on the first, second and third day after harvest. The results indicated that red light exposure notably postponed the degradation of aliphatic, indole, and total glucosinolates during postharvest storage. The vitamin C level was remarkably higher in red light treated sprouts on the first and second day after harvest when compared with the control. In addition, red light treatment also enhanced the accumulation of total phenolics and maintained higher level of antioxidant activity than the control. All above results suggested that pre-harvest red light treatment might provide a new strategy to maintain the nutritive value of Chinese kale sprouts during postharvest storage.

  17. Activity patterns during food provisioning are affected by artificial light in free living great tits (Parus major).

    PubMed

    Titulaer, Mieke; Spoelstra, Kamiel; Lange, Cynthia Y M J G; Visser, Marcel E

    2012-01-01

    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.

  18. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  19. Structural integrity of resin-modified glass ionomers as affected by the delay or omission of light activation.

    PubMed

    de Gee, A J; Leloup, G; Werner, A; Vreven, J; Davidson, C L

    1998-08-01

    Since light activation of resin-modified glass ionomers as a means of polymerizing the HEMA is usually done shortly after mixing occurs, the acid-base reaction will proceed mainly within a formed HEMA-polymer matrix. Delaying or omitting light activation may alter the structure and consequently its integrity. The aim of this study was to investigate the effect on the structural integrity of Fuji II LC, Photac-Fil, and Vitremer by delaying or omitting light initiation as compared with the integrity when light activation is performed 2 min after mixing occurs. We evaluated integrity by three-body wear experiments, conducted 8 hrs after sample preparation, to establish the integrity in the early phase of hardening, as well as after 1 wk and after 4 mos, to follow the materials throughout the process of maturation. When light activation was delayed for 1 hr, the structural integrity of Fuji II LC and Photac-Fil improved significantly in the early stages of hardening. In the case of Vitremer, an hour's delay of light activation significantly decreased integrity, which declined further when light activation was omitted. Fuji II LC was not affected by the omission of light activation, while Photac-Fil was markedly weakened. After 4 mos of aging, most of the samples of each product which had been cured by the different methods attained equal integrity, with the exception of the non-light-activated Vitremer samples, which remained weaker. We concluded that the structural integrity of resin-modified glass-ionomer cements benefits from a chemical integration of the polyalkenoate and poly-HEMA networks, as in Vitremer. Improvement in the structural integrity in the early phase for cements with a mechanical entanglement of the matrices, as in Fuji II LC and Photac-Fil, requires an acid-base reaction, a considerable portion of which may take place before activation of the HEMA polymerization.

  20. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity

    NASA Astrophysics Data System (ADS)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-06-01

    We report a simple biogenic-route to narrow the band gap of TiO2 nanocrystals for visible light application by offering a greener method. When an electrochemically active biofilm (EAB) was challenged with a solution of Degussa-TiO2 using sodium acetate as the electron donor, greyish blue-colored TiO2 nanocrystals were obtained. A band gap study showed that the band gap of the modified TiO2 nanocrystals was significantly reduced (Eg = 2.85 eV) compared to the unmodified white Degussa TiO2 (Eg = 3.10 eV).

  1. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity.

    PubMed

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-07-21

    We report a simple biogenic-route to narrow the band gap of TiO2 nanocrystals for visible light application by offering a greener method. When an electrochemically active biofilm (EAB) was challenged with a solution of Degussa-TiO2 using sodium acetate as the electron donor, greyish blue-colored TiO2 nanocrystals were obtained. A band gap study showed that the band gap of the modified TiO2 nanocrystals was significantly reduced (E(g) = 2.85 eV) compared to the unmodified white Degussa TiO2 (E(g) = 3.10 eV).

  2. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.

    PubMed Central

    Melia, T J; Cowan, C W; Angleson, J K; Wensel, T G

    1997-01-01

    Activation of the photoreceptor G protein transducin (Gt) by opsin, the ligand-free form of rhodopsin, was measured using rod outer segment membranes with densities of opsin and Gt similar to those found in rod cells. When GTPgammaS was used as the activating nucleotide, opsin catalyzed transducin activation with an exponential time course with a rate constant k(act) on the order of 2 x 10(-3)s(-1). Comparison under these conditions to activation by flash-generated metarhodopsin II (MII) revealed that opsin- and R*-catalyzed activation showed similar kinetics when MII was present at a surface density approximately 10(-6) lower than that of opsin. Thus, in contrast to some previous reports, we find that the catalytic potency of opsin is only approximately 10(-6) that of MII. In the presence of residual retinaldehyde-derived species present in membranes treated with hydroxylamine after bleaching, the apparent k(act) observed was much higher than that for opsin, suggesting a possible explanation for previous reports of more efficient activation by opsin. These results are important for considering the possible role of opsin in the diverse phenomena in which it has been suggested to play a key role, such as bleaching desensitization and retinal degeneration induced by continuous light or vitamin A deprivation. PMID:9414230

  3. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals.

    PubMed

    Martínez-Hernández, Aída; López-Ochoa, Luisa; Argüello-Astorga, Gerardo; Herrera-Estrella, Luis

    2002-04-01

    Light-inducible promoters are able to respond to a wide spectrum of light through multiple photoreceptor systems. Several cis-acting elements have been identified as components of light-responsive promoter elements; however, none of these regulatory elements by itself appears to be sufficient to confer light responsiveness; rather, the combination of at least two elements seems to be required. Using phylogenetic structural analysis, we have identified conserved DNA modular arrays (CMAs) associated with light-responsive promoter regions that have been conserved throughout the evolutionary radiation of angiosperms. Here, we report the functional characterization of CMA5, a native 52-bp fragment of the Nicotiana plumbaginifolia rbcS 8B promoter, which contains an I- and a G-box cis-element. CMA5 behaves as a light-responsive minimal unit capable of activating a heterologous minimal promoter in a phytochrome-, cryptochrome-, and plastid-dependent manner. We also show that CMA5 light induction requires HY5 and that downstream negative regulators COP (constitutive photomorphogenic)/DET (de-etiolated) regulate its activity. Our results show that the simplest light-responsive promoter element from photosynthesis-associated genes described to date is the common target for different signals involved in light regulation. The possible mechanism involved in light-transcriptional regulation and tissue specificity of combinatorial elements units is discussed.

  4. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12∶12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  5. Subtropical Productivity from Profiling Floats and Gliders

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Johnson, K. S.; Karl, D. M.

    2015-12-01

    Since 2007 profiling floats equipped with dissolved oxygen and nitrate sensors have been released from the Hawaii Ocean Time-series (HOT) and Bermuda Atlantic Time-series Study (BATS) sites and can be calibrated using time-series observations. More recent deployments have also included bio-optical and pH sensors. Gliders with oxygen sensors and bio-optics have been intermittently deployed near HOT Station ALOHA since 2008 and at BATS since 2014. While gliders maintain a restricted survey region near the time-series stations, profiling floats drifted widely across the subtropical gyres. Multiple floats and gliders enables a cotemporaneous comparison of biogeochemical processes across gyres. These platforms enable observations on spatial scales from submesoscale to basin scale and on temporal scales from diel to interannual. Here, I focus on the spatiotemporal variability of nitrate and oxygen mass balances in the North Pacific and North Atlantic subtropical gyres using a data-assimilating and float-tracking 1D upper ocean model.

