Science.gov

Sample records for floating light activated

  1. Feasibility of Neural Stimulation With Floating-Light-Activated Microelectrical Stimulators

    PubMed Central

    Abdo, Ammar; Sahin, Mesut

    2011-01-01

    Neural microstimulation is becoming a powerful tool for the restoration of impaired functions in the central nervous system. Microelectrode arrays with fine wire interconnects have traditionally been used in the development of these neural prosthetic devices. However, these interconnects are usually the most vulnerable part of the neuroprosthetic implant that can eventually cause the device to fail. In this paper, we investigate the feasibility of floating-light-activated microelectrical stimulators (FLAMES) for wireless neural stimulation. A computer model was developed to simulate the micro stimulators for typical requirements of neural activation in the human white and gray matters. First, the photon densities due to a circular laser beam were simulated in the neural tissue at near-infrared (NIR) wavelengths. Temperature elevation in the tissue was calculated and the laser power was retrospectively adjusted to 325 and 250 mW/cm2 in the gray and white matters, respectively, to limit ΔT to 0.5 °C. Total device area of the FLAMES increased with all parameters considered but decreased with the output voltage. We conclude that the number of series photodiodes in the device can be used as a free parameter to minimize the device size. The results suggest that floating, optically activated stimulators are feasible at submillimeter sizes for the activation of the brain cortex or the spinal cord. PMID:21552457

  2. Floating light-activated microelectrical stimulators tested in the rat spinal cord

    NASA Astrophysics Data System (ADS)

    Abdo, Ammar; Sahin, Mesut; Freedman, David S.; Cevik, Elif; Spuhler, Philipp S.; Unlu, M. Selim

    2011-10-01

    Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long-term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated microelectrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08 N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source.

  3. Floating light-activated microelectrical stimulators tested in the rat spinal cord.

    PubMed

    Abdo, Ammar; Sahin, Mesut; Freedman, David S; Cevik, Elif; Spuhler, Philipp S; Unlu, M Selim

    2011-10-01

    Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long-term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated microelectrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08 N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source. PMID:21914931

  4. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lights on a floating hose string? 149.550 Section 149.550 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Aids to Navigation Lights on Floating Hose Strings § 149.550 What are the requirements for lights on a floating hose string? Hose strings that are floating or supported on trestles must display...

  5. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lights on a floating hose string? 149.550 Section 149.550 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Aids to Navigation Lights on Floating Hose Strings § 149.550 What are the requirements for lights on a floating hose string? Hose strings that are floating or supported on trestles must display...

  6. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lights on a floating hose string? 149.550 Section 149.550 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Aids to Navigation Lights on Floating Hose Strings § 149.550 What are the requirements for lights on a floating hose string? Hose strings that are floating or supported on trestles must display...

  7. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Two red lights at each end of the hose string, including the ends in a channel where the hose string... lights on a floating hose string? 149.550 Section 149.550 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Aids to Navigation Lights on Floating Hose Strings § 149.550 What are the requirements for...

  8. 33 CFR 149.550 - What are the requirements for lights on a floating hose string?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Two red lights at each end of the hose string, including the ends in a channel where the hose string... lights on a floating hose string? 149.550 Section 149.550 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Aids to Navigation Lights on Floating Hose Strings § 149.550 What are the requirements for...

  9. Photo-active float for field water disinfection.

    PubMed

    Shwetharani, R; Balakrishna, R Geetha

    2016-03-01

    The present study investigates the antibacterial activity of a photoactive float fabricated with visible light active N-F-TiO2 for the disinfection of field water widely contaminated with Gram positive and Gram negative bacteria like, Salmonella typhimurium (Gram negative), Escherichia coli (Gram negative), Staphylococcus aureus (Gram positive), Bacillus species (Gram positive), and Pseudomonas species (Gram negative). The antibacterial activity can be attributed to the unique properties of the photocatalyst, which releases reactive oxygen species in aqueous solution, under the illumination of sunlight. N-F-TiO2 nanoparticles efficiently photocatalyse the destruction of all the bacteria present in the contaminated water, giving clean water. The inactivation of bacteria is confirmed by a standard plate count method, MDA, RNA and DNA analysis. The purity of water was further validated by SPC indicating nil counts of bacteria after two days of storing and testing. The photocatalysts were characterized by XRD, BET measurement, SEM, EDX, UV-Vis and PL analysis.

  10. Submerged (under-liquid) floating of light objects.

    PubMed

    Bormashenko, Edward; Pogreb, Roman; Grynyov, Roman; Bormashenko, Yelena; Gendelman, Oleg

    2013-08-27

    A counterintuitive submerged floating of objects lighter than the supporting liquid was observed. Polymer plates with dimensions on the order of magnitude of the capillary length were hydrophilized with cold air plasma were floated in an "under-liquid" regime (totally covered by liquid) when immersed in water or glycerol. Profiles of liquid surfaces curved by polymer plates are measured. We propose a model explaining the phenomenon. The floating of Janus plates is reported.

  11. Photo-active float for field water disinfection.

    PubMed

    Shwetharani, R; Balakrishna, R Geetha

    2016-03-01

    The present study investigates the antibacterial activity of a photoactive float fabricated with visible light active N-F-TiO2 for the disinfection of field water widely contaminated with Gram positive and Gram negative bacteria like, Salmonella typhimurium (Gram negative), Escherichia coli (Gram negative), Staphylococcus aureus (Gram positive), Bacillus species (Gram positive), and Pseudomonas species (Gram negative). The antibacterial activity can be attributed to the unique properties of the photocatalyst, which releases reactive oxygen species in aqueous solution, under the illumination of sunlight. N-F-TiO2 nanoparticles efficiently photocatalyse the destruction of all the bacteria present in the contaminated water, giving clean water. The inactivation of bacteria is confirmed by a standard plate count method, MDA, RNA and DNA analysis. The purity of water was further validated by SPC indicating nil counts of bacteria after two days of storing and testing. The photocatalysts were characterized by XRD, BET measurement, SEM, EDX, UV-Vis and PL analysis. PMID:26924232

  12. Controlled-motion of floating macro-objects induced by light

    SciTech Connect

    Lucchetta, Daniele E. Simoni, Francesco; Nucara, Luca; Castagna, Riccardo

    2015-07-15

    Photons energy can be conventionally converted to mechanical work through a series of energy-expensive steps such as for example delivery and storage. However, these steps can be bypassed obtaining a straightforward conversion of photons energy to mechanical work. As an example, in literature, high power near infrared light is used to move small objects floating on fluid surfaces, exploiting the Marangoni effect. In this work we use a low power non-collimated visible laser-light to induce thermal surface tension gradients, resulting in the movement of objects floating on fluid surfaces. By real time tracking of the object trajectories, we evaluate the average applied driving force caused by the light irradiation. In addition we show how transparent objects can be moved by light when the supporting fluids are properly doped.

  13. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-01

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  14. Active vibration isolation of macro-micro motion stage disturbances using a floating stator platform

    NASA Astrophysics Data System (ADS)

    Zhang, Lufan; Long, Zhili; Cai, Jiandong; Liu, Yang; Fang, Jiwen; Wang, Michael Yu

    2015-10-01

    Macro-micro motion stage is mainly applied in microelectronics manufacturing to realize a high-acceleration, high-speed and nano-positioning motion. The high acceleration and nano-positioning accuracy would be influenced by the vibration of the motion stage. In the paper, a concept of floating stage is introduced in the macro-micro motion for isolating vibration disturbances. The design model of the floating stage is established and its theoretical analyses including natural frequency, transient and frequency response analyses are investigated, in order to demonstrate the feasibility of the floating stator platform as a vibration isolator for the macro-micro motion stage. Moreover, an optimal design of the floating stator is conducted and then verified by experiments. In order to characterize and quantify the performance of isolation obtained from the traditional fixed stator and the floating stator, the acceleration responses at different accelerations, speeds and displacements are measured in x, y and z directions. The theoretical and experimental analyses in time and frequency domains indicate that the floating stator platform is effective to actively isolate the vibration in the macro-micro motion stage. In macro-micro motion stage, high acceleration motion is provided by VCM. Vibration is induced from VCM, that is, VCM is a source system, the vibration response or force is felt by a receiver system. Generally, VCM is fixed on the base, which means that the base is the receiver system which absorbs or transfers the vibration. However, the vibration cannot completely disappear and the base vibration is inevitable. In the paper, a floated stator platform as isolation system is developed to decrease or isolate vibration between VCM and base. The floated stator platform consists of damper, stopper, floated lock, spring, limiter, sub base, etc. Unlike the traditional stator of VCM fixed on the base, the floated stator can be moved on the linear guide under vibration

  15. Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium

    NASA Astrophysics Data System (ADS)

    Park, Sungyong; Pan, Chenlu; Wu, Ting-Hsiang; Kloss, Christoph; Kalim, Sheraz; Callahan, Caitlin E.; Teitell, Michael; Chiou, Eric P. Y.

    2008-04-01

    We report an optical actuation mechanism, floating electrode optoelectronic tweezers (FEOET). FEOET enables light-driven transport of aqueous droplets immersed in electrically insulating oil on a featureless photoconductive glass layer with direct optical images. We demonstrate that a 681μm de-ionized water droplet immersed in corn oil medium is actuated by a 3.21μW laser beam with an average intensity as low as 4.08μW/mm2 at a maximum speed of 85.1μm/s on a FEOET device. FEOET provides a promising platform for massively parallel droplet manipulation with optical images on low cost, silicon-coated glass. The FEOET device structure, fabrication, working principle, numerical simulations, and operational results are presented in this letter.

  16. "JCE" Classroom Activity #108. Using Archimedes' Principle to Explain Floating and Sinking Cans

    ERIC Educational Resources Information Center

    Sanger, Michael J.

    2011-01-01

    In this activity, students (working alone or in groups) measure the mass of several soda cans (diet and regular soda) along with the mass of water that each can displaces. The students are then asked to compare these two mass values for the sinking cans and for the floating cans. The purpose of this activity is for students to determine that the…

  17. Neutron activation analysis of nickel purified by floating zone-refining and anion exchange.

    PubMed

    Isshiki, M; Yakushiji, K; Kikuchi, T; Sato, M; Yanagisawa, E; Igaki, K; Mizohata, A; Mamuro, T; Tsujimoto, T

    1981-04-01

    Nondestructive neutron activation analysis was performed on the nickel purified by floating zone-refining and anion exchange. It is found that floating zone-refining in vacuum is effective to remove Na, Sc, Cr, Zn, As, Ag, Sb and Hg through vaporization in addition to elimination of Se, Sb, Ta, Sm and Tb through segregation. Anion exchange method is also effective to separate Fe, Co, Zn, Mo, Hg, Th and U usually contained in the commercial nickel sources. It is concluded that combination of these two purification methods is required to obtain high purity nickel, since floating zone-refining is known ineffective to eliminate Fe and Co, main impurities in commercial nickel sources. PMID:7291628

  18. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Activity locations and float-funding. 570.301 Section 570.301 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT, DEPARTMENT...

  19. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity.

    PubMed

    Cui, Jianjun; Zhang, Jianheng; Huo, Yuanzi; Zhou, Lingjie; Wu, Qing; Chen, Liping; Yu, Kefeng; He, Peimin

    2015-12-30

    In this study, the influence of temperature and light intensity on the growth of seedlings and adults of four species of green tide algae (Ulvaprolifera, Ulvacompressa, Ulva flexuosa and Ulvalinza) from the Yellow Sea was evaluated. The results indicated that the specific growth rate (SGR) of seedlings was much higher than that of adults for the four species. The adaptability of U. prolifera is much wider: Adult daily SGRs were the highest among the four species at 15-20 °C with 10-600 μmol · m(-2) · s(-1) and 25-30 °C with 200-600 μmol · m(-2) · s(-1). SGRs were 1.5-3.5 times greater than the other three species at 15-25 °C with 200-600 μmol · m(-2) · s(-1). These results indicate that U. prolifera has better tolerance to high temperature and light intensity than the other three species, which may in part explain why only U. prolifera undergoes large-scale outbreaks and floats to the Qingdao coast while the other three species decline and disappear at the early stage of blooming.

  20. How much floating light nonaqueous phase liquid can a phreatic surface sustain? Riesenkampf's scheme revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, Anvar; Obnosov, Yurii; Al-Maktoumi, Ali; Al-Balushi, Mohammed

    2011-11-01

    Steady, Darcian, one-phase, phreatic surface flow of groundwater into a horizontal well with a pancake lens of light nonaqueous phase liquid (LNAPL) accumulated in the water table trough is studied by the method of complex analysis. A sharp interface model assumes groundwater capped by two isobaric limbs (groundwater-vadose zone interfaces) of a free surface with an in-between cambered segment of an immiscible LNAPL-water interface, along which pressure is hydrostatically increasing with the depth of the LNAPL "channel." The complex potential polygon is mapped onto an auxiliary half plane where the complex physical coordinate of the flow domain is represented in terms of singular integrals as a solution of the Keldysh-Sedov problem. The shapes of semi-infinite "wings" of the water table contacting the vadose zone gas and of a finite length LNAPL-groundwater interface are found from parametric equations that involve the sink strength and location with respect to the pancake surface, the ordinate of the lowest trough point, and the volume of LNAPL accreted in the lens. Critical conditions, corresponding to the lens contour cusping toward the sink, are found. The Riesenkampf solution contains a free parameter, which is fixed by specifying either a point on the free surface or the volume of the trough-intercepted LNAPL.

  1. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides

    PubMed Central

    Harpenslager, Sarah F.; Smolders, Alfons J. P.; Kieskamp, Ariët A. M.; Roelofs, Jan G. M.; Lamers, Leon P. M.

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  2. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides.

    PubMed

    Harpenslager, Sarah F; Smolders, Alfons J P; Kieskamp, Ariët A M; Roelofs, Jan G M; Lamers, Leon P M

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  3. HAWC Response to Lighting Activity

    NASA Astrophysics Data System (ADS)

    Lara, A.

    2014-12-01

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the Sierra Negra volcano (4100 m a.s.l.) in Mexico. HAWC's primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), each instrumented with 4 photo-multipliers (PMTs). The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC scaler system records the rates of individual PMTs giving the opportunity of study relatively low energy transients as solar energetic particles and the solar modulation of galactic cosmic rays. In this work, we present the observations of scaler rate enhancements associated with lightning activity observed close to HAWC (i. e. at high altitude). In particular, we present the time and space coincidence of the lighting strikes and the scaler enhancements and our preliminary speculations on the origin of the detector response to the lighting activity.

  4. Does It Sink or Float?

    ERIC Educational Resources Information Center

    McDonald, Judith Richards

    2012-01-01

    This activity is designed to teach prekindergarten to second grade students about the concept of sink or float through an inquiry activity. Students will use familiar objects to predict and test the properties of sink and float. Background information is offered to teachers to assist them with this activity. This lesson begins with an engaging…

  5. Stools - floating

    MedlinePlus

    ... absorption of nutrients ( malabsorption ) or too much gas (flatulence). Considerations Most causes of floating stools are harmless. ... Bailey J. FPIN's Clinical Inquiries: Effective management of flatulence. Am Fam Physician Ohge H, Levitt MD. Intestinal ...

  6. Bright light activates a trigeminal nociceptive pathway

    PubMed Central

    Okamoto, Keiichiro; Tashiro, Akimasa; Chang, Zheng; Bereiter, David A.

    2010-01-01

    Bright light can cause ocular discomfort and/or pain; however, the mechanism linking luminance to trigeminal nerve activity is not known. In this study we identify a novel reflex circuit necessary for bright light to excite nociceptive neurons in superficial laminae of trigeminal subnucleus caudalis (Vc/C1). Vc/C1 neurons encoded light intensity and displayed a long delay (>10 s) for activation. Microinjection of lidocaine into the eye or trigeminal root ganglion (TRG) inhibited light responses completely, whereas topical application onto the ocular surface had no effect. These findings indicated that light-evoked Vc/C1 activity was mediated by an intraocular mechanism and transmission through the TRG. Disrupting local vasomotor activity by intraocular microinjection of the vasoconstrictive agents, norepinephrine or phenylephrine, blocked light-evoked neural activity, whereas ocular surface or intra-TRG microinjection of norepinephrine had no effect. Pupillary muscle activity did not contribute since light-evoked responses were not altered by atropine. Microinjection of lidocaine into the superior salivatory nucleus diminished light-evoked Vc/C1 activity and lacrimation suggesting that increased parasympathetic outflow was critical for light-evoked responses. The reflex circuit also required input through accessory visual pathways since both Vc/C1 activity and lacrimation were prevented by local blockade of the olivary pretectal nucleus. These findings support the hypothesis that bright light activates trigeminal nerve activity through an intraocular mechanism driven by a luminance-responsive circuit and increased parasympathetic outflow to the eye. PMID:20206444

  7. Insight into visible light-driven photocatalytic degradation of diesel oil by doped TiO2-PS floating composites.

    PubMed

    Wang, Xin; Wang, Wei; Wang, Xuejiang; Zhao, Jianfu; Zhang, Jing; Song, Jingke

    2016-09-01

    TiO2-pearlstone (PS) floatable photocatalysts were synthesized using a facile sol-gel method and confirmed by XRD, N2 adsorption-desorption, SEM, EDX, TEM, FT-IR, XPS, and UV-vis DRS measurements. It has been found that the photocatalysts composed of anatase TiO2 deposited on the surface of PS and formed mesoporous structure. By N or B/N doping, the band gap of the photocatalyst has been narrowed. The obtained floatable photocatalysts can be applied to solar light-driven remediation of oil-contaminated water. Diesel oil was chosen as the model pollutant to evaluate the photocatalytic activity. The results showed B/N-TiO2-PS exhibited the highest photocatalytic activity for diesel oil under visible light irradiation, which is 48 % removal rate for 9 h. The reaction rate constant k of B/N-TiO2-PS is 0.08423 h(-1), which is four times larger than that of pure TiO2-PS. Moreover, the characteristic of floatable makes the photocatalysts easier to separate and reuse, which showed great potential for practical applications in the field of environmental cleanup and solar energy conversion.

  8. Insight into visible light-driven photocatalytic degradation of diesel oil by doped TiO2-PS floating composites.

    PubMed

    Wang, Xin; Wang, Wei; Wang, Xuejiang; Zhao, Jianfu; Zhang, Jing; Song, Jingke

    2016-09-01

    TiO2-pearlstone (PS) floatable photocatalysts were synthesized using a facile sol-gel method and confirmed by XRD, N2 adsorption-desorption, SEM, EDX, TEM, FT-IR, XPS, and UV-vis DRS measurements. It has been found that the photocatalysts composed of anatase TiO2 deposited on the surface of PS and formed mesoporous structure. By N or B/N doping, the band gap of the photocatalyst has been narrowed. The obtained floatable photocatalysts can be applied to solar light-driven remediation of oil-contaminated water. Diesel oil was chosen as the model pollutant to evaluate the photocatalytic activity. The results showed B/N-TiO2-PS exhibited the highest photocatalytic activity for diesel oil under visible light irradiation, which is 48 % removal rate for 9 h. The reaction rate constant k of B/N-TiO2-PS is 0.08423 h(-1), which is four times larger than that of pure TiO2-PS. Moreover, the characteristic of floatable makes the photocatalysts easier to separate and reuse, which showed great potential for practical applications in the field of environmental cleanup and solar energy conversion. PMID:27259962

  9. On floats and float tests

    NASA Technical Reports Server (NTRS)

    Seewald, Friedrich

    1931-01-01

    The principal source of information on float resistance is the model test. In view of the insuperable difficulties opposing any attempt at theoretical treatment of the resistance problem, particularly at attitudes which tend toward satisfactory take-off, such as the transitory stage to planing, the towing test is and will remain the primary method for some time.

  10. With a letter-searched prime, boat primes float but swim and coat don't: further evidence for automatic semantic activation.

    PubMed

    Pastizzo, Matthew J; Neely, James H; Tse, Chi-Shing

    2008-08-01

    Letter search (LS) on the prime typically eliminates semantic priming (swim-float) and orthographic/ phonological (O/P) priming (coat-float) but not morphological priming (marked-mark). However, LS on the prime does not reduce semantic priming for low-frequency targets (Tse & Neely, 2007). These findings suggest that semantic activation survives LS but decays during LS to a low level that can be detected only with sensitive measures, which are afforded by low-frequency targets and morphologically related primes and targets. In the present research, we show that LS on the prime results in 0 msec of semantic priming (e.g., swim-float) and 11 msec of O/P priming (e.g., coat-float), both of which are statistically null, whereas the LS semantic+O/P priming effect for primes and targets that do not share a morpheme (e.g., boat-float) is a robust 37 msec. Discussion focuses on the automaticity of semantic activation and whether morphological priming is mediated by (1) a morphemic representation that is separate from semantic representations or (2) activation combined from semantics and orthography/phonology.

  11. Artificial light and nocturnal activity in gammarids

    PubMed Central

    Hölker, Franz; Heller, Stefan; Berghahn, Rüdiger

    2014-01-01

    Artificial light is gaining attention as a potential stressor to aquatic ecosystems. Artificial lights located near streams increase light levels experienced by stream invertebrates and we hypothesized light would depress night drift rates. We also hypothesized that the effect of light on drift rates would decrease over time as the invertebrates acclimated to the new light level over the course of one month’s exposure. These hypotheses were tested by placing Gammarus spp. in eight, 75 m × 1 m artificial flumes. One flume was exposed to strong (416 lx) artificial light at night. This strong light created a gradient between 4.19 and 0.04 lx over the neighboring six artificial flumes, while a control flume was completely covered with black plastic at night. Night-time light measurements taken in the Berlin area confirm that half the flumes were at light levels experienced by urban aquatic invertebrates. Surprisingly, no light treatment affected gammarid drift rates. In contrast, physical activity measurements of in situ individually caged G. roeseli showed they increased short-term activity levels in nights of complete darkness and decreased activity levels in brightly lit flumes. Both nocturnal and diurnal drift increased, and day drift rates were unexpectadly higher than nocturnal drift. PMID:24688857

  12. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units.

    PubMed

    Hohenstein, Edward G; Bouduban, Marine E F; Song, Chenchen; Luehr, Nathan; Ufimtsev, Ivan S; Martínez, Todd J

    2015-07-01

    The floating occupation molecular orbital-complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the state-averaged complete active space self-consistent field (SA-CASSCF) method. We have formulated the analytic first derivative of FOMO-CASCI in a manner that is well-suited for a highly efficient implementation using graphical processing units (GPUs). Using this implementation, we demonstrate that FOMO-CASCI gradients are of similar computational expense to configuration interaction singles (CIS) or time-dependent density functional theory (TDDFT). In contrast to CIS and TDDFT, FOMO-CASCI can describe multireference character of the electronic wavefunction. We show that FOMO-CASCI compares very favorably to SA-CASSCF in its ability to describe molecular geometries and potential energy surfaces around minimum energy conical intersections. Finally, we apply FOMO-CASCI to the excited state hydrogen transfer reaction in methyl salicylate. PMID:26156469

  13. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units.

    PubMed

    Hohenstein, Edward G; Bouduban, Marine E F; Song, Chenchen; Luehr, Nathan; Ufimtsev, Ivan S; Martínez, Todd J

    2015-07-01

    The floating occupation molecular orbital-complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the state-averaged complete active space self-consistent field (SA-CASSCF) method. We have formulated the analytic first derivative of FOMO-CASCI in a manner that is well-suited for a highly efficient implementation using graphical processing units (GPUs). Using this implementation, we demonstrate that FOMO-CASCI gradients are of similar computational expense to configuration interaction singles (CIS) or time-dependent density functional theory (TDDFT). In contrast to CIS and TDDFT, FOMO-CASCI can describe multireference character of the electronic wavefunction. We show that FOMO-CASCI compares very favorably to SA-CASSCF in its ability to describe molecular geometries and potential energy surfaces around minimum energy conical intersections. Finally, we apply FOMO-CASCI to the excited state hydrogen transfer reaction in methyl salicylate.

  14. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  15. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  16. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  17. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  18. 33 CFR 144.01-1 - Life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have...

  19. Evaluation of upgrading a full-scale activated sludge process integrated with floating biofilm carriers.

    PubMed

    Ge, Shijian; Zhu, Yunpeng; Qiu, Shuang; Yang, Xiong; Ma, Bin; Huang, Donghui; Peng, Yongzhen

    2014-01-01

    This study evaluated the performance of a full-scale upgrade of an existing wastewater treatment plant (WWTP) with the intermittent cyclic extended aeration system (ICEAS), located in Qingdao, China. The ICEAS system was not able to meet effluent standards; therefore, a series of modifications and control strategies were applied as follows: (1) floating plastic carriers were added to the tank to aid biofilm formation; (2) operation parameters such as mixing and aeration time, feeding rate, and settling time were adjusted and controlled with a real-time control system; (3) a sludge return system and submersible water impellers were added; (4) the aeration system was also improved to circulate carriers and prevent clogging. The modified ICEAS system exhibited efficient organic and nutrient removal, with high removal efficiencies of chemical oxygen demand (89.57 ± 4.10%), NH4(+)-N (95.46 ± 3.80%), and total phosphorus (91.90 ± 4.36%). Moreover, an annual power reduction of 1.04 × 10(7) kW·h was realized as a result of these modifications.

  20. Evaluation of upgrading a full-scale activated sludge process integrated with floating biofilm carriers.

    PubMed

    Ge, Shijian; Zhu, Yunpeng; Qiu, Shuang; Yang, Xiong; Ma, Bin; Huang, Donghui; Peng, Yongzhen

    2014-01-01

    This study evaluated the performance of a full-scale upgrade of an existing wastewater treatment plant (WWTP) with the intermittent cyclic extended aeration system (ICEAS), located in Qingdao, China. The ICEAS system was not able to meet effluent standards; therefore, a series of modifications and control strategies were applied as follows: (1) floating plastic carriers were added to the tank to aid biofilm formation; (2) operation parameters such as mixing and aeration time, feeding rate, and settling time were adjusted and controlled with a real-time control system; (3) a sludge return system and submersible water impellers were added; (4) the aeration system was also improved to circulate carriers and prevent clogging. The modified ICEAS system exhibited efficient organic and nutrient removal, with high removal efficiencies of chemical oxygen demand (89.57 ± 4.10%), NH4(+)-N (95.46 ± 3.80%), and total phosphorus (91.90 ± 4.36%). Moreover, an annual power reduction of 1.04 × 10(7) kW·h was realized as a result of these modifications. PMID:25429446

  1. Advanced Light Source Activity Report 2000

    SciTech Connect

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  2. Light-Activated Content Release from Liposomes

    PubMed Central

    Leung, Sarah J.; Romanowski, Marek

    2012-01-01

    Successful integration of diagnostic and therapeutic actions at the level of individual cells requires new materials that combine biological compatibility with functional versatility. This review focuses on the development of liposome-based functional materials, where payload release is activated by light. Methods of sensitizing liposomes to light have progressed from the use of organic molecular moieties to the use of metallic plasmon resonant structures. This development has facilitated application of near infrared light for activation, which is preferred for its deep penetration and low phototoxicity in biological tissues. Presented mechanisms of light-activated liposomal content release enable precise in vitro manipulation of minute amounts of reagents, but their use in clinical diagnostic and therapeutic applications will require demonstration of safety and efficacy. PMID:23139729

  3. Light-activated Reassembly of Split GFP

    PubMed Central

    Kent, Kevin P.; Boxer, Steven G.

    2011-01-01

    Truncated Green Fluorescent Protein (GFP) with the 11th β-strand removed is potentially interesting for bioconjugation, imaging, and the preparation of semi-synthetic proteins with novel spectroscopic or functional properties. Surprisingly, the truncated GFP generated by removing the 11th strand, once refolded, does not reassemble with a synthetic peptide corresponding to strand 11, but does reassemble following light activation. The mechanism of this process has been studied in detail by absorption, fluorescence and Raman spectroscopy. The chromophore in this refolded truncated GFP is found to be in the trans configuration. Upon exposure to light a photostationary state is formed between the trans and cis conformations of the chromophore, and only truncated GFP with the cis configuration of the chromophore binds the peptide. A kinetic model describing the light activated reassembly of this split GFP is discussed. This unique light-driven reassembly is potentially useful for controlling protein-protein interactions. PMID:21351768

  4. Floating Point Control Library

    2007-08-02

    Floating Point Control is a Library that allows for the manipulation of floating point unit exception masking funtions control exceptions in both the Streaming "Single Instruction, Multiple Data" Extension 2 (SSE2) unit and the floating point unit simultaneously. FPC also provides macros to set floating point rounding and precision control.

  5. Green laser light activates the inner ear

    NASA Astrophysics Data System (ADS)

    Wenzel, Gentiana I.; Balster, Sven; Zhang, Kaiyin; Lim, Hubert H.; Reich, Uta; Massow, Ole; Lubatschowski, Holger; Ertmer, Wolfgang; Lenarz, Thomas; Reuter, Guenter

    2009-07-01

    The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices. Laser light can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. We sought to assess whether visible light with parameters that could induce an optoacoustic effect (532 nm, 10-ns pulses) would activate the cochlea. Auditory brainstem responses (ABRs) were recorded preoperatively in anesthetized guinea pigs to confirm normal hearing. After opening the bulla, a 50-μm core-diameter optical fiber was positioned in the round window niche and directed toward the basilar membrane. Optically induced ABRs (OABRs), similar in shape to those of acoustic stimulation, were elicited with single pulses. The OABR peaks increased with energy level (0.6 to 23 μJ/pulse) and remained consistent even after 30 minutes of continuous stimulation at 13 μJ, indicating minimal or no stimulation-induced damage within the cochlea. Our findings demonstrate that visible light can effectively and reliably activate the cochlea without any apparent damage. Further studies are in progress to investigate the frequency-specific nature and mechanism of green light cochlear activation.

  6. Mechanics of light-activated network polymers

    NASA Astrophysics Data System (ADS)

    Long, Kevin Nicholas

    Mechanically responsive, environmentally activated polymers can undergo large, complex deformation in response to external stimuli such as thermal, luminous, and chemical changes to the environment. Light as a stimulus provides unique application potential because it allows for remote, rapid, and isothermal activation of the material with precise spatial control via existing optical technologies. While certain systems have received considerable attention, the state of the art of most light-activated polymers is limited to basic characterization and demonstrations. To make such materials available to the engineering and scientific communities, physically based theoretical and computational tools are required to guide experimental and design efforts that capitalize on their complex photo-mechanical couplings. The central objective of this thesis is to develop a multi-physics constitutive modeling framework to simulate the continuum scale, photo mechanical behavior of light-activated polymers and implement it into a finite element analysis setting. This framework is independent of specific underlying photo-stimulation mechanisms and is discussed in the context of photo-activated shape memory polymers and network rearranging polymers. Next, the framework is applied to the light-activated network rearranging polymer system, which is relaxed of stress upon irradiation with UV light, and a suite of characterization and application oriented experiments are carried out to calibrate and validate the model's predictive capabilities. The calibrated model is used to investigate several applications such as photo-activated stress relaxation of notched specimens, bending actuation, creep, the buckling of equi-biaxially deformed and irradiated films, and photomechanically formed 1D channels and ridges. Modeling creep involves additional complexity through simultaneous deformation and irradiation, and so the model framework is extended to cover such scenarios. Experiments, finite

  7. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform

    PubMed Central

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  8. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform.

    PubMed

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space.

  9. Study on a Mechanical Semi-Active Heave Compensation System of Drill String for Use on Floating Drilling Platform.

    PubMed

    Liu, Qingyou; Tang, Yang; Huang, Chongjun; Xie, Chong

    2015-01-01

    There are some disadvantages for existing heave compensation systems of drill string used for the Floating Drilling Platform (FDP), including high energy consumption, large and complex structure, and expensive manufacturing and maintenance costs. In view of the above, we present a streamlined mechanical semi-active heave compensation system (MSAHC) in this study. This system consists of active compensation part with the pinion and rack and passive compensation part. In order to evaluate system performance of the MSAHC, we establish its simulation model with AMEsim software. In the process of simulation, displacement of rotary hook and energy consumption is regarded as performance parameters of the system. And the change rule of two performance parameters are analyzed by changing these design parameters including gear radius of the pinion and rack, scale coefficient of PID, rotary hook load, heave height and heave period of the FDP, and accumulator volume. Then, based on the simulation results of the MSAHC system performance, we have selected out a best set of design parameters from them. Moreover, the feasibility of the design scheme of the MSAHC is effectively verified by comparison with the existing three heave compensation system. The result shows that the energy consumption of the MSAHC is lower than the active heave compensation system (AHC) and the semi-active heave compensation system (SAHC) when achieving a same compensation effect as well as the accumulator volume of MSAHC is half of the passive heave compensation system (PHC). Therefore, the new designed MSAHC not only ensure compensation effect but also lower energy consumption, and its structure is simplified by adopting the simple mechanical structure to decrease manufacturing cost, maintenance cost and floor space. PMID:26186620

  10. 24 CFR 570.301 - Activity locations and float-funding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... submission requirements referred to in this section are those in 24 CFR part 91. (a) For activities for which... to be received in a future program year (in accordance with 24 CFR 91.220(g)(1)(ii)(D)). (4) The... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Activity locations and...

  11. Visible-Light-Activated Molecular Switches.

    PubMed

    Bléger, David; Hecht, Stefan

    2015-09-21

    The ability to influence key properties of molecular systems by using light holds much promise for the fields of materials science and life sciences. The cornerstone of such systems is molecules that are able to reversibly photoisomerize between two states, commonly referred to as photoswitches. One serious restriction to the development of functional photodynamic systems is the necessity to trigger switching in at least one direction by UV light, which is often damaging and penetrates only partially through most media. This review provides a summary of the different conceptual strategies for addressing molecular switches in the visible and near-infrared regions of the optical spectrum. Such visible-light-activated molecular switches tremendously extend the scope of photoswitchable systems for future applications and technologies.

  12. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  13. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  14. WindWaveFloat

    SciTech Connect

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  15. Flinking: Neither Floating nor Sinking.

    ERIC Educational Resources Information Center

    Wilson, Roger B.

    1993-01-01

    Describes an activity that challenges students to make an object that, when released under water, does not float up or sink down. The main concept this activity investigates is the density of ordinary objects in comparison to the density of water. (PR)

  16. Light-activated communication in synthetic tissues.

    PubMed

    Booth, Michael J; Schild, Vanessa Restrepo; Graham, Alexander D; Olof, Sam N; Bayley, Hagan

    2016-04-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  17. Light-activated communication in synthetic tissues

    PubMed Central

    Booth, Michael J.; Schild, Vanessa Restrepo; Graham, Alexander D.; Olof, Sam N.; Bayley, Hagan

    2016-01-01

    We have previously used three-dimensional (3D) printing to prepare tissue-like materials in which picoliter aqueous compartments are separated by lipid bilayers. These printed droplets are elaborated into synthetic cells by using a tightly regulated in vitro transcription/translation system. A light-activated DNA promoter has been developed that can be used to turn on the expression of any gene within the synthetic cells. We used light activation to express protein pores in 3D-printed patterns within synthetic tissues. The pores are incorporated into specific bilayer interfaces and thereby mediate rapid, directional electrical communication between subsets of cells. Accordingly, we have developed a functional mimic of neuronal transmission that can be controlled in a precise way. PMID:27051884

  18. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  19. The Design of Floats

    NASA Technical Reports Server (NTRS)

    Sottorf, W

    1938-01-01

    Following a summary of the multiplicity of domestic and foreign floats and a brief enumeration of the requirements of floats, the essential form parameters and their effect on the qualities of floats are detailed. On this basis a standard float design is developed which in model families with varying length/beam ratio and angle of dead rise is analyzed by an experimental method which permits its best utilization on any airplane.

  20. Whatever Floats Your Boat: A Design Challenge

    ERIC Educational Resources Information Center

    Kornoelje, Joanne; Roman, Harry T.

    2012-01-01

    This article presents a simple design challenge, based on the PBS program "Design Squad's" "Watercraft" activity that will prove engaging to most technology and engineering students. In this floating boat challenge, students are to build a boat that can float and support 25 pennies for at least 10 seconds--without leaking, sinking, or tipping…

  1. Floating Boats

    ERIC Educational Resources Information Center

    Waugh, Michael

    2007-01-01

    The purpose of this article is to describe a simple laboratory activity in which students collect a series of measurements and then use graphical analysis to determine the nature of the relationship between an object's mass and the volume of water it displaces. In this activity, students explore the relationships between the mass of a floating…

  2. Exploring Floating Concrete and Beam Design.

    ERIC Educational Resources Information Center

    Snell, Billie G.; Snell, Luke M.

    2002-01-01

    Presents two construction activities that address both state and federal science standards and encourage students to consider career options in mathematics and science. Includes floating concrete and paper bridge activities. (YDS)

  3. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    PubMed

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses.

  4. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity.

    PubMed

    Jeong, A-Reum; Lee, Si-Seok; Han, Yun-Jeong; Shin, Ah-Young; Baek, Ayoung; Ahn, Taeho; Kim, Min-Gon; Kim, Young Soon; Lee, Keun Woo; Nagatani, Akira; Kim, Jeong-Il

    2016-08-01

    Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation. PMID:27325667

  5. Development of Wax-Incorporated Emulsion Gel Beads for the Encapsulation and Intragastric Floating Delivery of the Active Antioxidant from Tamarindus indica L.