  6. Dealing with Human Death: The Floating Perspective.

    ERIC Educational Resources Information Center

    Kenyon, Gary M.

    1991-01-01

    Explores approach to dealing with human death. Describes floating perspective, based on insights from Choron and Jaspers, as suggesting it is possible to deal with human death by refraining from taking ultimate position on the problem. Position encourages openness to death. Examines role of anxiety and describes possible meaningful outcomes of…

  7. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and -independent kinase activities

    PubMed Central

    Mahajan, Pravin; Knapp, Stefan; Barton, Hannah; Sweeney, H. Lee; Kamm, Kristine E.; Stull, James T.

    2016-01-01

    The well-known, muscle-specific smooth muscle myosin light chain kinase (MLCK) (smMLCK) and skeletal muscle MLCK (skMLCK) are dedicated protein kinases regulated by an autoregulatory segment C terminus of the catalytic core that blocks myosin regulatory light chain (RLC) binding and phosphorylation in the absence of Ca2+/calmodulin (CaM). Although it is known that a more recently discovered cardiac MLCK (cMLCK) is necessary for normal RLC phosphorylation in vivo and physiological cardiac performance, information on cMLCK biochemical properties are limited. We find that a fourth uncharacterized MLCK, MLCK4, is also expressed in cardiac muscle with high catalytic domain sequence similarity with other MLCKs but lacking an autoinhibitory segment. Its crystal structure shows the catalytic domain in its active conformation with a short C-terminal “pseudoregulatory helix” that cannot inhibit catalysis as a result of missing linker regions. MLCK4 has only Ca2+/CaM-independent activity with comparable Vmax and Km values for different RLCs. In contrast, the Vmax value of cMLCK is orders of magnitude lower than those of the other three MLCK family members, whereas its Km (RLC and ATP) and KCaM values are similar. In contrast to smMLCK and skMLCK, which lack activity in the absence of Ca2+/CaM, cMLCK has constitutive activity that is stimulated by Ca2+/CaM. Potential contributions of autoregulatory segment to cMLCK activity were analyzed with chimeras of skMLCK and cMLCK. The constitutive, low activity of cMLCK appears to be intrinsic to its catalytic core structure rather than an autoinhibitory segment. Thus, RLC phosphorylation in cardiac muscle may be regulated by two different protein kinases with distinct biochemical regulatory properties. PMID:27325775

  8. Light Activates Output from Evening Neurons and Inhibits Output from Morning Neurons in the Drosophila Circadian Clock

    PubMed Central

    Picot, Marie; Cusumano, Paola; Klarsfeld, André; Ueda, Ryu; Rouyer, François

    2007-01-01

    Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest–activity rhythms and relies upon different groups of PERIOD (PER)–expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day–night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons. PMID:18044989

  9. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    PubMed

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  10. A Light-Controlled TLR4 Agonist and Selectable Activation of Cell Subpopulations

    PubMed Central

    Stutts, Lalisa

    2015-01-01

    Spatial and temporal aspects of immune cell signalling are key parameters in defining the magnitude of an immune response. Toll-like receptors (TLRs) on innate immune cells are important in early detection of pathogens and initiation of an immune response. Controlling the spatial and temporal signalling of TLRs would enable further study of immune synergies and assist in the development of new vaccines. Here, we show a light-based method for spatial control of TLR4 signalling. A TLR4 agonist, pyrimido[5,4-b]indole, was protected with a cage at a position critical for receptor binding. This afforded a photo-controllable agonist that was inactive while caged, yet effected NF-κB activity in cells following UV photo-controlled deprotection. We demonstrated spatial control of NF-κB activation within a population of cells by treating all cells with the caged TLR4 agonist and constraining light exposure, thereby activation, to a region of interest. PMID:26097006

  11. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  12. Visible light photocatalytic activity of BiVO4 particles with different morphologies

    NASA Astrophysics Data System (ADS)

    Lin, Xue; Yu, Lili; Yan, Lina; Li, Hongji; Yan, Yongsheng; Liu, Chunbo; Zhai, Hongju

    2014-06-01

    Bismuth vanadate (BiVO4) particles with different morphologies were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD patterns demonstrate that the as-prepared samples are monoclinic cell. FESEM shows that BiVO4 crystals can be fabricated in different morphologies by simply manipulating the reaction parameters of hydrothermal process. The UV-visible diffuse reflectance spectra (UV-vis DRS) reveal that the band gaps of BiVO4 photocatalysts are about 2.07-2.21 eV. The as-prepared BiVO4 photocatalysts exhibit higher photocatalytic activities in the degradation of rhodamine B (Rh B) under visible light irradiation (λ > 420 nm) compared with traditional N-doped TiO2 (N-TiO2). Furthermore, wheat like BiVO4 sample reveals the highest photocatalytic activity. Up to 100% Rh B is decolorized after visible light irradiation for 180 min. The reason for the difference in the photocatalytic activities for BiVO4 samples obtained at different conditions were systematically studied based on their shape, size and the variation of local structure.

  13. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-08-07

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.

  14. A coronagraph based on two spatial light modulators for active amplitude apodizing and phase corrections

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao

    2014-08-01

    Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.

  15. The Effect of Light Rail Transit on Body Mass Index and Physical Activity

    PubMed Central

    MacDonald, John M.; Stokes, Robert J.; Cohen, Deborah A.; Kofner, Aaron; Ridgeway, Greg K.

    2010-01-01

    Background The built environment can constrain or facilitate physical activity. Most studies of the health consequences of the built environment suffer from problems of selection bias associated with confounding effects of residential choice and transportation decisions. Purpose To examine the cross-sectional associations between objective and perceived measures of the built environment, BMI, obesity (BMI>30 kg/m2), and meeting weekly recommended physical activity (RPA) levels through walking and vigorous exercise. To assess effect of using light rail transit system (LRT) on changes in BMI, obesity, and meeting weekly RPA levels. Methods Data were collected on individuals before (July 2006–February of 2007) and after (March 2008–July 2008) completion of a light rail system in Charlotte, NC. BMI, obesity, and physical activity levels were calculated for a comparison of these factors pre- and post-LRT construction. A propensity score weighting approach adjusted for differences in baseline characteristics among LRT and non-LRT users. Data were analyzed in 2009. Results More positive perceptions of one’s neighborhood at baseline were associated with a −0.36 (p<.05) lower BMI, 15% lower odds (95% CI=0.77, 0.94) of obesity, 9% higher odds (95% CI = 0.99, 1.20) of meeting weekly RPA through walking, and 11% higher odds (95% CI= 1.01, 1.22) of meeting RPA levels of vigorous exercise. The use of light rail transit to commute to work was associated with an average −1.18 reduction in BMI (p<0.05) and an 81% reduced odds (95% CI= 0.04, 0.92) of becoming obese over time. Conclusions The results of this study suggest that improving neighborhood environments and increasing the public’s use of LRT systems could provide improvements in health outcomes for millions of individuals. PMID:20621257

  16. Influence of iron precipitated condition and light intensity on microalgae activated sludge based wastewater remediation.