    PubMed

    Soradech, Sitthiphong; Petchtubtim, Intira; Thongdon-A, Jeerayu; Muangman, Thanchanok

    2016-03-22

    In this study, tamarind (Tamarindus indica L.) seed extracts with potential antioxidant activity and toxicity to cancer cells were developed as functional foods and nutraceutical ingredients in the form of emulsion gel beads. Three extracts were obtained from ethanol and water: TSCH50, TSCH95 and TSCH. All extracts exhibited high potential for superoxide anion scavenging activity over the IC50 range < 5-11 µg/mL and had no toxic effects on normal cells, however, the water extract (TSCH) was the most effective due to its free radical scavenging activity and toxicity in mitochondrial membranes of cancer cells. Next a study was designed to develop a new formulation for encapsulation and intragastric floating delivery of tamarind seed extract (TSCH) using wax-incorporated emulsion gel beads, which were prepared using a modified ionotropic gelation technique. Tamarind seed extract at 1% (w/w) was used as the active ingredient in all formulations. The effect of the types and amounts of wax on the encapsulation efficiency and percentage of the active release of alginate gel beads was also investigated. The results demonstrated that the incorporation of both waxes into the gel beads had an effect on the percentage of encapsulation efficiency (%) and the percentage of the active ingredient release. Furthermore, the addition of water insoluble waxes (carnauba and bee wax) significantly retarded the release of the active ingredient. The addition of both waxes had a slight effect on drug release behavior. Nevertheless, the increase in incorporated waxes in all formulations could sustain the percentage of active ingredient release. In conclusion, wax-incorporated emulsion gel beads using a modified ionotropic gelation technique could be applied for the intragastric floating delivery and controlled release of functional food and nutraceutical products for their antioxidant and anticancer capacity.

  6. Development of Wax-Incorporated Emulsion Gel Beads for the Encapsulation and Intragastric Floating Delivery of the Active Antioxidant from Tamarindus indica L.

    PubMed

    Soradech, Sitthiphong; Petchtubtim, Intira; Thongdon-A, Jeerayu; Muangman, Thanchanok

    2016-01-01

    In this study, tamarind (Tamarindus indica L.) seed extracts with potential antioxidant activity and toxicity to cancer cells were developed as functional foods and nutraceutical ingredients in the form of emulsion gel beads. Three extracts were obtained from ethanol and water: TSCH50, TSCH95 and TSCH. All extracts exhibited high potential for superoxide anion scavenging activity over the IC50 range < 5-11 µg/mL and had no toxic effects on normal cells, however, the water extract (TSCH) was the most effective due to its free radical scavenging activity and toxicity in mitochondrial membranes of cancer cells. Next a study was designed to develop a new formulation for encapsulation and intragastric floating delivery of tamarind seed extract (TSCH) using wax-incorporated emulsion gel beads, which were prepared using a modified ionotropic gelation technique. Tamarind seed extract at 1% (w/w) was used as the active ingredient in all formulations. The effect of the types and amounts of wax on the encapsulation efficiency and percentage of the active release of alginate gel beads was also investigated. The results demonstrated that the incorporation of both waxes into the gel beads had an effect on the percentage of encapsulation efficiency (%) and the percentage of the active ingredient release. Furthermore, the addition of water insoluble waxes (carnauba and bee wax) significantly retarded the release of the active ingredient. The addition of both waxes had a slight effect on drug release behavior. Nevertheless, the increase in incorporated waxes in all formulations could sustain the percentage of active ingredient release. In conclusion, wax-incorporated emulsion gel beads using a modified ionotropic gelation technique could be applied for the intragastric floating delivery and controlled release of functional food and nutraceutical products for their antioxidant and anticancer capacity. PMID:27011162

  7. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  8. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  9. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  10. Advanced Light Source Activity Report 2002

    SciTech Connect

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  11. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  12. Artificial photosynthesis: Light-activated calcium gradients

    NASA Astrophysics Data System (ADS)

    Thompson, David H.

    2002-12-01

    Photosynthetic organisms use light to create chemical gradients across bilayer membranes that drive energetically unfavourable reactions. Synthetic systems that accomplish the same feat may find uses in a variety of biological and non-biological applications.

  13. Floating Magnet Demonstration.

    ERIC Educational Resources Information Center

    Wake, Masayoshi

    1990-01-01

    A room-temperature demonstration of a floating magnet using a high-temperature superconductor is described. The setup and operation of the apparatus are described. The technical details of the effect are discussed. (CW)

  14. Micromechanisms with floating pivot

    DOEpatents

    Garcia, Ernest J.

    2001-03-06

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.

  15. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  16. [Light activation of NADH and NADPH].

    PubMed

    Nikandrov, V V; Brin, G P; Krasnovskiĭ, A A

    1978-01-01

    Illumination of NADH and NADPH by UV-light in the absence of oxygen resulted in the reduction of ferredoxin or methyl-viologen to cation-radical and under prolonged illumination to dihydrodipyridyl. The reaction may by accompanied by triplet and singlet exitation of NADH. It was shown that hematoporphyrin in aqueous solution photosensitized the reaction of NADH oxidation by ferredoxin and methylviologen to the visible region of the spectrum. Under light excitation the redox potentials of NADH and NADPH were increased up to the level exceeding the potential of hydrogen electrode. Illumination of NADH and NADPH by UV-light in the presence of bacterial hydrogenase resulted in hydrogen evolution. The reaction of hydrogen evolution could be sensitised towards the visible region of the spectrum by chlorophyll or chloroplasts.

  17. Teaching dental anatomy with light-activated resins.

    PubMed

    Chalkley, Y; Denehy, G E; Schulein, T M

    1984-04-01

    A method has been described in which light-activated resins are incorporated into the dental anatomy laboratory. This procedure is a valuable addition to the anatomy course because students (1) work with a restorative material appropriate for anterior teeth, (2) learn the unique properties of the light-activated resins, and (3) apply the principles of dental anatomy to a clinically relevant task.

  18. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels. PMID:27151599

  19. Blue light-activated hypocrellin B damages ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leung, A. W. N.; Xiang, J. Y.; Xu, C. S.

    2011-10-01

    In the present study, a novel blue light source from LED was used to activate hypocrellin B in ovarian cancer HO-8910 cells. Hyppcrellin B concentration was kept at 2.5 μM and light doses from 0.5-4.0 J/cm2. Photocytotoxicity was investigated using MTT reduction assay and light microscopy after light irradiation. Cellular morphology was observed using transmission electron microscopy (TEM). MTT assay showed that the cytotoxicity of blue light-activated hypocrellin B in HO-8910 cells increased along with light dose. The observations from light microscopy reinforced the above results. TEM showed that microvillin disappearance, vacuole formation, chromatin condensation, and topical apoptotic body were observed in the cells treated by both light and hypocrellin B. The findings demonstrated that blue light from LED source could effectively activate hypocrellin B to cause the destruction of HO-8910 cells, indicating that Blue light-activated hypocrellin B might be potential therapeutic strategy in the management of ovarian cancer.

  20. Light and dark active phosphodiesterase regulation in salamander rods

    PubMed Central

    1991-01-01

    We studied the activation of 3',5'-cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) by using a cell-permeant enzyme inhibitor. Rods of Ambystoma tigrinum held in a suction electrode were jumped into a stream of 3-isobutyl-1-methylxanthine (IBMX), 0.01-1 mM. Initial transient light-sensitive currents fit the notion that dark and light-activated forms of PDE contributed independently to metabolic activity and were equivalently inhibited by IBMX (apparent Ki 30 microns). Inhibition developed within 50 ms, producing a step decrease of enzyme velocity, which could be offset by activation with flashes or steps of light. The dark PDE activity was equivalent to light activation of enzyme by 1,000 isomerization rod-1s-1, sufficient to hydrolyze the free cGMP pool (1/e) in 0.6 s. Steady light activated PDE in linear proportion to isomerization rate, the range from darkness to current saturation amounting to a 10-fold increase. The conditions for simultaneous onset of inhibitor and illumination to produce no net change of membrane current defined the apparent lifetime of light- activated PDE, TPDE* = 0.9 s, which was independent of both background illumination and current over the range 0-3 x 10(5) isomerization s-1, from 50 to 0 pA. Adaptation was a function of current rather than isomerization: jumps with different proportions of IBMX concentration to steady light intensity produced equal currents, and followed the same course of adaptation in maintained light, despite a 10-fold difference of illumination. Judged from the delay between IBMX- and light-induced currents, the dominant feedback regulatory site comes after PDE on the signal path. The dark active PDE affects the hydrolytic flux and cytoplasmic diffusion of cGMP, as well as the proportional range of the cGMP activity signal in response to light. PMID:1722240

  1. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  2. Floating wind turbine system

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  3. Mitochondrial electron transport protects floating leaves of long leaf pondweed (Potamogeton nodosus Poir) against photoinhibition: comparison with submerged leaves.

    PubMed

    Shabnam, Nisha; Sharmila, P; Sharma, Anuradha; Strasser, Reto J; Govindjee; Pardha-Saradhi, P

    2015-08-01

    Investigations were carried to unravel mechanism(s) for higher tolerance of floating over submerged leaves of long leaf pondweed (Potamogeton nodosus Poir) against photoinhibition. Chloroplasts from floating leaves showed ~5- and ~6.4-fold higher Photosystem (PS) I (reduced dichlorophenol-indophenol → methyl viologen → O2) and PS II (H2O → parabenzoquine) activities over those from submerged leaves. The saturating rate (V max) of PS II activity of chloroplasts from floating and submerged leaves reached at ~600 and ~230 µmol photons m(-2) s(-1), respectively. Photosynthetic electron transport rate in floating leaves was over 5-fold higher than in submerged leaves. Further, floating leaves, as compared to submerged leaves, showed higher F v/F m (variable to maximum chlorophyll fluorescence, a reflection of PS II efficiency), as well as a higher potential to withstand photoinhibitory damage by high light (1,200 µmol photons m(-2) s(-1)). Cells of floating leaves had not only higher mitochondria to chloroplast ratio, but also showed many mitochondria in close vicinity of chloroplasts. Electron transport (NADH → O2; succinate → O2) in isolated mitochondria of floating leaves was sensitive to both cyanide (CN(-)) and salicylhydroxamic acid (SHAM), whereas those in submerged leaves were sensitive to CN(-), but virtually insensitive to SHAM, revealing the presence of alternative oxidase in mitochondria of floating, but not of submerged, leaves. Further, the potential of floating leaves to withstand photoinhibitory damage was significantly reduced in the presence of CN(-) and SHAM, individually and in combination. Our experimental results establish that floating leaves possess better photosynthetic efficiency and capacity to withstand photoinhibition compared to submerged leaves; and mitochondria play a pivotal role in protecting photosynthetic machinery of floating leaves against photoinhibition, most likely by oxidation of NAD(P)H and

  4. Mitochondrial electron transport protects floating leaves of long leaf pondweed (Potamogeton nodosus Poir) against photoinhibition: comparison with submerged leaves.

    PubMed

    Shabnam, Nisha; Sharmila, P; Sharma, Anuradha; Strasser, Reto J; Govindjee; Pardha-Saradhi, P

    2015-08-01

    Investigations were carried to unravel mechanism(s) for higher tolerance of floating over submerged leaves of long leaf pondweed (Potamogeton nodosus Poir) against photoinhibition. Chloroplasts from floating leaves showed ~5- and ~6.4-fold higher Photosystem (PS) I (reduced dichlorophenol-indophenol → methyl viologen → O2) and PS II (H2O → parabenzoquine) activities over those from submerged leaves. The saturating rate (V max) of PS II activity of chloroplasts from floating and submerged leaves reached at ~600 and ~230 µmol photons m(-2) s(-1), respectively. Photosynthetic electron transport rate in floating leaves was over 5-fold higher than in submerged leaves. Further, floating leaves, as compared to submerged leaves, showed higher F v/F m (variable to maximum chlorophyll fluorescence, a reflection of PS II efficiency), as well as a higher potential to withstand photoinhibitory damage by high light (1,200 µmol photons m(-2) s(-1)). Cells of floating leaves had not only higher mitochondria to chloroplast ratio, but also showed many mitochondria in close vicinity of chloroplasts. Electron transport (NADH → O2; succinate → O2) in isolated mitochondria of floating leaves was sensitive to both cyanide (CN(-)) and salicylhydroxamic acid (SHAM), whereas those in submerged leaves were sensitive to CN(-), but virtually insensitive to SHAM, revealing the presence of alternative oxidase in mitochondria of floating, but not of submerged, leaves. Further, the potential of floating leaves to withstand photoinhibitory damage was significantly reduced in the presence of CN(-) and SHAM, individually and in combination. Our experimental results establish that floating leaves possess better photosynthetic efficiency and capacity to withstand photoinhibition compared to submerged leaves; and mitochondria play a pivotal role in protecting photosynthetic machinery of floating leaves against photoinhibition, most likely by oxidation of NAD(P)H and

  5. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improved dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided

  6. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  7. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  8. Rhenium complexes with visible-light-induced anticancer activity.

    PubMed

    Kastl, Anja; Dieckmann, Sandra; Wähler, Kathrin; Völker, Timo; Kastl, Lena; Merkel, Anna Lena; Vultur, Adina; Shannan, Batool; Harms, Klaus; Ocker, Matthias; Parak, Wolfgang J; Herlyn, Meenhard; Meggers, Eric

    2013-06-01

    Shedding light on the matter: Rhenium(I) indolato complexes with highly potent visible-light-triggered antiproliferative activity (complex 1: EC50 light=0.1 μM vs EC50 dark=100 μM) in 2D- and 3D-organized cancer cells are reported and can be traced back to an efficient generation of singlet oxygen, causing rapid morphological changes and an induction of apoptosis.

  9. Advanced Light Source: Activity report 1993

    SciTech Connect

    Not Available

    1994-11-01

    The Advanced Light Source (ALS) produces the world`s brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director`s message; (2) operations overview; (3) user program; (4) users` executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff.

  10. Floating nut retention system

    NASA Technical Reports Server (NTRS)

    Charles, J. F.; Theakston, H. A. (Inventor)

    1980-01-01

    A floating nut retention system includes a nut with a central aperture. An inner retainer plate has an opening which is fixedly aligned with the nut aperture. An outer retainer member is formed of a base plate having an opening and a surface adjacent to a surface of the inner retainer plate. The outer retainer member includes a securing mechanism for retaining the inner retainer plate adjacent to the outer retainer member. The securing mechanism enables the inner retainer plate to float with respect to the outer retainer number, while simultaneously forming a bearing surface for inner retainer plate.

  11. Light-Activated Pharmaceuticals: Mechanisms and Detection.

    PubMed

    Kessel, David; Reiners, John

    2012-09-01

    Photodynamic therapy relies on the interaction between light, oxygen and a photosensitizing agent. Its medical significance relates to the ability of certain agents, usually based on porphyrin or phthalocyanine structures, to localize somewhat selectively in neoplastic cells and their vasculature. Subsequent irradiation, preferably at a sufficiently high wavelength to have a significant pathway through tissues, results in a photophysical reaction whereby the excited state of the photosensitizing agent transfers energy to molecular oxygen and results in the formation of reactive oxygen species. Analogous reactive nitrogen species are also formed. These contain both nitrogen and oxygen atoms. The net result is both direct tumor cell death and a shutdown of the tumor vasculature. Other processes may also occur that promote the anti-tumor response but these are outside the scope of this review. PMID:23990688

  12. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  13. Floating--A Key to Survival.

    ERIC Educational Resources Information Center

    Anderson, Norman

    1980-01-01

    Described are several activities to be used to help students grasp the concept of floating. The activities include the use of a spring scale to measure the weight of the objects in air, in water, and in salt water, and a discussion of why there are differences in these weights. (DS)

  14. Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity

    PubMed Central

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-01-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol–gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m2 g−1) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti–O–B–N and O–Ti–B–N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B–N–TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B–N–TiO2/EP has potential applications for practical environmental purification. PMID:27432460

  15. Floating photocatalyst of B–N–TiO2/expanded perlite: a sol–gel synthesis with optimized mesoporous and high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-07-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol–gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m2 g‑1) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti–O–B–N and O–Ti–B–N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B–N–TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B–N–TiO2/EP has potential applications for practical environmental purification.

  16. Floating photocatalyst of B-N-TiO2/expanded perlite: a sol-gel synthesis with optimized mesoporous and high photocatalytic activity.

    PubMed

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-01-01

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol-gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m(2) g(-1)) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti-O-B-N and O-Ti-B-N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B-N-TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B-N-TiO2/EP has potential applications for practical environmental purification. PMID:27432460

  17. Floating photocatalyst of B-N-TiO2/expanded perlite: a sol-gel synthesis with optimized mesoporous and high photocatalytic activity.

    PubMed

    Xue, Hongbo; Jiang, Ya; Yuan, Kechun; Yang, Tingting; Hou, Jianhua; Cao, Chuanbao; Feng, Ke; Wang, Xiaozhi

    2016-07-19

    Optimized mesoporous photocatalyst endowed with high specific surface area and large pore size was synthesized by sol-gel method. These large pore mesoporous materials (33.39 nm) were conducive to the movement of larger molecules or groups in pore path and for effective use of active sites. The high specific surface area (SBET, 99.23 m(2) g(-1)) was beneficial to catalytic oxidation on the surface. Moreover, B and N co-doped anatase TiO2 in the presence of Ti-O-B-N and O-Ti-B-N contributed to the pore structure optimization and enhanced photoresponse capacity with a narrow band gap and red shift of absorption. The obtained materials with floating characteristics based on expanded perlite (EP) showed favorable features for photocatalytic activity. The best RhB photodegration rate of B-N-TiO2/EP (6 mg/g, 24 wt% TiO2) reached 99.1% after 5 h in the visible region and 99.8% after 1 h in the UV region. The findings can provide insights to obtain floatable photocatalysts with simple preparation method, optimized mesoporous, co-doping agents, as well as good photocatalytic performance, coverable and reusability. B-N-TiO2/EP has potential applications for practical environmental purification.

  18. Tethered float liquid level sensor

    DOEpatents

    Daily, III, William Dean

    2016-09-06

    An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.

  19. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  20. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  1. Floating mechanism of a small liquid marble

    PubMed Central

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V.; Vadivelu, Raja K.; John, James A. St.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface. PMID:26902930

  2. Floating mechanism of a small liquid marble

    NASA Astrophysics Data System (ADS)

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V.; Vadivelu, Raja K.; John, James A. St.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-02-01

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface.

  3. Floating mechanism of a small liquid marble.

    PubMed

    Ooi, Chin Hong; Plackowski, Chris; Nguyen, Anh V; Vadivelu, Raja K; St John, James A; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-02-23

    Flotation of small solid objects and liquid droplets on water is critical to natural and industrial activities. This paper reports the floating mechanism of liquid marbles, or liquid droplets coated with hydrophobic microparticles. We used X-ray computed tomography (XCT) to acquire cross-sectional images of the floating liquid marble and interface between the different phases. We then analysed the shape of the liquid marble and the angles at the three-phase contact line (TPCL). We found that the small floating liquid marbles follow the mechanism governing the flotation of solid objects in terms of surface tension forces. However, the contact angles formed and deformation of the liquid marble resemble that of a sessile liquid droplet on a thin, elastic solid. For small liquid marbles, the contact angle varies with volume due to the deformability of the interface.

  4. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins.

    PubMed

    Arikawa, Hiroyuki; Takahashi, Hideo; Kanie, Takahito; Ban, Seiji

    2009-07-01

    The purpose of this study was to investigate effects of various visible light photoinitiators on the polymerization efficiency and color of the light-activated resins. Four photoinitiators, including camphorquinone, phenylpropanedione, monoacrylphosphine oxide (TPO), and bisacrylphosphine oxide (Ir819), were used. Each photoinitiator was dissolved in a Bis-GMA and TEGDMA monomer mixture. Materials were polymerized using dental quartz-tungsten halogen lamp (QTH), plasma-ark lamp and blue LED light-curing units, and a custom-made violet LED light unit. The degree of monomer conversion and CIE L*a*b* color values of the resins were measured using a FTIR and spectral transmittance meter. The degree of monomer conversions of TPO- and Ir819-containing resins polymerized with the violet-LED unit were higher than camphorquinone-containing resin polymerized with the QTH light-curing unit. The lowest color values were observed for the TPO-containing resin. Our results indicate that the TPO photoinitiator and the violet-LED light unit may provide a useful and improved photopolymerization system for dental light-activated resins. PMID:19721283

  5. Advanced light source. Activity report 1995

    SciTech Connect

    1996-07-01

    The ALS Activity Report is designed to share the breadth, variety, and interest of the scientific program and ongoing R&D efforts in a form that is accessible to a broad audience. Recent research results are presented in six sections, each representing an important theme in ALS science. These results are designed to demonstrate the capabilities of the ALS, rather than to give a comprehensive review of 1995 experiments. Although the scientific program and facilities report are separate sections, in practice the achievements and accomplishments of users and ALS staff are interdependent. This user-staff collaboration is essential to help us direct our efforts toward meeting the needs of the user community, and to ensure the continued success of the ALS as a premier facility.

  6. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If metal, be corrosion resistant. (d) If the life float or buoyant apparatus does not have a painter... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  7. 46 CFR 180.137 - Stowage of life floats and buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... dark color or of a type certified to be resistant to deterioration from ultraviolet light; and (3) If metal, be corrosion resistant. (d) If the life float or buoyant apparatus does not have a painter... to deterioration from ultraviolet light. (e) If the vessel carries more than one life float...

  8. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  9. Mutagenic activation of 2-aminofluorene by fluorescent light

    SciTech Connect

    White, G.L.; Heflich, R.H.

    1985-01-01

    To determine the effect of artificially produced light on the direct mutagenicity of 2-aminofluorene, that arylamine was irradiated with either sun, cool-white, black, blue, or yellow fluorescent light or held in the dark prior to assaying for mutagenicity using Salmonella typhimurium strain TA98. The order of effectiveness of these exposures in potentiating the mutagenicity of 2-aminofluorene was sun greater than black greater than cool-white greater than blue greater than yellow approximately equal to dark. By varying the radiant flux densities produced by the lamps and using optical filters, wavelengths of light up to approximately 450 nm were found to be effective in the mutagenic potentiation. Studies using radical scavengers and oxygen modifiers indicated that the light-induced mutagenicity was dependent on oxygen and that singlet oxygen may be an effective activator of 2-aminofluorene. The mutagenicity of fluorene was not increased by exposure to light, while only sunlight potentiated the mutagenicity of 2-acetylaminofluorene. This result suggested the importance of the primary amine in the mutagenic activation of 2-aminofluorene by light. These studies indicate that the effect of light on environmental contaminants must be considered in assessing their genotoxic potential.

  10. Freely floating smectic films.

    PubMed

    May, Kathrin; Harth, Kirsten; Trittel, Torsten; Stannarius, Ralf

    2014-05-19

    We have investigated the dynamics of freely floating smectic bubbles using high-speed optical imaging. Bubbles in the size range from a few hundred micrometers to several centimeters were prepared from collapsing catenoids. They represent ideal model systems for the study of thin-film fluid dynamics under well-controlled conditions. Owing to the internal smectic layer structure, the bubbles combine features of both soap films and vesicles in their unique shape dynamics. From a strongly elongated initial shape after pinch-off, they relax towards the spherical equilibrium, first by a slow redistribution of the smectic layers, and finally by weak, damped shape oscillations. In addition, we describe the rupture of freely floating smectic bubbles, and the formation and stability of smectic filaments. PMID:24692347

  11. Freely floating smectic films.

    PubMed

    May, Kathrin; Harth, Kirsten; Trittel, Torsten; Stannarius, Ralf

    2014-05-19

    We have investigated the dynamics of freely floating smectic bubbles using high-speed optical imaging. Bubbles in the size range from a few hundred micrometers to several centimeters were prepared from collapsing catenoids. They represent ideal model systems for the study of thin-film fluid dynamics under well-controlled conditions. Owing to the internal smectic layer structure, the bubbles combine features of both soap films and vesicles in their unique shape dynamics. From a strongly elongated initial shape after pinch-off, they relax towards the spherical equilibrium, first by a slow redistribution of the smectic layers, and finally by weak, damped shape oscillations. In addition, we describe the rupture of freely floating smectic bubbles, and the formation and stability of smectic filaments.

  12. Floating point coprocessor upgrade

    SciTech Connect

    Weber, T.

    1987-04-01

    A method was developed to increase the throughput of the Hewlett Packard, 98635A floating point processor equipped, model 236C computer. The increase was carried out in three phases each with a clock and or chip change during the modification. Two programs were written to test the results and evaluate the increases in performance made to the computer. The first one shows reduction in processing times of 34.3%, while the other recorded 34.6%.

  13. Effect of light units on tooth bleaching with visible-light activating titanium dioxide photocatalyst.

    PubMed

    Kishi, Ayaka; Otsuki, Masayuki; Sadr, Alireza; Ikeda, Masaomi; Tagami, Junji

    2011-01-01

    This study evaluated the influence of different light sources on the efficiency of an office bleaching agent containing visible-light activating titanium dioxide photocatalyst (VL-TiO(2)) using an artificial discoloration tooth model. Extracted bovine teeth were stained by black tea. The CIE L*a*b* values were measured before and after nine consecutive treatments by the VL-TiO(2)-containing bleaching agent (TiON in Office, GC, Tokyo, Japan). A halogen light unit (CB; CoBee, GC) or an LED unit (G-light, GC) with two modes (blue and violet: GL-BV, blue: GL-B) were used to activate the bleaching agent in three groups (n=8). Brightness (ΔL) and color difference (ΔE) increased as bleaching repeated in all groups. Two-way ANOVA showed that both number of treatments and light sources significantly affected ΔE (p<0.05). GL-BV showed better bleaching effect than GL-B. In measurement of irradiation spectra, CB showed a wide spectrum (380-530 nm), GL-B had a sharp peak at 470 nm and GL-BV showed an additional peak at 405 nm. It was concluded that the light source influenced the efficiency of the tooth bleaching with VL-TiO(2). PMID:21946494

  14. Regioselective chromatic orthogonality with light-activated metathesis catalysts.

    PubMed

    Levin, Efrat; Mavila, Sudheendran; Eivgi, Or; Tzur, Eyal; Lemcoff, N Gabriel

    2015-10-12

    The ability to selectively guide consecutive chemical processes towards a preferred pathway by using light of different frequencies is an appealing concept. Herein we describe the coupling of two photochemical reactions, one the photoisomerization and consequent activation of a sulfur-chelated latent olefin-metathesis catalyst at 350 nm, and the other the photocleavage of a silyl protecting group at 254 nm. Depending on the steric stress exerted by a photoremovable neighboring chemical substituent, we demonstrate the selective formation of either five- or six-membered-ring frameworks by light-triggered ring-closing metathesis. The orthogonality of these light-induced reactions allows the initiation of these processes independently and in interchangeable order, according to the wavelength of light used to promote them.

  15. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  16. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  17. The effect of light-activation sources on tooth bleaching

    PubMed Central

    Baroudi, Kusai; Hassan, Nadia Aly

    2014-01-01

    Vital bleaching is one of the most requested cosmetic dental procedures asked by patients who seek a more pleasing smile. This procedure consists of carbamide or hydrogen peroxide gel applications that can be applied in-office or by the patient (at-home/overnight bleaching system). Some in-office treatments utilise whitening light with the objective of speeding up the whitening process. The objective of this article is to review and summarise the current literature with regard to the effect of light-activation sources on in-office tooth bleaching. A literature search was conducted using Medline, accessed via the National Library of Medicine Pub Med from 2003 to 2013 searching for articles relating to effectiveness of light activation sources on in-office tooth bleaching. This study found conflicting evidence on whether light truly improve tooth whitening. Other factors such as, type of stain, initial tooth colour and subject age which can influence tooth bleaching outcome were discussed. Conclusions: The use of light activator sources with in-office bleaching treatment of vital teeth did not increase the efficacy of bleaching or accelerate the bleaching. PMID:25298598

  18. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Astrophysics Data System (ADS)

    Howard, Richard

    1994-08-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  19. Advanced Light Source Activity Report 1997/1998

    SciTech Connect

    Greiner, Annette

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  20. Selenium bond decreases ON resistance of light-activated switch

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Vitrified amorphous selenium bond decreases the ON resistance of a gallium arsenide-silicon light-activated, low-level switch. The switch is used under a pulse condition to prolong switch life and minimize errors due to heating, devitrification, and overdrawing.

  1. Design, synthesis, and cercaricidal activity of novel high-efficient, low-toxic self-spreading PEG-N-salicylanilide derivatives against cercariae larvae of Schistosome Japonicum floating on the water surface.

    PubMed

    Guo, Wei; Zheng, Lv-Yin; Wu, Ren-Miao; Fan, Xiao-Lin

    2015-05-01

    Novel cercaricides of PEG-N-salicylanilide derivatives that could self-spread and float on the water surface were designed and synthesized according to the particular habit of cercariae larvae of Schistosome japonicum. The structures of the cercaricides were characterized by the infrared spectra (IR), magnetic resonance ((1) H NMR), and mass spectrum (MS). The images of the floating cercaricides on the water surface were investigated by the Brewster angle microscopy (BAM). When the cercaricides were dropped on the water surface, they could spread along the air-water interface automatically and form thin membranes floating on the water surface immediately. The lethality rate of cercariae for 5a and 6a was more than 90% in 120 min at a surface concentration of 0.008 mg/cm(2) . The non-ionic surfactant-cercaricides not only showed strong cercaricidal activities against the cercariae larvae but also exhibited low toxicities, which offered an effective and environment-friendly approach for the reduction of population infection rate and the realization of schistosome control.

  2. Design, synthesis, and cercaricidal activity of novel high-efficient, low-toxic self-spreading PEG-N-salicylanilide derivatives against cercariae larvae of Schistosome Japonicum floating on the water surface.

    PubMed

    Guo, Wei; Zheng, Lv-Yin; Wu, Ren-Miao; Fan, Xiao-Lin

    2015-05-01

    Novel cercaricides of PEG-N-salicylanilide derivatives that could self-spread and float on the water surface were designed and synthesized according to the particular habit of cercariae larvae of Schistosome japonicum. The structures of the cercaricides were characterized by the infrared spectra (IR), magnetic resonance ((1) H NMR), and mass spectrum (MS). The images of the floating cercaricides on the water surface were investigated by the Brewster angle microscopy (BAM). When the cercaricides were dropped on the water surface, they could spread along the air-water interface automatically and form thin membranes floating on the water surface immediately. The lethality rate of cercariae for 5a and 6a was more than 90% in 120 min at a surface concentration of 0.008 mg/cm(2) . The non-ionic surfactant-cercaricides not only showed strong cercaricidal activities against the cercariae larvae but also exhibited low toxicities, which offered an effective and environment-friendly approach for the reduction of population infection rate and the realization of schistosome control. PMID:25244005

  3. Melatonin administration modifies circadian motor activity under constant light depending on the lighting conditions during suckling.

    PubMed

    Carpentieri, Agata R; Oliva, Clara; Díez-Noguera, Antoni; Cambras, Trinitat

    2015-01-01

    Early lighting conditions have been described to produce long-term effects on circadian behavior, which may also influence the response to agents acting on the circadian system. It has been suggested that melatonin (MEL) may act on the circadian pacemaker and as a scavenger of reactive oxygen and nitrogen species. Here, we studied the oxidative and behavioral changes caused by prolonged exposure to constant light (LL) in groups of rats that differed in MEL administration and in lighting conditions during suckling. The rats were exposed to either a light-dark cycle (LD) or LL. At 40 days old, rats were treated for 2 weeks with a daily subcutaneous injection of MEL (10 mg/kg body weight) or a vehicle at activity onset. Blood samples were taken before and after treatment, to determine catalase (CAT) activity and nitrite level in plasma. As expected, LL-reared rats showed a more stable motor activity circadian rhythm than LD rats. MEL treatment produced more reactivity in LD- than in LL rats, and was also able to alter the phase of the rhythm in LD rats. There were no significant differences in nitrite levels or CAT activity between the groups, although both variables increased with time. Finally, we also tested depressive signs by means of sucrose consumption, and anhedonia was found in LD males treated with MEL. The results suggest that the lighting conditions in early infancy are important for the long-term functionality of the circadian system, including rhythm manifestation, responses to MEL and mood alterations.

  4. Laminated active matrix organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  5. Floating-diffusion electrometer with adjustable sensitivity

    NASA Technical Reports Server (NTRS)

    Tower, John R. (Inventor)

    1989-01-01

    The effective capacitance of the floating diffusion in a floating-diffusion electrometer is modified to adjust electrometer sensitivity. This is done by changing the direct potential applied to a gate electrode proximate to the floating diffusion.

  6. Transient and selective suppression of neural activity with infrared light

    PubMed Central

    Duke, Austin R.; Jenkins, Michael W.; Lu, Hui; McManus, Jeffrey M.; Chiel, Hillel J.; Jansen, E. Duco

    2013-01-01

    Analysis and control of neural circuitry requires the ability to selectively activate or inhibit neurons. Previous work showed that infrared laser light selectively excited neural activity in endogenous unmyelinated and myelinated axons. However, inhibition of neuronal firing with infrared light was only observed in limited cases, is not well understood and was not precisely controlled. Using an experimentally tractable unmyelinated preparation for detailed investigation and a myelinated preparation for validation, we report that it is possible to selectively and transiently inhibit electrically-initiated axonal activation, as well as to both block or enhance the propagation of action potentials of specific motor neurons. Thus, in addition to previously shown excitation, we demonstrate an optical method of suppressing components of the nervous system with functional spatiotemporal precision. We believe this technique is well-suited for non-invasive investigations of diverse excitable tissues and may ultimately be applied for treating neurological disorders. PMID:24009039

  7. Vitamin A activates rhodopsin and sensitizes it to ultraviolet light.

    PubMed

    Miyazono, Sadaharu; Isayama, Tomoki; Delori, François C; Makino, Clint L

    2011-11-01

    The visual pigment, rhodopsin, consists of opsin protein with 11-cis retinal chromophore, covalently bound. Light activates rhodopsin by isomerizing the chromophore to the all-trans conformation. The activated rhodopsin sets in motion a biochemical cascade that evokes an electrical response by the photoreceptor. All-trans retinal is eventually released from the opsin and reduced to vitamin A. Rod and cone photoreceptors contain vast amounts of rhodopsin, so after exposure to bright light, the concentration of vitamin A can reach relatively high levels within their outer segments. Since a retinal analog, β-ionone, is capable of activating some types of visual pigments, we tested whether vitamin A might produce a similar effect. In single-cell recordings from isolated dark-adapted salamander green-sensitive rods, exogenously applied vitamin A decreased circulating current and flash sensitivity and accelerated flash response kinetics. These changes resembled those produced by exposure of rods to steady light. Microspectrophotometric measurements showed that vitamin A accumulated in the outer segments and binding of vitamin A to rhodopsin was confirmed in in vitro assays. In addition, vitamin A improved the sensitivity of photoreceptors to ultraviolet (UV) light. Apparently, the energy of a UV photon absorbed by vitamin A transferred by a radiationless process to the 11-cis retinal chromophore of rhodopsin, which subsequently isomerized. Therefore, our results suggest that vitamin A binds to rhodopsin at an allosteric binding site distinct from the chromophore binding pocket for 11-cis retinal to activate the rhodopsin, and that it serves as a sensitizing chromophore for UV light. PMID:22192505

  8. Blue light irradiation suppresses dendritic cells activation in vitro.

    PubMed

    Fischer, Michael R; Abel, Manuela; Lopez Kostka, Susanna; Rudolph, Berenice; Becker, Detlef; von Stebut, Esther

    2013-08-01

    Blue light is a UV-free irradiation suitable for treating chronic skin inflammation, for example, atopic dermatitis, psoriasis, and hand- and foot eczema. However, a better understanding of the mode of action is still missing. For this reason, we investigated whether dendritic cells (DC) are directly affected by blue light irradiation in vitro. Here, we report that irradiation neither induced apoptosis nor maturation of monocyte-derived and myeloid DC. However, subsequent DC maturation upon LPS/IFNγ stimulation was impaired in a dose-dependent manner as assessed by maturation markers and cytokine release. Moreover, the potential of this DC to induce cytokine secretion from allogeneic CD4 T cells was reduced. In conclusion, unlike UV irradiation, blue light irradiation at high and low doses only resulted in impaired DC maturation upon activation and a reduced subsequent stimulatory capacity in allogeneic MLRs with strongest effects at higher doses. PMID:23879817

  9. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  10. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  11. Seabirds and floating plastic debris.

    PubMed

    Cadée, Gerhard C

    2002-11-01

    80% of floating plastic debris freshly washed ashore on a Dutch coast showed peckmarks made by birds at sea. They either mistake these debris for cuttlebones or simply test all floating objects. Ingestion of plastic is deleterious for marine organisms. It is urgent to set measures to plastic litter production.

  12. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    PubMed Central

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  13. Controlling Protein Activity and Degradation Using Blue Light.

    PubMed

    Lutz, Anne P; Renicke, Christian; Taxis, Christof

    2016-01-01

    Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light). PMID:26965116

  14. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  15. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  16. Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele

    2016-09-01

    The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.

  17. Near-infrared light activated azo-BF2 switches.

    PubMed

    Yang, Yin; Hughes, Russell P; Aprahamian, Ivan

    2014-09-24

    Increasing the electron density in BF2-coodinated azo compounds through para-substitution leads to a bathochromic shift in their activation wavelength. When the substituent is dimethyl amine, or the like, the trans/cis isomerization process can be efficiently modulated using near infrared light. The electron donating capability of the substituent also controls the hydrolysis half-life of the switch in aqueous solution, which is drastically longer for the cis isomer, while the BF2-coodination prevents reduction by glutathione.