    PubMed

    Anbalagan, Anbarasan; Schwede, Sebastian; Lindberg, Carl-Fredrik; Nehrenheim, Emma

    2017-02-01

    The indigenous microalgae-activated sludge (MAAS) process during remediation of municipal wastewater was investigated by studying the influence of iron flocculation step and light intensity. In addition, availability of total phosphorous (P) and photosynthetic activity was examined in fed-batch and batch mode under northern climatic conditions and limited lighting. This was followed by a semi-continuous operation with 4 d of hydraulic retention time and mean cell residence time of 6.75 d in a photo-bioreactor (PBR) with varying P availability. The fed-batch condition showed that P concentrations of 3-4 mg L(-1) were effective for photosynthetic chl. a development in iron flocculated conditions. In the PBR, the oxygen evolution rate increased with increase in the concentration of MAAS (from 258 to 573 mg TSS L(-1)) at higher surface photosynthetic active radiation (250 and 500 μmol m(-2) s(-1)). Additionally, the rate approached a saturation phase at low MAAS (110 mg L(-1)) with higher light intensities. Semi-continuous operation with luxury P uptake and effective P condition showed stable average total nitrogen removal of 88 and 92% respectively, with residual concentrations of 3.77 and 2.21 mg L(-1). The corresponding average P removal was 68 and 59% with residual concentrations of 2.32 and 1.75 mg L(-1). The semi-continuous operation produced a rapidly settleable MAAS under iron flocculated condition with a settling velocity of 92-106 m h(-1) and sludge volume index of 31-43 ml g(-1) in the studied cases.

  17. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).

    PubMed

    Kakuszi, Andrea; Sárvári, Éva; Solti, Ádám; Czégény, Gyula; Hideg, Éva; Hunyadi-Gulyás, Éva; Bóka, Károly; Böddi, Béla

    2016-08-01

    Photosynthetic activity was identified in the under-soil hypocotyl part of 14-day-old soil-grown bean plants (Phaseolus vulgaris L. cv. Magnum) cultivated in pots under natural light-dark cycles. Electron microscopic, proteomic and fluorescence kinetic and imaging methods were used to study the photosynthetic apparatus and its activity. Under-soil shoots at 0-2cm soil depth featured chloroplasts with low grana and starch grains and with pigment-protein compositions similar to those of the above-soil green shoot parts. However, the relative amounts of photosystem II (PSII) supercomplexes were higher; in addition a PIP-type aquaporin protein was identified in the under-soil thylakoids. Chlorophyll-a fluorescence induction measurements showed that the above- and under-soil hypocotyl segments had similar photochemical yields at low (10-55μmolphotonsm(-2)s(-1)) light intensities. However, at higher photon flux densities the electron transport rate decreased in the under-soil shoot parts due to inactivation of the PSII reaction centers. These properties show the development of a low-light adapted photosynthetic apparatus driven by light piping of the above-soil shoot. The results of this paper demonstrate that the classic model assigning source and sink functions to above- and under-soil tissues is to be refined, and a low-light adapted photosynthetic apparatus in under-soil bean hypocotyls is capable of contributing to its own carbon supply.

  18. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    PubMed

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments.

  19. Optical monitoring of selected quasars, Lacertids, and active galaxies in blue light

    SciTech Connect

    Corso, G.J.; Schultz, J.; Dey, A.

    1986-12-01

    Optical photometry in blue light of selected bright quasars, Lacertids, active galaxies, and X-ray sources with a 1-m f/15 Cassegrain reflector is reported. The observed magnitude and amplitude for 3C 273, 3C 351, 3C 454.3, 3C 66A, PKS 2141 + 17, BL Lac, OJ287, and Zw0039.5 + 004 are described. The techniques used to collect and reduce the data are discussed. Tables of observed blue magnitudes for the data are provided. 18 references.

  20. Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of THz light propagation

    NASA Astrophysics Data System (ADS)

    Arezoomandan, Sara; Yang, Kai; Sensale-Rodriguez, Berardi

    2014-08-01

    This work studies the terahertz light propagation through graphene-based reconfigurable metasurfaces where the unit cell dimensions are much smaller than the terahertz wavelength. The proposed devices, which poses deep-subwavelength unit cell and active region dimensions can operate as amplitude and/or phase modulators in certain specific frequency bands determined by the device geometry. Reconfigurability is attained via electrostatically tuning the optical conductivity of patterned graphene layers, which are strategically located in each unit cell. The ultra-small unit cell dimensions can be advantageous for beam shaping applications.

  1. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.

    PubMed

    Manninen, Albert; Kääriäinen, Teemu; Parviainen, Tomi; Buchter, Scott; Heiliö, Miika; Laurila, Toni

    2014-03-24

    A hyperspectral remote sensing instrument employing a novel near-infrared supercontinuum light source has been developed for active illumination and identification of targets. The supercontinuum is generated in a standard normal dispersion multi-mode fiber and has 16 W total optical output power covering 1000 nm to 2300 nm spectral range. A commercial 256-channel infrared spectrometer was used for broadband infrared detection. The feasibility of the presented hyperspectral measurement approach was investigated both indoors and in the field. Reflection spectra from several diffusive targets were successfully measured and a measurement range of 1.5 km was demonstrated.

  2. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    SciTech Connect

    Liu, Haijun; Zhang, Hao; King, Jeremy D.; Wolf, Nathan R.; Prado, Mindy; Gross, Michael L.; Blankenship, Robert E.

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  3. Light-responsive polymer microcapsules as delivery systems for natural active agents

    NASA Astrophysics Data System (ADS)

    Bizzarro, Valentina; Carfagna, Cosimo; Cerruti, Pierfrancesco; Marturano, Valentina; Ambrogi, Veronica

    2016-05-01

    In this work we report the preparation and the release behavior of UV-responsive polymeric microcapsules containing essential oils as a core. The oil acted also as a monomer solvent during polymerization. Accordingly, the potentially toxic organic solvent traditionally used was replaced with a natural active substance, resulting in a more sustainable functional system. Polymer shell was based on a lightly cross-linked polyamide containing UV-sensitive azobenzene moieties in the main chain. The micro-sized capsules were obtained via interfacial polycondensation in o/w emulsion, and their mean size was measured via Dynamic Light Scattering. Shape and morphology were analyzed through Scanning Electron and Optical Microscopy. UV-responsive behavior was evaluated via spectrofluorimetry, by assessing the release kinetics of a fluorescent probe molecule upon UV light irradiation (λmax=360 nm). The irradiated samples showed an increase in fluorescence intensity, in accordance with the increase of the probe molecule concentration in the release medium. As for the un-irradiated sample, no changes could be detected demonstrating the effectiveness of the obtained releasing system.