  18. Floating Silicon Method

    SciTech Connect

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  19. Floating on oil.

    PubMed

    Zhang, Jihua; Deng, Xu; Butt, Hans-Jürgen; Vollmer, Doris

    2014-09-01

    We demonstrate that disk-shaped steel meshes coated with a superamphiphobic layer are able to float on water and on organic liquids. A coated disk-shaped steel mesh of 1 cm radius has a loading capacity of 17 mN in water and still remarkable 9 mN in n-hexadecane. Experimentally measured supporting forces and loading capacities agree well with theoretical predictions. Inspired by the giant water lily, pan-shaped "oil lilies" with even higher loading capacity and artificial oil striders carrying more than 10 times their own weight are designed. Even after the artificial devices are fully immersed into different liquids, they show self-draining properties due to capillary forces.

  20. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  1. Floating on oil.

    PubMed

    Zhang, Jihua; Deng, Xu; Butt, Hans-Jürgen; Vollmer, Doris

    2014-09-01

    We demonstrate that disk-shaped steel meshes coated with a superamphiphobic layer are able to float on water and on organic liquids. A coated disk-shaped steel mesh of 1 cm radius has a loading capacity of 17 mN in water and still remarkable 9 mN in n-hexadecane. Experimentally measured supporting forces and loading capacities agree well with theoretical predictions. Inspired by the giant water lily, pan-shaped "oil lilies" with even higher loading capacity and artificial oil striders carrying more than 10 times their own weight are designed. Even after the artificial devices are fully immersed into different liquids, they show self-draining properties due to capillary forces. PMID:25109826

  2. Floating into Deep Space

    NASA Astrophysics Data System (ADS)

    La Frenais, R.; Saraceno, T.; Powell, J.

    2014-04-01

    Is it possible for spaceflight to become more sustainable? Artist and architect Tomas Saraceno proposes a long-term artscience research project based on his initial work with solar balloons to join with the efforts of engineers such as John Powell, working on the Airship to Orbit experiments, which describe a three stage process of using airships to fly to a large suborbital "Dark Sky Station' then literally floating into orbit with additional electrical and chemical propulsion. (See: http://www.jpaerospace.com) In his artworks Tomás Saraceno proposes cell-like flying cities as possible architectonic living spaces in direct reference to Buckminster Fuller's Cloud Nine (circa 1960). The fantastic architectural utopia Cloud Nine consists of a freely floating sphere measuring one mile in diameter that offers living space to several autonomous communities encompassing thousands of inhabitants each. The notion of the cloud is essential to the artist's work. The cloud as metaphor stands for artistic intention, for the meaning of territory and border in today's (urban) society, and for exploring possibilities for the sustainable development of the human living environment. In Saraceno's work this environment is not limited to the earth, but is explicitly conceived to reach into outer space. (Biomimetic Constructions- On the works of Tomás Saraceno By Katharina Schlüter) Saraceno is also interested in human factors experiments using his existing constructions as analogue environments for living on Mars and is proposing carry out a series of workshops, experiments and solar balloon launces in White Sands desert in early 2016 in collaboration with the curator Dr Rob La Frenais, the Rubin Center at The University of Texas at El Paso and various scientific partners.

  3. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  4. Changes in the colour of light cue circadian activity

    PubMed Central

    Kuchenbecker, James A.; Neitz, Maureen

    2012-01-01

    The discovery of melanopsin, the non-visual opsin present in intrinsically photosensitive retinal ganglion cells (ipRGCs), has created great excitement in the field of circadian biology. Now, researchers have emphasized melanopsin as the main photopigment governing circadian activity in vertebrates. Circadian biologists have tested this idea under standard laboratory, 12h Light: 12h Dark, lighting conditions that lack the dramatic daily colour changes of natural skylight. Here we used a stimulus paradigm in which the colour of the illumination changed throughout the day, thus mimicking natural skylight, but luminance, sensed intrinsically by melanopsin containing ganglion cells, was kept constant. We show in two species of cichlid, Aequidens pulcher and Labeotropheus fuelleborni, that changes in light colour, not intensity, are the primary determinants of natural circadian activity. Moreover, opponent-cone photoreceptor inputs to ipRGCs mediate the sensation of wavelength change, and not the intrinsic photopigment, melanopsin. These results have implications for understanding the evolutionary biology of non-visual photosensory pathways and answer long-standing questions about the nature and distribution of photopigments in organisms, including providing a solution to the mystery of why nocturnal animals routinely have mutations that interrupt the function of their short wavelength sensitive photopigment gene. PMID:22639465

  5. Properties of light reflected from road signs in active imaging.

    PubMed

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2008-08-01

    Night vision systems in vehicles are a new emerging technology. A crucial problem in active (laser-based) systems is distortion of images by saturation and blooming due to strong retroreflections from road signs. We quantify this phenomenon. We measure the Mueller matrices and the polarization state of the reflected light from three different types of road sign commonly used. Measurements of the reflected intensity are also taken with respect to the angle of reflection. We find that different types of sign have different reflection properties. It is concluded that the optimal solution for attenuating the retroreflected intensity is using a linear polarized light source and a linear polarizer with perpendicular orientation (with regard to the source) at the detector. Unfortunately, while this solution performs well for two types of road sign, it is less efficient for the third sign type. PMID:18670559

  6. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    SciTech Connect

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-15

    LiBiO{sub 3}, NaBiO{sub 3}, MgBi{sub 2}O{sub 6}, KBiO{sub 3}, ZnBi{sub 2}O{sub 6}, SrBi{sub 2}O{sub 6}, AgBiO{sub 3}, BaBi{sub 2}O{sub 6} and PbBi{sub 2}O{sub 6} were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO{sub 3} resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO{sub 3} showed the highest activity, while LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation. - Graphical abstract: Nine pentavalent bismuthates were synthesized and were examined for their photocatalytic activities by decomposition of phenol under visible light irradiation. NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated faster decomposition rate than that of anatase (P25) under UV-vis light irradiation. Highlights: > KBiO{sub 3} decolorize methylene blue aqueous solution immediately within 5 min. > NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated high decomposition rate of phenol. > The d electron of Zn, Ag and Pb form broad conduction band. > The broad conduction band poses to diminish photocatalytic activity.

  7. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  8. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  9. Control development for floating wind

    NASA Astrophysics Data System (ADS)

    Savenije, Feike; Peeringa, Johan

    2014-06-01

    Control of a floating wind turbine has proven to be challenging, but essential for lowering the cost of floating wind energy. Topic of a recent joint R&D project by GustoMSC, MARIN and ECN, is the concept design and verification with coupled simulations and model tests of the GustoMSC Tri-Floater. Only using an integral design approach, including mooring and control design, a cost effective system can be obtained. In this project, ECN developed a general floating wind turbine control strategy and applied this in a case study to the GustoMSC Tri-Floater and the OC3Hywind spar, both equipped with the NREL 5MW RWT. The designed controller ensures stable operation, while maintaining proper speed and power regulation. The motions of the floating support are reduced and substantial load reduction has been achieved.

  10. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  11. Electrically floating, near vertical incidence, skywave antenna

    DOEpatents

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  12. A Spinel Oxynitride with Visible-Light Photocatalytic Activity

    SciTech Connect

    Boppana, V.; Doren, D; Lobo, R

    2010-01-01

    Spinel zinc gallium oxynitride photocatalysts are prepared by the sol-gel method, at 550 C. In these materials, of base composition ZnGa{sub 2}O{sub 4} (octahedral Ga), reaction with ammonia leads to ZnGa{sub 2}O{sub x}N{sub y}, with a dramatic reduction of the bandgap to 2.7 eV, with just 1.3% N and no loss of Zn. At 850 C this phase is converted into wurzite (tetrahedral Ga). The novel oxynitrides also show visible-light photocatalytic activity towards the degradation of methylene blue.

  13. Light Activated Serotonin for Exploring Its Action in Biological Systems

    PubMed Central

    Rea, Adam C.; Vandenberg, Laura N.; Ball, Rebecca E.; Snouffer, Ashley A.; Hudson, Alicia G.; Zhu, Yue; McLain, Duncan E.; Johnston, Lindsey L.; Lauderdale, James D.; Levin, Michael; Dore, Timothy M.

    2013-01-01

    Summary Serotonin (5-HT) is a neuromodulator involved in regulating mood, appetite, memory, learning, pain, and establishment of left-right (LR) asymmetry in embryonic development. To explore the role of 5-HT in a variety of physiological contexts, we have created two forms of “caged” 5-HT, BHQ-O-5HT and BHQ-N-5HT. When exposed to 365- or 740-nm light, BHQ-O-5HT releases 5-HT through 1- or 2-photon excitation, respectively. BHQ-O-5HT mediated changes in neural activity in cultured primary sensory neurons from mouse and the trigeminal ganglion and optic tectum of intact zebrafish larvae in the form of high amplitude spiking in response to light. In Xenopus laevis embryos, 5-HT released from BHQ-O-5HT upon exposure to light increased the occurrence of LR patterning defects. Maximal rates of LR defects were observed when 5-HT was released at stage 5 compared to stage 8. These experiments show the potential for BHQ-caged serotonins in studying 5-HT-regulated physiological processes. PMID:24333002

  14. Temperature rise during experimental light-activated bleaching.

    PubMed

    Klaric, Eva; Rakic, Mario; Sever, Ivan; Tarle, Zrinka

    2015-02-01

    The purpose of this study was to evaluate the surface and intrapulpal temperatures after treatments with different bleaching gels subjected to different types of light activation. A K-type thermocouple and infrared thermometer were used to measure the temperature increase during the 15- or 30-min treatment period. Light-emitting diode with a center wavelength of 405 nm (LED405), organic light-emitting diode (OLED), and femtosecond laser were tested and compared to ZOOM2. The tooth surface was treated with five bleaching agents and Vaseline which served as a control.The generalized estimating equation (GEE) model was applied for testing the differences in temperature increase. The ZOOM2 light source led to the largest increase in mean pulpal and tooth surface temperatures of 21.1 and 22.8 °C, followed by focused femtosecond laser which increased the pulpal and surface temperatures by up to 15.7 and 16.8 °C. Treatments with unfocused femtosecond laser, LED405, and OLED induced significantly lower mean temperature increases (p < 0.001 for each comparison with ZOOM2 and focused femtosecond laser), both in the pulp chamber (up to 2.7, 2.5, and 1.4 °C) and at the tooth surface (up to 3.2, 3.4, and 1.8 °C). Significant differences between pulp chamber and tooth surface measurements were obtained for all types of bleaching gel, during treatments with ZOOM2 (p < 0.001), LED405 (p < 0.001), and unfocused (p < 0.001) and focused femtosecond laser (p ≤ 0.002). Different bleaching agents or Vaseline can serve as an isolating layer. Focused femtosecond laser and ZOOM2 produced large temperature increases in the pulp chamber and at the tooth surface. Caution is advised when using these types of light activation, while LED405, OLED, and unfocused femtosecond laser could be safely used.

  15. Floating into Thin Air

    SciTech Connect

    Hazi, A U

    2007-02-06

    On May 18, 2005, a giant helium balloon carrying the High Energy Focusing Telescope (HEFT) sailed into the spring sky over the deserts of New Mexico. The spindly steel and aluminum gondola that houses the optics, detectors, and other components of the telescope floated for 25 hours after its launch from Fort Sumner, New Mexico. For 21 of those hours, the balloon was nearly 40 kilometers above Earth's surface--almost four times higher than the altitude routinely flown by commercial jet aircraft. In the upper reaches of Earth's atmosphere, HEFT searched the universe for x-ray sources from highly energetic objects such as binary stars, galaxy clusters, and supermassive black holes. Before landing in Arizona, the telescope observed and imaged a dozen scientific targets by capturing photons emitted from these objects in the high-energy (hard) x-ray range (above 10 kiloelectronvolts). Among these targets were the Crab synchrotron nebula, the black hole Cygnus X-1 (one of the brightest x-ray sources in the sky), and the blazar 3C454.3. The scientific data gathered from these targets are among the first focused hard x-ray images returned from high altitudes.

  16. Impact on floating membranes.

    PubMed

    Vandenberghe, Nicolas; Duchemin, Laurent

    2016-05-01

    When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the domain of absorption of impact energy. PMID:27300958

  17. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  18. Alternative chromophores for use in light-activated surgical adhesives

    NASA Astrophysics Data System (ADS)

    Byrd, Brian D.; Heintzelman, Douglas L.; McNally-Heintzelman, Karen M.

    2003-06-01

    A study was conducted to determine the feasibility of using alternative chromophores in light-activated surgical adhesives. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40, blue #1, and green food coloring consisting of yellow #5 and blue #1. The study consisted of three components. First, the absorption profiles of the five chromophores, both diluted in deionized water and bound to protein, were recorded with a UV-Vis-NIR spectrophotometer. Second, the effect of accumulated thermal dosages on the stability of the absorption profiles was investigated. Third, the stability of the absorption profiles of the chromophore solutions when exposed to ambient light for an extended period of time was investigated. The peak absorption wavelengths of ICG, MB, red #40, and blue #1, were found to be 780 nm, 665 nm, 500 nm, and 630 nm respectively. The green food coloring had two absorption peaks at 417 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of the ICG shifted to 805 nm when bound to protein. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperatures up to 100 degrees C. Negligible change in absorption with accumulated thermal dose was observed for any of the three food colorings investigated. Photobleaching was observed in both ICG and MB solutions with exposure to a white light source. An 88% decrease in absorption was seen in ICG deionized water solution after 7 days of exposure with a corresponding 33% decrease in absorption seen in the MB deionized water solution. A negligible drop in absorption was observed from exposure to ambient light for a 12-week period with the three food colorings investigated.

  19. Reverse floating first metatarsal and floating third metatarsal with Lisfranc fracture dislocation: an unusual injury.

    PubMed

    Singh, Arun Pal; Singh, Ajay Pal; Chadha, Manish

    2010-01-01

    A 25-year-old man complained of severe pain in the right foot after a traffic accident. There was a wound on the medial aspect of the foot extending over the length of the first metatarsal. There was no sign of vascular compromise and sensations were intact. Radiographs showed dislocation of the first tarsometatarsal (Lisfranc) and metatarsophalangeal joints with the head of the first metatarsal facing proximally and plantarward (reverse floating first metatarsal), a segmental fracture of the second metatarsal, fracture dislocation of the third metatarsal from the metatarsophalangeal and tarsometatarsal joints (floating third metatarsal), and fractures at the base of the fourth and fifth metatarsals and of cuneiforms. Open reduction and internal fixation were performed. The metatarsal head was buttonholed through the capsule and muscles and was released and reduced. The fractured second metatarsal was reduced and stabilized with a K-wire. The third floating metatarsal was aligned and fixed with a K-wire. A below-knee posterior plaster splint was applied for six weeks. Full weight bearing was started at 10 weeks. The patient returned to his activities with only minimal discomfort. This is the first reported case of plantar Lisfranc dislocation and reverse floating first metatarsal.

  20. Evaluation and floating enhancement of levodopa sustained release floating minitablets coated with insoluble acrylic polymer.

    PubMed

    Goole, J; Amighi, K; Vanderbist, F

    2008-08-01

    This article describes the in vitro evaluation and the enhancement of the floating properties of coated sustained release (SR) minitablets (MTs). The evaluated system consisted of a 3-mm drug-containing gas-generating core prepared by melt granulation and subsequent compression, which was then coated with a flexible polymeric membrane. Eudragit RL30D and acetyl triethylcitrate were used as a film former and a plasticizer, respectively. The coating level was fixed at 20% (wt/wt). The optimally coated floating MTs floated within 10 min and remained buoyant for more than 13 h, regardless of the pH of the test medium. By evaluating the dissolution profiles of levodopa at different pH, it was found that the release of levodopa was sustained for more than 12 h regardless of the pH, even if the coating did not cancel the effect of the pH-dependent solubility of the active drug. Finally, the robustness of the coated floating MTs was assessed by testing the drug release variability in function of the stirring conditions during dissolution tests. PMID:18618310

  1. Radium equivalent activity in the light of UNSCEAR report.

    PubMed

    Tufail, Muhammad

    2012-09-01

    Radium equivalent activity (Ra ( eq )) has been in practice for the last 40 years for the assessment of radiological hazard of radioactivity in environmental materials. The in-practice model for the calculation of the Ra ( eq ) has been critically reviewed in the light of the UNSCEAR 2000 report. Annual effective dose (E) values of (232)Th and (40)K were found to be not equal to that of (226)Ra derived from the activity concentrations of these radionuclides used in the expression for the Ra ( eq ). Therefore, a modified model has been proposed for the determination of the Ra ( eq ) for outdoor external exposure to gamma rays. The relation between the E and Ra ( eq ) has been explored. It is recommended that while describing the radiological hazard of the materials containing radioactivity, there should be no need to calculate the Ra ( eq ) if the E has already been determined or vice versa.

  2. Floating intake reduces pump damage

    SciTech Connect

    Kronig, A.

    1993-12-31

    The solution to a costly sand erosion problem at the Grande Dixence hydroelectric project in Switzerland turned out to be as simple as a floating pump. The 726-MW Grande Dixence project drains a 350-square-kilometer reach of the Zermatt and Herens valleys in the southwestern Swiss Alps. About half of the drainage area is covered by active glaciers. Because the glaciers in Zermatt Valley are so low in altitude, their water is collected in Z`mutt Reservoir at the base of the Matterhorn, then pumped up 500 meters for transport to the main Grande Disence Reservoir near Sion. The glacier water is heavily laden with sand. In spite of a gravel pass and a desilter, the 700,000-acubic-meter Z`mutt Reservoir receives large quantities of sand. The sand tends to remain in solution because of the low water temperatures (1 to 2 degrees Centigrade). In the original intake system, the sand would be sucked into the pump intakes, causing extensive erosion to the pump wheels and an expensive yearly program of repair. (Pump damage averaged 200,000 Swiss Francs ($284,000 U.S.) per year between 1980 and 1985.)

  3. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    PubMed Central

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-01-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields. PMID:26657168

  4. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems

    PubMed Central

    Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila

    2014-01-01

    The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X1) and L-HPC (X2) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms. PMID:26702261

  5. Polarization states of diffracted light. Changes accompanying fiber activation.

    PubMed Central

    Chen, J S; Baskin, R J; Baskin, R J; Burton, K; Shen, S; Yeh, Y

    1989-01-01

    Measurement of the state of optical polarization of light diffracted from single, skinned and intact fibers of anterior tibialis muscle from Rana pipiens revealed a dependence upon rigor, activation, and sarcomere length (SL) change. Changes in total birefringence, delta nT, and differential field ratio value, rT, were determined. In a relaxed, skinned fiber the total birefringence value, delta nT, decreases as sarcomere length is increased from 2.1 microns to approximately 2.8-3.0 microns. From there it increases significantly to a value of approximately 1.8 x 10(-3) at a sarcomere length of 3.6 microns. The differential field ratio, rT, also shows a biphasic response to increasing sarcomere length, first exhibiting a rapid decrease over shorter SL and leveling out after the SL is beyond 3.0 microns. In comparison, relaxed intact fibers change substantially less upon sarcomere length change, showing little change in birefringence and a small bi-phasic change in rT. Skinned fibers were activated using a solution that has the same ionic strength as the relaxing solution and allows repeatable, and sustained activation. A decrease in both delta nT and rT was observed upon fiber activation. The decrease in delta nT and rT was slightly larger at shorter sarcomere lengths than at longer lengths. Relaxed fibers placed in rigor showed changes in delta nT and rT similar to those observed in activated fibers. These results are consistent with the hypothesis that, after activation, a significant portion of the thick filament cross-bridges rotate towards the actin filament resulting in redistribution of the interfilament mass content. They are also consistent with an average orientation of crossbridges in the overlap region different from that in the nonoverlap region. PMID:2790140

  6. Polarization states of diffracted light. Changes accompanying fiber activation.

    PubMed

    Chen, J S; Baskin, R J; Baskin, R J; Burton, K; Shen, S; Yeh, Y

    1989-09-01

    Measurement of the state of optical polarization of light diffracted from single, skinned and intact fibers of anterior tibialis muscle from Rana pipiens revealed a dependence upon rigor, activation, and sarcomere length (SL) change. Changes in total birefringence, delta nT, and differential field ratio value, rT, were determined. In a relaxed, skinned fiber the total birefringence value, delta nT, decreases as sarcomere length is increased from 2.1 microns to approximately 2.8-3.0 microns. From there it increases significantly to a value of approximately 1.8 x 10(-3) at a sarcomere length of 3.6 microns. The differential field ratio, rT, also shows a biphasic response to increasing sarcomere length, first exhibiting a rapid decrease over shorter SL and leveling out after the SL is beyond 3.0 microns. In comparison, relaxed intact fibers change substantially less upon sarcomere length change, showing little change in birefringence and a small bi-phasic change in rT. Skinned fibers were activated using a solution that has the same ionic strength as the relaxing solution and allows repeatable, and sustained activation. A decrease in both delta nT and rT was observed upon fiber activation. The decrease in delta nT and rT was slightly larger at shorter sarcomere lengths than at longer lengths. Relaxed fibers placed in rigor showed changes in delta nT and rT similar to those observed in activated fibers. These results are consistent with the hypothesis that, after activation, a significant portion of the thick filament cross-bridges rotate towards the actin filament resulting in redistribution of the interfilament mass content. They are also consistent with an average orientation of crossbridges in the overlap region different from that in the nonoverlap region.

  7. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  8. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  9. 75 FR 52326 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's Light-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Information Collection Activities; Proposed Collection; Comment Request; EPA's Light-Duty In-Use Vehicle... owners of light-duty vehicles. Title: EPA's Light Duty In-Use Vehicle Testing Program (Renewal). ICR... has an ongoing program to evaluate the emission performance of in-use light-duty (passenger car...

  10. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  11. Some Activities with Polarized Light from a Laptop LCD Screen

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    2008-01-01

    The LCD screen of a laptop computer provides a broad, bright, and extended source of polarized light. A number of demonstrations on the properties of polarized light from a laptop computer screens are presented here.

  12. The dying of the light: crepuscular activity in Culicoides and impact on light trap efficacy at temperate latitudes.

    PubMed

    Meiswinkel, R; Elbers, A R W

    2016-03-01

    The light trap is the tool of choice for conducting large-scale Culicoides (Diptera: Ceratopogonidae) vector surveillance programmes. Its efficacy is in doubt, however. To assess this, hourly changes in Culicoides activity over the 24-h diel were determined comparatively by way of light trapping and aerial sweeping, and correlated against light intensity. In the Netherlands, sweeping around cattle at pasture revealed that, in early summer, Culicoides are active throughout the diel, and that their abundance peaks during the crepuscular period and falls to a low during the brightest hours of the day. By contrast, the light trap was able to accumulate Culicoides only at night (i.e. after illuminance levels had dropped to 0 lux and midge activity had begun to decline). Although Culicoides chiopterus and species of the Culicoides obsoletus complex were similarly abundant around livestock, they differed critically in their hours of peak activity, being largely diurnal and nocturnal, respectively. This polarity helps to explain why, routinely, the C. obsoletus complex dominates light trap collections and C. chiopterus does not. Inability to accumulate Culicoides at light intensity levels above 0 lux means that, at ever-higher latitudes, particularly beyond 45° N, the progressive northward lengthening of the twilight period will have an increasingly adverse impact upon the efficacy of the light trap as a vector surveillance tool. PMID:26555116

  13. Can water float on oil?

    PubMed

    Phan, Chi M; Allen, Benjamin; Peters, Luke B; Le, Thu N; Tade, Moses O

    2012-03-13

    The floatability of water on oil surface was studied. A numerical model was developed from the Young-Laplace equation on three interfaces (water/oil, water/air, and oil/air) to predict the theoretical equilibration conditions. The model was verified successfully with an oil/water system. The stability of the floating droplet depends on the combination of three interface tensions, oil density, and water droplet volume. For practical purposes, however, the equilibrium contact angle has to be greater than 5° so the water droplet can effectively float. This result has significant applications for biodegrading oil wastes. PMID:22352678

  14. Laser light triggered-activated carbon nanosystem for cancer therapy.

    PubMed

    Chu, Maoquan; Peng, Jinliang; Zhao, Jiajia; Liang, Shanlu; Shao, Yuxiang; Wu, Qiang

    2013-02-01

    Among carbon-based nanomaterials, activated carbon (AC) may be an ideal candidate as a carrier for tumor therapeutic agents. Here we found a new property of nanoscale activated carbon (NAC) with narrow size distribution, namely the rapid conversion of light to thermal energy both in vitro and in vivo. An aqueous suspension of 200 μL of NAC (1 mg/mL) exhibited a rapid temperature increase of more than 35 °C after irradiation for 20 min with a 655-nm laser; this was within the temperature range for effective tumor treatment. We demonstrated that lung cancer cells (H-1299) incubated with bamboo nano-AC (BNAC) were killed with high efficiency after laser irradiation. In addition, mouse tumors with sizes smaller than the laser spot that had been injected with BNAC disappeared after irradiation. For tumors larger than the laser spot area, the incorporation of the photosensitizer ZnPc obviously increased the tumor growth inhibition efficiency of BNAC. BNAC-ZnPc was found to exhibit a synergistic effect when photothermal and photodynamic therapies were administered in combination. These results indicated that NAC can be used for high efficiency cancer phototherapy.

  15. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  16. A laboratory study of floating lenticular anticyclones

    NASA Astrophysics Data System (ADS)

    Le Gal, Patrice; de La Rosa, Hector; Cros, Anne; Cruz-Gomez, Raúl; Le Bars, Michael

    2014-11-01

    Oceanic vortices play an important role in the redistribution of heat, salt and momentum in the oceans. Among these vortices, floating lenses or rings are often met in the meanders of warm currents. For instance the North Brazil Current rings are among the most intense and large anticyclonic vortices on Earth. In order to better describe these vortices, we propose here a laboratory study of these floating anticyclonic lenses. A blob of fresh water is slowly injected near the surface of a rotating layer of homogeneous salted water. Because of the opposite effects of rotation that tends to generate columnar structures and density stratification that spreads light water on the surface, the vortices take a finite size three dimensionnal typical shape. Visualization and PIV measurements of the shape, aspect ratios and vorticity profiles are compared to analytical predictions that use first a simple solid body rotation model and then a more realistic isolated Gaussian vorticity field inside the anticyclones. This work was carried out within the framework of a bilateral cooperation between CNRS (France) and CONACYT (Mexico).

  17. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  18. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  19. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION... External floating roof converted into an internal floating roof. The owner or operator who elects...

  20. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity1[OPEN

    PubMed Central

    Jeong, A-Reum; Lee, Si-Seok; Han, Yun-Jeong; Shin, Ah-Young; Baek, Ayoung; Ahn, Taeho; Kim, Min-Gon; Kim, Young Soon; Lee, Keun Woo; Nagatani, Akira

    2016-01-01

    Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation. PMID:27325667

  1. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Floating objects. 935.165 Section 935.165... REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or beach any boat, barge, or other floating object on Wake Island in any location or manner other than...

  2. Have Floating Rates Been a Success?

    ERIC Educational Resources Information Center

    Higham, David

    1983-01-01

    Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)

  3. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Floating objects. 935.165 Section 935.165... REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or beach any boat, barge, or other floating object on Wake Island in any location or manner other than...

  4. Designing seaplane hulls and floats

    NASA Technical Reports Server (NTRS)

    Benoit,

    1926-01-01

    Experimental data, such as the results of tank tests of models, render it possible to predict, at least in principle, as to how a hull or float of a given shape will comport itself. We will see further along, however, how uncertain these methods are and how they leave room for empiricism, which will reign for a long time yet in seaplane research bureaus.

  5. Advanced Light Source activity report 1996/97

    SciTech Connect

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  6. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  7. Organic nano-floating-gate transistor memory with metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Van Tho, Luu; Baeg, Kang-Jun; Noh, Yong-Young

    2016-04-01

    Organic non-volatile memory is advanced topics for various soft electronics applications as lightweight, low-cost, flexible, and printable solid-state data storage media. As a key building block, organic field-effect transistors (OFETs) with a nano-floating gate are widely used and promising structures to store digital information stably in a memory cell. Different types of nano-floating-gates and their various synthesis methods have been developed and applied to fabricate nanoparticle-based non-volatile memory devices. In this review, recent advances in the classes of nano-floating-gate OFET memory devices using metal nanoparticles as charge-trapping sites are briefly reviewed. Details of device fabrication, characterization, and operation mechanisms are reported based on recent research activities reported in the literature.

  8. Planet signatures in collisionally active debris discs: scattered light images

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.; Ertel, S.

    2012-11-01

    Context. Planet perturbations have been often invoked as a potential explanation for many spatial structures that have been imaged in debris discs. So far this issue has been mostly investigated with pure N-body numerical models, which neglect the crucial effect collisions within the disc can have on the disc's response to dynamical perturbations. Aims: We numerically investigate how the coupled effect of collisions and radiation pressure can affect the formation and survival of radial and azimutal structures in a disc perturbed by a planet. We consider two different set-ups: a planet embedded within an extended disc and a planet exterior to an inner debris ring. One important issue we want to address is under which conditions a planet's signature can be observable in a collisionally active disc. Methods: We use our DyCoSS code, which is designed to investigate the structure of perturbed debris discs at dynamical and collisional steady-state, and derive synthetic images of the system in scattered light. The planet's mass and orbit, as well as the disc's collisional activity (parameterized by its average vertical optical depth τ0) are explored as free parameters. Results: We find that collisions always significantly damp planet-induced spatial structures. For the case of an embedded planet, the planet's signature, mostly a density gap around its radial position, should remain detectable in head-on images if Mplanet ≥ MSaturn. If the system is seen edge-on, however, inferring the presence of the planet is much more difficult, as only weak asymmetries remain in a collisionally active disc, although some planet-induced signatures might be observable under very favourable conditions. For the case of an inner ring and an external planet, planetary perturbations cannot prevent collision-produced small fragments from populating the regions beyond the ring. The radial luminosity profile exterior to the ring is in most cases close to the one it should have in the absence

  9. Three floating metatarsals and a half-floating cuneiform.

    PubMed

    Madi, Sandesh; Vijayan, Sandeep; Naik, Monappa; Rao, Sharath

    2015-10-08

    Floating metatarsals are rare and complex injury patterns in the world of foot trauma. The injury is typically characterised by concomitant dislocations of the metatarsals from both articular ends ('bipolar dislocations'). Fascination arises from the fact that there have been only 15 cases reported in the English literature from 1964 to date. The first metatarsal has been more frequently reported than the lesser metatarsals. More than one floating metatarsal is also extremely uncommon. Inter-cuneiform diastasis is another rare entity seen in low velocity injuries and sports injuries; this condition is very difficult to diagnose clinically and radiologically. The occurrence of these two injury patterns in isolation is itself rare, making their combination even more unique.

  10. Will My Fossil Float?

    ERIC Educational Resources Information Center

    Riesser, Sharon; Airey, Linda

    1993-01-01

    Explains how young students can be introduced to fossils. Suggests books to read and science activities including "Fossils to Eat" where students make fossils from peanut butter, honey, and powdered milk. (PR)

  11. Light Bridge in a Developing Active Region. II. Numerical Simulation of Flux Emergence and Light Bridge Formation

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Cheung, Mark C. M.; Katsukawa, Yukio

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  12. Effects of light intensity on activity in four sympatric anuran tadpoles

    PubMed Central

    DING, Guo-Hua; LIN, Zhi-Hua; ZHAO, Li-Hua; FAN, Xiao-Li; WEI, Li

    2014-01-01

    Though light conditions are known to affect the development and anti-predation strategies of several aquatic species, relatively little is known about how different species react to light, or how light can affect these species during different points in their life-cycle. In this study, we used four sympatric anuran tadpoles (Bufo gargarizans, B. melanostictus, Pelophylax nigromaculatus and Microhyla fissipes) as animal system to examine species-specific activities of the underdoing different light intensity treatments, so as to better understand how they respond to light. We exposed four different species of tadpoles to 1660 and 14 lux light intensity treatments and then measured several parameters including development stage, body length and tail length, and as well as their basic activities. The results of this observation and analysis showed that the activities of tadpoles were significantly greater in B. gargarizans and B. melanostictus than in P. nigromaculatus and M. fissipes; and were also significantly greater during times of high light intensity as compared to during low light intensity. Moreover, the observed relationship between species and light intensity was significant. The activities of B. gargarizans and B. melanostictus tadpoles were greater in high light, while the activity of P. nigromaculatus tadpoles was greater in low light intensity, while M. fissipes tadpoles showed no differences in either low or high intensity light. Furthermore, the activities of B. gargarizans, B. melanostictus and M. fissipes tadpoles in terms of developmental stage, body size or tail length did not seem to differ with light intensity, but during early larval developmental period of P. nigromaculatus, the activity of tadpoles was negatively correlated with development stage, but irrelevant to either body size or tail length in different light intensities. These results lead us to conclude the observed activities of the four sympatric anuran tadpoles are closely

  13. Effects of light intensity on activity in four sympatric anuran tadpoles.

    PubMed

    Ding, Guo-Hua; Lin, Zhi-Hua; Zhao, Li-Hua; Fan, Xiao-Li; Wei, Li

    2014-07-01

    Though light conditions are known to affect the development and anti-predation strategies of several aquatic species, relatively little is known about how different species react to light, or how light can affect these species during different points in their life-cycle. In this study, we used four sympatric anuran tadpoles (Bufo gargarizans, B. melanostictus, Pelophylax nigromaculatus and Microhyla fissipes) as animal system to examine species-specific activities of the underdoing different light intensity treatments, so as to better understand how they respond to light. We exposed four different species of tadpoles to 1660 and 14 lux light intensity treatments and then measured several parameters including development stage, body length and tail length, and as well as their basic activities. The results of this observation and analysis showed that the activities of tadpoles were significantly greater in B. gargarizans and B. melanostictus than in P. nigromaculatus and M. fissipes; and were also significantly greater during times of high light intensity as compared to during low light intensity. Moreover, the observed relationship between species and light intensity was significant. The activities of B. gargarizans and B. melanostictus tadpoles were greater in high light, while the activity of P. nigromaculatus tadpoles was greater in low light intensity, while M. fissipes tadpoles showed no differences in either low or high intensity light. Furthermore, the activities of B. gargarizans, B. melanostictus and M. fissipes tadpoles in terms of developmental stage, body size or tail length did not seem to differ with light intensity, but during early larval developmental period of P. nigromaculatus, the activity of tadpoles was negatively correlated with development stage, but irrelevant to either body size or tail length in different light intensities. These results lead us to conclude the observed activities of the four sympatric anuran tadpoles are closely

  14. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR part 107 which relate to the facility. All plans and information must be submitted according to... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design and...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS...

  15. An electrically excited nanoscale light source with active angular control of the emitted light.

    PubMed

    Le Moal, Eric; Marguet, Sylvie; Rogez, Benoît; Mukherjee, Samik; Dos Santos, Philippe; Boer-Duchemin, Elizabeth; Comtet, Geneviève; Dujardin, Gérald

    2013-09-11

    We report on the angular distribution, polarization, and spectrum of the light emitted from an electrically controlled nanoscale light source. This nanosource of light arises from the local, low-energy, electrical excitation of localized surface plasmons (LSP) on individual gold nanoparticles using a scanning tunneling microscope (STM). The gold nanoparticles (NP) are chemically synthesized truncated bitetrahedrons. The emitted light is collected through the transparent substrate and the emission characteristics (angular distribution, polarization, and spectrum) are analyzed. These three observables are found to strongly depend on the lateral position of the STM tip with respect to the triangular upper face of the gold NP. In particular, the resulting light emission changes orientation when the electrical excitation via the STM tip is moved from the base to the vertex of the triangular face. On the basis of the comparison of the experimental observations with an analytical dipole model and finite-difference time-domain (FDTD) calculations, we show that this behavior is linked to the selective excitation of the out-of-plane and in-plane dipolar LSP modes of the NP. This selective excitation is achieved through the lateral position of the tip with respect to the symmetry center of the NP.

  16. Float zone experiments in space

    NASA Technical Reports Server (NTRS)

    Verhoeven, J. D.; Noack, M. A.; Gill, W. N.; Hau, C. C.

    1984-01-01

    The molten zone/freezing crystal interface system and all the mechanisms were examined. If Marangoni convection produces oscillatory flows in the float zone of semiconductor materials, such as silicon, then it is unlikely that superior quality crystals can be grown in space using this process. The major goals were: (1) to determine the conditions for the onset of Marangoni flows in molten tin, a model system for low Prandtl number molten semiconductor materials; (2) to determine whether the flows can be suppressed by a thin oxide layer; and (3) based on experimental and mathematical analysis, to predict whether oscillatory flows will occur in the float zone silicon geometry in space, and if so, could it be suppressed by thin oxide or nitride films. Techniques were developed to analyze molten tin surfaces in a UHV system in a disk float zone geometry to minimize buoyancy flows. The critical Marangoni number for onset of oscillatory flows was determined to be greater than 4300 on atomically clean molten tin surfaces.

  17. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  18. Light/dark modulation of enzyme activity in developing barley leaves

    SciTech Connect

    Sibley, M.H.; Anderson, L.E. )

    1989-12-01

    Light/dark modulation of the ribulose-5-phosphate kinase, NADP{sup +}-glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase activity was measured in the developing primary leaf of barley (Hordeum vulgare L.) seedlings. Ribulose-5-phosphate kinase and NADP{sup +}-glyceraldehyde-3-phosphate dehydrogenase were fully light activated even at the earliest developmental stage sampled. In contrast, light modulation of fructose-1,6-bisphosphatase exhibited a complex response to leaf developmental status. Light stimulation of fructose-1,6-bisphosphatase activity (measured at pH 8.0) increased progressively during leaf development. On the other hand, acid fructose-1,6-bisphosphatase activity (measured at pH 6.0) was inhibited by light, and this light inhibition was greater in the base of the leaf than in the tip of the leaf.

  19. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords

    NASA Astrophysics Data System (ADS)

    Hinojosa, Iván A.; Rivadeneira, Marcelo M.; Thiel, Martin

    2011-03-01

    Floating objects are suggested to be the principal vector for the transport and dispersal of marine invertebrates with direct development as well as catalysts for carbon and nutrient recycling in accumulation areas. The first step in identifying the ecological relevance of floating objects in a specific area is to identify their spatio-temporal distribution. We evaluated the composition, abundance, distribution, and temporal variability of floating objects along the continental coast of central-southern Chile (33-42°S) and the Patagonian fjords (42-50°S) using ship surveys conducted in austral winter (July/August) and spring (November) of the years 2002-2005 and 2008. Potential sources of floating items were identified with the aid of publicly available databases and scientific reports. We found three main types of floating objects, namely floating marine debris (mainly plastic objects and Styrofoam), wood (trunks and branches), and floating kelps ( Macrocystis pyrifera and Durvillaea antarctica). Floating marine debris were abundant along most of the examined transects, with markedly lower abundances toward the southern fjord areas. Floating marine debris abundances generally corresponded to the distribution of human activities, and were highest in the Interior Sea of Chiloé, where aquaculture activities are intense. Floating wood appeared sporadically in the study area, often close to the main rivers. In accordance with seasonal river run-off, wood was more abundant along the continental coast in winter (rainy season) and in the Patagonian fjords during the spring surveys (snow melt). Densities of the two floating kelp species were similar along the continental coast, without a clear seasonal pattern. M. pyrifera densities increased towards the south, peaking in the Patagonian fjords, where it was dominant over D. antarctica. Densities of M. pyrifera in the Patagonian fjords were highest in spring. Correlation analyses between the abundances of floating

  20. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  1. Stem cell activation by light guides plant organogenesis.

    PubMed

    Yoshida, Saiko; Mandel, Therese; Kuhlemeier, Cris

    2011-07-01

    Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.

  2. Sequential Folding using Light-activated Polystyrene Sheet

    PubMed Central

    Lee, Yonghee; Lee, Hyeok; Hwang, Taesoon; Lee, Jong-Gu; Cho, Maenghyo

    2015-01-01

    A pre-strained polystyrene (PS) polymer sheet is deformed when it approaches the glass transition state as a result of light absorption. By controlling the light absorption of the polymer sheet, non-contact sequential folding can be accomplished. Line patterns of different transparencies and shapes are used to control the light absorption. The line pattern shape is closely related to the folding angle and folding start time. The relation between the line pattern design and folding performance was evaluated experimentally to develop a technique for folding PS sheets. The results show that sequential folding of PS sheets can be accomplished by changing the degree of transparency of the line pattern. Using the technique developed in this study, self-folding origami structures with complicated shapes can be designed and manufactured. PMID:26559611

  3. How Active are Rural Children and Adolescents During PE Class? An Examination of Light Physical Activity

    PubMed Central

    Matthews-Ewald, Molly R.; Kelley, George A.; Moore, Lucas C.; Gurka, Matthew J.

    2015-01-01

    BACKGROUND Few studies have examined non-exercise activity thermogenesis (NEAT) or light physical activity among a group of rural youth, particularly during physical education (PE) class. The purpose of this study was to determine whether the percent of PE class time spent in NEAT is related to school level (elementary versus high school) in a group of rural youth. METHODS Accelerometer data from 357 students (192 elementary, 165 high school) were included in the analysis. Mixed model linear regression was performed to examine the effect of school level on the percent of PE class time spent in NEAT. Covariates included gender, PE teacher, and the duration of the PE class. RESULTS School level was a significant predictor of the percent of PE class time spent in NEAT. Specifically, elementary school students spent more of their PE class time in NEAT than high school students (p< .001). No other significant predictors were identified. CONCLUSIONS The results of this study suggest an association between lower levels of light (NEAT) physical activity among high school versus elementary school students during PE class. PMID:24902465

  4. Physiological relevant in vitro evaluation of polymer coats for gastroretentive floating tablets.

    PubMed

    Eisenächer, Friederike; Garbacz, Grzegorz; Mäder, Karsten

    2014-11-01

    Gastroretentive drug delivery systems are retained in the stomach for a sufficient time interval, releasing the drug in a controlled manner. According to literature, the floating principle is the most frequently used formulation approach for gastric retention. However, many publications lack information of the floating forces, the impact of different pH-values and almost no information exist concerning the resistance of the floating performance against physiological relevant stress. Therefore, we evaluated the performance of CO2-generating floating bilayer (drug and floating layer) tablets with respect to robustness, drug release profile, pH dependence and floating behaviour. Bilayer tablets were coated with a flexible and water permeable, but CO2-retaining polymer film of either polyvinyl acetate or ammonio-methacrylate copolymer type A. Metformin-HCl was used as a relevant model drug due to its dose-dependent and saturable absorption from the proximal part of the small intestine. To mimic physiological relevant mechanical stress conditions, recently developed dissolution stress tests with pulsed pressures were applied in addition to release studies according to the pharmacopeia. Bilayer tablets coated with polyvinyl acetate showed short floating lag times, reasonable floating strength values, floating durations of more than 24h in simulated gastric fluid and a robust and pH independent release of Metformin-HCl. Tablets coated with ammonio-methacrylate copolymer type A showed a higher permeability for the active ingredient combined with a decreased robustness of the inflated tablets. Both polymers can be used for balloon-like floating devices. The appropriate polymer has to be chosen dependent from the properties of the active ingredient and requested application of the delivery device. Furthermore, the dissolution stress test analysis is able to indicate possible safety issues of gastroretentive formulations as well as to characterise the robustness of

  5. Physiological relevant in vitro evaluation of polymer coats for gastroretentive floating tablets.

    PubMed

    Eisenächer, Friederike; Garbacz, Grzegorz; Mäder, Karsten

    2014-11-01

    Gastroretentive drug delivery systems are retained in the stomach for a sufficient time interval, releasing the drug in a controlled manner. According to literature, the floating principle is the most frequently used formulation approach for gastric retention. However, many publications lack information of the floating forces, the impact of different pH-values and almost no information exist concerning the resistance of the floating performance against physiological relevant stress. Therefore, we evaluated the performance of CO2-generating floating bilayer (drug and floating layer) tablets with respect to robustness, drug release profile, pH dependence and floating behaviour. Bilayer tablets were coated with a flexible and water permeable, but CO2-retaining polymer film of either polyvinyl acetate or ammonio-methacrylate copolymer type A. Metformin-HCl was used as a relevant model drug due to its dose-dependent and saturable absorption from the proximal part of the small intestine. To mimic physiological relevant mechanical stress conditions, recently developed dissolution stress tests with pulsed pressures were applied in addition to release studies according to the pharmacopeia. Bilayer tablets coated with polyvinyl acetate showed short floating lag times, reasonable floating strength values, floating durations of more than 24h in simulated gastric fluid and a robust and pH independent release of Metformin-HCl. Tablets coated with ammonio-methacrylate copolymer type A showed a higher permeability for the active ingredient combined with a decreased robustness of the inflated tablets. Both polymers can be used for balloon-like floating devices. The appropriate polymer has to be chosen dependent from the properties of the active ingredient and requested application of the delivery device. Furthermore, the dissolution stress test analysis is able to indicate possible safety issues of gastroretentive formulations as well as to characterise the robustness of

  6. Optoelectronic Chaos in a Simple Light Activated Feedback Circuit

    NASA Astrophysics Data System (ADS)

    Joiner, K. L.; Palmero, F.; Carretero-González, R.

    The nonlinear dynamics of an optoelectronic negative feedback switching circuit is studied. The circuit, composed of a bulb, a photoresistor, a thyristor and a linear resistor, corresponds to a nightlight device whose light is looped back into its light sensor. Periodic bifurcations and deterministic chaos are obtained by the feedback loop created when the thyristor switches on the bulb in the absence of light being detected by the photoresistor and the bulb light is then looped back into the nightlight to switch it off. The experimental signal is analyzed using tools of delay-embedding reconstruction that yield a reconstructed attractor with fractional dimension and positive Lyapunov exponent suggesting chaotic behavior for some parameter values. We construct a simple circuit model reproducing experimental results that qualitatively matches the different dynamical regimes of the experimental apparatus. In particular, we observe an order-chaos-order transition as the strength of the feedback is varied corresponding to varying the distance between the nightlight bulb and its photo-detector. A two-dimensional parameter diagram of the model reveals that the order-chaos-order transition is generic for this system.

  7. 14 CFR 27.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  8. 14 CFR 29.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure...

  9. The impact on seaplane floats during landing

    NASA Technical Reports Server (NTRS)

    Von Karman, TH

    1929-01-01

    In order to make a stress analysis of seaplane floats, and especially of the members connecting the floats with the fuselage, it is of great importance to determine the maximum pressure acting on the floats during landing. Here, the author gives a formula for maximum pressures during landing that permits one to apply experimental results to different bodies and different velocities. The author notes that the formula checks very well with experimental results.

  10. Tank Tests of Twin Seaplane Floats

    NASA Technical Reports Server (NTRS)

    Herrman, H; Kempf, G; Kloess, H

    1928-01-01

    The following report contains the most essential data for the hydrodynamic portion of the twin-float problem. The following points were successfully investigated: 1) difference between stationary and nonstationary flow; 2) effect of the shape of the step; 3) effect of distance between floats; 4) effect of nose-heavy and tail-heavy moments; 5) effect of the shape of floats; 6) maneuverability.

  11. Combinatorial Control of Light Induced Chromatin Remodeling and Gene Activation in Neurospora

    PubMed Central

    Sancar, Cigdem; Ha, Nati; Yilmaz, Rüstem; Tesorero, Rafael; Fisher, Tamas; Brunner, Michael; Sancar, Gencer

    2015-01-01

    Light is an important environmental cue that affects physiology and development of Neurospora crassa. The light-sensing transcription factor (TF) WCC, which consists of the GATA-family TFs WC1 and WC2, is required for light-dependent transcription. SUB1, another GATA-family TF, is not a photoreceptor but has also been implicated in light-inducible gene expression. To assess regulation and organization of the network of light-inducible genes, we analyzed the roles of WCC and SUB1 in light-induced transcription and nucleosome remodeling. We show that SUB1 co-regulates a fraction of light-inducible genes together with the WCC. WCC induces nucleosome eviction at its binding sites. Chromatin remodeling is facilitated by SUB1 but SUB1 cannot activate light-inducible genes in the absence of WCC. We identified FF7, a TF with a putative O-acetyl transferase domain, as an interaction partner of SUB1 and show their cooperation in regulation of a fraction of light-inducible and a much larger number of non light-inducible genes. Our data suggest that WCC acts as a general switch for light-induced chromatin remodeling and gene expression. SUB1 and FF7 synergistically determine the extent of light-induction of target genes in common with WCC but have in addition a role in transcription regulation beyond light-induced gene expression. PMID:25822411

  12. A Variable Light Domain Fluorogen Activating Protein Homodimerizes To Activate Dimethylindole Red

    SciTech Connect

    Senutovitch, Nina; Stanfield, Robyn L.; Bhattacharyya, Shantanu; Rule, Gordon S.; Wilson, Ian A.; Armitage, Bruce A.; Waggoner, Alan S.; Berget, Peter B.

    2012-07-11

    Novel fluorescent tools such as green fluorescent protein analogues and fluorogen activating proteins (FAPs) are useful in biological imaging for tracking protein dynamics in real time with a low fluorescence background. FAPs are single-chain variable fragments (scFvs) selected from a yeast surface display library that produce fluorescence upon binding a specific dye or fluorogen that is normally not fluorescent when present in solution. FAPs generally consist of human immunoglobulin variable heavy (V{sub H}) and variable light (V{sub L}) domains covalently attached via a glycine- and serine-rich linker. Previously, we determined that the yeast surface clone, V{sub H}-V{sub L} M8, could bind and activate the fluorogen dimethylindole red (DIR) but that the fluorogen activation properties were localized to the M8V{sub L} domain. We report here that both nuclear magnetic resonance and X-ray diffraction methods indicate the M8V{sub L} forms noncovalent, antiparallel homodimers that are the fluorogen activating species. The M8V{sub L} homodimers activate DIR by restriction of internal rotation of the bound dye. These structural results, together with directed evolution experiments with both V{sub H}-V{sub L} M8 and M8V{sub L}, led us to rationally design tandem, covalent homodimers of M8V{sub L} domains joined by a flexible linker that have a high affinity for DIR and good quantum yields.

  13. Surface tension supported floating of heavy objects: Why elongated bodies float better?

    PubMed

    Bormashenko, Edward

    2016-02-01

    Floating of bodies heavier than the supporting liquid is discussed. Floating of cylindrical, ellipsoidal bodies and rectangular plates possessing lateral dimensions smaller than the capillary length is treated. It is demonstrated that more elongated bodies of a fixed volume are better supported by capillary forces, due to the increase in the perimeter of the triple line. Thus, floating of metallic needles obtains reasonable explanation.

  14. The paradox of the floating candle that continues to burn

    NASA Astrophysics Data System (ADS)

    Theodorakis, Stavros; Aristidou, Charalambos

    2012-08-01

    What happens after lighting a paraffin candle that is barely floating in water and kept upright with the aid of an appropriately weighted nail attached to its bottom? Presumably, it should sink because the buoyant force will decrease more than the weight. Surprisingly, the candle will continue to burn, rising slowly above the surface of the water. The reason for this is that the flame forms a well around the wick filled with molten paraffin, while the water keeps the outer walls of the candle cool and unscathed. Thus, the buoyancy hardly changes while the weight is reduced through burning, resulting in a floating candle that will rise above water. We present a quantitative model that describes the formation of the well and verify it experimentally, examining first the case of a candle in the air and then the case of a candle immersed in water.

  15. Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer.

    PubMed

    Sugioka, Daisuke; Kameyama, Tatsuya; Kuwabata, Susumu; Yamamoto, Takahisa; Torimoto, Tsukasa

    2016-05-01

    A novel strategy to prepare a bimetallic Au-Pt particle film was developed through sequential sputter deposition of Au and Pt on a room temperature ionic liquid (RTIL). Au sputter deposition onto an RTIL containing hydroxyl-functionalized cations produced a monolayer of Au particles 4.2 nm in size on the liquid surface. Subsequent Pt sputtering onto the original Au particle monolayer floating on the RTIL enabled decoration of individual Au particles with Pt metals, resulting in the formation of a bimetallic Au-Pt particle monolayer with a Pt-enriched particle surface. The particle size slightly increased to 4.8 nm with Pt deposition for 120 min. The shell layer of a bimetallic particle was composed of Au-Pt alloy, the composition of which was tunable by controlling the Pt sputter deposition time. The electrochemical surface area (ECSA) was determined by cyclic voltammetry of bimetallic Au-Pt particle monolayers transferred onto HOPG electrodes by a horizontal liftoff method. The Pt surface coverage, determined by ECSAs of Au and Pt, increased from 0 to 56 mol % with elapse of the Pt sputter deposition time up to 120 min. Thus-obtained Au-Pt particle films exhibited electrocatalytic activity for methanol oxidation reaction (MOR) superior to the activities of pure Au or Pt particles. Volcano-type dependence was observed between the MOR activity and Pt surface coverage on the particles. Maximum activity was obtained for Au-Pt particles with a Pt coverage of 49 mol %, being ca. 120 times higher than that of pure Pt particles. This method enables direct decoration of metal particles with different noble metal atoms, providing a novel strategy to develop highly efficient multinary particle catalysts. PMID:27074631

  16. Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer.

    PubMed

    Sugioka, Daisuke; Kameyama, Tatsuya; Kuwabata, Susumu; Yamamoto, Takahisa; Torimoto, Tsukasa

    2016-05-01

    A novel strategy to prepare a bimetallic Au-Pt particle film was developed through sequential sputter deposition of Au and Pt on a room temperature ionic liquid (RTIL). Au sputter deposition onto an RTIL containing hydroxyl-functionalized cations produced a monolayer of Au particles 4.2 nm in size on the liquid surface. Subsequent Pt sputtering onto the original Au particle monolayer floating on the RTIL enabled decoration of individual Au particles with Pt metals, resulting in the formation of a bimetallic Au-Pt particle monolayer with a Pt-enriched particle surface. The particle size slightly increased to 4.8 nm with Pt deposition for 120 min. The shell layer of a bimetallic particle was composed of Au-Pt alloy, the composition of which was tunable by controlling the Pt sputter deposition time. The electrochemical surface area (ECSA) was determined by cyclic voltammetry of bimetallic Au-Pt particle monolayers transferred onto HOPG electrodes by a horizontal liftoff method. The Pt surface coverage, determined by ECSAs of Au and Pt, increased from 0 to 56 mol % with elapse of the Pt sputter deposition time up to 120 min. Thus-obtained Au-Pt particle films exhibited electrocatalytic activity for methanol oxidation reaction (MOR) superior to the activities of pure Au or Pt particles. Volcano-type dependence was observed between the MOR activity and Pt surface coverage on the particles. Maximum activity was obtained for Au-Pt particles with a Pt coverage of 49 mol %, being ca. 120 times higher than that of pure Pt particles. This method enables direct decoration of metal particles with different noble metal atoms, providing a novel strategy to develop highly efficient multinary particle catalysts.

  17. A horizontal parallax table-top floating image system with freeform optical film structure

    NASA Astrophysics Data System (ADS)

    Chou, Ping-Yen; Huang, Yi-Pai; Liao, Chien-Chung; Chang, Chuan-Chung; Chuang, Fu-Ming Fleming; Tsai, Chao-Hsu

    2016-06-01

    In this paper, a new structure of horizontal parallax light field 3D floating image display system was proposed. The structure consists of pico-projectors, Fresnel lens, micro-lens array and sub-lens array with freeform shape. By the functions of optical components, each light field of projectors could be controlled as a fan ray, which has high directivity in horizontal and wide scattered angle in vertical. Furthermore, according to the reverse light tracing and integral image display technique, horizontal parallax floating 3D could be demonstrated in the system. Simulated results show that the proposed 3D display structure has a good image quality and the crosstalk is also limited below 22.9%. Compared with other 3D technologies, this structure could have more benefits, including displaying real high resolution floating image, unnecessary of physical hardware on the image plane, scalability of large size system, without the noise from spinning component, and so on.

  18. Mitogen-Activated Protein Kinase Kinase 3 Is Required for Regulation during Dark-Light Transition.

    PubMed

    Lee, Horim

    2015-07-01

    Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition. PMID:26082029

  19. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  20. Wave drag on floating bodies.

    PubMed

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Elie; Chevy, Frédéric

    2011-09-13

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186

  1. Wave drag on floating bodies

    PubMed Central

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Élie; Chevy, Frédéric

    2011-01-01

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary. PMID:21876186

  2. Floating patella associated with lymphoedema

    PubMed Central

    Vun, Shen Hwa; Bayam, Levent; Drampalos, Efstathios; Jesry, Mohammed; Fadel, George

    2015-01-01

    Ipsilateral injury of more than one component of the knee extensor apparatus is rare. It is mostly associated with previous trauma, surgery, immunosuppression therapy and systemic disease. We present the first documented case of a spontaneous bifocal disruption of the knee extensor apparatus (i.e. floating patella) associated with lymphoedema. This case highlights the importance of considering lymphoedema as another risk factor for rupture of the knee extensor apparatus. It also highlights the importance of assessing all components of the knee extensor apparatus in patients presenting with acute knee injuries. PMID:25802253

  3. Wave drag on floating bodies.

    PubMed

    Le Merrer, Marie; Clanet, Christophe; Quéré, David; Raphaël, Elie; Chevy, Frédéric

    2011-09-13

    We measure the deceleration of liquid nitrogen drops floating at the surface of a liquid bath. On water, the friction force is found to be about 10 to 100 times larger than on a solid substrate, which is shown to arise from wave resistance. We investigate the influence of the bath viscosity and show that the dissipation decreases as the viscosity is increased, owing to wave damping. The measured resistance is well predicted by a model imposing a vertical force (i.e., the drop weight) on a finite area, as long as the wake can be considered stationary.

  4. Biological activity of photoproducts of merocyanine 540 generated by laser-light activation

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Chanh, Tran C.; Pervaiz, Shazib; Harriman, Anthony; Matthews, James Lester

    1992-08-01

    Controlled exposure of photoactive compounds to light prior to their use in biological targets results in the formation of heretofore unknown photoproducts. This process of photoproduct generation, termed "preactivation," renders the photactive compound capable of systemic use without further dependence on light. Preactivation of mercyanin 540 (MC540) and several other photoactive compounds is achievable by exposure to CW and pulse laser radiation. The singlet oxygen generated at excited states attacks the dye molucule itself, resulting in the formation of biologically active photoproducts. For preactivated MC540 (photoproducts of MC540) generated by exposure to argon laser light (514 nm) and light from free-electron laser, we have demonstrated its effectiveness in selective killing of certain types of cultured tumor cells as well as human immunodeficiency virus type 1 (HIV-1) with very low, if any, damage to normal cells and tisues. For example, approximately 90% of the Burkitt's lymphoma Daudi cells and HL-60 leukemic cells are killed by preactivated MC540 at a concentration of 120 μg/ml. A two-hour treatment of cultured cells with buthionine sulfoxamine followed by the treatement with preactivated MC540 reults in 99.99% inhibition of clonogenic tumor stem cell growth. We also have demonstrated that preactivated MC540 is very effective in killing cell-free and cell-associated HIV-1. It also is very effective in killing HIV-1 and simian immunodeficiency virus (SIV) in virus-infected blood in vitro as determined by reverse transcriptase, P24, P17, core antigen expression and synctium formation. Treatment of HIV-1 with preactivated MC540 renders the treated HIV-1 incapable of binding to CD4 target molecules on T cells as determined by immunofluorescence and radioimmunoprecipitation assays. In vivo toxicology studies show that preactivated MC540 is very well tolerated and does not produce any signs of adverse reaction at the therapeutic doses, as determined by

  5. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  6. Night-Time Light Data: A Good Proxy Measure for Economic Activity?

    PubMed

    Mellander, Charlotta; Lobo, José; Stolarick, Kevin; Matheson, Zara

    2015-01-01

    Much research has suggested that night-time light (NTL) can be used as a proxy for a number of variables, including urbanization, density, and economic growth. As governments around the world either collect census data infrequently or are scaling back the amount of detail collected, alternate sources of population and economic information like NTL are being considered. But, just how close is the statistical relationship between NTL and economic activity at a fine-grained geographical level? This paper uses a combination of correlation analysis and geographically weighted regressions in order to examine if light can function as a proxy for economic activities at a finer level. We use a fine-grained geo-coded residential and industrial full sample micro-data set for Sweden, and match it with both radiance and saturated light emissions. We find that the correlation between NTL and economic activity is strong enough to make it a relatively good proxy for population and establishment density, but the correlation is weaker in relation to wages. In general, we find a stronger relation between light and density values, than with light and total values. We also find a closer connection between radiance light and economic activity, than with saturated light. Further, we find the link between light and economic activity, especially estimated by wages, to be slightly overestimated in large urban areas and underestimated in rural areas.

  7. Night-Time Light Data: A Good Proxy Measure for Economic Activity?

    PubMed Central

    Mellander, Charlotta; Lobo, José; Stolarick, Kevin; Matheson, Zara

    2015-01-01

    Much research has suggested that night-time light (NTL) can be used as a proxy for a number of variables, including urbanization, density, and economic growth. As governments around the world either collect census data infrequently or are scaling back the amount of detail collected, alternate sources of population and economic information like NTL are being considered. But, just how close is the statistical relationship between NTL and economic activity at a fine-grained geographical level? This paper uses a combination of correlation analysis and geographically weighted regressions in order to examine if light can function as a proxy for economic activities at a finer level. We use a fine-grained geo-coded residential and industrial full sample micro-data set for Sweden, and match it with both radiance and saturated light emissions. We find that the correlation between NTL and economic activity is strong enough to make it a relatively good proxy for population and establishment density, but the correlation is weaker in relation to wages. In general, we find a stronger relation between light and density values, than with light and total values. We also find a closer connection between radiance light and economic activity, than with saturated light. Further, we find the link between light and economic activity, especially estimated by wages, to be slightly overestimated in large urban areas and underestimated in rural areas. PMID:26496428

  8. Floating liquid bridge charge dynamics

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  9. Remote control of molecular motors using light-activated gearshifting

    NASA Astrophysics Data System (ADS)

    Bryant, Zev

    2013-03-01

    Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.

  10. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    SciTech Connect

    Han, Jinhua; Wang, Wei Ying, Jun; Xie, Wenfa

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  11. Future float zone development in industry

    NASA Technical Reports Server (NTRS)

    Sandfort, R. M.

    1980-01-01

    The present industrial requirements for float zone silicon are summarized. Developments desired by the industry in the future are reported. The five most significant problems faced today by the float zone crystal growth method in industry are discussed. They are economic, large diameter, resistivity uniformity, control of carbon, and swirl defects.

  12. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  13. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  14. 32 CFR 935.165 - Floating objects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Floating objects. 935.165 Section 935.165 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Public Safety § 935.165 Floating objects. No person may anchor, moor, or...

  15. Towards sensible floating-point arithmetic

    SciTech Connect

    Cody, W.J.

    1980-01-01

    Efforts to promote the development of high-quality transportable numerical software show that few, if any, of the floating-point arithmetic systems in existing computers are completely satisfactory for serious numerical computation. Examination of the defects in these systems leads to specifications for a sensible floating-point system from a numerical analyst's viewpoint. 1 table.

  16. Vertical pump with free floating check valve

    DOEpatents

    Lindsay, Malcolm

    1980-01-01

    A vertical pump with a bottom discharge having a free floating check valve isposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions.

  17. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  18. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem

    PubMed Central

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-01-01

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. DOI: http://dx.doi.org/10.7554/eLife.17023.001 PMID:27400267

  19. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem.

    PubMed

    Pfeiffer, Anne; Janocha, Denis; Dong, Yihan; Medzihradszky, Anna; Schöne, Stefanie; Daum, Gabor; Suzaki, Takuya; Forner, Joachim; Langenecker, Tobias; Rempel, Eugen; Schmid, Markus; Wirtz, Markus; Hell, Rüdiger; Lohmann, Jan U

    2016-01-01

    A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. PMID:27400267

  20. Light-Activated Rapid-Response Polyvinylidene-Fluoride-Based Flexible Films.

    PubMed

    Tai, Yanlong; Lubineau, Gilles; Yang, Zhenguo

    2016-06-01

    The design strategy and mechanical response mechanism of light-activated, rapid-response, flexible films are presented. Practical applications as a microrobot and a smart spring are demonstrated. PMID:27061392

  1. Young Scientists Explore Light & Color. Book 12--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of light and color. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  2. Multiple conductance states of the light-activated channel of Limulus ventral photoreceptors. Alteration of conductance state during light

    PubMed Central

    1991-01-01

    The properties of light-dependent channels in Limulus ventral photoreceptors have been studied in cell-attached patches. Two sizes of single-channel events are seen during illumination. Previous work has characterized the large (40 pS) events; the goal of the current work was to characterize the small (15 pS) events and determine their relationship to the large events. The small events are activated by light rather than as a secondary result of the change in membrane voltage during light. The mean open time of the small events is 1.34 +/- 0.49 ms (mean +/- SD, n = 15), approximately 50% of that of the large events. The large and small events have the same reversal potential and a similar dependence of open-state probability on voltage. Evidence that these events are due to different conductance states of the same channel comes from analysis of relatively infrequent events showing a direct transition between the 15 and 40-pS levels. Furthermore, large and small events do not superpose, even at positive voltages when the probability of being open is very high, as would be predicted if the two-sized events were due to independent channels. Expression of the different conductance states is not random; during steady illumination there are alternating periods of several hundred milliseconds in which there are consecutive, sequential large events followed by periods in which there are consecutive, sequential small events. At early times during the response to a step of light, the large conductance state is preferentially expressed. At later times, there is an increase in the relative contribution of the low conductance state. These findings indicate that there is a process that changes the preferred conductance state of the channel. This alteration has functional importance in the process of light adaptation. PMID:1875187

  3. Comparisons of three practical field devices used to measure personal light exposures and activity levels

    PubMed Central

    Figueiro, M G; Hamner, R; Bierman, A; Rea, M S

    2012-01-01

    This paper documents the spectral and spatial performance characteristics of two new versions of the Daysimeter, devices developed and calibrated by the Lighting Research Center to measure and record personal circadian light exposure and activity levels, and compares them to those of the Actiwatch Spectrum (Philips Healthcare). Photometric errors from the Daysimeters and the Actiwatch Spectrum were also determined for various types of light sources. The Daysimeters had better photometric performance than the Actiwatch Spectrum. To assess differences associated with measuring light and activity levels at different locations on the body, older adults wore four Daysimeters and an Actiwatch Spectrum for five consecutive days. Wearing the Daysimeter or Actiwatch Spectrum on the wrist compromises accurate light measurements relative to locating a calibrated photosensor at the plane of the cornea. PMID:24443644

  4. An improved active imaging method for upgrading low-light-level image detection sensitivity

    NASA Astrophysics Data System (ADS)

    Tang, Hongying

    2013-09-01

    Active imaging is an essential tool for low-light-level imaging. However, it has some drawbacks, such as limited imaging range and lack of security. We optimize the imaging approach by casting a saw-tooth wave auxiliary light signal over the sensor. Here, the auxiliary signal is superposed with a low-light-level signal, which is too weak to be measured by the sensor. After acquiring a superimposed image set in one saw-tooth wave circle, low-light-level image estimation is achieved by implementing least-square algorithm during data processing. This improved method not only makes active imaging overcome the drawbacks mentioned above, but also provides a feasible way to improve the low-light-level image detection sensitivity.

  5. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  6. Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus

    PubMed Central

    Adidharma, Widya; Leach, Greg; Yan, Lily

    2012-01-01

    Seasonal affective disorder (SAD), a major depressive disorder recurring in the fall and winter, is caused by the reduction of light in the environment, and its depressive symptoms can be alleviated by bright light therapy. Both circadian and monoaminergic systems have been implicated in the etiology of SAD. However, the underlying neural pathways through which light regulates mood are not well understood. The present study utilized a diurnal rodent model, Arvicanthis niloticus, to explore the neural pathways mediating the effects of light on brain regions involved in mood regulation. Animals kept in constant darkness received light exposure in early subjective day, the time when light therapy is usually applied. The time course of neural activity following light exposure was assessed using Fos as a marker in the following brain regions/cells: the suprachiasmatic nucleus (SCN), orexin neurons in the perifornical-lateral hypothalamic area (PF-LHA) and the dorsal raphe nucleus (DRN). A light-induced increase in Fos expression was observed in orexin neurons and the DRN, but not in the SCN. As the DRN is densely innervated by orexinergic inputs, the involvement of orexinergic signaling in mediating the effects of light on the DRN was tested in the second experiment. The animals were injected with the selective orexin receptor type 1 (OXR1) antagonist SB-334867 prior to the light exposure. The treatment of SB-334867 significantly inhibited the Fos induction in the DRN. The results collectively point to the role of orexin neurons in mediating the effects of light on the mood-regulating monoaminergic areas, suggesting an orexinergic pathway that underlies light-dependent mood fluctuation and the beneficial effects of light therapy. PMID:22710065

  7. Evaluation of dentin permeability after light activated internal dental bleaching.

    PubMed

    Carrasco, Laise Daniela; Zanello Guerisoli, Danilo M; Pécora, Jesus Djalma; Fröner, Izabel Cristina

    2007-02-01

    The aim of this in vitro study was to assess quantitatively the dentin permeability of human teeth after intracoronal bleaching therapy with 35% hydrogen peroxide activated by LEDs, halogen lamp or using the walking bleach technique. Forty human maxillary central incisors had standard access cavities performed and the cervical thirds of the canals were prepared with Gates-Glidden drills up to a size 130. Roots were resected between the coronal and middle thirds and the apical portions were discarded. A glass ionomer, 2 mm thick cervical plug was placed inside the canal, at the cement-enamel junction level. Group I received 35% hydrogen peroxide gel activated by LEDs. Group II was submitted to 35% hydrogen peroxide gel activated by halogen lamp. Group III received 35% hydrogen peroxide gel and the walking bleach technique was followed. Group IV (control) received a dry cotton pellet inside the pulp chamber with temporary restoration. Dentinal permeability was quantified by copper ion penetration. Linear measurements were obtained by analysis of digital images under x 5 magnification. Mean values and SD for the experimental groups were: I, 7.1% (+/-3.2%); II, 8.4% (+/-3.0%); III, 9.1% (+/-3.0%); IV, 1.3% (+/-2.8%). One-way ANOVA was used to analyze the results. Results showed an increase of permeability values for groups I, II and III when compared to group IV (control); however, no statistical differences were found between the three tested bleaching techniques. It can be concluded that 35% hydrogen peroxide activated by LED, halogen lamp or used following the walking bleach technique produced similar increase in dentinal permeability. PMID:17227378

  8. Activating neurons by light in free-moving adult flies

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chin; Hsiao, Po-Yen; Chu, Li-An; Lin, Yen-Yin; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    In this presentation, we show our preliminary results which is related to neurons activation in vivo by laser. A laser scanning system was adopted to guide laser beam to an assigned fly and an assigned position. A 473-nm laser can be a heat punishment source to restrain a wild-type fly's moving area. Furthermore, neurons in optogenetics transgene flies can be triggered by the blue laser in this system.

  9. Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials.

    PubMed

    Ghosh, Indrajit; König, Burkhard

    2016-06-27

    Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light-color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light-color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible-light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl-halide bonds for C-H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst.

  10. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light.

    PubMed

    Li, Hao; Guo, Sijie; Li, Chuanxi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-05-13

    The phosphate functionalized carbon dots (PCDs) with high biocompatibility and low toxicity can be used as efficient additives for the construction of laccase/PCDs hybrids catalyst. A series of experiments indicated that the activity of laccase/PCDs was higher than that of free laccase (increased by 47.7%). When laccase/PCDs hybrids catalyst was irradiated with visible light (laccase/PCDs-Light), its activity was higher than that of laccase/PCDs hybrids without light irradiation (increased by 92.1%). In the present system, the T1 Cu in laccase was combined with the phosphate group on PCDs, which can increase binding capacity of laccase/PCDs hybrids and substrate. Further, the visible light irradiation increased the donating and accepting electronic capability of the laccase/PCDs hybrids, improving their catalytic activity.

  11. Light and Excess Manganese1

    PubMed Central

    González, Alonso; Steffen, Kenneth L.; Lynch, Jonathan P.

    1998-01-01

    The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype. PMID:9765534

  12. Daily activity and light exposure levels for five species of lemurs at the Duke Lemur Center.

    PubMed

    Rea, Mark S; Figueiro, Mariana G; Jones, Geoffrey E; Glander, Kenneth E

    2014-01-01

    Light is the primary synchronizer of all biological rhythms, yet little is known about the role of the 24-hour luminous environment on nonhuman primate circadian patterns, making it difficult to understand the photic niche of the ancestral primate. Here we present the first data on proximate light-dark exposure and activity-rest patterns in free-ranging nonhuman primates. Four individuals each of five species of lemurs at the Duke Lemur Center (Eulemur mongoz, Lemur catta, Propithecus coquereli, Varecia rubra, and Varecia variegata variegata) were fitted with a Daysimeter-D pendant that contained light and accelerometer sensors. Our results reveal common as well as species-specific light exposure and behavior patterns. As expected, all five species were more active between sunrise and sunset. All five species demonstrated an anticipatory increase in their pre-sunrise activity that peaked at sunrise with all but V. rubra showing a reduction within an hour. All five species reduced activity during mid-day. Four of the five stayed active after sunset, but P. coquereli began reducing their activity about 2 hours before sunset. Other subtle differences in the recorded light exposure and activity patterns suggest species-specific photic niches and behaviors. The eventual application of the Daysimeter-D in the wild may help to better understand the adaptive evolution of ancestral primates.

  13. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster

    PubMed Central

    Qiu, Shuang; Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation) on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior). In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS). Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS) flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification. PMID:27684063

  14. Effects of daytime light exposure on cognitive brain activity as measured by the ERP P300.

    PubMed

    Okamoto, Yosuke; Nakagawa, Seiji

    2015-01-01

    Exposure to light modulates not only human alertness but also cognitive functions. The present study examined the temporal dynamics of the effects of light exposure on cortical activity related to cognitive processes. Event-related potentials (ERPs) were measured while participants performed an auditory oddball task during exposure to short-, medium- or long-wavelength light or darkness. Experiments were conducted in the daytime. After a 10-min period of darkness, one of the three lights was presented for 28 min. In the control condition, darkness was maintained for the entire session. The ERP component observed approximately 300 ms after the onset of the target stimulus (P300) was analyzed. The amplitude of P300 was larger after 5-20 min of exposure to short-wavelength light than at equivalent time points in the darkness. No differences were observed in the amplitude of P300 between the medium- or long-wavelength light condition and darkness at any time point. These results suggest that the amount of attentional resource allocated to the oddball task was increased by daytime exposure to short-wavelength light, and that following approximately 5 min of exposure the impact of light on cortical activity related to cognitive processes was able to be detected.