  4. Effects of cell density, light intensity and mixing on Undaria pinnatifida gametophyte activity in a photobioreactor.

    PubMed

    Zou, Ning; Zhou, Baicheng; Li, Bingjun; Sun, Donghong; Zeng, Chengkui

    2003-07-01

    An on-line controlled 7 l sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degrees C, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 microE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor.

  5. C60 aminofullerene immobilized on silica as a visible-light-activated photocatalyst.

    PubMed

    Lee, Jaesang; Mackeyev, Yuri; Cho, Min; Wilson, Lon J; Kim, Jae-Hong; Alvarez, Pedro J J

    2010-12-15

    A new strategy is described to immobilize photoactive C(60) aminofullerene on silica gel (3-(2-succinic anhydride)propyl functionalized silica), thus enabling facile separation of the photocatalyst for recycling and repeated use. An organic linker moiety containing an amide group was used to anchor C(60) aminofullerene to the functionalized silica support. The linker moiety prevents aqueous C(60) aggregation/agglomeration (shown by TEM images), resulting in a remarkable enhancement of photochemical (1)O(2) production under visible light irradiation. With no loss in efficacy of (1)O(2) production plus insignificant chemical modification of the aminoC(60)/silica photocatalyst after multiple cycling, the system offers a promising new visible-light-activated photocatalyst. Under visible-light irradiation, the aminoC(60)/silica photocatalyst is capable of effective and kinetically enhanced oxidation of Ranitidine and Cimetidine (pharmaceutical pollutants) and inactivation of MS-2 bacteriophage compared to aqueous solutions of the C(60) aminofullerene alone. Thus, this photocatalyst could enable water treatment in less developed areas by alleviating dependence on major infrastructure, including the need for electricity.

  6. An Au/AgBr-Ag heterostructure plasmonic photocatalyst with enhanced catalytic activity under visible light.

    PubMed

    Purbia, Rahul; Paria, Santanu

    2017-01-17

    This study reports an easy synthesis protocol of a novel bimetallic silver halide (Au/AgBr-Ag) plasmonic heterostructure as a visible light induced photocatalyst. In this process, first CTAB capped Au NPs were coated with AgBr, and then Ag nanoparticles were formed on the surface of AgBr by photoreduction, while exposing to daylight at room temperature. The presence of Au and Ag improves the visible absorption ability of NPs and avoids charge recombination of the semiconductor AgBr during photoexcitation, which in turn enhances 16 and 8.9 fold the photocatalytic efficiency of Rhodamine B dye degradation under visible light irradiation compared to that of pure AgBr and AgBr/Ag, respectively. The recycling tests of the photocatalyst show only ∼8.7% decrease in efficiency after the 5(th) cycle of reuse without changing the morphology. During the photocatalytic process, active superoxide radicals (O2˙(-)) play a major role, proved through scavenger trapping and photoluminescence experiments. The presence of two plasmonic metals (Au and Ag) in the heterostructure helps to improve visible light absorption as well as avoid charge recombination of the semiconductor AgBr to act as a better photocatalyst. Since this heteronanostructure can be easily synthesized by a one-step method, this study could provide a new approach for the development of efficient bimetallic/semiconductor halide plasmonic photocatalysts with enhanced visible absorption and better charge separation.

  7. Interval Slopes as a Numerical Abstract Domain for Floating-Point Variables

    NASA Astrophysics Data System (ADS)

    Chapoutot, Alexandre

    The design of embedded control systems is mainly done with model-based tools such as Matlab/Simulink. Numerical simulation is the central technique of development and verification of such tools. Floating-point arithmetic, which is well-known to only provide approximated results, is omnipresent in this activity. In order to validate the behaviors of numerical simulations using abstract interpretation-based static analysis, we present, theoretically and with experiments, a new partially relational abstract domain dedicated to floating-point variables. It comes from interval expansion of non-linear functions using slopes and it is able to mimic all the behaviors of the floating-point arithmetic. Hence it is adapted to prove the absence of run-time errors or to analyze the numerical precision of embedded control systems.

  8. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔVth ˜ 15 V) and a long retention time (>105 s). The magnitude of ΔVth depended on both P/E voltages and the bias voltage (VDS): ΔVth was a cubic function to VP/E and linearly depended on VDS. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  9. On the Assimilation of Argo Float Trajectories into the Mediterranean Forecasting System

    NASA Astrophysics Data System (ADS)

    Nilsson, Jenny A. U.; Dobricic, Srdjan; Taillandier, Vincent; Poulain, Pierre-Marie; Pinardi, Nadia

    2010-05-01

    availability of Argo-float data was noted during the period, with the maximum amount and spread of floats in 2005. The impact of the fall-off in float abundance was studied in terms of analyses, and implications on the operational activities will be pointed out.

  10. Measuring Turbulence Mixing in Indonesian Seas Using Microstructure EM-APEX Floats

    DTIC Science & Technology

    2016-04-18

    and Fisheries of Republic of Indonesia (KKP), Bali BPPL lab on their Baruna Jaya 8 cruise in August 2016. Arrangement to sh ip the EM APEX float to...windy period when the processes measured by the EM APEX floats were most active) by Ministry of Marine Affairs and Fisheries of Republic of Indonesia...story why ww D10ftd to RDCMFT). The..,. boold is lr. Matheus Eko Rud.an1o. M.Sus..IT Ministly of Morine AJfairs and Fisheries (KKP) lMRO·Bali

  11. Double-walled boron nitride nanotubes grown by floating catalyst chemical vapor deposition.

    PubMed

    Kim, Myung Jong; Chatterjee, Shahana; Kim, Seung Min; Stach, Eric A; Bradley, Mark G; Pender, Mark J; Sneddon, Larry G; Maruyama, Benji

    2008-10-01

    One-dimensional nanostructures exhibit quantum confinement which leads to unique electronic properties, making them attractive as the active elements for nanoscale electronic devices. Boron nitride nanotubes are of particular interest since, unlike carbon nanotubes, all chiralities are semiconducting. Here, we report a synthesis based on the use of low pressures of the molecular precursor borazine in conjunction with a floating nickelocene catalyst that resulted in the formation of double-walled boron nitride nanotubes. As has been shown for carbon nanotube production, the floating catalyst chemical vapor deposition method has the potential for creating high quality boron nitride nanostructures with high production volumes.

  12. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.