  15. The Light Wavelength Affects the Ontogeny of Clock Gene Expression and Activity Rhythms in Zebrafish Larvae

    PubMed Central

    Di Rosa, Viviana; Frigato, Elena; López-Olmeda, José F.; Sánchez-Vázquez, Francisco J.; Bertolucci, Cristiano

    2015-01-01

    Light plays a key role in synchronizing rhythms and setting the phase of early development. However, to date, little is known about the impact of light wavelengths during the ontogeny of the molecular clock and the behavioural rhythmicity. The aim of this research was to determine the effect of light of different wavelengths (white, blue and red) on the onset of locomotor activity and clock gene (per1b, per2, clock1, bmal1 and dbp) expression rhythms. For this purpose, 4 groups of zebrafish embryo/larvae were raised from 0 to 7 days post-fertilization (dpf) under the following lighting conditions: three groups maintained under light:dark (LD) cycles with white (full visible spectrum, LDW), blue (LDB), or red light (LDR), and one group raised under constant darkness (DD). The results showed that lighting conditions influenced activity rhythms. Larvae were arrhythmic under DD, while under LD cycles they developed wavelength-dependent daily activity rhythms which appeared earlier under LDB (4 dpf) than under LDW or LDR (5 dpf). The results also revealed that development and lighting conditions influenced clock gene expression. While clock1 rhythmic expression appeared in all lighting conditions at 7 dpf, per1b, per2 and dbp showed daily variations already at 3 dpf. Curiously, bmal1 showed consistent rhythmic expression from embryonic stage (0 dpf). Summarizing, the data revealed that daily rhythms appeared earlier in the larvae reared under LDB than in those reared under LDW and LDR. These results emphasize the importance of lighting conditions and wavelengths during early development for the ontogeny of daily rhythms of gene expression and how these rhythms are reflected on the behavioural rhythmicity of zebrafish larvae. PMID:26147202

  16. The Light Wavelength Affects the Ontogeny of Clock Gene Expression and Activity Rhythms in Zebrafish Larvae.

    PubMed

    Di Rosa, Viviana; Frigato, Elena; López-Olmeda, José F; Sánchez-Vázquez, Francisco J; Bertolucci, Cristiano

    2015-01-01

    Light plays a key role in synchronizing rhythms and setting the phase of early development. However, to date, little is known about the impact of light wavelengths during the ontogeny of the molecular clock and the behavioural rhythmicity. The aim of this research was to determine the effect of light of different wavelengths (white, blue and red) on the onset of locomotor activity and clock gene (per1b, per2, clock1, bmal1 and dbp) expression rhythms. For this purpose, 4 groups of zebrafish embryo/larvae were raised from 0 to 7 days post-fertilization (dpf) under the following lighting conditions: three groups maintained under light:dark (LD) cycles with white (full visible spectrum, LDW), blue (LDB), or red light (LDR), and one group raised under constant darkness (DD). The results showed that lighting conditions influenced activity rhythms. Larvae were arrhythmic under DD, while under LD cycles they developed wavelength-dependent daily activity rhythms which appeared earlier under LDB (4 dpf) than under LDW or LDR (5 dpf). The results also revealed that development and lighting conditions influenced clock gene expression. While clock1 rhythmic expression appeared in all lighting conditions at 7 dpf, per1b, per2 and dbp showed daily variations already at 3 dpf. Curiously, bmal1 showed consistent rhythmic expression from embryonic stage (0 dpf). Summarizing, the data revealed that daily rhythms appeared earlier in the larvae reared under LDB than in those reared under LDW and LDR. These results emphasize the importance of lighting conditions and wavelengths during early development for the ontogeny of daily rhythms of gene expression and how these rhythms are reflected on the behavioural rhythmicity of zebrafish larvae.

  17. Floating point arithmetic in future supercomputers

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.

    1989-01-01

    Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.

  18. Evaluation of Light-Activated Provisional Resin Materials for Periodontal Soft Tissue Management

    PubMed Central

    Jun, Soo-Kyung; Lee, Hae-Hyoung

    2016-01-01

    The purpose of this study was to determine mechanical properties using a compressive test with cylinder specimen (h = 6 mm and ϕ = 4 mm) as well as cytotoxicity using elutes from disk specimen (ϕ = 10 mm and h = 2 mm) against human gingival fibroblasts and oral keratinocytes with light-activated provisional resin materials (Revotek LC and Luxatemp Solar) compared to chemically activated counterpart (Snap, Trim II, and Jet). Significantly increased compressive strength (210~280 MPa) was detected in light-activated products compared to chemically activated ones (20~65 MPa, P < 0.05) and similar compressive modulus was detected in both types (0.8~1.5 and 0.5~1.3 GPa). Simultaneously, the light-activated products showed less adverse effects on the periodontal soft tissue cells in any polymerization stage compared to the chemically activated products. Particularly, chemically activated products had significantly greater adverse effects during the “polymerizing” phase compared to those that were “already set” (P < 0.05), as shown in confocal microscopic images of live and dead cells. In conclusion, light-activated provisional resin materials have better mechanical properties as well as biocompatibility against two tested types of oral cells compared to the chemically activated counterpart, which are considered as more beneficial choice for periodontal soft tissue management. PMID:27672651

  19. Evaluation of Light-Activated Provisional Resin Materials for Periodontal Soft Tissue Management

    PubMed Central

    Jun, Soo-Kyung; Lee, Hae-Hyoung

    2016-01-01

    The purpose of this study was to determine mechanical properties using a compressive test with cylinder specimen (h = 6 mm and ϕ = 4 mm) as well as cytotoxicity using elutes from disk specimen (ϕ = 10 mm and h = 2 mm) against human gingival fibroblasts and oral keratinocytes with light-activated provisional resin materials (Revotek LC and Luxatemp Solar) compared to chemically activated counterpart (Snap, Trim II, and Jet). Significantly increased compressive strength (210~280 MPa) was detected in light-activated products compared to chemically activated ones (20~65 MPa, P < 0.05) and similar compressive modulus was detected in both types (0.8~1.5 and 0.5~1.3 GPa). Simultaneously, the light-activated products showed less adverse effects on the periodontal soft tissue cells in any polymerization stage compared to the chemically activated products. Particularly, chemically activated products had significantly greater adverse effects during the “polymerizing” phase compared to those that were “already set” (P < 0.05), as shown in confocal microscopic images of live and dead cells. In conclusion, light-activated provisional resin materials have better mechanical properties as well as biocompatibility against two tested types of oral cells compared to the chemically activated counterpart, which are considered as more beneficial choice for periodontal soft tissue management.

  20. 40 CFR 63.1043 - Standards-Separator floating roof.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The separator shall be equipped with a floating roof designed to meet the following specifications: (1) The floating roof shall be designed to float on the liquid surface during normal operations. (2) The floating roof shall be equipped with two continuous seals, one above the other, between the wall of...

  1. Program Converts VAX Floating-Point Data To UNIX

    NASA Technical Reports Server (NTRS)

    Alves, Marcos; Chapman, Bruce; Chu, Eugene

    1996-01-01

    VAX Floating Point to Host Floating Point Conversion (VAXFC) software converts non-ASCII files to unformatted floating-point representation of UNIX machine. This is done by reading bytes bit by bit, converting them to floating-point numbers, then writing results to another file. Useful when data files created by VAX computer must be used on other machines. Written in C language.

  2. 14 CFR 23.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521....

  3. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  4. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  5. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  6. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  7. 14 CFR 27.751 - Main float buoyancy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Main float buoyancy. 27.751 Section 27.751... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.751 Main float buoyancy. (a) For main floats, the buoyancy necessary to support the maximum weight of the rotorcraft in...

  8. Light activated cell migration in synthetic extracellular matrices.

    PubMed

    Guo, Qiongyu; Wang, Xiaobo; Tibbitt, Mark W; Anseth, Kristi S; Montell, Denise J; Elisseeff, Jennifer H

    2012-11-01

    Synthetic extracellular matrices provide a framework in which cells can be exposed to defined physical and biological cues. However no method exists to manipulate single cells within these matrices. It is desirable to develop such methods in order to understand fundamental principles of cell migration and define conditions that support or inhibit cell movement within these matrices. Here, we present a strategy for manipulating individual mammalian stem cells in defined synthetic hydrogels through selective optical activation of Rac, which is an intracellular signaling protein that plays a key role in cell migration. Photoactivated cell migration in synthetic hydrogels depended on mechanical and biological cues in the biomaterial. Real-time hydrogel photodegradation was employed to create geometrically defined channels and spaces in which cells could be photoactivated to migrate. Cell migration speed was significantly higher in the photo-etched channels and cells could easily change direction of movement compared to the bulk hydrogels.

  9. Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light

    PubMed Central

    Smith, J. L.; Palermo, N. A.; Theobald, J. C.; Wells, J. D.

    2015-01-01

    Male Chrysomya megacephala (F.) blow fly compound eyes contain an unusual area of enlarged dorsal facets believed to allow for increased light capture. This region is absent in females and has been hypothesized to aid in mate tracking in low light conditions or at greater distances. Many traits used in the attraction and capture of mates are allometric, growing at different rates relative to body size. Previous reports concerning C. megacephala eye properties did not include measurements of body size, making the relationship between the specialized eye region and body size unclear. We examined different morphological features of the eye among individuals of varying sizes. We found total eye size scaled proportionately to body size, but the number of enlarged dorsal facets increased as body size increased. This demonstrated that larger males have an eye that is morphologically different than smaller males. On the basis of external morphology, we hypothesized that since larger males have larger and a greater number of dorsally enlarged facets, and these facets are believed to allow for increased light capture, larger males would be active in lower light levels than smaller males and females of equal size. In a laboratory setting, larger males were observed to become active earlier in the morning than smaller males, although they did not remain active later in the evening. However, females followed the same pattern at similar light levels suggesting that overall body size rather than specialized male eye morphology is responsible for increased activity under low light conditions. PMID:26411786

  10. Modification of enzymatic activity following laser irradiation through the light-induced electric field

    NASA Astrophysics Data System (ADS)

    Amat, Albert; Waynant, Ronald W.

    2006-02-01

    When cells are irradiated with visible and near-infrared wavelengths a variety of stimulatory effects are observed in their metabolism. To explain the observed light effects, researchers try to identify the chromophores that are involved in the processes. However, the mechanism of light absorption by a chromophore does not explain many of the experimental observations and therefore the primary mechanism for cellular light responses remains unproven. In addition to the ability of photons to produce electronic excitation in chromophores, light induces an alternating electric field in a medium that is able to interact with polar structures and produce dipole transitions. The effect of the light induced electric field in enzymatic molecules is analyzed in the present article, and it will be described how enzymatic activity is enhanced by this mechanism.

  11. Construction of Control System for Floating High Energy Capacitors

    NASA Astrophysics Data System (ADS)

    Tobin, Zachary; Bellan, Paul

    2011-10-01

    The circuitry for the Caltech magnetic reconnection experiment under construction requires two independent floating high energy capacitor power supplies to create linked plasma loops. This project requires the building of systems for controlling plasma generation, including timing circuitry to control the sequences of operation. Unlike with previous designs, timing functions are completely contained on a single printed circuit board. This allows the design to be easily replicated for use with the multiple independent capacitor involved. The timing circuitry first activates a high voltage power supply, then connects the power supply to the capacitor, and then disconnects the power supply so that the charged capacitor is floating. The circuitry then sends out a ``ready'' signal to a sequencer, which sequentially triggers the gas puff valves, bias magnetic field supply, and ignitron switch for the capacitor. The control circuit sequencing has been tested successfully with the capacitor discharging into a dummy load.

  12. Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light.

    PubMed

    Ren, Jia; Wang, Wenzhong; Shang, Meng; Sun, Songmei; Zhang, Ling; Chang, Jiang

    2010-11-15

    One-dimensional β-AgVO(3) nanobelts (SVN) were realized by a facile hydrothermal method. It indicates the anisotropic crystallographic characteristics through the characterization. With the additive PEG, the sample was restrained in the one-dimensional preferential orientation (SV-P) effectively. The photocatalytic activity studies reveal that the photocatalyst β-AgVO(3) exhibits excellent photocatalytic activity in the inactivation of Escherichia coli under fluorescent light. In addition, it is found that the morphology has effect on the photocatalytic activity. The β-AgVO(3) photocatalyst with one-dimensional structure has the potential and promising application in bacterial disinfection indoor using fluorescent light. PMID:20800352

  13. Light-activated ionic gelation of common biopolymers.

    PubMed

    Javvaji, Vishal; Baradwaj, Aditya G; Payne, Gregory F; Raghavan, Srinivasa R

    2011-10-18

    Biopolymers such as alginate and pectin are well known for their ability to undergo gelation upon addition of multivalent cations such as calcium (Ca(2+)). Here, we report a simple way to activate such ionic gelation by UV irradiation. Our approach involves combining an insoluble salt of the cation (e.g., calcium carbonate, CaCO(3)) with an aqueous solution of the polymer (e.g., alginate) along with a third component, a photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H(+) ions, which react with the CaCO(3) to generate free Ca(2+). In turn, the Ca(2+) ions cross-link the alginate chains into a physical network, thereby resulting in a hydrogel. Dynamic rheological experiments confirm the elastic character of the alginate gel, and the gel modulus is shown to be tunable via the irradiation time as well as the PAG and alginate concentrations. The above approach is easily extended to other biopolymers such as pectin. Using this approach, a photoresponse can be imparted to conventional biopolymers without the need for any chemical modification of the molecules. Photoresponsive alginate gels may be useful in creating biomaterials or tissue mimics. As a step toward potential applications, we demonstrate the ability to photopattern a thin film of alginate gel onto a glass substrate under mild conditions. PMID:21800827

  14. Light-activated ionic gelation of common biopolymers.

    PubMed

    Javvaji, Vishal; Baradwaj, Aditya G; Payne, Gregory F; Raghavan, Srinivasa R

    2011-10-18

    Biopolymers such as alginate and pectin are well known for their ability to undergo gelation upon addition of multivalent cations such as calcium (Ca(2+)). Here, we report a simple way to activate such ionic gelation by UV irradiation. Our approach involves combining an insoluble salt of the cation (e.g., calcium carbonate, CaCO(3)) with an aqueous solution of the polymer (e.g., alginate) along with a third component, a photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H(+) ions, which react with the CaCO(3) to generate free Ca(2+). In turn, the Ca(2+) ions cross-link the alginate chains into a physical network, thereby resulting in a hydrogel. Dynamic rheological experiments confirm the elastic character of the alginate gel, and the gel modulus is shown to be tunable via the irradiation time as well as the PAG and alginate concentrations. The above approach is easily extended to other biopolymers such as pectin. Using this approach, a photoresponse can be imparted to conventional biopolymers without the need for any chemical modification of the molecules. Photoresponsive alginate gels may be useful in creating biomaterials or tissue mimics. As a step toward potential applications, we demonstrate the ability to photopattern a thin film of alginate gel onto a glass substrate under mild conditions.

  15. Imaging Microglial Activation with TSPO PET: Lighting Up Neurologic Diseases?

    PubMed

    Vivash, Lucy; O'Brien, Terence J

    2016-02-01

    Neuroinflammation is implicated in the pathogenesis of a wide range of neurologic and neuropsychiatric diseases. For over 20 years, (11)C-PK11195 PET, which aims to image expression of the translocator protein (TSPO) on activated microglia in the brain, has been used in preclinical and clinical research to investigate neuroinflammation in vivo in patients with brain diseases. However, (11)C-PK11195 suffers from two major limitations: its low brain permeability and high nonspecific and plasma binding results in a low signal-to-noise ratio, and the use of (11)C restricts its use to PET research centers and hospitals with an on-site cyclotron. In recent years, there has been a great deal of work into the development of new TSPO-specific PET radiotracers. This work has focused on fluorinated radiotracers, which would enable wider use and improved signal-to-noise ratios. These radiotracers have been utilized in preclinical and clinical studies of several neurologic diseases with varying degrees of success. Unfortunately, the application of these second-generation TSPO radiotracers has revealed additional problems, including a polymorphism that affects TSPO binding. In this review, the developments in TSPO imaging are discussed, and current limitations and suggestions for future directions are explored.

  16. Preview of Mars Curiosity Parade Float

    NASA Video Gallery

    Jim Green, Director of the Science Mission Directorate Planetary Systems Division at NASA Headquarters, describes the replica of the Mars Curiosity Rover on the second NASA float in Monday's inaugu...

  17. Thumb polydactyly with a floating ulnar thumb.

    PubMed

    Hasegawa, Kenjiro; Namba, Yuzaburo; Kimata, Yoshihiro

    2013-01-01

    Thumb polydactyly is reported to be the most common congenital anomaly of the hand in Japan. The floating type is not particularly rare, accounting for 0.9 to 15% of all cases of thumb polydactyly. However, to the best of our knowledge, there has been only one case of thumb polydactyly with a floating ulnar thumb, reported by Onizuka. Herein, we report a case very similar to that reported by Onizuka. In our case, the vessels feeding the floating ulnar thumb branched from the superficial palmar arterial arch, and X-rays revealed triphalangism. In surgery, we not only reconstructed the morphology of the thumb, but also tried to preserve the sensation in the reconstructed thumb by transposing the digital nerve of the floating ulnar thumb to the radial thumb. In addition to thumb polydactyly, our case also showed hypoplasia of the thenar muscles.

  18. Floating patterns of metered dose inhalers.

    PubMed

    Wolf, B L; Cochran, K R

    1997-01-01

    As long as metered dose inhalers have existed, patients have sought a reliable method to determine if a given canister was still potent. Concerning beta agonists, the answer to this question may be lifesaving. Issues of compliance have made dating canisters or counting doses impractical. Likewise, previous claims of floating characteristics are unreliable. In tap water, we float-tested 13 commonly used inhalers three times each, observing variations as they were incrementally actuated, emptying their contents. One essential pattern was observed. Almost all prescription-size canisters sink when full; all float by the time one-third of their contents is gone. Orientation of prescription-size canisters changes in a distinct pattern especially near 90% depletion. Sample-size canisters showed some variance. Results suggest that the pharmaceutical industry should include individual floating characteristics as part of the package insert as they provide a reproducible means of gauging contents.

  19. Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration.

    PubMed

    Toychiev, Abduqodir H; Ivanova, Elena; Yee, Christopher W; Sagdullaev, Botir T

    2013-08-28

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors. PMID:23986234

  20. Light-activated hypericin induces cellular destruction of nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Xu, C. S.; Leung, A. W. N.

    2010-01-01

    Hypericin from Hypericum perforatum plants shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that light-activated hypericin induced the cellular destruction of nasopharyngeal carcinoma cells. The result showed that hypericin resulted in a drug- and light-dose dependent cytotoxicity in the CNE-2 cells, meaning the photocytotoxicity of hypericin depends on both of the drug concentration (0 - 2.5 μM) and light-doses (1 - 8 J/cm2). We further investigated the apoptosis of the CNE-2 cells 8 hours after photosensitization of hypericin using fluorescence microscopy with Hoechst 33258 staining. Flow cytometry with annexin V-FITC and PI staining was used to analyze early and late apoptosis. These data demonstrated that light-activated hypericin could significantly lead to the cellular destruction of the CNE-2 cells and induce early apoptosis as a prominent mode of cell death.

  1. Block of Gap Junctions Eliminates Aberrant Activity and Restores Light Responses during Retinal Degeneration

    PubMed Central

    Toychiev, Abduqodir H.; Ivanova, Elena; Yee, Christopher W.

    2013-01-01

    Retinal degeneration leads to progressive photoreceptor cell death, resulting in vision loss. Subsequently, inner retinal neurons develop aberrant synaptic activity, compounding visual impairment. In retinal ganglion cells, light responses driven by surviving photoreceptors are obscured by elevated levels of aberrant spiking activity. Here, we demonstrate in rd10 mice that targeting disruptive neuronal circuitry with a gap junction antagonist can significantly reduce excessive spiking. This treatment increases the sensitivity of the degenerated retina to light stimuli driven by residual photoreceptors. Additionally, this enhances signal transmission from inner retinal neurons to ganglion cells, potentially allowing the retinal network to preserve the fidelity of signals either from prosthetic electronic devices, or from cells optogenetically modified to transduce light. Thus, targeting maladaptive changes to the retina allows for treatments to use existing neuronal tissue to restore light sensitivity, and to augment existing strategies to replace lost photoreceptors. PMID:23986234

  2. Effect of light intensity on linear shrinkage of photo-activated composite resins during setting.

    PubMed

    Inoue, K; Howashi, G; Kanetou, T; Masumi, S; Ueno, O; Fujii, K

    2005-01-01

    The purpose of this investigation was to examine the effects of light intensity on linear shrinkage of photo-activated composite resins during setting. The materials used were four commercially available photo-activated composite resins. Three light-irradiation instruments were selected and prepared so as to obtain four light intensities (200, 480, 800 and 1600 mW cm(-2)). The linear shrinkage during setting was examined 10 min after light irradiation using a trial balance plastometer, and the specimen thickness was 2.0 mm for all materials. The depth of cure was examined according to the test method described in the International Organization for Standardization (ISO/FDIS 4049: 2000(E)). In measuring the linear shrinkage 60 s from the start of light irradiation for 10 s, there was a significant correlation (r = 0.89-0.94) between the amount of linear shrinkage and the light intensity: an increase in light intensity produced a greater linear shrinkage. Furthermore, there was a significant correlation (r = 0.92-1.0) between the linear shrinkage and the irradiation time: an increase in irradiation time resulted in a greater linear shrinkage. Values of the depth of cure ranged from 1.69 to 3.75 mm. PMID:15634297

  3. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.

    PubMed

    Schumacher, Charlotte Helene; Körschen, Heinz G; Nicol, Christopher; Gasser, Carlos; Seifert, Reinhard; Schwärzel, Martin; Möglich, Andreas

    2016-01-01

    As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism. PMID:26965118

  4. KillerOrange, a Genetically Encoded Photosensitizer Activated by Blue and Green Light

    PubMed Central

    Bozhanova, Nina G.; Sharonov, George V.; Staroverov, Dmitriy B.; Egorov, Evgeny S.; Ryabova, Anastasia V.; Solntsev, Kyril M.; Mishin, Alexander S.; Lukyanov, Konstantin A.

    2015-01-01

    Genetically encoded photosensitizers, proteins that produce reactive oxygen species when illuminated with visible light, are increasingly used as optogenetic tools. Their applications range from ablation of specific cell populations to precise optical inactivation of cellular proteins. Here, we report an orange mutant of red fluorescent protein KillerRed that becomes toxic when illuminated with blue or green light. This new protein, KillerOrange, carries a tryptophan-based chromophore that is novel for photosensitizers. We show that KillerOrange can be used simultaneously and independently from KillerRed in both bacterial and mammalian cells offering chromatic orthogonality for light-activated toxicity. PMID:26679300

  5. A light-inducible CRISPR/Cas9 system for control of endogenous gene activation

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2015-01-01

    Optogenetic systems enable precise spatial and temporal control of cell behavior. We engineered a light-activated CRISPR/Cas9 effector (LACE) system that induces transcription of endogenous genes in the presence of blue light. This was accomplished by fusing the light-inducible heterodimerizing proteins CRY2 and CIB1 to a transactivation domain and the catalytically inactive dCas9, respectively. The versatile LACE system can be easily directed to new DNA sequences for the dynamic regulation of endogenous genes. PMID:25664691

  6. Archimedes' floating bodies on a spherical Earth

    NASA Astrophysics Data System (ADS)

    Rorres, Chris

    2016-01-01

    Archimedes was the first to systematically find the centers of gravity of various solid bodies and to apply this concept in determining stable configurations of floating bodies. In this paper, we discuss an error in a proof developed by Archimedes that involves determining whether a uniform, spherical cap will float stably with its base horizontal in a liquid on a spherical Earth. We present a simpler, corrected proof and discuss aspects of his proof regarding a spherical cap that is not uniform.

  7. Multiple valued floating potentials of Langmuir probes

    NASA Technical Reports Server (NTRS)

    Nam, Cheol-Hee; Hershkowitz, N.; Cho, M. H.; Intrator, T.; Diebold, D.

    1988-01-01

    It is shown that Langmuir probes can have three different floating potentials in plasmas produced by a hot filament discharge in a multi-dipole device when the primary and secondary electron currents are comparable. The measured floating potential depends on the probe's initial condition - the most negative and the least negative potentials are found to be stable and the in-between value is found to be unstable. Results are compared to a simple theoretical model.

  8. Floating assembly of diatom Coscinodiscus sp. microshells.

    PubMed

    Wang, Yu; Pan, Junfeng; Cai, Jun; Zhang, Deyuan

    2012-03-30

    Diatoms have silica frustules with transparent and delicate micro/nano scale structures, two dimensional pore arrays, and large surface areas. Although, the diatom cells of Coscinodiscus sp. live underwater, we found that their valves can float on water and assemble together. Experiments show that the convex shape and the 40 nm sieve pores of the valves allow them to float on water, and that the buoyancy and the micro-range attractive forces cause the valves to assemble together at the highest point of water. As measured by AFM calibrated glass needles fixed in manipulator, the buoyancy force on a single floating valve may reach up to 10 μN in water. Turning the valves over, enlarging the sieve pores, reducing the surface tension of water, or vacuum pumping may cause the floating valves to sink. After the water has evaporated, the floating valves remained in their assembled state and formed a monolayer film. The bonded diatom monolayer may be valuable in studies on diatom based optical devices, biosensors, solar cells, and batteries, to better use the optical and adsorption properties of frustules. The floating assembly phenomenon can also be used as a self-assembly method for fabricating monolayer of circular plates. PMID:22387476

  9. Effects of diurnal bright/dim light intensity on circadian core temperature and activity rhythms in the Japanese macaque.

    PubMed

    Takasu, Nana; Nigi, Hideo; Tokura, Hiromi

    2002-12-01

    Circadian rhythms of core temperature and activity were studied using three Japanese macaques under influences of two different light intensities during the daytime. Nocturnal core temperature and activity onset time were lower and advanced, respectively, in bright as compared to dim light. These results suggest the possibility that diurnal bright light could influence the circadian organization.

  10. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.

    PubMed

    Pendergast, Julie S; Yamazaki, Shin

    2014-04-10

    The circadian rhythm of locomotor activity in mice is synchronized to environmental factors such as light and food availability. It is well-known that entrainment of the activity rhythm to the light-dark cycle is attained by the circadian pacemaker in the suprachiasmatic nucleus (SCN). Locomotor activity is also controlled by two extra-SCN oscillators; periodic food availability entrains the food-entrainable oscillator (FEO) and constant consumption of low-dose methamphetamine reveals the output of the methamphetamine-sensitive circadian oscillator (MASCO). In this study, we sought to investigate the relationship between the SCN, FEO, and MASCO by examining the combinatorial effects of light, food restriction, and/or methamphetamine on locomotor activity. To investigate coupling between the SCN and FEO, we tested whether food anticipatory activity, which is the output of the FEO, shifted coordinately with phase shifts of the light-dark cycle. We found that the phase of food anticipatory activity was phase-delayed or phase-advanced symmetrically with the respective shift of the light-dark cycle, suggesting that the FEO is strongly coupled to the SCN and the phase angle between the SCN and FEO is maintained during ad libitum feeding. To examine the effect of methamphetamine on the output of the FEO, we administered methamphetamine to mice undergoing restricted feeding and found that food-entrained activity was delayed by methamphetamine treatment. In addition, restricted feeding induced dissociation of the MASCO and SCN activity rhythms during short-term methamphetamine treatment, when these rhythms are typically integrated. In conclusion, our data suggest that the outputs of the SCN, FEO and MASCO collectively drive locomotor activity.

  11. IN VITRO STUDY OF THE PULP CHAMBER TEMPERATURE RISE DURING LIGHT-ACTIVATED BLEACHING

    PubMed Central

    Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina

    2008-01-01

    This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)-laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66°C). The LED unit produced the lowest temperature increase (0.29±0.13°C); but there was no significant difference between LED unit and LED-laser system (0.35±0.15°C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64°C), and LED-laser system the lowest (0.33±0.12°C); however, there was no difference between LED-laser system and LED unit (0.44±0.11°C). LED and LED-laser system did not differ

  12. Seeing the Moon: A Series of Inquiry Activities Using Light to Investigate the Moon

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Runyon, C.; Shipp, S.; Tremain, A. H.

    2007-12-01

    Seeing the Moon: Using Light to Investigate the Moon is a series of educational activity modules created for the Moon Mineralogy Mapper instrument aboard the Chandrayaan-1. In these modules, classroom students investigate light and the geologic history of the Moon. Through the hands-on inquiry based activities, 5th to 8th grade students experiment with light and color, collect and analyze authentic data from rock samples using an ALTA reflectance spectrometer, map the rock types of the Moon, and develop theories of the Moon's history. This poster will describe the activities and share the location of the modules. This poster will also share information on the availability of loaner kits which including rock samples and sets of the ALTA reflectance spectrometer.

  13. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  14. The Effect of Multiple Sequential Light Sources to Activate Aminolevulinic Acid in the Treatment of Actinic Keratoses: A Retrospective Study

    PubMed Central

    Goldman, Mitchel P.; Fabi, Sabrina G.; Guiha, Isabella

    2014-01-01

    There is a lack of research regarding the sequential use of multiple light sources for topical 5-aminolevulinic acid activation in photodynamic therapy for actinic keratosis. This study evaluated 5-aminolevulinic acid-photodynamic therapy for actinic keratosis using blue light combined with red light, pulsed dye laser, and/or intense pulsed light in a retrospective fashion. Field-directed 5-aminolevulinic acid-photodynamic therapy was performed with blue light only, blue light + pulsed dye laser, blue light + intense pulsed light, blue light + pulsed dye laser + intense pulsed light, or blue light + red light + pulsed dye laser + intense pulsed light for nonhyperkeratotic actinic keratoses of face, scalp, or upper trunk. Blue light + intense pulsed light + pulsed dye laser produced greater patient-reported improvement in actinic keratoses than blue light or blue light + intense pulsed light and greater subject-reported improvement in overall skin quality than blue light + intense pulsed light. The addition of red light led to no further benefit in either outcome measure. Photodynamic therapy with multiple, sequential laser and light sources led to greater patient-graded improvement in actinic keratoses than that with a single light source (blue light), without significant differences in post-treatment adverse events. However, the small, widely disparate number of patients between groups and follow-up times between patients, as well as retrospective assessments based on subjective patient recall, severely limit the significance of these findings. Nevertheless, the results raise interesting questions regarding the use of multiple light and laser sources for photodynamic therapy of actinic keratoses and warrant further research with a prospective, randomized, controlled study. PMID:25276272

  15. Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material.

    PubMed

    Xia, Qi; Batentschuk, Miroslaw; Osvet, Andres; Richter, Peter; Häder, Donat P; Schneider, Juergen; Brabec, Christoph J; Wondraczek, Lothar; Winnacker, Albrecht

    2013-11-01

    The spectral conversion of incident sunlight by appropriate photoluminescent materials has been a widely studied issue for improving the efficiency of photovoltaic solar energy harvesting. By using phosphors with suitable excitation/emission properties, also the light conditions for plants can be adjusted to match the absorption spectra of chlorophyll dyes, in this way increasing the photosynthetic activity of the plant. Here, we report on the application of this principle to a high plant, Spinacia oleracea. We employ a calcium strontium sulfide phosphor doped with divalent europium (Ca0.4Sr0.6S:Eu(2+), CSSE) on a backlight conversion foil in photosynthesis experiments. We show that this phosphor can be used to effectively convert green to red light, centering at a wavelength of ~650 nm which overlaps the absorption peaks of chlorophyll a/b pigments. A measurement system was developed to monitor the photosynthetic activity, expressed as the CO2 assimilation rate of spinach leaves under various controlled light conditions. Results show that under identical external light supply which is rich in green photons, the CO2 assimilation rate can be enhanced by more than 25% when the actinic light is modified by the CSSE conversion foil as compared to a purely reflecting reference foil. These results show that the phosphor could be potentially applied to modify the solar spectrum by converting the green photons into photosynthetically active red photons for improved photosynthetic activity.

  16. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    PubMed Central

    2009-01-01

    Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues. Results In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, α-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue. Conclusion These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host. PMID:19804627

  17. Visible light photocatalytic activity of TiO2 nanoparticles hybridized by conjugated derivative of polybutadiene

    NASA Astrophysics Data System (ADS)

    Liu, Guoquan; Liu, Longchen; Song, Jinran; Liang, Jiudi; Luo, Qingzhi; Wang, Desong

    2014-05-01

    A series of conjugated polymer/TiO2 (CP/TiO2) nanocomposites were prepared from TiO2 and commercial polybutadiene. The as-prepared CP/TiO2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman Spectroscopy, UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of CP/TiO2 nanocomposites were investigated by monitoring the degradation of methyl orange aqueous solution under visible light irradiation. The effects of preparation conditions (such as the mass ratio of PB to TiO2 in suspensions for PB/TiO2 preparation, heat-treatment temperature and time) of CP/TiO2 nanocomposites on their visible light photocatalytic activity were investigated. The results show that the CP/TiO2 nanocomposites have excellent visible light photocatalytic activity. As the content of conjugated polymer on the TiO2 surface, heat-treatment temperature and time increase, the visible light photocatalytic activity increases at first and then decreases. The visible light photocatalytic mechanism of the CP/TiO2 nanocomposites has been discussed.

  18. Compressive strength of dental composites photo-activated with different light tips

    NASA Astrophysics Data System (ADS)

    Galvão, M. R.; Caldas, S. G. F. R.; Calabrez-Filho, S.; Campos, E. A.; Bagnato, V. S.; Rastelli, A. N. S.; Andrade, M. F.

    2013-04-01

    The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.

  19. Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.

    2011-01-01

    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.

  20. Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes

    SciTech Connect

    Baer, K.M.; Saibil, H.R.

    1988-01-05

    Light stimulates the hydrolysis of exogenous, (/sup 3/H)inositol-labeled phosphatidylinositol bisphosphate (PtdInsP2) added to squid photoreceptor membranes, releasing inositol trisphosphate (InsP3). At free calcium levels of 0.05 microM or greater, hydrolysis of the labeled lipid is stimulated up to 4-fold by GTP and light together, but not separately. This activity is the biochemical counterpart of observations on intact retina showing that a rhodopsin-activated GTP-binding protein is involved in visual transduction in invertebrates, and that InsP3 release is correlated with visual excitation and adaptation. Using an in vitro assay, we investigated the calcium and GTP dependence of the phospholipase activity. At calcium concentrations between 0.1 and 0.5 microM, some hydrolysis occurs independently of GTP and light, with a light- and GTP-activated component superimposed. At 1 microM calcium there is no background activity, and hydrolysis absolutely requires both GTP and light. Ion exchange chromatography on Dowex 1 (formate form) of the water-soluble products released at 1 microM calcium reveals that the product is almost entirely InsP3. Invertebrate rhodopsin is homologous in sequence and function to vertebrate visual pigment, which modulates the concentration of cyclic GMP through the mediation of the GTP-binding protein transducin. While there is some evidence that light also modulates PtdInsP2 content in vertebrate photoreceptors, the case for its involvement in phototransduction is stronger for the invertebrate systems. The results reported here support the scheme of rhodopsin----GTP-binding protein----phospholipase C activation in invertebrate photoreceptors.

  1. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  2. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  3. Implementation of a novel floating-image display system having a background of multiview integral images

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Pyo; Oh, Yong-Seok; Shin, Dong-Hak; Kim, Eun-Soo

    2007-09-01

    A floating-image display technique, which can project two-dimensional images into a real space through a convex lens or a concave mirror, has been studied as a new approach for implementation of the next-generation three-dimensional (3D) display system. However, the conventional floating-image display system was implemented just by using active display devices such as LCD panel and it could provide only a real plane image in space to an observer comparing with other 3D display systems having different perspectives. For practical application of a floating-image display system to 3D display systems, multi-layered display structure might be required to present multi-depth images in space. In this paper, a novel floating-image display system composed of two plane images with different depth by use of a half mirror is proposed. One plane image of an object is provided with the conventional floating-image display system to present and the other plane image of a background is provided with the integral imaging technique. Therefore, the proposed display system can provide high-resolution floating images with background images having different perspectives to observers. To show the usefulness of the proposed system, some experiments are carried out and the results are presented as well.

  4. Blue Light Activates a Specific Protein Kinase in Higher Plants 1

    PubMed Central

    Reymond, Philippe; Short, Timothy W.; Briggs, Winslow R.

    1992-01-01

    Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [γ-32P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants. Images Figure 1 Figure 2 Figure 5 PMID:16653043

  5. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  6. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    PubMed

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-01

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  7. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels §...

  8. Electrically active light-element complexes in silicon crystals grown by cast method

    NASA Astrophysics Data System (ADS)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  9. Active-matrix organic light-emitting diode displays on flexible metal foil substrates

    NASA Astrophysics Data System (ADS)

    Chuang, Ta-Ko

    This dissertation presents the research efforts that deal with the development of polysilicon thin film transistors (TFTs) on stainless-steel-foil substrates, the implementation of high-resolution flexible active-matrix backplanes, and the integration of the flexible polysilicon TFT backplanes with polymer light-emitting diodes. This research investigated the preparation of the steel foil substrates, the fabrication of flexible polysilicon TFT backplanes and polymer light emitting diodes (PLEDs), and the encapsulation of the flexible Active Matrix Polymer Light Emitting Diode displays. The first successful integration of polysilicon TFT backplane with PLEDs onto light-weight, robust, and flexible stainless-steel-foil substrates is presented. A top-emitting, monochrome active-matrix polymer light-emitting diode (AM-PLED) display, having the VGA (640x480) format and a 230 dpi resolution, is demonstrated for the first time on flexible stainless-steel-foil substrates. This work validates the compatibility of the polysilicon technology for high-resolution flexible AM-PLED displays. Furthermore, this work shows that a variety of other large-area microelectronics could also be implemented onto flexible metal foils, benefiting by the metal oil dimensional stability and ability to withstand high process temperature. In conclusion, the polysilicon TFT technology combining with metal-foil substrates opens up a new road for flexible displays as well as large-area flexible electronic applications.

  10. Virtual revolving lantern: kaleidoscopic floating images by interactive tabletop hologram

    NASA Astrophysics Data System (ADS)

    Iwaze, Yuko; Sakamoto, Kunio

    2006-10-01

    The authors developed the revolving lantern using images of the holographic display. Our revolving lantern playbacks the virtual 3D images which are floating in the air. These spatial images have motions and interactive changes. The prototype imaging unit consists of the hologram, turn table and illumination system which can change the color of light so as to reconstruct various spatial images. In this paper, we describe the spatial imaging with a holographic technology and the reconstruction system which playbacks the rotating motion and various 3D images. A hologram playbacks 3D images. These reconstructions are generally static images. The rotating image like a revolving lantern can be produced when a hologram is spinning on the turn table. A hologram can record and reconstruct various images using the different wavelength of laser beam and illumination. When the illumination system changes the color of illumination light, a hologram reconstructs other images.

  11. Individual and combined suppressive effects of submerged and floating-leaved macrophytes on algal blooms.

    PubMed

    Seto, Mayumi; Takamura, Noriko; Iwasa, Yoh

    2013-02-21

    Shallow lakes and ponds are often characterised either by clear water with abundant submerged macrophytes or by turbid water with abundant phytoplankton. Blooms of toxic filamentous blue-green algae (cyanobacteria) often dominate the phytoplankton community in eutrophic lakes, which threatens ecological functions and biodiversity of freshwater ecosystems. We studied a simple lake model in order to evaluate individual and combined suppressive effects of rooted submerged and rooted floating-leaved macrophytes on algal blooms. Floating-leaved plants are superior competitors for light, whereas submerged plants absorb and reduce available phosphorus in a water column that rooted floating-leaved plants exploit to a lesser extent. We found that mixed vegetation that includes both submerged and floating-leaved plants is more resistant than vegetation comprised by a single plant type to algal invasion triggered by phosphorus loading. In addition, competitive exclusion of submerged plants by floating-leaved plants may promote an algal bloom. These predictions were confirmed by the decision tree analysis of field data from 35 irrigation ponds in Hyogo Prefecture, Japan. PMID:23219493

  12. Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting

    SciTech Connect

    Jan Talbot; Kailash Mishra

    2007-12-31

    This report provides a summary of research activities carried out at the University of California, San Diego and Central Research of OSRAM SYLVANIA in Beverly, MA partially supported by a research contract from US Department of Energy, DE-FC26-04NT422274. The main objective of this project was to develop III-V nitrides activated by rare earth ions, RE{sup 3+}, which could eliminate the need for phosphors in nitride-based solid state light sources. The main idea was to convert electron-hole pairs injected into the active layer in a LED die to white light directly through transitions within the energy levels of the 4f{sup n}-manifold of RE{sup 3+}. We focused on the following materials: Eu{sup 3+}(red), Tb{sup 3+}(green), Er{sup 3+}(green), Dy{sup 3+}(yellow) and Tm{sup 3+}(blue) in AlN, GaN and alloys of AlN and GaN. Our strategy was to explore candidate materials in powder form first, and then study their behavior in thin films. Thin films of these materials were to be deposited on sapphire substrates using pulsed laser deposition (PLD) and metal organic vapor phase epitaxy (MOVPE). The photo- and cathode-luminescence measurements of these materials were used to investigate their suitability for white light generation. The project proceeded along this route with minor modifications needed to produce better materials and to expedite our progress towards the final goal. The project made the following accomplishments: (1) red emission from Eu{sup 3+}, green from Tb{sup 3+}, yellow from Dy{sup 3+} and blue from Tm{sup 3+} in AlN powders; (2) red emission from Eu{sup 3+} and green emission from Tb{sup 3+} in GaN powder; (3) red emission from Eu{sup 3+} in alloys of GaN and AlN; (4) green emission from Tb{sup 3+} in GaN thin films by PLD; (5) red emission from Eu{sup 3+} and Tb{sup 3+} in GaN thin films deposited by MOVPE; (6) energy transfer from host to RE{sup 3+}; (7) energy transfer from Tb{sup 3+} to Eu{sup 3+} in AlN powders; (8) emission from AlN powder samples

  13. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    SciTech Connect

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme.

  14. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further

  15. Battery charging in float vs. cycling environments

    SciTech Connect

    COREY,GARTH P.

    2000-04-20

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  16. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  17. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  18. The Effects of Computer-Aided Concept Cartoons and Outdoor Science Activities on Light Pollution

    ERIC Educational Resources Information Center

    Aydin, Güliz

    2015-01-01

    The purpose of this study is to create an awareness of light pollution on seventh grade students via computer aided concept cartoon applications and outdoor science activities and to help them develop solutions; and to determine student opinions on the practices carried out. The study was carried out at a middle school in Mugla province of Aegean…

  19. Light and Heavy Heterosexual Activities of Young Canadian Adolescents: Normative Patterns and Differential Predictors

    ERIC Educational Resources Information Center

    Williams, Trish; Connolly, Jennifer; Cribbie, Robert

    2008-01-01

    The objectives of this research were to explore patterns of heterosexual activity in early adolescence and to examine the differential pathways to light and heavy heterosexuality. We utilized the National Longitudinal Survey of Canadian Children and Youth (NLSCY) in which heterosexual behaviors, as well as puberty, parenting processes, peer…

  20. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  1. Effect of sprouting and light cycle on antioxidant activity of Brassica oleracea varieties.

    PubMed

    Vale, Ana Paula; Cidade, Honorina; Pinto, Madalena; Oliveira, M Beatriz P P

    2014-12-15

    The antioxidant activity of sprouts from four Brassica oleracea varieties was evaluated using "in vitro" methods (total phenolic and flavonoid content; radical scavenging assays: DPPH, hydroxyl and peroxyl; and Ferrous Ion-chelating Ability Assay). Light cycles and sprouting influenced the potential antioxidant activity of sprouts and significant differences were observed between varieties. Generally, antioxidant activity decreased with sprouting and increased in the presence of light, whose discriminant effect was highly significant (P<0.001). Red cabbage sprouts produced under light cycles showed the highest antioxidant activity (57.11 μg mL(-1) Ferrous Ion-chelating Ability, 221.46 μg mL(-1) Hydroxyl radical scavenging, 279.02 μg mL(-1) Peroxyl radical scavenging). Among the traditional Portuguese brassica varieties, Penca cabbage sprouts produced under light presented higher antioxidant capacity, and also higher phenolic and flavonoid content (54.04 mg GAEg(-1) d.w. extract and 21.33 QEg(-1) d.w. extract, respectively) than Galega kale. The phenolic content of Brassica sprouts had a significant contribution to the antioxidant capacity.

  2. 75 FR 4774 - Takes of Marine Mammals Incidental to Specified Activities; St. George Reef Light Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... Specified Activities; St. George Reef Light Station Restoration and Maintenance on Northwest Seal Rock, in... INFORMATION: Background Section 101(a)(5)(D) of the MMPA (16 U.S.C. 1371 (a)(5)(D)) directs the Secretary of... shall be granted if NMFS finds that the taking will have a negligible impact on the species or...

  3. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  4. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  5. Optics: Light, Color, and Their Uses. An Educator's Guide With Activities In Science and Mathematics

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document includes information on the Chandra X-Ray Observatory, the Hubble Space Telescope, the Next Generation Space Telescope, Soft X-Ray Imager, and the Lightning Imaging System. Classroom activities from grades K-12 are included, focusing on light and color, using mirrors, lenses, prisms, and filters.

  6. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner.

  7. Out-of-Equilibrium effects in suspensions of light-activated artificial microwimmers

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie; Sacanna, Stefano; Pine, David; Chaikin, Paul; CSMR, NYU Team

    2011-11-01

    We present a new type of colloidal artificial swimmers propelled by the decomposition of hydrogen peroxide and activated by light. The effect is reversible and allows external control of the swimming/non swimming behavior of the particles. Moreover the bulk synthesis makes possible the study of very concentrated assemblies of monodisperse and identical microswimmers. These active agents are used to explore fancy effects of out-of-equilibrium systems, e.g. clustering, ``tugboat'' effect.

  8. Inhibition of Cathepsin Activity in a Cell-Based Assay by a Light-Activated Ruthenium Compound

    PubMed Central

    Respondek, Tomasz; Sharma, Rajgopal; Herroon, Mackenzie K.; Garner, Robert N.; Knoll, Jessica D.; Cueny, Eric; Turro, Claudia; Podgorski, Izabela; Kodanko, Jeremy J.

    2014-01-01

    Light-activated inhibition of cathepsin activity was demonstrated with in a cell-based assay. Inhibitors of cathepsin K, Cbz-Leu-NHCH2CN (2) and Cbz-Leu-Ser(OBn)-CN (3), were caged within the complexes cis-[Ru(bpy)2(2)2]Cl2 (4) and cis-[Ru(bpy)2(3)2](BF4)2 (5), where bpy = 2,2′-bipyridine, as 1:1 mixtures of Δ- and Λ stereoisomers. Complexes 4 and 5 were characterized by 1H NMR, IR and UV-vis spectroscopies and electrospray mass spectrometry. Photochemical experiments confirm that 4 releases two molecules of 2 upon exposure to visible light for 15 min, whereas release of 3 by 5 requires longer irradiation times. IC50 determinations against purified cathepsin K under light and dark conditions with 4 and 5 confirm that inhibition is enhanced from 35 to 88-fold, respectively, upon irradiation with visible light. No apparent toxicity was observed for 4 in the absence or presence of irradiation in bone marrow macrophage (BMM) or PC-3 cells, as judged by the MTT assay, at concentrations up to 10 μM. Compound 5 is well tolerated at lower concentrations (<1 μM) but does show growth inhibitory effects at higher concentrations. Confocal microscopy experiments show that 4 reduces intracellular cathepsin activity in osteoclasts with light activation. These results support further development of caged nitrile-based inhibitors as chemical tools for investigating spatial aspects of proteolysis within living systems. PMID:24729544

  9. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.

    PubMed

    Cambras, Trinitat; Díez-Noguera, Antoni

    2012-07-01

    Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after

  10. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus.

    PubMed

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-06-23

    Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates.

  11. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus

    PubMed Central

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-01-01

    Melanopsin, the photopigment of the “circadian” receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca2+ fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates. PMID:26056310

  12. Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Guo, Xinxin; Vitkin, I. Alex

    2008-02-01

    Recently, the use of polarized light for medical diagnosis and therapeutic management has seen increased interest due the noninvasive nature of light-tissue interactions. Examples of the use of polarized light include polarization imaging to enhance spatial resolution in turbid media, selective imaging of polarized light to increase surface contrast in tissue, polarization-sensitive optical coherence tomography (PS-OCT), and glucose monitoring. With these emerging applications there is a need for controllable phantoms to validate the emerging techniques; however, this has been done only to a limited degree primarily due to the difficulty in creating controllable phantoms. The primary effects of tissue on the polarization of light are scattering, linear birefringence, and optical activity (circular birefringence). An ideal phantom would exhibit all these effects simultaneously in a controllable fashion. We have achieved this through the use of polyacrylamide gels with polystyrene microspheres added as scattering particles, strain applied to the gels to create birefringence, and sucrose added for optical activity. The phantom methodology has been validated using our polarimetry system. Currently, the phantom system is being used to extend our work in birefringence mapping of the myocardium and to further our work in characterizing tissue.

  13. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus.

    PubMed

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-06-23

    Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates. PMID:26056310

  14. NSLS 2005 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2005).

    SciTech Connect

    MILLER, L.

    2006-05-01

    In 2005, the NSLS proved itself, once again, to be a center of scientific excellence. This remarkable facility, commissioned in the early 1980s, is still attracting some of the world's best researchers in almost every scientific field, who produce more than seven hundred scientific papers every year using the NSLS. The 'Science Highlights' and 'Feature Highlights' sections of this report are just a small sampling of the many, many impressive research projects conducted at the NSLS in 2005. For example, a user group synthesized and studied zinc-oxide nanowires, which have applications in many optical and electrical devices. Another user group studied how strontium and uranium are removed from high-level radioactive waste. And in another interesting study, users deciphered the basis for antibiotic resistance. However, as always, the success of these projects depends on the performance of the facility. Again this year, the rings were in top form--reliability was 96 percent for the x-ray ring and 99 percent for the VUV-IR ring. Additionally, to keep the NSLS as productive as possible and to continue to attract users, many beamline upgrade projects were completed this year. One of the highlights of these upgrades is the new mini-gap undulator installed at beamline X25. This insertion device is providing a much brighter x-ray source for the program at X25. In the always important area of safety, several noteworthy activities took place this year. In particular, NSLS staff made a major commitment to labeling and inspecting electrical equipment. And perhaps the best news is what didn't happen--there were no reportable occurrences related to environmental, safety, or health issues in 2005, and no injuries that resulted in restricted or lost time. We all owe thanks to the dedicated NSLS staff and users who have ensured that the NSLS remains a reliable, safe, up-to-date research facility. As 2005 came to an end, I stepped down as NSLS Chairman in order to focus my primary

  15. Floating zone melting of cadmium telluride

    NASA Technical Reports Server (NTRS)

    Chang, Wen-Ming; Regel, L. L.; Wilcox, W. R.

    1992-01-01

    To produce superior crystals of cadmium telluride, floating zone melting in space has been proposed. Techniques required for floating zone melting of cadmium telluride are being developed. We have successfully float-zoned cadmium telluride on earth using square rods. A resistance heater was constructed for forming the molten zone. Evaporation of the molten zone was controlled by adding excess cadmium to the growth ampoule combined with heating of the entire ampoule. An effective method to hold the feed rod was developed. Slow rotation of the growth ampoule was proven experimentally to be necessary to achieve a complete symmetric molten zone. Most of the resultant cylindrical rods were single crystals with twins. Still needed is a suitable automatic method to control the zone length. We tried a fiber optical technique to control the zone length, but experiments showed that application of this technique to automate zone length control is unlikely to be successful.

  16. In Brief: Profiling floats fully deployed

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-11-01

    The Argo network of sensor-bearing profiling floats, which allows scientists to observe the basic physical state of the world's oceans, reached its full deployment of 3000 units on 1 November, according to the Argo steering committee. With the full deployment of these floats-which measure ocean water temperature, salinity, and velocity-data from every ocean region are available with an average coverage of one sensor per 3 degrees of latitude and longitude. The floats drift on ocean currents for 10 days, descend to up to 2000 meters in depth, and return to the surface to beam results to passing satellites. ``The climate science objectives that drive the Argo array require that we observe the global oceans indefinitely, so achieving the global array is merely the beginning of the observation period,'' said Dean Roemmich, cochairman of the Argo program steering committee and a physical oceanographer at the Scripps Institution of Oceanography.

  17. Highly Active TiO2-Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration

    SciTech Connect

    Zhang, Qiao; Lima, Diana Q.; Chi, Miaofang; Yin, Yadong

    2011-01-01

    A sandwich-structured photocatalyst shows an excellent performance in degradation reactions of a number of organic compounds under UV, visible light, and direct sunlight (see picture). The catalyst was synthesized by a combination of nonmetal doping and plasmonic metal decoration of TiO2 nanocrystals, which improves visible-light activity and enhances light harvesting and charge separation, respectively.

  18. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect

    Leng Jinsong; Yu Kai; Lan Xin; Zhang Dawei; Liu Yanju

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  19. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  20. Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity.

    PubMed

    Panomsuwan, Gasidit; Watthanaphanit, Anyarat; Ishizaki, Takahiro; Saito, Nagahiro

    2015-06-01

    Black titania spheres (H-TiO2-x) were synthesized via a simple green method assisted by water plasma at a low temperature and atmospheric pressure. The in situ production of highly energetic hydroxyl and hydrogen species from water plasma are the prominent factors in the oxidation and hydrogenation reactions during the formation of H-TiO2-x, respectively. The visible-light photocatalytic activity toward the dye degradation of H-TiO2-x can be attributed to the synergistic effect of large-surface area, visible-light absorption and the existence of oxygen vacancies and Ti(3+) sites. PMID:25946395

  1. Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity.

    PubMed

    Panomsuwan, Gasidit; Watthanaphanit, Anyarat; Ishizaki, Takahiro; Saito, Nagahiro

    2015-06-01

    Black titania spheres (H-TiO2-x) were synthesized via a simple green method assisted by water plasma at a low temperature and atmospheric pressure. The in situ production of highly energetic hydroxyl and hydrogen species from water plasma are the prominent factors in the oxidation and hydrogenation reactions during the formation of H-TiO2-x, respectively. The visible-light photocatalytic activity toward the dye degradation of H-TiO2-x can be attributed to the synergistic effect of large-surface area, visible-light absorption and the existence of oxygen vacancies and Ti(3+) sites.

  2. Lightening up Light Therapy: Activation of Retrograde Signaling Pathway by Photobiomodulation

    PubMed Central

    Kim, Hong Pyo

    2014-01-01

    Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested. PMID:25489415

  3. Light is an active contributor to the vital effects of coral skeleton proxies

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, Anne; Reynaud, Stéphanie; Dissard, Delphine; Tisserand, Guillaume; Ferrier-Pagès, Christine

    2014-09-01

    Symbiotic colonies of the coral Acropora sp. were cultured in a factorial design of three temperatures (21, 25 and 28 °C) and two light intensities (200 and 400 μmol photon m-2 s-1), under constant conditions. A temperature of 25 °C and a light intensity of 200 μmol photon m-2 s-1 was the starting culture condition. Metabolic (photosynthesis, respiration, calcification and surface expansion rate) and geochemical measurements (δ18O, δ13C, Sr/Ca and Mg/Ca) were conducted on 6 colonies for each experimental condition. Metabolic measurements confirmed that respiration, photosynthesis, calcification and surface expansion rate responded to the combined effect of temperature and light. Under each light intensity, mean calcification rate was linearly correlated with mean photosynthetic activity. Geochemical measurements were also influenced by temperature and, to a lesser degree, by light. All geochemical proxies measured on 6 nubbins showed a wide scattering of values, regardless of the environmental condition. Compared to the other proxies, δ18O exhibited a different behavior. It was the only proxy exhibiting temperature tracer behavior. However, while mean values of Sr/Ca, Mg/Ca and δ13C were well correlated, the correlation between the later and mean δ18O differed with light level. This suggests that both skeleton deposition and temperature oxygen fractionation differs according to light intensity. Overall, the effect of light on geochemical values seems to compromise the use of proxy calibrations solely based on temperature influence. Under high light conditions, the great amplitude shown by individual net photosynthesis is directly proportional to the highly variable zooxanthellae density. As light is affecting all of the proxies, we thus assume that the strong geochemical variability observed could be explained by various algae densities, each nubbin responding according to its zooxanthellae amount. Accordingly, we suggest that each symbiosome (the

  4. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  5. Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability

    PubMed Central

    Vieira, Jacqueline; Jones, Alex R.; Danon, Antoine; Sakuma, Michiyo; Hoang, Nathalie; Robles, David; Tait, Shirley; Heyes, Derren J.; Picot, Marie; Yoshii, Taishi; Helfrich-Förster, Charlotte; Soubigou, Guillaume; Coppee, Jean-Yves; Klarsfeld, André; Rouyer, Francois; Scrutton, Nigel S.; Ahmad, Margaret

    2012-01-01

    Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism. PMID:22427812

  6. Synthesis of visible light-activated TiO 2 photocatalyst via surface organic modification

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Xu, Yao; Hou, Bo; Wu, Dong; Sun, Yuhan

    2007-05-01

    A visible light-activated TiO 2 photocatalyst was successfully synthesized by the surface organic modification to sol-gel-hydrothermal synthesized TiO 2. The surface hydroxyls of TiO 2 nanoparticles reacted with the active -NCO groups of tolylene diisocyanate (TDI) to form a surface complex that was confirmed by the FT-IR and XPS spectra. Due to the existence of surface complex, the absorption edge of as-prepared TDI-modified TiO 2 nanomaterial extended well into visible region. Compared with unmodified TiO 2 and Degussa P25, the TDI-modified TiO 2 photocatalysts showed higher activity for the photocatalytic degradation of methylene blue under visible light irradiation.

  7. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  8. Visible-Light-Induced Effects of Au Nanoparticle on Laccase Catalytic Activity.

    PubMed

    Guo, Sijie; Li, Hao; Liu, Juan; Yang, Yanmei; Kong, Weiqian; Qiao, Shi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-09-23

    A deep understanding of the interaction between the nanoparticle and enzyme is important for biocatalyst design. Here, we report the in situ synthesis of laccase-Au NP (laccase-Au) hybrids and its catalytic activity modulation by visible light. In the present hybrid system, the activity of laccase was significantly improved (increased by 91.2% vs free laccase) by Au NPs. With a short time visible light illumination (λ > 420 nm, within 3 min), the activity of laccase-Au hybrids decreased by 8.1% (vs laccase-Au hybrid without light), which can be restored to its initial one when the illumination is removed. However, after a long time illumination (λ > 420 nm, over 10 min), the catalytic activity of laccase-Au hybrids consecutively decreases and is not reversible even after removing the illumination. Our experiments also suggested that the local surface plasma resonance effect of Au NPs causes the structure change of laccase and local high temperature near the Au NPs. Those changes eventually affect the transportation of electrons in laccase, which further results in the declined activity of laccase.

  9. Effects of Geroprotectors on Age-Related Changes in Proteolytic Digestive Enzyme Activities at Different Lighting Conditions.

    PubMed

    Morozov, A V; Khizhkin, E A; Svechkina, E B; Vinogradova, I A; Ilyukha, V A; Anisimov, V N; Khavinson, V Kh

    2015-10-01

    We studied the effect of melatonin and epithalon on age-related changes in proteolytic digestive enzyme activity in the pancreas and gastric mucosa of rats kept under different lighting conditions. In rats kept under standard illumination, pepsin activity and the total proteolytic activity in the stomach and pancreas increased by the age of 12 months, but then decreased. Constant and natural lighting disturbed the age dynamics of proteolytic digestive enzyme activity. Administration of melatonin and epithalon to animals exposed to constant lighting restored age dynamics of pepsin activity and little affected total proteolytic activity.

  10. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  11. Floating plant can get uranium from seawater

    SciTech Connect

    Not Available

    1984-02-01

    A floating plant has been designed to extract uranium from seawater using solid adsorbents. Ore is removed from the adsorbent material by means of a solvent and concentrated in ion exchangers. Seawater is supplied to the adsorbent inside by wave energy and is based on the principle that waves will rush up a sloping plane that is partly submerged and fill a reservoir to a level higher than the still water level in the sea. The company projects that an offshore plant for recovering 600 tons of uranium/yr would comprise 22 floating concrete units, each measuring 430 x 75 meters.

  12. Hydrodynamic Tests of Models of Seaplane Floats

    NASA Technical Reports Server (NTRS)

    Eula, Antonio

    1935-01-01

    This report contains the results of tank tests carried out at free trim on seventeen hulls and floats of various types. The data as to the weight on water, trim, and relative resistance for each model are plotted nondimensionally and are referenced both to the total weight and to the weight on water. Despite the fact that the experiments were not made systematically, a study of the models and of the test data permits nevertheless some general deductions regarding the forms of floats and their resistance. One specific conclusion is that the best models have a maximum relative resistance not exceeding 20 percent of the total weight.

  13. Improvements in floating point addition/subtraction operations

    DOEpatents

    Farmwald, P.M.

    1984-02-24

    Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  14. Enhanced visible-light activity of titania via confinement inside carbon nanotubes.

    PubMed

    Chen, Wei; Fan, Zhongli; Zhang, Bei; Ma, Guijun; Takanabe, Kazuhiro; Zhang, Xixiang; Lai, Zhiping

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO(2) in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO(2) from the UV to the visible-light region. The CNT-confined TiO(2) exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO(2) induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis.

  15. Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays

    NASA Astrophysics Data System (ADS)

    McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G.

    2011-04-01

    Intrinsic nonuniformity in the polycrystalline-silicon backplane transistors of active matrix organic light-emitting diode displays severely limits display size. Organic semiconductors might provide an alternative, but their mobility remains too low to be useful in the conventional thin-film transistor design. Here we demonstrate an organic channel light-emitting transistor operating at low voltage, with low power dissipation, and high aperture ratio, in the three primary colors. The high level of performance is enabled by a single-wall carbon nanotube network source electrode that permits integration of the drive transistor and the light emitter into an efficient single stacked device. The performance demonstrated is comparable to that of polycrystalline-silicon backplane transistor-driven display pixels.

  16. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  17. Engineering Escherichia coli for light-activated cytolysis of mammalian cells.

    PubMed

    Magaraci, Michael S; Veerakumar, Avin; Qiao, Peter; Amurthur, Ashwin; Lee, Justin Y; Miller, Jordan S; Goulian, Mark; Sarkar, Casim A

    2014-12-19

    By delivering payloads in response to specific exogenous stimuli, smart bacterial therapeutics have the potential to overcome many limitations of conventional therapies, including poor targeting specificity and dosage control in current cancer treatments. Although not yet explored as a trigger for bacterial drug delivery, light is an ideal induction mechanism because it offers fine spatiotemporal control and is easily and safely administered. Using recent advances in optogenetics, we have engineered two strains of Escherichia coli to secrete a potent mammalian cytotoxin in response to blue or red light. The tools in this study demonstrate the initial feasibility of light-activated bacterial therapeutics for applications such as tumor cytolysis, and their modular nature should enable simple substitution of other payloads of interest.

  18. Chloroplast Sulfhydryl Groups and the Light Activation of Fructose-1,6-Bisphosphatase 1

    PubMed Central

    Slovacek, Rudolf E.; Vaughn, Sharon

    1982-01-01

    Studies of isolated intact spinach (Spinacia oleracea L.) chloroplasts reveal that most of the available sulfhydryl groups are associated with stromal protein as opposed to a thylakoid membrane fraction under non-denaturing conditions. Increases in sulfhydryl content of approximately 50% occurred with illumination and could be correlated kinetically with a reductive activation of fructose-1,6-bisphosphatase during CO2-assimilation. Inhibition of linear electron flow with 3-(3,4-dichlorophenyl)-1,1-dimethylurea prevented light driven increases in both fructose-1,6-bisphosphatase activity and the relative sulfhydryl number. These results provide evidence for the operation of a reductive enzyme activating system in vivo. PMID:16662654

  19. Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not "Float".

    PubMed

    Garrec, Julian; Monari, Antonio; Assfeld, Xavier; Mir, Lluis M; Tarek, Mounir

    2014-05-15

    Lipid peroxidation is a fundamental phenomenon in biology and medicine involved in a wide range of diseases. Some key microscopic aspects of this reaction in cell membranes are still poorly studied. In particular, it is commonly accepted that the propagation of the radical reaction in lipid bilayers is hampered by the rapid diffusion of peroxyl intermediates toward the water interface, that is, out of the reaction region. We investigated the validity of this "floating peroxyl radical" hypothesis by means of molecular modeling. Combining quantum calculations of model systems and atomistic simulations of lipid bilayers containing lipid oxidation products, we show that the peroxyl radical does not "float" at the surface of the membrane. Instead, it remains located quite deep inside the bilayer. In light of our findings, several critical aspects of biological membranes' peroxidation, such as their protection mechanisms, need to be revisited. Our data moreover help in the design of more efficient antioxidants, localized within reach of the reaction propagating radical. PMID:26270361

  20. Laser light scattering spectroscopy: a new method to measure tracheobronchial mucociliary activity.

    PubMed Central

    Svartengren, K; Wiman, L G; Thyberg, P; Rigler, R

    1989-01-01

    Laser light scattering spectroscopy is based on the evaluation of the frequency shift of coherent light scattered by moving particles. This makes it particularly suitable for use in light guiding systems. In this study laser light scattering spectroscopy was assessed for its ability to provide information on the motility of respiratory cilia. In vitro and in vivo measurements were undertaken with animal tracheal mucosa. The intensity fluctuations of laser light scattered from moving cilia were analysed in terms of their autocorrelation functions to provide information on the frequency and synchrony of beating cilia. In vitro measurements were performed on fresh bovine trachea to estimate a safe laser power level for mucosal exposure and to test the method by defining the temperature dependence of the ciliary beat frequency. Power densities not exceeding 0.3 kW/cm2 were found to be the upper limit for long term exposure of the mucosa in vitro. Ciliary beat frequency showed a pronounced temperature dependence, ranging from 5.8 to 28.3 Hz over the temperature range 20-43.5 degrees C. A maximum frequency was found at 41.5 degrees C. In vivo measurements of ciliary activity were performed in six pigs by means of optical fibres for light transmission combined with fibreoptic bronchoscopy. A ciliary beat frequency of 5 Hz was obtained; heart and breathing frequencies could be separated and identified. These results suggest that laser light scattering spectroscopy might provide a convenient method of studying the mucociliary system of the lower airways. PMID:2772854

  1. Active-region Tilt Angles: Magnetic versus White-light Determinations of Joy's Law

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J.

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ("Joy's law"). Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light "tilt angles" refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  2. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J. E-mail: robin.colaninno@nrl.navy.mil E-mail: jli@igpp.ucla.edu

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  3. Characterisation of a novel light activated adhesive scaffold: Potential for device attachment.

    PubMed

    Ark, Morris; Boughton, Philip; Lauto, Antonio; Tran, Giang T; Chen, Yongjuan; Cosman, Peter H; Dunstan, Colin R

    2016-09-01

    The most common methods for attaching a device to the internal tissues of the human body are via sutures, clips or staples. These attachment techniques require penetration and manipulation of the tissue. Tears and leaks can often be a complication post-attachment, and scarring usually occurs around the attachment sites. To resolve these issues, it is proposed to develop a soft tissue scaffold impregnated with Rose Bengal/Chitosan solution (RBC-scaffold, 0.01% w/v Rose Bengal, 1.7% w/v Medium Molecular Weight Chitosan). This scaffold will initially attach to the tissue via a light activation method. The light activates the dye in the scaffold which causes cross-links to form between the scaffold and tissue, thus adhering them together. This is done without mechanically manipulating the surrounding tissue, thus avoiding the issues associated with current techniques. Eventually, the scaffold will be resorbed and tissue will integrate for long-term attachment. A variety of tests were performed to characterise the RBC-scaffold. Porosity, interconnectivity, and mechanical strength were measured. Light activation was performed with a broad spectrum (380-780nm) 10W LED lamp exposed to various time lengths (2-15min, Fluence range 0.4-3J/cm(2) ). Adhesive strength of the light-activated bond was measured with lap-shear tests performed on porcine stomach tissue. Cell culture viability was also assessed to confirm tissue integration potential. These properties were compared to Variotis™, an aliphatic polyester soft tissue scaffold which has proven to be viable for soft tissue regeneration. The RBC-scaffolds were found to have high porosity (86.46±2.95%) and connectivity, showing rapid fluid movement. The elastic modulus of the RBC-scaffolds (3.55±1.28MPa) was found to be significantly higher than the controls (0.15±0.058MPa, p<0.01) and approached reported values for human gastrointestinal tissue (2.3MPa). The maximum adhesion strength achieved of the RBC-scaffolds was 8

  4. Characterisation of a novel light activated adhesive scaffold: Potential for device attachment.

    PubMed

    Ark, Morris; Boughton, Philip; Lauto, Antonio; Tran, Giang T; Chen, Yongjuan; Cosman, Peter H; Dunstan, Colin R

    2016-09-01

    The most common methods for attaching a device to the internal tissues of the human body are via sutures, clips or staples. These attachment techniques require penetration and manipulation of the tissue. Tears and leaks can often be a complication post-attachment, and scarring usually occurs around the attachment sites. To resolve these issues, it is proposed to develop a soft tissue scaffold impregnated with Rose Bengal/Chitosan solution (RBC-scaffold, 0.01% w/v Rose Bengal, 1.7% w/v Medium Molecular Weight Chitosan). This scaffold will initially attach to the tissue via a light activation method. The light activates the dye in the scaffold which causes cross-links to form between the scaffold and tissue, thus adhering them together. This is done without mechanically manipulating the surrounding tissue, thus avoiding the issues associated with current techniques. Eventually, the scaffold will be resorbed and tissue will integrate for long-term attachment. A variety of tests were performed to characterise the RBC-scaffold. Porosity, interconnectivity, and mechanical strength were measured. Light activation was performed with a broad spectrum (380-780nm) 10W LED lamp exposed to various time lengths (2-15min, Fluence range 0.4-3J/cm(2) ). Adhesive strength of the light-activated bond was measured with lap-shear tests performed on porcine stomach tissue. Cell culture viability was also assessed to confirm tissue integration potential. These properties were compared to Variotis™, an aliphatic polyester soft tissue scaffold which has proven to be viable for soft tissue regeneration. The RBC-scaffolds were found to have high porosity (86.46±2.95%) and connectivity, showing rapid fluid movement. The elastic modulus of the RBC-scaffolds (3.55±1.28MPa) was found to be significantly higher than the controls (0.15±0.058MPa, p<0.01) and approached reported values for human gastrointestinal tissue (2.3MPa). The maximum adhesion strength achieved of the RBC-scaffolds was 8

  5. Plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Park, Young-Jin; Cho, Hui-Sup; Jo, Sung-Hyun; Lee, Hee-Ho; Shin, Jang-Kyoo

    2014-09-01

    In this paper, we proposed the plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors for a large-area multi-touch display system. Although the strong point of the touch display system in the area of education and exhibition there are some limits of the ambient light. When an unexpected ambient light incidents into the display the touch recognition system can make errors classifying the touch point in the unexpected ambient light area. We proposed a new touch recognition image sensor system to decrease the ambient light error and investigated the optical transmission properties of plasmonic color filters for IR image sensor. To find a proper structure of the plasmonic color filters we used a commercial computer simulation tool utilizing finite-difference time-domain (FDTD) method as several thicknesses and whit the cover passivation layer or not. Gold (Au) applied for the metal film and the dispersion information associated with was derived from the Lorentz-Drude model. We also described the mechanism applied the double band filter on the IR image sensors.

  6. Light-dependent activation of G proteins by two isoforms of chicken melanopsins.

    PubMed

    Torii, Masaki; Kojima, Daisuke; Nishimura, Akiyuki; Itoh, Hiroshi; Fukada, Yoshitaka

    2015-11-01

    In the chicken pineal gland, light stimuli trigger signaling pathways mediated by two different subtypes, Gt and G11. These G proteins may be activated by any of the three major pineal opsins, pinopsin, OPN4-1 and OPN4-2, but biochemical evidence for the coupling has been missing except for functional coupling between pinopsin and Gt. Here we investigated the relative expression levels and the functional difference among the three pineal opsins. In the chicken pineal gland, the pinopsin mRNA level was significantly more abundant than the others, of which the OPN4-2 mRNA level was higher than that of OPN4-1. In G protein activation assays, Gt was strongly activated by pinopsin in a light-dependent manner, being consistent with previous studies, and weakly activated by OPN4-2. Unexpectedly, illuminated OPN4-2 more efficiently activated G protein(s) that was endogenously expressed in HEK293T cells in culture. On the other hand, Gq, the closest analogue of G11, was activated only by OPN4-1 although the activity was relatively weak under these conditions. These results suggest that OPN4-1 and OPN4-2 couple with Gq and Gt, respectively. Two melanopsins, OPN4-1 and OPN4-2, appear to have acquired mutually different functions through the evolution.

  7. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies.

  8. Comparing the Effects of Light- or Sonic-Activated Drug Delivery: Photochemical/Sonochemical Internalization.

    PubMed

    Madsen, Steen J; Gonzales, Jonathan; Zamora, Genesis; Berg, Kristian; Nair, Rohit Kumar; Hirschberg, Henry

    2016-01-01

    Photochemical internalization (PCI) is a technique that uses the photochemical properties of photodynamic therapy (PDT) for the enhanced delivery of endolysosomal-trapped macromolecules into the cell cytoplasm. The released agent can therefore exert its full biological activity, in contrast to being degraded by lysosomal hydrolases. Activation of photosensitizers via ultrasound (US), called sonodynamic therapy (SDT), has been proposed as an alternative to light-activated PDT for the treatment of cancerous tumors. The use of focused US (FUS) to activate photosensitizers allows treatment at tumor sites buried deep within tissues, overcoming one of the main limitations of PDT/PCI. We have examined ultrasonic activation of photosensitizers together with the anticancer agent bleomycin (BLM) using sonochemical internalization (SCI), as an alternative to light-activated PCI. Our results indicate that, compared to drug or US treatment alone, US activation of the photosensitizer AlPcS2a together with BLM significantly inhibits the ability of treated glioma cells to form clonogenic colonies. PMID:27279586

  9. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  10. Property Characterization and Photocatalytic Activity Evaluation of BiGdO₃ Nanoparticles under Visible Light Irradiation.

    PubMed

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-01-01

    BiGdO₃ nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO₃ was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO₃ crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO₃ was 5.465 angstrom. The band gap of BiGdO₃ was estimated to be 2.25 eV. BiGdO₃ showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO₃ was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO₃ demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min(-1) with BiGdO₃ as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO₃ particles were also discussed in detail. BiGdO₃/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment. PMID:27618018

  11. An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo

    PubMed Central

    Wietek, Jonas; Beltramo, Riccardo; Scanziani, Massimo; Hegemann, Peter; Oertner, Thomas G.; Simon Wiegert, J.