    PubMed

    López-Olmeda, Jose Fernando; Sánchez-Vázquez, Francisco Javier

    2009-02-01

    In addition to light cycles, temperature cycles are among the most important synchronizers in nature. Indeed, both clock gene expression and circadian activity rhythms entrain to thermocycles. This study aimed to extend our knowledge of the relative strength of light and temperature as zeitgebers for zebrafish locomotor activity rhythms. When the capacity of a 24:20 degrees C (thermophase:cryophase, referred to as TC) thermocycle to synchronize activity rhythms under LL was evaluated, it was found that most groups (78%) synchronized to these conditions. Under LD, when zebrafish were allowed to select the water temperature (24 degrees C vs. 20 degrees C), most fish selected the higher temperature and showed diurnal activity, while a small (25%) percentage of fish that preferred the lower temperature displayed nocturnal activity. Under conflicting LD and TC cycles, fish showed diurnal activity when the zeitgebers were in phase or in antiphase, with a high percentage of activity displayed around dawn and dusk (22% and 34% of the total activity for LD/TC and LD/CT, respectively). Finally, to test the relative strength of each zeitgeber, fish were subjected to ahemeral cycles of light (T=25 h) and temperature (T=23 h). Zebrafish synchronized mostly to the light cycle, although they displayed relative coordination, as their locomotor activity increased when light and thermophase coincided. These findings show that although light is a stronger synchronizer than temperature, TC cycles alone can entrain circadian rhythms and interfere in their light synchronization, suggesting the existence of both light- and temperature-entrainable oscillators that are weakly coupled.

  13. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  14. Advances in recording scattered light changes in crustacean nerve with electrical activation

    SciTech Connect

    Carter, K. M.; Rector, D. M.; Martinez, A. T.; Guerra, F. M.; George, J. S.

    2002-01-01

    We investigated optical changes associated with crustacean nerve stimulation using birefringent and large angle scattered light. Improved detection schemes disclosed high temporal structure of the optical signals and allowed further investigations of biophysical mechanisms responsible for such changes. Most studies of physiological activity in neuronal tissue use techniques that measure the electrical behavior or ionic permeability of the nerve, such as voltage or ion sensitive dyes injected into cells, or invasive electric recording apparatus. While these techniques provide high resolution, they are detrimental to tissue and do not easily lend themselves to clinical applications in humans. Electrical and chemical components of neural excitation evoke physical responses observed through changes in scattered and absorbed light. This method is suited for in-vivo applications. Intrinsic optical changes have shown themselves to be multifaceted in nature and point to several different physiological processes that occur with different time courses during neural excitation. Fast changes occur concomitantly with electrical events, and slow changes parallel metabolic events including changes in blood flow and oxygenation. Previous experiments with isolated crustacean nerves have been used to study the biophysical mechanisms of fast optical changes. However, they have been confounded by multiple superimposed action potentials which make it difficult to discriminate the temporal signatures of individual optical responses. Often many averages were needed to adequately resolve the signal. More recently, optical signals have been observed in single trials. Initially large angle scattering measurements were used to record these events with much of the signal coming from cellular swelling associated with water influx during activation. By exploiting the birefringent properties derived from the molecular stiucture of nerve membranes, signals appear larger with a greater contrast

  15. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

    PubMed

    Wang, Gongming; Xiao, Xiangheng; Li, Wenqing; Lin, Zhaoyang; Zhao, Zipeng; Chen, Chi; Wang, Chen; Li, Yongjia; Huang, Xiaoqing; Miao, Ling; Jiang, Changzhong; Huang, Yu; Duan, Xiangfeng

    2015-07-08

    Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.

  16. Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light.

    PubMed

    Malyshev, A Y; Roshchin, M V; Smirnova, G R; Dolgikh, D A; Balaban, P M; Ostrovsky, M A

    2017-02-15

    Optogenetics is a powerful technique in neuroscience that provided a great success in studying the brain functions during the last decade. Progress of optogenetics crucially depends on development of new molecular tools. Light-activated cation-conducting channelrhodopsin2 was widely used for excitation of cells since the emergence of optogenetics. In 2015 a family of natural light activated chloride channels GtACR was identified which appeared to be a very promising tool for using in optogenetics experiments as a cell silencer. Here we examined properties of GtACR2 channel expressed in the rat layer 2/3 pyramidal neurons by means of in utero electroporation. We have found that despite strong inhibition the light stimulation of GtACR2-positive neurons can surprisingly lead to generation of action potentials, presumably initiated in the axonal terminals. Thus, when using the GtACR2 in optogenetics experiments, its ability to induce action potentials should be taken into account. Our results also open an interesting possibility of using the GtACR2 both as cell silencer and cell activator in the same experiment varying the pattern of light stimulation.

  17. [Effect of red light on activity of cAMP phosphodiesterases in photoperiodically different cereals and vernalized winter wheat].

    PubMed

    Fedenko, E P; Koksharova, T A

    2007-01-01

    Red light illumination of seedlings of photoperiodically different cereals had a different effect on the activity of multiple cyclic adenosine monophosphate phosphodiesterases. The response of all phosphodiesterase forms was reversed in fully vernalized winter wheat Triticum aestivum L.

  18. Biodiversity and importance of floating weeds of Dara Ismail, Khan District of KPK, Pakistan.

    PubMed

    Marwat, Sarfaraz Khan; Khan, Mir Ajab; Fazal-ur-Rehman; Ahmad, Mushtaq; Zafar, Muhammad

    2011-01-01

    The present paper is based on the results of taxonomic research work conducted in Dera Ismail Khan District of KPK, Pakistan, during 2005 - 2007. The area was extensively surveyed in order to collect floating aquatic weeds. From the study area 11 floating aquatic weed species belonging to 9 genera and 9 families were collected and identified in the light of available literature. These plants include Bryophytes: 1 species, Ricciocarpus natans (L.) Corda; Pteridophytes: 2 species, Azolla pinnata R.Br. and Marselia quadrifolia L., and Spermatophytes: 8 species, Lemna aequinoctialis Welw., L. gibba L., Marselia quadrifoliata L. Nelumbo nucifera Gaerth., Nymphoides cristata (Roxb.) O. Ketze. Nymphoides indica (L.) Kuntze:, Pistia stratiotes L. Potamogeton nodosus Poiret and Spirodela polyrrhiza (L.) Schleid. Floating weeds on one hand cause serious problems and on the other hand they are used for various purposes. Data inventory consists of botanical name, family, major group, habit and habitat, flowering period, availability, distribution in D.I.Khan, Pakistan and world, beneficial and harmful effects. Key to the floating aquatic species of the area was developed for easy and correct identification and differentiation.

  19. Design of crossed-mirror array to form floating 3D LED signs

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirotsugu; Bando, Hiroki; Kujime, Ryousuke; Suyama, Shiro

    2012-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Our goal is to realize floating 3D LED signs. The problem is there is no sufficient device to form floating 3D images from LEDs. LED lamp size is around 1 cm including wiring and substrates. Such large pitch increases display size and sometimes spoils image quality. The purpose of this paper is to develop optical device to meet the three requirements and to demonstrate floating 3D arrays of LEDs. We analytically investigate image formation by a crossed mirror structure with aerial aperture, called CMA (crossed-mirror array). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. We have fabricated CMA for 3D array of LEDs. One CMA unit contains 20 x 20 apertures that are located diagonally. Floating image of LEDs was formed in wide range of incident angle. The image size of focused beam agreed to the apparent aperture size. When LEDs were located three-dimensionally (LEDs in three depths), the focused distances were the same as the distance between the real LED and the CMA.

  20. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates

    PubMed Central

    Chiandetti, Cinzia; Galliussi, Jessica; Andrew, Richard J.; Vallortigara, Giorgio

    2013-01-01

    Genetic factors determine the asymmetrical position of vertebrate embryos allowing asymmetric environmental stimulation to shape cerebral lateralization. In birds, late-light stimulation, just before hatching, on the right optic nerve triggers anatomical and functional cerebral asymmetries. However, some brain asymmetries develop in absence of embryonic light stimulation. Furthermore, early-light action affects lateralization in the transparent zebrafish embryos before their visual system is functional. Here we investigated whether another pathway intervenes in establishing brain specialization. We exposed chicks' embryos to light before their visual system was formed. We observed that such early stimulation modulates cerebral lateralization in a comparable vein of late-light stimulation on active retinal cells. Our results show that, in a higher vertebrate brain, a second route, likely affecting the genetic expression of photosensitive regions, acts before the development of a functional visual system. More than one sensitive period seems thus available to light stimulation to trigger brain lateralization. PMID:24048072

  1. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates.

    PubMed

    Chiandetti, Cinzia; Galliussi, Jessica; Andrew, Richard J; Vallortigara, Giorgio

    2013-01-01

    Genetic factors determine the asymmetrical position of vertebrate embryos allowing asymmetric environmental stimulation to shape cerebral lateralization. In birds, late-light stimulation, just before hatching, on the right optic nerve triggers anatomical and functional cerebral asymmetries. However, some brain asymmetries develop in absence of embryonic light stimulation. Furthermore, early-light action affects lateralization in the transparent zebrafish embryos before their visual system is functional. Here we investigated whether another pathway intervenes in establishing brain specialization. We exposed chicks' embryos to light before their visual system was formed. We observed that such early stimulation modulates cerebral lateralization in a comparable vein of late-light stimulation on active retinal cells. Our results show that, in a higher vertebrate brain, a second route, likely affecting the genetic expression of photosensitive regions, acts before the development of a functional visual system. More than one sensitive period seems thus available to light stimulation to trigger brain lateralization.

  2. I-TiO2/PVC film with highly photocatalytic antibacterial activity under visible light.

    PubMed

    Deng, Weihua; Ning, Shangbo; Lin, Qianying; Zhang, Hualei; Zhou, Tanghua; Lin, Huaxiang; Long, Jinlin; Lin, Qun; Wang, Xuxu

    2016-08-01

    Iodine-modified TiO2(I-TiO2) film were coated on medical-grade PVC material by impregnation-deposition method and subsequently characterized by XRD, SEM, TEM, AFM, DRS and XPS. The photocatalytic anti-bacterial activity of I-TiO2/PVC was investigated both by in vitro anti-bacterial experiments and by clinical study. The results revealed that I-TiO2/PVC exhibit excellent photocatalytic antibacterial activity, which can destroy the propagation of the Escherichia coli and cause the deactivation and death of most E. coli bacteria within 30min visible light illumination. Clinical study on animals showed that I-TiO2 coated on PVC decrease the formation of biofilm on PVC surface in the mechanical ventilation. Furthermore, I-TiO2/PVC can effectively reduce inflammation of tracheal tissue of bam suckling pig and prevents the occurrence of VAP.

  3. Sink or Float. Modified Primary. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This publication provides information and activities for teaching about water, whether certain objects will sink or float, and process skills including observing, classifying, inferring, measuring, predicting, and collecting and interpreting data. There are 14 lessons in the unit. The first four lessons deal with the classification of objects and…

  4. Floating and Sinking: Second Teacher Trials. Learning in Science Project (Primary). Working Paper No. 121.

    ERIC Educational Resources Information Center

    Biddulph, Fred; And Others

    Two booklets were developed by the Learning in Science Project (primary)--LISP(P)--to help teachers adopt an approach to science teaching which would enhance children's understanding of floating and sinking; the strategy enables teachers to reconceptualize their teaching task from activity-driven, didactic teaching to conceptual-change teaching.…

  5. Floating and Sinking: First Teacher Trials. Learning in Science Project (Primary). Working Paper No. 120.

    ERIC Educational Resources Information Center

    Appleton, Ken; And Others

    Two booklets were developed by the Learning in Science Project (Primary)--LISP(P)--to help teachers adopt an approach to primary science teaching which would enhance children's understanding of floating and sinking. Both booklets were designed to enable teachers to reconceptualize their teaching task from activity-driven, didactic teaching to…

  6. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms §...

  7. Dark/Light Modulation of Ribulose Bisphosphate Carboxylase Activity in Plants from Different Photosynthetic Categories 1

    PubMed Central

    Vu, J. Cu V.; Allen, Leon H.; Bowes, George

    1984-01-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO3− and Mg2+ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C3); P. maximum (C4 phosphoenolpyruvate carboxykinase); P. milioides (C3/C4); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C3); P. miliaceum (C4 NAD malic enzyme); Zea mays and Sorghum bicolor (C4 NADP malic enzyme); Moricandia arvensis (C3/C4); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C3 species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO2 and Mg2+ activation, but which can be converted to an activatable state upon exposure of the leaf to light. PMID:16663937

  8. Dark/Light modulation of ribulose bisphosphate carboxylase activity in plants from different photosynthetic categories.

    PubMed

    Vu, J C; Allen, L H; Bowes, G

    1984-11-01

    Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO(3) (-) and Mg(2+) concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C(3)); P. maximum (C(4) phosphoenolpyruvate carboxykinase); P. milioides (C(3)/C(4)); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C(3)); P. miliaceum (C(4) NAD malic enzyme); Zea mays and Sorghum bicolor (C(4) NADP malic enzyme); Moricandia arvensis (C(3)/C(4)); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C(3) species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO(2) and Mg(2+) activation, but which can be converted to an activatable state upon exposure of the leaf to light.