    2015-01-01

    Channelrhodopsins are light-gated cation channels that have been widely used for optogenetic stimulation of electrically excitable cells. Replacement of a glutamic acid in the central gate with a positively charged amino acid residue reverses the ion selectivity and produces chloride-conducting ChRs (ChloCs). Expressed in neurons, published ChloCs produced a strong shunting effect but also a small, yet significant depolarization from the resting potential. Depending on the state of the neuron, the net result of illumination might therefore be inhibitory or excitatory with respect to action potential generation. Here we report two additional amino acid substitutions that significantly shift the reversal potential of improved ChloC (iChloC) to the reversal potential of endogenous GABAA receptors. As a result, light-evoked membrane depolarization was strongly reduced and spike initiation after current injection or synaptic stimulation was reliably inhibited in iChloC-transfected neurons in vitro. In the primary visual cortex of anesthetized mice, activation of iChloC suppressed spiking activity evoked by visual stimulation. Due to its high operational light sensitivity, iChloC makes it possible to inhibit neurons in a large volume of brain tissue from a small, point-like light source. PMID:26443033

  12. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  13. Novel light-activated antimicrobial coatings are effective against surface-deposited Staphylococcus aureus.

    PubMed

    Decraene, Valérie; Pratten, Jonathan; Wilson, Michael

    2008-10-01

    Aerosols constitute a major route of transmission for a wide range of infectious diseases in the hospital setting. The aim of this study was to determine the survival of Staphylococcus aureus on a light-activated antimicrobial coating. S. aureus suspended in phosphate-buffered saline (PBS), saliva, or horse serum was sprayed onto cellulose acetate coatings containing toluidine blue O and rose bengal and the survival of the organism on these surfaces was determined following 6 h of exposure to a 28-W domestic fluorescent lamp (light intensity = 3700 +/- 20 lux). Kills ranging from 78.9% (in horse serum) to 99.8% (in PBS) were obtained when the bacterial density on the coatings was approximately 10(5) colony-forming units/m(2). The results of this study have shown that a coating containing toluidine blue and rose bengal can achieve significant kills of S. aureus when illuminated by a domestic light source. Light-activated coatings could provide a simple, low-cost means of reducing the microbial load in hospitals and other facilities.

  14. Photo-induced bending in a light-activated polymer laminated composite.

    PubMed

    Mu, Xiaoming; Sowan, Nancy; Tumbic, Julia A; Bowman, Christopher N; Mather, Patrick T; Qi, H Jerry

    2015-04-01

    Light activated polymers (LAPs) have attracted increasing attention since these materials change their shape and/or behavior in response to light exposure, which serves as an instant, remote and precisely controllable stimulus that enables non-contact control of the material shape and behavior through simple variation in light intensity, wavelength and spatially controlled exposure. These features distinguish LAPs from other active polymers triggered by other stimuli such as heat, electrical field or humidity. Previous examples have resulted in demonstrations in applications such as surface patterning, photo-induced shape memory behavior, and photo-origami. However, in many of these applications, an undesirable limitation has been the requirement to apply and maintain an external load during light irradiation. In this paper, a laminated structure is introduced to provide a pre-programmed stress field, which is then used for photo-induced deformation. This laminated structure is fabricated by bonding a stretched elastomer (NOA65) sheet between two LAP layers. Releasing the elastomer causes contraction and introduces a compressive stress in the LAPs, which are relaxed optically to trigger the desired deformation. A theoretical model is developed to quantitatively examine the laminated composite system, allowing exploration of the design space and optimum design of the laminate. PMID:25690905

  15. Visible-Light-Induced Bactericidal Activity of Titanium Dioxide Co-doped with Nitrogen and Silver

    PubMed Central

    Wu, Pinggui; Xie, Rongcai; Imlay, Kari; Shang, Jian-Ku

    2011-01-01

    Titanium dioxide nanoparticles co-doped with nitrogen and silver (Ag2O/TiON) were synthesized by the sol-gel process and found to be an effective visible light driven photocatalyst. The catalyst showed strong bactericidal activity against Escherichia coli (E. coli) under visible light irradiation (λ> 400 nm). In x-ray photoelectron spectroscopy and x-ray diffraction characterization of the samples, the as-added Ag species mainly exist as Ag2O. Spin trapping EPR study showed Ag addition greatly enhanced the production of hydroxyl radicals (•OH) under visible light irradiation. The results indicate that the Ag2O species trapped eCB− in the process of Ag2O/TiON photocatalytic reaction, thus inhibiting the recombination of eCB− and hVB+ in agreement with the stronger photocatalytic bactericidal activity of Ag2O/TiON. The killing mechanism of Ag2O/TiON under visible light irradiation is shown to be related to oxidative damages in the forms of cell wall thinning and cell disconfiguration. PMID:20726520

  16. Improving the performance of floating solar pool covers

    SciTech Connect

    Cole, M.A.; Lowrey, P. . Dept. of Mechanical Engineering)

    1992-11-01

    Experimental and analytical analyses are presented for the evaluation of heat transfer through floating solar swimming pool covers. Two improved floating solar swimming pool cover designs are proposed and investigated in this paper. The results conclusively show that both new cover designs should have significantly better performance than conventional floating solar swimming pool covers.

  17. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  18. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  19. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Life floats and buoyant apparatus. 131.870 Section 131... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant...

  20. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant apparatus... 46 Shipping 4 2011-10-01 2011-10-01 false Life floats and buoyant apparatus. 131.870 Section...

  1. 46 CFR 131.870 - Life floats and buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.870 Life floats and buoyant apparatus. (a) The name of the vessel must be plainly marked or painted on each life float or buoyant apparatus... 46 Shipping 4 2010-10-01 2010-10-01 false Life floats and buoyant apparatus. 131.870 Section...

  2. 14 CFR 23.535 - Auxiliary float loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... symmetry of the float at a point three-fourths of the distance from the bow to the step and must be... symmetry of the float to the radius of gyration in roll. (c) Bow loading. The resultant limit load must be applied in the plane of symmetry of the float at a point one-fourth of the distance from the bow to...

  3. 14 CFR 23.535 - Auxiliary float loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... symmetry of the float at a point three-fourths of the distance from the bow to the step and must be... symmetry of the float to the radius of gyration in roll. (c) Bow loading. The resultant limit load must be applied in the plane of symmetry of the float at a point one-fourth of the distance from the bow to...

  4. 14 CFR 25.753 - Main float design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float...

  5. 14 CFR 25.535 - Auxiliary float loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... follows: EC28SE91.043 where— ρ=mass density of water (slugs/ft.2); V=volume of float (ft.2); C x... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.535 Auxiliary float loads. (a..., the prescribed water loads may be distributed over the float bottom to avoid excessive local...

  6. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When...

  7. 33 CFR 144.01-15 - Alternates for life floats.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When...

  8. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distributed water pressures over the hull and float bottom. Personnel and Cargo Accommodations ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and...

  9. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distributed water pressures over the hull and float bottom. Personnel and Cargo Accommodations ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and...

  10. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distributed water pressures over the hull and float bottom. Personnel and Cargo Accommodations ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and...

  11. 14 CFR 29.757 - Hull and auxiliary float strength.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distributed water pressures over the hull and float bottom. Personnel and Cargo Accommodations ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and...

  12. Effect of light-activation with different light-curing units and time intervals on resin cement bond strength to intraradicular dentin.

    PubMed

    Miguel-Almeida, Maria Eleonora; Azevedo, Mario Lucio da Costa; Rached-Júnior, Fuad Abi; Oliveira, Camila Favero; Silva, Ricardo Gariba; Messias, Danielle Cristine

    2012-01-01

    The aim of this study was to assess the bond strength of a resin cement to intraradicular dentin varying the light-curing unit and the moment at which the light was applied. Post spaces of endodontically treated canines were prepared. The roots were distributed into 6 groups (n=10) according to the light-curing unit and the moment of light exposure: I) Quartz tungsten halogen-600 mW/cm² (QTH) + immediate light activation (t0); II) QTH + light activation after 10 min (t10); III) Light-emitting diodes (LED)-800 mW/cm² (LED-800)+ t0; IV) LED-800 + t10; V) LED-1,500 mW/cm² (LED-1500)+ t0; VI) LED-1500 + t10. After post cementation, slices from coronal, middle and apical post/root regions were submitted to the push-out test and failure evaluation. It was verified that LED-800 (4.40 ± 3.00 MPa) and LED-1500 (4.67 ± 3.04 MPa) provided bond strength statistically superior to QTH (3.13 ± 1.76 MPa) (p<0.05), and did not differ from each other (p>0.05). There was no significant difference between t0 and t10 (p>0.05). Coronal post/root region (4.75 ± 3.10 MPa) presented significantly higher bond strength than the apical (3.32 ± 2.30 MPa) (p<0.05) and middle regions (4.14 ± 2.99 MPa) showed intermediate values. Adhesive failures were predominant when using QTH. Adhesive and mixed failures occurred more frequently in the apical region. Higher adhesion of the resin cement to intraradicular dentin was observed in the coronal region with LED light-activation, regardless of the moment of light exposure.

  13. Genetics Home Reference: Floating-Harbor syndrome

    MedlinePlus

    ... Arpin S, Afenjar A, Dubern B, Toutain A, Cabrol S, Héron D. Floating-Harbor Syndrome: report on a case ... G, Whiteford ML, Quaio CR, Gomy I, Bertola DR, Albrecht B, Platzer K, McGillivray G, Zou R, ...

  14. 14 CFR 23.757 - Auxiliary floats.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Auxiliary floats. 23.757 Section 23.757 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... fresh water, they provide a righting moment of at least 1.5 times the upsetting moment caused by...

  15. Subtropical Productivity from Profiling Floats and Gliders

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Johnson, K. S.; Karl, D. M.

    2015-12-01

    Since 2007 profiling floats equipped with dissolved oxygen and nitrate sensors have been released from the Hawaii Ocean Time-series (HOT) and Bermuda Atlantic Time-series Study (BATS) sites and can be calibrated using time-series observations. More recent deployments have also included bio-optical and pH sensors. Gliders with oxygen sensors and bio-optics have been intermittently deployed near HOT Station ALOHA since 2008 and at BATS since 2014. While gliders maintain a restricted survey region near the time-series stations, profiling floats drifted widely across the subtropical gyres. Multiple floats and gliders enables a cotemporaneous comparison of biogeochemical processes across gyres. These platforms enable observations on spatial scales from submesoscale to basin scale and on temporal scales from diel to interannual. Here, I focus on the spatiotemporal variability of nitrate and oxygen mass balances in the North Pacific and North Atlantic subtropical gyres using a data-assimilating and float-tracking 1D upper ocean model.

  16. Dealing with Human Death: The Floating Perspective.

    ERIC Educational Resources Information Center

    Kenyon, Gary M.

    1991-01-01

    Explores approach to dealing with human death. Describes floating perspective, based on insights from Choron and Jaspers, as suggesting it is possible to deal with human death by refraining from taking ultimate position on the problem. Position encourages openness to death. Examines role of anxiety and describes possible meaningful outcomes of…

  17. Immunohistochemistry on freely floating fixed tissue sections.

    PubMed

    Bachman, Julia

    2013-01-01

    Immunohistochemistry on free floating tissue sections is done for many reasons, all of which involve labeling tissue to visualize a certain cell type, protein, or structural component. Visualization is aided by mounting sections on microscope slides for stabilization, and is in most cases necessary for the appropriate use of objectives with a high numerical aperture and high degree of magnification.

  18. Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film.

    PubMed

    Xu, Qing Chi; Wellia, Diana V; Amal, Rose; Liao, Dai Wei; Loo, Say Chye Joachim; Tan, Timothy Thatt Yang

    2010-07-01

    A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti precursors and organic solvents. The N-doped titania films were prepared from heating aqueous peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure glass substrates were superhydrophilic after being heated at 500 degrees C for 1 h. Nitrogen concentrations in the titania films were adjusted by changing the amount of ammonia solution. The optimal photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial self-cleaning glass under the same visible light illumination. The current reported preparative technique is generally applicable for the preparation of other thin films.

  19. Induction of beta-glucosidase activity in maize coleoptiles by blue light illumination.

    PubMed

    Jabeen, Riffat; Yamada, Kosumi; Shigemori, Hideyuki; Hasegawa, Tsuyoshi; Hara, Masakazu; Kuboi, Toru; Hasegawa, Koji

    2006-03-01

    The role of beta-glucosidase during the phototropic response in maize (Zea mays) coleoptiles was investigated. Unilateral blue light illumination abruptly up-regulated the activity of beta-glucosidase in the illuminated halves, 10 min after the onset of illumination, peaking after 30 min and decreasing thereafter. The level of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which is released from DIMBOA glucoside (DIMBOA-Glc) by beta-glucosidase, and its degradation compound 6-methoxy-benzoxazolinone (MBOA) were elevated within 30 min in the illuminated halves as compare to the shaded halves, prior to the phototropic curvature. Furthermore, beta-glucosidase inhibitor treatment significantly decreased the phototropic curvature and decreased growth suppression in the illuminated sides. These results suggest that blue light induces the activity of beta-glucosidase in the illuminated halves of coleoptiles causing an increase in DIMBOA biosynthesis and the growth inhibition that leads to a phototropic curvature. PMID:16473658

  20. Construction of carbon nanodots/tungsten trioxide and their visible-light sensitive photocatalytic activity.

    PubMed

    Yan, Fanyong; Kong, Depeng; Fu, Yang; Ye, Qianghua; Wang, Yinyin; Chen, Li

    2016-03-15

    Herein we designed a simple and effective method for synthesizing carbon nanodots/tungsten trioxide nanocomposite with high photocatalytic activity. The as-prepared carbon nanodots/ tungsten trioxide has strong photoabsorption under visible light irradiation. Then, carbon nanodots/tungsten trioxide was successfully applied to the degradation of methylene blue. The photodegradation efficiency of methylene blue can be reached as high as 100% after 0.5 h visible light illumination. In addition, carbon nanodots/tungsten trioxide could also be used to degrade rhodamine B and methyl orange. Most importantly, the photocatalytic activity of carbon nanodots/tungsten trioxide did not exhibit obvious changes after five cycles. The results indicate that carbon nanodots/tungsten trioxide has potential applications in the degradation of organic pollutants in industrial waste water.

  1. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    PubMed

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring. PMID:16302560

  2. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.)

    PubMed Central

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-01-01

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1) and was lowered with decreased light intensity (70–80 μmol m−2 s−1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment. PMID:24642884

  3. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation.

    PubMed

    Berglund, Ken; Clissold, Kara; Li, Haofang E; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E; Lu, Dongye; Barter, Joseph W; Rossi, Mark A; Augustine, George J; Yin, Henry H; Hochgeschwender, Ute

    2016-01-19

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  4. Real-time RMS active damping augmentation: Heavy and very light payload evaluations

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Lepanto, Janet A.; Flueckiger, Karl W.; Bains, Elizabeth M.; Jensen, Mary C.

    1994-01-01

    Controls-Structures Integration Technology has been applied to the Space Shuttle Remote Manipulator System (RMS) to improve on-orbit performance. The objective was to actively damp undesired oscillatory motions of the RMS following routine payload maneuvering and Shuttle attitude control thruster firings. Simulation of active damping was conducted in the real-time, man-in-the-loop Systems Engineering Simulator at NASA's Johnson Space Center. The simulator was used to obtain qualitative and quantitative data on active damping performance from astronaut operators. Using a simulated three-axis accelerometer mounted on the RMS, 'sensed' vibration motions were used to generate joint motor commands that reduced the unwanted oscillations. Active damping of the RMS with heavy and light attached payloads was demonstrated in this study. Five astronaut operators examined the performance of active damping following operator commanded RMS maneuvers and Shuttle thruster firings. Noticeable improvements in the damping response of the RMS with the heavy, Hubble Space Telescope payload and the very light, astronaut in Manipulator Foot Restraint payload were observed. The potential of active damping to aid in precisely maneuvering payloads was deemed significant.

  5. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation

    PubMed Central

    Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute

    2016-01-01

    Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686

  6. On-chip silicon-based active photonic molecules by complete photonic bandgap light confinement

    NASA Astrophysics Data System (ADS)

    Qian, Bo; Chen, Kunji; Chen, San; Li, Wei; Zhang, Xiangao; Xu, Jun; Huang, Xinfan; Pavesi, Lorenzo; Jiang, Chunping

    2011-07-01

    We demonstrate an on-chip silicon-based active photonic molecule (PM) structures formed by two coupled photonic quantum dots with complete photonic bandgap (PBG) light confinement. The photonic quantum dots are grown by conformal deposition of amorphous silicon nitride multilayers on patterned substrates. A fine structure of the coupled optical modes in PMs has been observed which shows similarity to the electronic bonding (BN) and antibonding (ABN) states in a molecule.

  7. Oxygen deficient ZnO1-x nanosheets with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Guo, Hong-Li; Zhu, Qing; Wu, Xi-Lin; Jiang, Yi-Fan; Xie, Xiao; Xu, An-Wu

    2015-04-01

    Zinc oxide is one of the most important wide-band-gap (3.2 eV) materials with versatile properties, however, it can not be excited by visible light. In this work, we have developed an exquisite and simple way to prepare oxygen-deficient ZnO1-x nanosheets with a gray-colored appearance and excellent visible light photocatalytic activity. Detailed analysis based on UV-Vis absorption spectra, X-band electron paramagnetic resonance (EPR) spectra, and photoluminescence (PL) spectra confirms the existence of oxygen vacancies in ZnO1-x. The incorporation of oxygen defects could effectively extend the light absorption of ZnO1-x into the visible-light region due to the fact that the energy of the localized state is located in the forbidden gap. Thus, our obtained ZnO1-x shows a higher photodegradation of methyl orange (MO) compared to defect-free ZnO under visible light illumination. Additionally, the high content of &z.rad;OH radicals with a strong photo-oxidation capability over the ZnO1-x nanosheets significantly contributes to the improvement in the photocatalytic performance. Our oxygen deficient ZnO1-x sample shows a very high photocatalytic activity for the degradation of MO even after 5 cycles without any obvious decline. The results demonstrate that defect engineering is a powerful tool to enhance the optoelectronic and photocatalytic performances of nanomaterials.Zinc oxide is one of the most important wide-band-gap (3.2 eV) materials with versatile properties, however, it can not be excited by visible light. In this work, we have developed an exquisite and simple way to prepare oxygen-deficient ZnO1-x nanosheets with a gray-colored appearance and excellent visible light photocatalytic activity. Detailed analysis based on UV-Vis absorption spectra, X-band electron paramagnetic resonance (EPR) spectra, and photoluminescence (PL) spectra confirms the existence of oxygen vacancies in ZnO1-x. The incorporation of oxygen defects could effectively extend the light

  8. Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands.

    PubMed

    Siritanaratkul, Bhavin; Maeda, Kazuhiko; Hisatomi, Takashi; Domen, Kazunari

    2011-01-17

    Photocatalytic activities of perovskite-type niobium oxynitrides (CaNbO₂N, SrNbO₂N, BaNbO₂N, and LaNbON₂) were examined for hydrogen and oxygen evolution from water under visible-light irradiation. These niobium oxynitrides were prepared by heating the corresponding oxide precursors, which were synthesized using the polymerized complex method, for 15 h under a flow of ammonia. They possess visible-light absorption bands between 600-750 nm, depending on the A-site cations in the structures. The oxynitride CaNbO₂N, was found to be active for hydrogen and oxygen evolution from methanol and aqueous AgNO₃, respectively, even under irradiation by light at long wavelengths (λ<560 nm). The nitridation temperature dependence of CaNbO₂N was investigated and 1023 K was found to be the optimal temperature. At lower temperatures, the oxynitride phase is not adequately produced, whereas higher temperatures produce more reduced niobium species (e. g., Nb³(+) and Nb⁴(+)), which can act as electron-hole recombination centers, resulting in a decrease in activity.

  9. Manipulation of long-term dynamics in a colloidal active matter system using speckle light fields

    NASA Astrophysics Data System (ADS)

    Pince, Ercag; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomena. Examples can be given from organelles performing tasks in the cytoplasm to large animals moving in patchy environment. Here, we use speckle light fields to study the anomalous diffusion in an active matter system consisting of micron-sized silica particles(diameter 5 μm) and motile bacterial cells (E. coli). The speckle light fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power is needed to obtain an effective disordered optical landscape for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the long-term dynamics of the active matter system and observed an enhanced diffusion of particles interacting with the active bacterial bath in the speckle light fields. We showed that this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interest.

  10. Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pince, Ercag; Sabareesh, Sabareesh K. P.; Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni S.

    2015-08-01

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomenon. Examples can be given from organelles as molecular machines of cells performing physical tasks in a populated cytoplasm to human mobility in patchy environment at larger scales. Our recent results showed that it is possible to use the disordered landscape generated by speckle light fields to perform advanced manipulation tasks at the microscale. Here, we use speckle light fields to study the anomalous diffusion of micron size silica particles (5 μm) in the presence of active microswimmers. The microswimmers we used in the experiments are motile bacteria, Escherichia coli (E.coli). They constitute an active background constantly agitating passive silica particles within complex optical potentials. The speckle fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power (maximum power = 12 μW/μm2) is needed to obtain an effective random landscape pattern for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the anomalous diffusion of silica particles undergoing collisions with swimming bacteria. We observed an enhanced diffusion of particles interacting with the active bath of E.coli inside speckle light fields: this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interests.

  11. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications. PMID:26891938

  12. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  13. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  14. The effect of power bleaching actived by several light sources on enamel microhardness

    NASA Astrophysics Data System (ADS)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Andrade, M. F.

    2010-07-01

    The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 ± 13.1 KHN; B 95.5 ± 12.7 KHN; C 84.2 ± 13.6 KHN; D 128.6 ± 20.5 KHN; E 133.9 ± 14.2 KHN; F 123.9 ± 14.2 KHN; G 129.8 ± 18.8 KHN. Statistical analysis ( p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.

  15. Energy-recycling pixel for active-matrix organic light-emitting diode display

    NASA Astrophysics Data System (ADS)

    Yang, Che-Yu; Cho, Ting-Yi; Chen, Yen-Yu; Yang, Chih-Jen; Meng, Chao-Yu; Yang, Chieh-Hung; Yang, Po-Chuan; Chang, Hsu-Yu; Hsueh, Chun-Yuan; Wu, Chung-Chih; Lee, Si-Chen

    2007-06-01

    The authors report a pixel structure for active-matrix organic light-emitting diode (OLED) displays that has a hydrogenated amorphous silicon solar cell inserted between the driving polycrystalline Si thin-film transistor and the pixel OLED. Such an active-matrix OLED pixel structure not only exhibits a reduced reflection (and thus improved contrast) compared to conventional OLEDs but also is capable of recycling both incident photon energies and internally generated OLED radiation. Such a feature of energy recycling may be of use for portable/mobile electronics, which are particularly power aware.

  16. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode

    PubMed Central

    Wang, L.; Li, T.; Guo, R. Y.; Xia, W.; Xu, X. G.; Zhu, S. N.

    2013-01-01

    An electrical pumped microscopic active display with integration of plasmonic polarizer and light-emitting-diode is proposed. Thanks to the strong polarized emission through the rectangular nanoholes, well designed pixels with respect to different polarizations are engineered, which give rise to flexible and controllable active display. As results, polarization multiplexed letter encoding, single and double gray-scale images and animation movies are successfully realized. Our results demonstrate a new strategy in electro-optical integration and indicate potential applications in designing new type of microscopic electro-optical devices. PMID:24008314

  17. Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors.

    PubMed

    Jain, Piyush K; Ramanan, Vyas; Schepers, Arnout G; Dalvie, Nisha S; Panda, Apekshya; Fleming, Heather E; Bhatia, Sangeeta N

    2016-09-26

    The ability to remotely trigger CRISPR/Cas9 activity would enable new strategies to study cellular events with greater precision and complexity. In this work, we have developed a method to photocage the activity of the guide RNA called "CRISPR-plus" (CRISPR-precise light-mediated unveiling of sgRNAs). The photoactivation capability of our CRISPR-plus method is compatible with the simultaneous targeting of multiple DNA sequences and supports numerous modifications that can enable guide RNA labeling for use in imaging and mechanistic investigations. PMID:27554600

  18. Reciprocal light-dark transcriptional control of nif and rbc expression and light-dependent posttranslational control of nitrogenase activity in Synechococcus sp. strain RF-1.

    PubMed Central

    Chow, T J; Tabita, F R

    1994-01-01

    Synechococcus sp. strain RF-1 exhibits a circadian rhythm of N2 fixation when cells are grown under a light-dark cycle, with nitrogenase activity observed only during the dark period. This dark-dependent activity correlated with nif gene transcription in strain RF-1. By using antibodies against dinitrogenase reductase (the Fe protein of the nitrogenase complex), it was found that there was a distinct shift in the mobility of this protein on sodium dodecyl sulfate gels during the light-dark cycle. The Fe protein was present only when cells were incubated in the dark. Upon illumination, there was a conversion of all Fe protein to a modified form, after which it rapidly disappeared from extracts. These studies indicated that all nitrogenase activity present during the dark cycle resulted from de novo synthesis of nitrogenase. Upon entering the light phase, cells appeared to quickly degrade the modified form of Fe protein, perhaps as a result of activating or inducing a protease. By contrast, transcription of the rbcL gene, which encodes the catalytic subunit of the key enzyme of CO2 fixation (a light-dependent process), was enhanced in the light. Images PMID:7928999

  19. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  20. Contribution of Sun-like faculae to the light-curve modulation of young active dwarfs

    NASA Astrophysics Data System (ADS)

    Gondoin, P.

    2008-02-01

    Aims:The time variability of the broadband solar irradiance depends not only on the intrinsic evolution and visibility modulation of sunspots but also on that of faculae that become brighter near the limb during the solar rotation. Sun-like faculae around spots could also play a significant role in modulating the broadband visible flux of active dwarfs. It is the aim of the present study to test this hypothesis. Methods: I analyzed high accuracy light-curves of two active dwarfs obtained with the MOST satellite during several stellar rotation periods. The observed time series were fitted using a model that takes into account not only starspot contributions but also the areas of faculae in active regions and their bolometric contrast. Results: A low value of the mean ratio of faculae to cool spot areas in active regions provides the best description of ɛ Eri and κ Ceti light curves. Conclusions: Although not conclusive, this result suggests that the ratio of faculae to cool spot areas decreases in stars somewhat more active than the Sun. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  1. Photoactive titania float for disinfection of water; evaluation of cell damage by bioanalytical techniques.

    PubMed

    Shwetharani, R; Jyothi, M S; Laveena, P D; Geetha Balakrishna, R

    2014-01-01

    A photoactive float was fabricated with the modified titania to cause a feasible disinfection of water, contaminated with E. coli. The commercially available titania was doped with neodymium by pulverization technique to enhance its activity in sunlight and a multiapproach technique was used to evaluate the extended efficiency of the doped sample. X-ray diffraction patterns depicted the retention of anatase phase on doping and the existence of neodymium was confirmed by the energy dispersive atomic X-ray analysis and the X-ray photoelectron spectroscopy. Transmission electron microscopy and Bruner-Emmett-Teller analysis depicted a marginal increase in the particle size and a decrease in the surface area, respectively. Doping induces semiconductor behavior with lower band energy that could respond to visible light and exhibit better disinfection activity. The "f" and "d" transitions of the lanthanide in doped sample caused new electronic behavior of trapping/detrapping effect together with bandgap narrowing. The amount of malondialdehyde, protein, DNA and RNA released on destruction of E. coli was observed to be 0.915 × 10(-3) μg mL(-1), 859.912 μg mL(-1), 20.173 μg mL(-1) and 1146.073 μg mL(-1), respectively. The above analytical methods along with standard plate count method substantiated the enhanced disinfection efficiency of the doped sample in sunlight.

  2. Photoactive titania float for disinfection of water; evaluation of cell damage by bioanalytical techniques.

    PubMed

    Shwetharani, R; Jyothi, M S; Laveena, P D; Geetha Balakrishna, R

    2014-01-01

    A photoactive float was fabricated with the modified titania to cause a feasible disinfection of water, contaminated with E. coli. The commercially available titania was doped with neodymium by pulverization technique to enhance its activity in sunlight and a multiapproach technique was used to evaluate the extended efficiency of the doped sample. X-ray diffraction patterns depicted the retention of anatase phase on doping and the existence of neodymium was confirmed by the energy dispersive atomic X-ray analysis and the X-ray photoelectron spectroscopy. Transmission electron microscopy and Bruner-Emmett-Teller analysis depicted a marginal increase in the particle size and a decrease in the surface area, respectively. Doping induces semiconductor behavior with lower band energy that could respond to visible light and exhibit better disinfection activity. The "f" and "d" transitions of the lanthanide in doped sample caused new electronic behavior of trapping/detrapping effect together with bandgap narrowing. The amount of malondialdehyde, protein, DNA and RNA released on destruction of E. coli was observed to be 0.915 × 10(-3) μg mL(-1), 859.912 μg mL(-1), 20.173 μg mL(-1) and 1146.073 μg mL(-1), respectively. The above analytical methods along with standard plate count method substantiated the enhanced disinfection efficiency of the doped sample in sunlight. PMID:24689654

  3. Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women.

    PubMed

    Curry, Brad S; Chengkalath, Devendra; Crouch, Gordon J; Romance, Michelle; Manns, Patricia J

    2009-09-01

    The purpose of this study was to compare three warm-up protocols--static stretching, dynamic stretching, and light aerobic activity--on selected measures of range of motion and power in untrained females and to investigate the sustained effects at 5 and 30 minutes after warm-up. A total of 24 healthy females (ages 23-29 years) attended one familiarization session and three test sessions on nonconsecutive days within 2 weeks. A within-subject design protocol with the testing investigators blinded to the subjects' warm-up was followed. Each session started with 5 minutes of light aerobic cycling followed by pretest baseline measures. Another 5 minutes of light aerobic cycling was completed and followed by one of the three randomly selected warm-up interventions (static stretching, dynamic stretching, or light aerobic activity). The following posttest outcome measures were collected 5 and 30 minutes following the intervention: modified Thomas test, countermovement jump, and isometric time to peak force knee extension measured by dynamometer. Analysis of the data revealed significant time effects on range of motion and countermovement jump changes. No significant differences (p > 0.05) were found between the warm-up conditions on any of the variables. The variation in responses to warm-up conditions emphasizes the unique nature of individual reactions to different warm-ups; however, there was a tendency for warm-ups with an active component to have beneficial effects. The data suggests dynamic stretching has greater applicability to enhance performance on power outcomes compared to static stretching. PMID:19675479

  4. Transdental photo-activation technique: hardness and marginal adaptation of composite restorations using different light sources.

    PubMed

    Alves, Eliane Bemerguy; Alonso, Roberta Caroline Bruschi; Correr, Gisele Maria; Correr, Américo Bortolazzo; de Moraes, Rafael Ratto; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-01-01

    This study investigated the influence of different light sources associated with a transdental photoactivation technique on the marginal adaptation and hardness of composite restorations. Cavities (3 mm wide x 3 mm long x 1.5 mm in deep) were prepared on flattened bovine dentin and filled with Z250 composite (3M ESPE). Nine groups (n=10) were defined according to the curing technique (direct; transdental--photo-activation through 1 mm of enamel and 2 mm of dentin; mixed--transdental + direct) and light source (QTH XL2500, 3M ESPE; PAC Apollo 95E, DMD; LED Ultrablue Is, DMC) combination. Marginal adaptation was evaluated using a dye staining method, and the percentage of stained margins was recorded. Knoop Hardness readings were made across the transversal section of the fillings. Data were submitted to two-way ANOVA and Tukey's test (p< or =0.05). For margin analysis, although none of the curing conditions provided perfect adaptation, the mixed technique showed lower gap formation. No significant differences were detected between the transdental and other techniques, and no significant differences were detected among the light sources. For hardness, the direct technique showed slightly greater hardness than the mixed technique. Also, the mixed technique yielded greater hardness than the transdental technique. Among the light sources, the LED showed greater hardness than the PAC; whereas, no significant differences between the QTH and other sources were detected. The mixed technique might improve the marginal adaptation of restorations, while not being detrimental to composite hardness.

  5. Slow-light Airy wave packets and their active control via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2013-07-01

    We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant Λ-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to 10-5c (c is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packet consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated and controlled by using a Stern-Gerlach gradient magnetic field.

  6. Light- and pH-activated intracellular drug release from polymeric mesoporous silica nanoparticles.

    PubMed

    Tian, Ye; Kong, Yi; Li, Xiaojian; Wu, Jun; Ko, Alex C-T; Xing, Malcolm

    2015-10-01

    Surface modified mesoporous silica nanoparticles (MSNs) with reduced toxicity were prepared for light and pH dual triggerable drug delivery system. Both 413 nm light and acidic environment can activate the drug release process, improving the pharmacological action. By applying rhodamine B (RhB) as a model drug, the accumulative RhB release is as high as 95% in pH 5.0 and in irradiation of 413 nm light, compared to only 55% in pH 7.4 and in dark. The anti-cancer drug camptothecin (CPT) loaded nanoparticles can kill cancer cells with IC₅₀ value of 0.02 μg mL(-1) in exposure of 413 nm light, which is much lower than free CPT (about 0.1 μg mL(-1)). Multimodal nonlinear optical imaging microscopy (NLOM) was employed to acquire in vitro coherent anti-Stokes Raman (CARS) and two-photon excited fluorescence (TPEF) images of live MCF-7 cells and showed that the nanoparticles can be taken up by breast tumor cell MCF-7 with high efficiency, indicating its great potential for anti-cancer drug delivery system. PMID:26188470

  7. Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔVth ˜ 15 V) and a long retention time (>105 s). The magnitude of ΔVth depended on both P/E voltages and the bias voltage (VDS): ΔVth was a cubic function to VP/E and linearly depended on VDS. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.

  8. The Peptide Microarray-Based Resonance Light Scattering Assay for Sensitively Detecting Intracellular Kinase Activity.

    PubMed

    Li, Tao; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-01-01

    The peptide microarray technology is a robust, reliable, and efficient technique for large-scale determination of enzyme activities, and high-throughput profiling of substrate/inhibitor specificities of enzymes. Here, the activities of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) in different cell lysates have been detected by a peptide microarray-based resonance light scattering (RLS) assay with gold nanoparticle (GNP) probes. Highly sensitive detection of PKA activity in 0.1 μg total cell proteins of SHG-44 (human glioma cell) cell lysate (corresponding to 200 cells) is achieved by a selected peptide substrate. The experimental results also demonstrate that the RLS assay can be employed to evaluate the chemical regulation of intracellular kinase activity. PMID:26490469

  9. On the Assimilation of Argo Float Trajectories into the Mediterranean Forecasting System

    NASA Astrophysics Data System (ADS)

    Nilsson, Jenny A. U.; Dobricic, Srdjan; Taillandier, Vincent; Poulain, Pierre-Marie; Pinardi, Nadia

    2010-05-01

    availability of Argo-float data was noted during the period, with the maximum amount and spread of floats in 2005. The impact of the fall-off in float abundance was studied in terms of analyses, and implications on the operational activities will be pointed out.

  10. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk.

    PubMed

    Keum, NaNa; Cao, Yin; Oh, Hannah; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Cho, Eunyoung; Giovannucci, Edward L

    2016-05-01

    A recent meta-analysis found that sedentary behaviors are associated with an increased colorectal cancer (CRC) risk. Yet, the finding on TV viewing time, the most widely used surrogate of sedentary behaviors, was based on only two studies. Furthermore, light-intensity activities (e.g., standing and slow walking), non-sedentary by posture but close to sedentary behaviors by Metabolic Equivalent Task values, have not been investigated in relation to CRC risk. Thus, we prospectively analyzed the relationships based on 69,715 women from Nurses' Health Study (1992-2010) and 36,806 men from Health Professionals Follow-Up Study (1988 - 2010). Throughout follow-up, time spent on sedentary behaviors including sitting watching TV and on light-intensity activities were assessed repeatedly; incidence of CRC was ascertained. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models from each cohort. A total of 1,119 and 913 incident cases were documented from women and men, respectively. The multivariable HR comparing ≥ 21 versus < 7 hr/week of sitting watching TV was 1.21 (95% CI = 1.02 to 1.43, ptrend =.01) in women and 1.06 (95% CI = 0.84 to 1.34, ptrend =.93) in men. In women, those highly sedentary and physically less active had an approximately 41% elevated risk of CRC (95% CI = 1.03 to 1.92) compared with those less sedentary and physically more active. The other sedentary behaviors and light-intensity activities were not related to CRC risk in women or men. In conclusion, we found that prolonged sitting time watching TV was associated with an increased CRC risk in women but not in men. PMID:26649988

  11. Visible light activated photocatalytic behaviour of rare earth modified commercial TiO{sub 2}

    SciTech Connect

    Tobaldi, D.M.; Seabra, M.P.; Labrincha, J.A.