  9. A system for implanting laboratory mice with light-activated microtransponders.

    PubMed

    Gruda, Maryann C; Pinto, Amanda; Craelius, Aaron; Davidowitz, Hanan; Kopacka, Wesley M; Li, Ji; Qian, Jay; Rodriguez, Efrain; Kuspiel, Edward; Mandecki, Wlodek

    2010-11-01

    The mouse is the most commonly used laboratory animal, accounting for up to 80% of all mammals used in research studies. Because rodents generally are group-housed, an efficient system of uniquely identifying individual animals for use in research studies, breeding, and proper colony management is required. Several temporary and permanent methods (for example, ear punching and toe clipping) are available for labeling research mice and other small animals, each with advantages and disadvantages. This report describes a new radiofrequency identification tagging method that uses 500-μm, light-activated microtransponders implanted subcutaneously into the ear or tail of mice. The preferred location for implanting is in the side of the tail, because implantation at this site was simple to perform and was associated with shorter implantation times (average, 53 versus 325 s) and a higher success rate (98% versus 50%) compared with the ear. The main benefits of using light-activated microtransponders over other identification methods, including other radiofrequency identification tags, is their small size, which minimizes stress to the animals during implantation and low cost due to their one-piece (monolithic) design. In addition, the implantation procedure uses a custom-designed 21-gauge needle injector and does not require anesthetization of the mice. We conclude that this method allows improved identification and management of laboratory mice.

  10. Enhanced visible light photocatalytic activity of sulfated CuO-Bi2O3 photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Xinlu; Zeng, Jun; Zhong, Junbo; Li, Jianzhang

    2015-09-01

    Sulfate (SO4 2-)-modified CuO-Bi2O3 composite photocatalysts with different loadings of SO4 2- were prepared by a facile pore impregnating method using ammonium persulfate (NH4)2S2O8 solution. The surface parameters, structure, morphology, the response ability to light, the binding energy of Bi 4 f and O 1 s, the hydroxyl content on the surface and the separation rate of photoinduced hole-electron pairs were characterized by Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and surface photovoltage spectroscopy, respectively. The results reveal that sulfating of CuO-Bi2O3 decreases the band gap, increases the hydroxyl content on the surface, the separation rate of photoinduced hole-electron pairs and the adsorption of Rhodamine B on the sulfated photocatalysts. The photocatalytic activity of SO4 2-/CuO-Bi2O3 for decolorization of Rhodamine B aqueous solution was evaluated. The result shows that when the molar ratio of S/Bi is 5 %, SO4 2-/CuO-Bi2O3 exhibits the best photocatalytic activity under visible light irradiation and the possible reason is discussed.

  11. Preparation and visible light photocatalytic activity of N-doped titania.

    PubMed

    Hu, Yulong; Liu, Hongfang; Chen, Weiran; Chen, Debin; Yin, Jiwei; Guo, Xingpeng

    2010-03-01

    N-doped titania powders were prepared with titanium tetraisopropoxide (TTIP) as the titanium source and urea as the nitrogen source by the sol-gel method. The samples were characterized using X-ray diffraction (XRD), diffuse reflectance spectrum (DRS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The XRD and TEM results indicated that urea played an important role in controlling the size and aggregation process of titania nanoparticles. As an appropriate amount of urea was added into the titania sol, the size of the particles decreased. However, the excess urea reduced the dispersion of the particles and resulted in the aggregation. At the same time, the size of particle increased, and the size distribution broadened. The XPS and DRS results showed that the nitrogen was incorporated into titania lattice successfully, which brought about the redshift of the absorption edge and induced the photocatalytic activity in the visible light region. The photocatalytic experiments showed that the N-doped titania nanoparticles could effectively photodegrade methyl orange (MO) aqueous solution under visible light irradiation. The photocatalytic activity increased with the increase of the nitrogen doping level in the titania lattice, but decreased with the increase of the particle size and the organic surface residues caused by excess urea.

  12. A System for Implanting Laboratory Mice with Light-Activated Microtransponders

    PubMed Central

    Gruda, Maryann C; Pinto, Amanda; Craelius, Aaron; Davidowitz, Hanan; Kopacka, Wesley M; Li, Ji; Qian, Jay; Rodriguez, Efrain; Kuspiel, Edward; Mandecki, Wlodek

    2010-01-01

    The mouse is the most commonly used laboratory animal, accounting for up to 80% of all mammals used in research studies. Because rodents generally are group-housed, an efficient system of uniquely identifying individual animals for use in research studies, breeding, and proper colony management is required. Several temporary and permanent methods (for example, ear punching and toe clipping) are available for labeling research mice and other small animals, each with advantages and disadvantages. This report describes a new radiofrequency identification tagging method that uses 500-µm, light-activated microtransponders implanted subcutaneously into the ear or tail of mice. The preferred location for implanting is in the side of the tail, because implantation at this site was simple to perform and was associated with shorter implantation times (average, 53 versus 325 s) and a higher success rate (98% versus 50%) compared with the ear. The main benefits of using light-activated microtransponders over other identification methods, including other radiofrequency identification tags, is their small size, which minimizes stress to the animals during implantation and low cost due to their one-piece (monolithic) design. In addition, the implantation procedure uses a custom-designed 21-gauge needle injector and does not require anesthetization of the mice. We conclude that this method allows improved identification and management of laboratory mice. PMID:21205448

  13. Reflection of light: a teaching and learning activity with primary school children

    NASA Astrophysics Data System (ADS)

    Varela, Paulo; Abreu, Cátia; Costa, Manuel F. M.

    2014-08-01

    Light and its properties is a subject that strongly attracts children from very early ages. Inquiry-based science teaching although addressed in the curricula of various countries and suggested by some international organizations, continues to have a very low expression in the teaching practices of the majority of primary school teachers and preschool educators. In this sense, we have organized several continuing training courses in order to encourage these education professionals to promote this approach to science teaching in the classroom, with the children. As part of this training process, teachers and educators put into practice, with their students, the didactic knowledge they have developed, in order to become aware of the virtues of an inquiry-based approach to children's learning. Through the implementation of the "Reflection of Light" activity, in this article, we intend to analyze the process of teaching and learning promoted in a 3rd grade class by one of the teachers participating in the training courses. The analysis of the process reveals that the teacher in training carried out a successful didactic integration of the inquiry-based science teaching approach recommended for children. In turn, the children also developed a good understanding of the contents of the activity explored in the classroom.

  14. Parallel optical control of spatiotemporal neuronal spike activity using high-speed digital light processing.

    PubMed

    Jerome, Jason; Foehring, Robert C; Armstrong, William E; Spain, William J; Heck, Detlef H

    2011-01-01

    Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses digital light processing technology to generate 2-dimensional (2D) stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 μm) and temporal (>13 kHz) resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 mm × 2.07 mm) of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  15. Activation of peroxymonosulfate by BiVO4 under visible light for degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Guo, Hongguang; Zhang, Yongli; Tang, Weihong; Cheng, Xin; Liu, Hongwei

    2016-06-01

    A photocatalytic system involving visible light and BiVO4 (Vis/BiVO4) in the presence of peroxymonosulfate (PMS) has been developed to oxidize the target pollutant Rhodamine B (RhB) in aqueous solution. It was found that PMS could enhance the photocatalytic efficiency of BiVO4 and could be activated to promote the removal of RhB with sulfate radicals, hydroxyl radicals and superoxide radicals. Critical impacting factors in the Vis/BiVO4/PMS system were investigated concerning the influence of PMS concentration, solution pH, catalyst dosage, initial concentration of RhB and the presence of anions (Cl- and CO32-). In addition, by using isopropanol, tert-butanol, 1,4-benzoquinone and ethylenediamine tetraacetic acid disodium salt as probe compounds, the main active species were demonstrated including radSO4-, radOH and radO2- in the system, and a detail photocatalytic mechanism for the Vis/BiVO4/PMS system was proposed. Finally, up to 10 intermediate products of RhB were identified by GC/MS, included benzenoid organic compounds, organic acids and three nitrogenous organic compounds. This study provides a feasible way to degrade organic pollutants in wastewater using BiVO4 with PMS under visible light.

  16. Facile synthesis of porous Ag3PO4 nanotubes for enhanced photocatalytic activity under visible light

    NASA Astrophysics Data System (ADS)

    Wan, Jun; Sun, Lin; Fan, Jun; Liu, Enzhou; Hu, Xiaoyun; Tang, Chunni; Yin, Yunchao

    2015-11-01

    Porous Ag3PO4 nanotubes (PNTs) were synthesized via a surface anion exchange reaction from the pregrown Ag2CO3 nanorods (NRs) templates in the aqueous solution. The rationally release rate of H+ and PO43- from Na2HPO4 are proved to be the key factors for the formation of Ag3PO4 PNTs. SEM analysis indicated that Ag3PO4 PNTs have a nearly homogeneous size with about 350 nm diameter, 2.1 μm length and 74 nm wall thickness. Nanoholes with diameters in range of 40-200 nm were existed on the side wall of the tubular structure. Compared with irregular Ag3PO4, Ag3PO4 PNTs exhibit an apparently enhancement of visible-light absorption and a significant decrease of PL intensities, indicating a better light absorption and a lower charge recombination rate. The photocatalytic performance studies for the degradation of RhB indicate that Ag3PO4 PNTs not only exhibit the highest adsorption ability towards dye molecules, but also possess superior photocatalytic activity than that of Ag2CO3 NRs and irregular Ag3PO4. The origin of the higher photocatalytic activity is primarily ascribed to the peculiar porous tubular nanostructure. h+ and •O2- are investigated to be the major reactive species for the Ag3PO4 PNTs photocatalytic system.

  17. Parallel Optical Control of Spatiotemporal Neuronal Spike Activity Using High-Speed Digital Light Processing

    PubMed Central

    Jerome, Jason; Foehring, Robert C.; Armstrong, William E.; Spain, William J.; Heck, Detlef H.

    2011-01-01

    Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses digital light processing technology to generate 2-dimensional (2D) stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 μm) and temporal (>13 kHz) resolution. Light is projected through the quartz–glass bottom of the perfusion chamber providing access to a large area (2.76 mm × 2.07 mm) of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales. PMID:21904526

  18. Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays

    NASA Astrophysics Data System (ADS)

    Volz, Daniel

    2016-04-01

    Thermally activated delayed fluorescence (TADF) is an emerging hot topic. Even though this photophysical mechanism itself has been described more than 50 years ago and optoelectronic devices with organic matter have been studied, improved, and even commercialized for decades now, the realization of the potential of TADF organic light-emitting diodes (OLEDs) happened only recently. TADF has been proven to be an attractive and very efficient alternative for phosphorescent materials, such as dopants in OLEDs, light-emitting electrochemical cells as well as potent emitters for chemiluminescence. In this review, the TADF concept is introduced in terms that are also understandable for nonchemists. The basic concepts behind this mechanism as well as state-of-the-art examples are discussed. In addition, the future economic impact, especially for the lighting and display market, is addressed here. We conclude that TADF materials are especially helpful to realize efficient, durable deep blue and white displays.

  19. Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio-Oyashio Extension region

    NASA Astrophysics Data System (ADS)

    Itoh, Sachihiko; Yasuda, Ichiro; Saito, Hiroaki; Tsuda, Atsushi; Komatsu, Kosei

    2015-11-01

    Variability in the chlorophyll a concentration (Chl) in relation to fluctuations in the mixed layer (ML) was investigated together with turbidity (Tur) in the Kuroshio-Oyashio Extension region, using profiling floats. A particular focus was the validity of two hypotheses concerning the spring bloom: the critical depth hypothesis (CDH) and the recently proposed alternative, the disturbance-recovery hypothesis (DRH). During the period from winter to early spring, Chl and Tur integrated over the photosynthetically active layer (PL; defined as the greatest depth of the ML and the euphotic layer) increased with increasing PL depth (PLD), indicating an increase in the phytoplankton biomass. This result is partly consistent with the DRH in that the observed increase in biomass was not explained by an increase in production. Instead, it was more likely attributable to a reduction in the loss rate. However, theoretical analyses revealed that grazer dilution alone could not cause this increase in biomass because such an increase in the ML in the real ocean (as opposed to a dilution experiment within a bottle) would cause a reduction in the mean light intensity. Despite the loss-controlled fluctuation in biomass during the period of low light, a production-driven fluctuation in biomass was also revealed. This occurred when the light intensity was elevated, particularly after late spring, and was consistent with the CDH. Thus, the present study suggests that both the production-driven and loss-driven hypotheses are responsible for the dynamics of the phytoplankton dynamics from winter to spring in the Kuroshio-Oyashio Extension region.

  20. Studies of floating dosage forms of furosemide: in vitro and in vivo evaluations of bilayer tablet formulations.

    PubMed

    Ozdemir, N; Ordu, S; Ozkan, Y

    2000-08-01

    For the purpose of enhancement the bioavailability of furosemide (FR), a floating dosage form with controlled release of FR was designed in this study. Because of the lower solubility of active material in the gastric medium, it was first enhanced by preparing an inclusion complex of FR with beta-cyclodextrin (beta-CD) in a 1:1 proportion using the kneading method. Following the design of dosage form, bilayer floating tablets were prepared. After dissolution rate studies were performed using the continuous flow-through cell method, the formulation that provided delivery of active material near the target profile was given to six healthy male volunteer subjects, and in vivo tests were performed. It was determined by radiographs that floating tablets prepared by adding BaSO4 stayed in the stomach for 6 hr. Further, values of the area under the plasma concentration-time curve (AUC) obtained with the floating dosage form were about 1.8 times those of the conventional FR tablet in blood analyses; maximum and minimum plasma concentrations were also found to be between the desired limits. In urine analyses, the peak diuretic effect seen in classical preparations was decreased and prolonged in floating dosage forms. Also, a considerably significant correlation was detected between in vivo results and in vitro data of the dissolution rate, and it was concluded that the modified continuous flow-through cell method is usable for in vitro dissolution rate tests of floating dosage forms.