    2014-02-01

    Highlights: • RE gave more surface hydroxyl groups attached to the photocatalyst's surface. • RE gave the modified and fired samples a high specific surface area. • Photocatalytic activity was assessed in gas–solid phase under visible-light exposure. • Thermal treated RE-TiO{sub 2}s showed a superior visible-light photocatalytic activity. • La-TiO{sub 2} was the best performing photocatalyst. - Abstract: A commercial TiO{sub 2} nanopowder, Degussa P25, was modified with several rare earth (RE) elements in order to extend its photocatalytic activity into the visible range. The mixtures were prepared via solid-state reaction of the precursor oxides, and thermally treated at high temperature (900 and 1000 °C), with the aim of investigating the photocatalytic activity of the thermally treated samples. This thermal treatment was chosen for a prospective application as a surface layer in materials that need to be processed at high temperatures. The photocatalytic activity (PCA) of the samples was assessed in gas–solid phase – monitoring the degradation of isopropanol (IPA) – under visible-light irradiation. Results showed that the addition of the REs lanthanum, europium and yttrium to TiO{sub 2} greatly improved its photocatalytic activity, despite the thermal treatment, because of the presence of more surface hydroxyl groups attached to the photocatalyst's surface, together with a higher specific surface area (SSA) of the modified and thermally treated samples, with regard to the unmodified and thermally treated Degussa P25. The samples doped with La, Eu and Y all had excellent PCA under visible-light irradiation, even higher than the untreated Degussa P25 reference sample, despite their thermal treatment at 900 °C, with lanthanum producing the best results (i.e. the La-, Eu- and Y-TiO{sub 2} samples, thermally treated at 900 °C, had, respectively, a PCA equal to 26, 27 and 18 ppm h{sup −1} – in terms of acetone formation – versus 15 ppm h

  12. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos.

    PubMed

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik

    2015-06-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.

  13. Dairy wastewater treatment using an activated sludge-microalgae system at different light intensities.

    PubMed

    Tricolici, O; Bumbac, C; Patroescu, V; Postolache, C

    2014-01-01

    A microalgae-bacteria system was used for dairy industry wastewater treatment in sequenced batch mode in a photobioreactor. The research investigated the influence of two light intensities: 360 and 820 μmol m(-2)s(-1) on treatment performances, microalgal cell recovery and dynamics of the protozoan community. Results showed that the light intensity of 360 μmol m(-2)s(-1) was found to be insufficient to support photosynthetic activity after the increase of bacterial biomass leading to the decrease of organic matter and ammonium removal efficiencies from 95 to 78% and 95 to 41%, respectively. Maximum microalgal cells recovery was about 63%. Continuous modification in the protozoan community was also noticed during this test. Increasing the light intensity to 820 μmol m(-2)s(-1) led to better microalgal cells recovery (up to 88%) and improved treatment performances. However, the decrease of protozoan richness to small flagellates and free-swimming ciliates was noticed. Moreover, the developed protozoan trophic network was found to be different from that identified in the conventional activated sludge system. The study emphasized that high increase of bacterial biomass promoted in nutrient- and organic matter-rich wastewater can strongly affect the treatment performances as a result of the shadow effect produced on the photoautotrophic microalgae aggregates. PMID:24759517

  14. Protein Kinase C Activity and Light Sensitivity of Single Amphibian Rods

    PubMed Central

    Xiong, W.-H.; Nakatani, K.; Ye, B.; Yau, K.-W.

    1997-01-01

    Biochemical experiments by others have indicated that protein kinase C activity is present in the rod outer segment, with potential or demonstrated targets including rhodopsin, transducin, cGMP-phosphodiesterase (PDE), guanylate cyclase, and arrestin, all of which are components of the phototransduction cascade. In particular, PKC phosphorylations of rhodopsin and the inhibitory subunit of PDE (PDE γ) have been studied in some detail, and suggested to have roles in downregulating the sensitivity of rod photoreceptors to light during illumination. We have examined this question under physiological conditions by recording from a single, dissociated salamander rod with a suction pipette while exposing its outer segment to the PKC activators phorbol-12-myristate,13-acetate (PMA) or phorbol-12,13-dibutyrate (PDBu), or to the PKC-inhibitor GF109203X. No significant effect of any of these agents on rod sensitivity was detected, whether in the absence or presence of a background light, or after a low bleach. These results suggest that PKC probably does not produce any acute downregulation of rod sensitivity as a mechanism of light adaptation, at least for isolated amphibian rods. PMID:9379174

  15. The activation of directional stem cell motility by green light-emitting diode irradiation.

    PubMed

    Ong, Wei-Kee; Chen, How-Foo; Tsai, Cheng-Ting; Fu, Yun-Ju; Wong, Yi-Shan; Yen, Da-Jen; Chang, Tzu-Hao; Huang, Hsien-Da; Lee, Oscar Kuang-Sheng; Chien, Shu; Ho, Jennifer Hui-Chun

    2013-03-01

    Light-emitting diode (LED) irradiation is potentially a photostimulator to manipulate cell behavior by opsin-triggered phototransduction and thermal energy supply in living cells. Directional stem cell motility is critical for the efficiency and specificity of stem cells in tissue repair. We explored that green LED (530 nm) irradiation directed the human orbital fat stem cells (OFSCs) to migrate away from the LED light source through activation of extracellular signal-regulated kinases (ERK)/MAP kinase/p38 signaling pathway. ERK inhibitor selectively abrogated light-driven OFSC migration. Phosphorylation of these kinases as well as green LED irradiation-induced cell migration was facilitated by increasing adenosine triphosphate (ATP) production in OFSCs after green LED exposure, and which was thermal stress-independent mechanism. OFSCs, which are multi-potent mesenchymal stem cells isolated from human orbital fat tissue, constitutionally express three opsins, i.e. retinal pigment epithelium-derived rhodopsin homolog (RRH), encephalopsin (OPN3) and short-wave-sensitive opsin 1 (OPN1SW). However, only two non-visual opsins, i.e. RRH and OPN3, served as photoreceptors response to green LED irradiation-induced OFSC migration. In conclusion, stem cells are sensitive to green LED irradiation-induced directional cell migration through activation of ERK signaling pathway via a wavelength-dependent phototransduction.

  16. The study of visible light active bismuth modified nitrogen doped titanium dioxide photocatlysts: Role of bismuth

    NASA Astrophysics Data System (ADS)

    Bagwasi, Segomotso; Niu, Yuxiao; Nasir, Muhammad; Tian, Baozhu; Zhang, Jinlong

    2013-01-01

    Bismuth modified nitrogen doped TiO2 nanoparticles have been successfully prepared by two steps synthesis route which includes hydrothermal and impregnation hydrolysis method. Samples were characterized using X-ray diffraction (XRD), N2 physical adsorption, Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Fourier Transmission Infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PLS) technologies. The preparatory method afforded the production of well crystallized spherical Bi modified N-doped TiO2 nanoparticles with varied amounts of Bi content. XRD analysis results reveal that Bi exists as rare metastable Bi20TiO32 which started to surface at Bi loading content of 7 mol% in relation to Ti ions. All Bi modified N-TiO2 samples exhibited higher photocatalytic activity toward degradation of 2,4-DCP over N-TiO2 under visible light irradiation. The sample with 10% composition of the Bi20TiO32 exhibited the highest activity. The superior photocatalytic performance of 10%Bi/N-TiO2 is attributed to high visible light absorption as well as effective charge carrier separation. Therefore, the role of Bi species in the N-TiO2 is improvement of visible light harvesting and facilitation of charge carrier separation hence alleviating electron-hole recombination.

  17. Light-evoked synaptic activity of retinal ganglion and amacrine cells is regulated in developing mouse retina

    PubMed Central

    He, Quanhua; Wang, Ping; Tian, Ning

    2010-01-01

    Recent studies have shown a continued maturation of visual responsiveness and synaptic activity of retina after eye opening, including the size of receptive fields of retinal ganglion cells (RGCs), light-evoked synaptic output of RGCs, bipolar cell spontaneous synaptic inputs to RGCs, and the synaptic connections between RGCs and ON and OFF bipolar cells. Light deprivation retarded some of these age-dependent changes. However, many other functional and morphological features of RGCs are not sensitive to visual experience. To determine whether light-evoked synaptic responses of RGCs undergo developmental change, we directly examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to RGCs in developing retinas and found that both light-evoked excitatory and inhibitory synaptic currents decreased, but not increased, with age. We also examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to amacrine cells in developing retinas and found that the light-evoked synaptic input of amacrine cells is also down-regulated in developing mouse retina. Different from the developmental changes of RGC spontaneous synaptic activity, dark rearing has little effect on the developmental changes of light-evoked synaptic activity of both RGCs and amacrine cells. Therefore, we concluded that the synaptic mechanisms mediating spontaneous and light-evoked synaptic activity of RGCs and amacrine cells are likely to be different. PMID:21091802

  18. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments.

    PubMed

    Miki, N; Baraban, J M; Keirns, J J; Boyce, J J; Bitensky, M W

    1975-08-25

    Frog (Rana catesbiana) rod outer segment disc membranes contain a cyclic nucleotide phosphodiesterase (EC 3.1.4.17) which is activated by light in the presence of ATP. This enzyme is firmly bound to the disc membrane, but can be eluted from the membrane with 10 mM Tris-HCl buffer, pH 7.4 and 2 mM EDTA. The eluted phosphodiesterase has reduced activity, but can be activated approximately 10-fold by polycations such as protamine and polylysine. The eluted phosphodiesterase can no longer be activated by light in the presence of ATP, that is, activation by light apparently depends on the native orientation of phosphodiesterase in relationship to other disc membrane components. The eluted phosphodiesterase was purified to homogeneity as judged by analytical polyacrylamide gel electrophoresis and polyacrylamide gel isoelectric focusing. The over-all purification from intact retina was approximately 925-fold. The purification of phosphodiesterase from the isolated rod outer segment preparation was about 185-fold with a 28% yield. Phosphodiesterase accounts for approximately 0.5% of the disc membrane protein. The eluted phosphodiesterase (inactive form) has a sedimentation coefficient of 12.4 S corresponding to an approximate molecular weight of 240,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis separates the purified phosphodiesterase into two subunits of 120,000 and 110,000 daltons. With cyclic 3':5'-GMP (cGMP) as substrate the Km for the purified phosphodiesterase is 70 muM. Protamine increases the Vmax without changing the Km for cGMP. The isoelectric point (pI) of the native dimer is 5.7. Limited exposure of the eluted phosphodiesterase (inactive form) to trypsin produces a somewhat greater activation than is obtained with 0.5 mg/ml of protamine. The trypsin-activated phosphodiesterase has a sedimentation coefficient of 7.8 S corresponding to an approximate molecular weight of 170,000. The 110,000-dalton subunit is much less sensitive to trypsin

  19. Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole

    NASA Astrophysics Data System (ADS)

    Duan, Fang; Zhang, Qianhong; Shi, Dongjian; Chen, Mingqing

    2013-03-01

    Enhanced visible light photocatalytic activity of Bi2WO6 photocatalyst modified with different amounts of polypyrrole (PPy) was synthesized by 'in situ' deposition oxidative polymerization of pyrrole. The as-prepared PPy/Bi2WO6 composites were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse absorption spectra. The photocatalytic activities of the PPy/Bi2WO6 samples were determined by photocatalytic degradation of rhodamine-B (RhB) and methylene blue (MB) in aqueous solution under visible light irradiation. The results indicated that the existence of PPy did not affect the crystal structure and the morphology of Bi2WO6 photocatalyst, but showed great influences on the photocatalytic activity of Bi2WO6. Besides, an optimal content of PPy on the surface of Bi2WO6 photocatalyst with the highest photocatalytic ability was discovered, and the obtained PPy/Bi2WO6 photocatalysts showed high stability and did not photocorrode during the photocatalytic process. The possible mechanism of enhanced photocatalytic activities of PPy/Bi2WO6 samples was also discussed in this work.

  20. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation.

    PubMed

    Hoar, P E; Kerrick, W G

    1988-08-01

    Two effects of Mn2+ on skinned fibers from chicken gizzard smooth muscle were observed, dependent on the presence or absence of dithiothreitol (DTT) reducing agent. One involves protein oxidation (in the absence of DTT) with production of a "latch"-like state, and the other involves direct Mn2+ activation of contractile proteins. Cells activated by Mn2+ in the presence of ATP and the absence of Ca2+, Mg2+ and DTT did not relax when transferred to normal relaxing solutions. In contrast, when 5 mM DTT was included in the Mn2+ contracting solution to prevent protein oxidation by Mn2+, the cells still contracted when exposed to Mn2+, but relaxed rapidly when the Mn2+ was removed. In the presence of DTT both the Mn2+ activation and the relaxation following removal of Mn2+ were more rapid than normal Ca2+-activated contractions and relaxations. The skinned fibers activated by Mn2+ in the absence of DTT showed little active shortening unless DTT was added. This rigor-like state is probably due to oxidation of contractile proteins since the cells relaxed when exposed to a relaxing solution containing DTT (50 mM) and then contracted again in response to Ca2+ and relaxed normally. The Mn2+ activation was not associated with myosin light chain phosphorylation, in contrast to Ca2+-activated contractions. PMID:3186428

  1. Assessment of disease activity in Systemic Lupus Erythematosus: Lights and shadows.

    PubMed

    Ceccarelli, Fulvia; Perricone, Carlo; Massaro, Laura; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Valesini, Guido; Conti, Fabrizio

    2015-07-01

    The assessment of disease activity in patients affected by Systemic Lupus Erythematosus (SLE) represents an important issue, as recommended by the European League Against Rheumatism (EULAR). Two main types of disease activity measure have been proposed: the global score systems, providing an overall measure of activity, and the individual organ/system assessment scales, assessing disease activity in different organs. All the activity indices included both clinical and laboratory items, related to the disease manifestations. However, there is no gold standard to measure disease activity in patients affected by SLE. In this review, we will analyze the lights and shadows of the disease activity indices, by means of a critical approach. In particular, we will focus on SLE Disease Activity Index (SLEDAI) and British Isles Lupus Assessment Group (BILAG), the most frequently used in randomized controlled trials and observational studies. The evaluation of data from the literature underlined some limitations of these indices, making their application in clinical practice difficult and suggesting the possible use of specific tools in the different subset of SLE patients, in order to capture all the disease features.

  2. Biodiversity and importance of floating weeds of Dara Ismail, Khan District of KPK, Pakistan.

    PubMed

    Marwat, Sarfaraz Khan; Khan, Mir Ajab; Fazal-ur-Rehman; Ahmad, Mushtaq; Zafar, Muhammad

    2011-01-01

    The present paper is based on the results of taxonomic research work conducted in Dera Ismail Khan District of KPK, Pakistan, during 2005 - 2007. The area was extensively surveyed in order to collect floating aquatic weeds. From the study area 11 floating aquatic weed species belonging to 9 genera and 9 families were collected and identified in the light of available literature. These plants include Bryophytes: 1 species, Ricciocarpus natans (L.) Corda; Pteridophytes: 2 species, Azolla pinnata R.Br. and Marselia quadrifolia L., and Spermatophytes: 8 species, Lemna aequinoctialis Welw., L. gibba L., Marselia quadrifoliata L. Nelumbo nucifera Gaerth., Nymphoides cristata (Roxb.) O. Ketze. Nymphoides indica (L.) Kuntze:, Pistia stratiotes L. Potamogeton nodosus Poiret and Spirodela polyrrhiza (L.) Schleid. Floating weeds on one hand cause serious problems and on the other hand they are used for various purposes. Data inventory consists of botanical name, family, major group, habit and habitat, flowering period, availability, distribution in D.I.Khan, Pakistan and world, beneficial and harmful effects. Key to the floating aquatic species of the area was developed for easy and correct identification and differentiation. PMID:22754062

  3. Biodiversity and importance of floating weeds of Dara Ismail, Khan District of KPK, Pakistan.

    PubMed

    Marwat, Sarfaraz Khan; Khan, Mir Ajab; Fazal-ur-Rehman; Ahmad, Mushtaq; Zafar, Muhammad

    2011-01-01

    The present paper is based on the results of taxonomic research work conducted in Dera Ismail Khan District of KPK, Pakistan, during 2005 - 2007. The area was extensively surveyed in order to collect floating aquatic weeds. From the study area 11 floating aquatic weed species belonging to 9 genera and 9 families were collected and identified in the light of available literature. These plants include Bryophytes: 1 species, Ricciocarpus natans (L.) Corda; Pteridophytes: 2 species, Azolla pinnata R.Br. and Marselia quadrifolia L., and Spermatophytes: 8 species, Lemna aequinoctialis Welw., L. gibba L., Marselia quadrifoliata L. Nelumbo nucifera Gaerth., Nymphoides cristata (Roxb.) O. Ketze. Nymphoides indica (L.) Kuntze:, Pistia stratiotes L. Potamogeton nodosus Poiret and Spirodela polyrrhiza (L.) Schleid. Floating weeds on one hand cause serious problems and on the other hand they are used for various purposes. Data inventory consists of botanical name, family, major group, habit and habitat, flowering period, availability, distribution in D.I.Khan, Pakistan and world, beneficial and harmful effects. Key to the floating aquatic species of the area was developed for easy and correct identification and differentiation.

  4. Design of crossed-mirror array to form floating 3D LED signs

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hirotsugu; Bando, Hiroki; Kujime, Ryousuke; Suyama, Shiro

    2012-03-01

    3D representation of digital signage improves its significance and rapid notification of important points. Our goal is to realize floating 3D LED signs. The problem is there is no sufficient device to form floating 3D images from LEDs. LED lamp size is around 1 cm including wiring and substrates. Such large pitch increases display size and sometimes spoils image quality. The purpose of this paper is to develop optical device to meet the three requirements and to demonstrate floating 3D arrays of LEDs. We analytically investigate image formation by a crossed mirror structure with aerial aperture, called CMA (crossed-mirror array). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. We have fabricated CMA for 3D array of LEDs. One CMA unit contains 20 x 20 apertures that are located diagonally. Floating image of LEDs was formed in wide range of incident angle. The image size of focused beam agreed to the apparent aperture size. When LEDs were located three-dimensionally (LEDs in three depths), the focused distances were the same as the distance between the real LED and the CMA.

  5. An in vitro thermal analysis during different light-activated hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Kabbach, W.; Zezell, D. M.; Bandéca, M. C.; Pereira, T. M.; Andrade, M. F.

    2010-09-01

    This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups ( n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED ( p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study.

  6. Earthquake lights and the stress-activation of positive hole charge carriers in rocks

    USGS Publications Warehouse

    St-Laurent, F.; Derr, J.S.; Freund, F.T.

    2006-01-01

    Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Active Light Control of the MoS2 Monolayer Exciton Binding Energy.

    PubMed

    Li, Ziwei; Xiao, Yingdong; Gong, Yongji; Wang, Zongpeng; Kang, Yimin; Zu, Shuai; Ajayan, Pulickel M; Nordlander, Peter; Fang, Zheyu

    2015-10-27

    Plasmonic excitation of Au nanoparticles deposited on a MoS2 monolayer changes the absorption and photoluminescence characteristics of the material. Hot electrons generated from the Au nanoparticles are transferred into the MoS2 monolayers, resulting in n-doping. The doping effect of plasmonic hot electrons modulates the dielectric permittivity of materials, resulting in a red shift of both the absorption and the photoluminescence spectrum. This spectroscopic tuning was further investigated experimentally by using different Au nanoparticle concentrations, excitation laser wavelengths, and intensities. An analytical model for the photoinduced modulation of the MoS2 dielectric function and its exciton binding energy change is developed and used to estimate the doping density of plasmonic hot electrons. Our approach is important for the development of photonic devices for active control of light by light.

  8. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts.

    PubMed

    Kuriki, Ryo; Sekizawa, Keita; Ishitani, Osamu; Maeda, Kazuhiko

    2015-02-16

    A heterogeneous photocatalyst system that consists of a ruthenium complex and carbon nitride (C3N4), which act as the catalytic and light-harvesting units, respectively, was developed for the reduction of CO2 into formic acid. Promoting the injection of electrons from C3N4 into the ruthenium unit as well as strengthening the electronic interactions between the two units enhanced its activity. The use of a suitable solvent further improved the performance, resulting in a turnover number of greater than 1000 and an apparent quantum yield of 5.7% at 400 nm. These are the best values that have been reported for heterogeneous photocatalysts for CO2 reduction under visible-light irradiation to date.

  9. Taming the flow of light via active magneto-optical impurities

    NASA Astrophysics Data System (ADS)

    Kalish, Samuel; Ramezani, Hamidreza; Lin, Zin; Kottos, Tsampikos; Kovanis, Vassilios; Vitebskiy, Ilya

    2013-03-01

    We demonstrate that the interplay of a magneto-optical layer sandwiched between two judiciously balanced gain and loss layers which are both birefringent with misaligned in-plane anisotropy, induces unidirectional electromagnetic modes. Embedding one such optically active non-reciprocal unit between a pair of birefringent Bragg reflectors, results in an exceptionally strong asymmetry in light transmission. Remarkably, such asymmetry persists regardless of the incident light polarization. This photonic architecture may be used as the building block for chip-scale non-reciprocal devices such as optical isolators and circulators. This research was supported by an AFOSR No. FA 9550-10-1-0433 grant and LRIR 09RY04COR grant, and by an NSF ECCS-1128571 grant.

  10. 33 CFR 144.01-5 - Location and launching of life floats.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms §...

  11. Sink or Float. Modified Primary. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This publication provides information and activities for teaching about water, whether certain objects will sink or float, and process skills including observing, classifying, inferring, measuring, predicting, and collecting and interpreting data. There are 14 lessons in the unit. The first four lessons deal with the classification of objects and…

  12. STS-39 MS Hieb floats in single person life raft in JSC's WETF Bldg 29 pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft after landing in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. During emergency egress bailout procedures, Hieb practiced procedures necessary for a water landing. Divers monitor Hieb's activity.

  13. Floating and Sinking: First Teacher Trials. Learning in Science Project (Primary). Working Paper No. 120.

    ERIC Educational Resources Information Center

    Appleton, Ken; And Others

    Two booklets were developed by the Learning in Science Project (Primary)--LISP(P)--to help teachers adopt an approach to primary science teaching which would enhance children's understanding of floating and sinking. Both booklets were designed to enable teachers to reconceptualize their teaching task from activity-driven, didactic teaching to…

  14. Floating and Sinking: Second Teacher Trials. Learning in Science Project (Primary). Working Paper No. 121.

    ERIC Educational Resources Information Center

    Biddulph, Fred; And Others

    Two booklets were developed by the Learning in Science Project (primary)--LISP(P)--to help teachers adopt an approach to science teaching which would enhance children's understanding of floating and sinking; the strategy enables teachers to reconceptualize their teaching task from activity-driven, didactic teaching to conceptual-change teaching.…

  15. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings.

    PubMed

    Pavlovič, Andrej; Stolárik, Tibor; Nosek, Lukáš; Kouřil, Roman; Ilík, Petr

    2016-06-01

    Gymnosperms, unlike angiosperms, are able to synthesize chlorophyll and form photosystems in complete darkness. Photosystem I (PSI) formed under such conditions is fully active, but photosystem II (PSII) is present in its latent form with inactive oxygen evolving complex (OEC). In this work we have studied light-induced gradual changes in PSII function in dark-grown cotyledons of Norway spruce (Picea abies) via the measurement of chlorophyll a fluorescence rise, absorption changes at 830 nm, thermoluminescence glow curves (TL) and protein analysis. The results indicate that in dark-grown cotyledons, alternative reductants were able to act as electron donors to PSII with inactive OEC. Illumination of cotyledons for 5 min led to partial activation of PSII, which was accompanied by detectable oxygen evolution, but still a substantial number of PSII centers remained in the so called PSII-Q(B)-non-reducing form. Interestingly, even 24 h long illumination was not sufficient for the full activation of PSII centers. This was evidenced by a weak attachment of PsbP protein and the absence of PsbQ protein in PSII particles, the absence of PSII supercomplexes, the suboptimal maximum yield of PSII photochemistry, the presence of C band in TL curve and also the presence of up-shifted Q band in TL in DCMU-treated cotyledons. This slow light-induced activation of PSII in dark-grown cotyledons could contribute to the prevention of PSII overexcitation before the light-induced increase in PSI/PSII ratio allows effective operation of linear electron flow. PMID:26901522

  16. Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings.

    PubMed

    Pavlovič, Andrej; Stolárik, Tibor; Nosek, Lukáš; Kouřil, Roman; Ilík, Petr

    2016-06-01

    Gymnosperms, unlike angiosperms, are able to synthesize chlorophyll and form photosystems in complete darkness. Photosystem I (PSI) formed under such conditions is fully active, but photosystem II (PSII) is present in its latent form with inactive oxygen evolving complex (OEC). In this work we have studied light-induced gradual changes in PSII function in dark-grown cotyledons of Norway spruce (Picea abies) via the measurement of chlorophyll a fluorescence rise, absorption changes at 830 nm, thermoluminescence glow curves (TL) and protein analysis. The results indicate that in dark-grown cotyledons, alternative reductants were able to act as electron donors to PSII with inactive OEC. Illumination of cotyledons for 5 min led to partial activation of PSII, which was accompanied by detectable oxygen evolution, but still a substantial number of PSII centers remained in the so called PSII-Q(B)-non-reducing form. Interestingly, even 24 h long illumination was not sufficient for the full activation of PSII centers. This was evidenced by a weak attachment of PsbP protein and the absence of PsbQ protein in PSII particles, the absence of PSII supercomplexes, the suboptimal maximum yield of PSII photochemistry, the presence of C band in TL curve and also the presence of up-shifted Q band in TL in DCMU-treated cotyledons. This slow light-induced activation of PSII in dark-grown cotyledons could contribute to the prevention of PSII overexcitation before the light-induced increase in PSI/PSII ratio allows effective operation of linear electron flow.

  17. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response

    PubMed Central

    Barrionuevo, Pablo A.; Cao, Dingcai

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a “winner-takes-all” process, suggesting the integration with PC signals might be mediated by a postretinal site. PMID:27690169

  18. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  19. Activity patterns during food provisioning are affected by artificial light in free living great tits (Parus major).

    PubMed

    Titulaer, Mieke; Spoelstra, Kamiel; Lange, Cynthia Y M J G; Visser, Marcel E

    2012-01-01

    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds.

  20. Electrowetting propulsion of water-floating objects

    NASA Astrophysics Data System (ADS)

    Chung, Sang Kug; Ryu, Kyungjoo; Cho, Sung Kwon

    2009-07-01

    This letter describes a propulsion principle along with experimental verification of this principle by which an air-to-water interface vertically oscillated by ac electrowetting generates a quasisteady, "streaming" flow that can be utilized to propel water-floating objects. This propulsion does not require any mechanical moving parts. Using a centimeter-sized boat whose outer surfaces were covered with microfabricated electrowetting electrodes, linear, and rotational motions of the boat were achieved up to maximum speeds of 5 mm/s and 20 rpm, respectively. By combining the above two motions, the boat was successfully propelled and steered along a curvilinear pathline. A potential application of this principle is to propel and maneuver various water-floating mini/microrobots and boats used for water/air quality monitoring or surveillance/security purposes.

  1. Preparation of floating microspheres for fish farming.

    PubMed

    Nepal, Pushp R; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2007-08-16

    The aim of this study was to develop floating microspheres with practical applications to fish farming. Each microsphere with a central hollow cavity was prepared using a solvent diffusion and evaporation method with Eudragit E100. Various manufacturing parameters were investigated by single factor method. The macrolide antibiotic josamycin was selected as a model drug. The loading efficiency of the drug in the microspheres was 64.7%. In the release study, virtually none of the drug was released into the fresh water whereas the entire drug was released from the josamycin-loaded microspheres into the simulated gastric fluid of rainbow trout (pH 2.7). The buoyancy was excellent with approximately 90% of the microspheres still floating after 24h.

  2. Direct observation of frequency modulated transcription in single cells using light activation

    PubMed Central

    Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H

    2013-01-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527

  3. Light-induced cooling of active medium of CW TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Azharonok, Viktor V.; Filatova, Irina I.; Shimanovich, Vladimir D.

    2003-10-01

    In the present paper a gas kinetic temperature change of active medium of high-power TEA CO2 laser that is conditioned by a self-influence of laser radiation on plasma parameters, is investigated. The active medium was pumped by a self-sustained transverse glow discharge. The gas kinetic temperature Tg of plasma has been deduced from the half-width of rotationally unresolved spectral bands of the (2+)N2. It is shown that the laser radiation propagation through the inverse medium causes a cooling of the active medium. The degree of the gas mixture cooling δTg~5K at W~2.2 W/2.2 W/cm3 and δTg~60 K at W~4.4 W/cm3. We suppose that the effect of the active medium cooling is connected with the change of a kinetic of V-T relaxation in asymmetrical mode of the active medium cooling is connected with the change of a kinetic of V-T relaxation in asymmetrical mode of the active medium cooling is connected with with the change of a kinetic of V-T relaxation in asymmetrical mode of vibrationally-excited CO2 molecule when the lasing takes place in the laser resonator. Analytical estimation of light-induced temperature change δT*g of fast-flow TEA CO2-laser active medium are compared with the experimental ones.

  4. The Light-Curve and Rotation Rate of 'Active Asteroid' 313P/Gibbs

    NASA Astrophysics Data System (ADS)

    Milewski, Dave Gerald

    2016-10-01

    The 'Active Asteroids' are a strange, yet newly discovered class of small bodies in the Solar System that have the orbital and dynamical properties of asteroids, but also the physical properties of comets (ejection of dust and volatile materials). Of the known ~25 Active Asteroids discovered thus far (Jewitt, Hseih, Argwal, 2015), only 4 have been known to be active on subsequent multiple occasions 238P/Read, 133P/Elst-Pizarro, 324P/La Sagra, (Jewitt et al. 2016) and 313P/Gibbs. In this work, we have determined the rotation rate and light-curve for Active Asteroid 313P/Gibbs using the Keck 10-m telescope to better understand the mechanisms and drivers of subsequent activity in this Solar System Small Body so that we may form a more complete picture of this population, better characterize them, and add to our inventory of Solar System small bodies to form a more complete model of the formation of the Solar System as well as what this may imply for future detection of activity in the Active Asteroid population.

  5. TVFMCATS. Time Variant Floating Mean Counting Algorithm

    SciTech Connect

    Huffman, R.K.

    1999-05-01

    This software was written to test a time variant floating mean counting algorithm. The algorithm was developed by Westinghouse Savannah River Company and a provisional patent has been filed on the algorithm. The test software was developed to work with the Val Tech model IVB prototype version II count rate meter hardware. The test software was used to verify the algorithm developed by WSRC could be correctly implemented with the vendor`s hardware.

  6. Time Variant Floating Mean Counting Algorithm

    SciTech Connect

    Huffman, Russell Kevin

    1999-06-03

    This software was written to test a time variant floating mean counting algorithm. The algorithm was developed by Westinghouse Savannah River Company and a provisional patent has been filed on the algorithm. The test software was developed to work with the Val Tech model IVB prototype version II count rate meter hardware. The test software was used to verify the algorithm developed by WSRC could be correctly implemented with the vendor''s hardware.

  7. Floating vs flying: A propulsion energy comparison

    NASA Technical Reports Server (NTRS)

    Marbury, F.

    1975-01-01

    Floating craft are compared to those that fly. Drag/weight for floaters is shown to be proportional to v squared/L, while for flyers it is independent of size and speed. The transportation market will therefore assign airships to lower speeds than airplanes, and will favor large airship sizes. Drag of an airship is shown to be only 11 percent of submarine drag at equal displacement and speed, raising the possibility that airships can compete with some types of ships.

  8. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12∶12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  9. Liquid encapsulated float zone process and apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Frazier, Donald O. (Inventor); Lehoczky, Sandor L. (Inventor); Vlasse, Marcus (Inventor); Facemire, Barbara R. (Inventor)

    1988-01-01

    The process and apparatus for growing crystals using float zone techniques are described. A rod of crystalline materials is disposed in a cylindrical container, leaving a space between the rod and container walls. This space is filled with an encapsulant, selected to have a slightly lower melting point than the crystalline material. The rod is secured to a container end cap at one end and to a shaft at its other end. A piston slides over the rod and provides pressure to prevent loss of volatile components upon melting of the rod. Prior to melting the rod the container is first heated to melt the encapsulant, with any off-gas from this step being vented to a cavity behind the piston. The piston moves slightly forward owing to volume change upon melting of the encapsulant, and the vent passageway is closed. The container is then moved longitudinally through a heated zone to progressively melt sections of the rod as in conventional float zone processes. The float zone technique may be used in the microgravity environment of space.

  10. Floating debris in the Mediterranean Sea.

    PubMed

    Suaria, Giuseppe; Aliani, Stefano

    2014-09-15

    Results from the first large-scale survey of floating natural (NMD) and anthropogenic (AMD) debris (>2 cm) in the central and western part of the Mediterranean Sea are reported. Floating debris was found throughout the entire study area with densities ranging from 0 to 194.6 items/km(2) and mean abundances of 24.9 AMD items/km(2) and 6.9 NMD items/km(2) across all surveyed locations. On the whole, 78% of all sighted objects were of anthropogenic origin, 95.6% of which were petrochemical derivatives (i.e. plastic and styrofoam). Maximum AMD densities (>52 items/km(2)) were found in the Adriatic Sea and in the Algerian basin, while the lowest densities (<6.3 items/km(2)) were observed in the Central Tyrrhenian and in the Sicilian Sea. All the other areas had mean densities ranging from 10.9 to 30.7 items/km(2). According to our calculations, more than 62 million macro-litter items are currently floating on the surface of the whole Mediterranean basin.

  11. Borofloat and Starphire Float Glasses: A Comparison

    SciTech Connect

    Wereszczak, Andrew A.; Anderson Jr., Charles E.

    2014-10-28

    Borofloat® borosilicate float glass and Starphire® soda-lime silicate float glass are used in transparent protective systems. They are known to respond differently in some ballistic and triaxial loading conditions, and efforts are underway to understand the causes of those differences. Toward that, a suite of test and material characterizations were completed in the present study on both glasses so to identify what differences exist among them. Compositional, physical properties, elastic properties, flaw size distributions and concentrations, tensile/flexure strength, fracture toughness, spherical indentation and hardness, transmission electron microscopy, striae, high pressure responses via diamond anvil cell testing, laser shock differences, and internal porosity were examined. Differences between these two float glasses were identified for many of these properties and characteristics, and the role of three (striae, high pressures where permanent densification can initiate, and sub-micron-sized porosity) lack understanding and deserve further attention. Lastly, the contributing roles of any of those properties or characteristics to triaxial or ballistic loading responses are not definitive; however, they provide potential correlations that may lead to improved understanding and management of loading responses in glasses used in transparent protective systems.

  12. Borofloat and Starphire Float Glasses: A Comparison

    DOE PAGES

    Wereszczak, Andrew A.; Anderson Jr., Charles E.

    2014-10-28

    Borofloat® borosilicate float glass and Starphire® soda-lime silicate float glass are used in transparent protective systems. They are known to respond differently in some ballistic and triaxial loading conditions, and efforts are underway to understand the causes of those differences. Toward that, a suite of test and material characterizations were completed in the present study on both glasses so to identify what differences exist among them. Compositional, physical properties, elastic properties, flaw size distributions and concentrations, tensile/flexure strength, fracture toughness, spherical indentation and hardness, transmission electron microscopy, striae, high pressure responses via diamond anvil cell testing, laser shock differences, andmore » internal porosity were examined. Differences between these two float glasses were identified for many of these properties and characteristics, and the role of three (striae, high pressures where permanent densification can initiate, and sub-micron-sized porosity) lack understanding and deserve further attention. Lastly, the contributing roles of any of those properties or characteristics to triaxial or ballistic loading responses are not definitive; however, they provide potential correlations that may lead to improved understanding and management of loading responses in glasses used in transparent protective systems.« less

  13. Floating debris in the Mediterranean Sea.

    PubMed

    Suaria, Giuseppe; Aliani, Stefano

    2014-09-15

    Results from the first large-scale survey of floating natural (NMD) and anthropogenic (AMD) debris (>2 cm) in the central and western part of the Mediterranean Sea are reported. Floating debris was found throughout the entire study area with densities ranging from 0 to 194.6 items/km(2) and mean abundances of 24.9 AMD items/km(2) and 6.9 NMD items/km(2) across all surveyed locations. On the whole, 78% of all sighted objects were of anthropogenic origin, 95.6% of which were petrochemical derivatives (i.e. plastic and styrofoam). Maximum AMD densities (>52 items/km(2)) were found in the Adriatic Sea and in the Algerian basin, while the lowest densities (<6.3 items/km(2)) were observed in the Central Tyrrhenian and in the Sicilian Sea. All the other areas had mean densities ranging from 10.9 to 30.7 items/km(2). According to our calculations, more than 62 million macro-litter items are currently floating on the surface of the whole Mediterranean basin. PMID:25127501

  14. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    PubMed

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  15. Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light.

    PubMed

    Eisenman, Lawrence N; Shu, Hong-Jin; Akk, Gustav; Wang, Cunde; Manion, Brad D; Kress, Geraldine J; Evers, Alex S; Steinbach, Joe Henry; Covey, Douglas F; Zorumski, Charles F; Mennerick, Steven

    2007-04-01

    Most photoactivatable compounds suffer from the limitations of the ultraviolet wavelengths that are required for activation. We synthesized a neuroactive steroid analog with a fluorescent (7-nitro-2,1,3-benzoxadiazol-4-yl) amino (NBD) group in the beta configuration at the C2 position of (3alpha,5alpha)-3-hydroxypregnan-20-one (allopregnanolone, 3alpha5alphaP). Light wavelengths (480 nm) that excite compound fluorescence strongly potentiate GABAA receptor function. Potentiation is limited by photodepletion of the receptor-active species. Photopotentiation is long-lived and stereoselective and shows single-channel hallmarks similar to steroid potentiation. Other NBD-conjugated compounds also generate photopotentiation, albeit with lower potency. Thus, photopotentiation does not require a known ligand for neurosteroid potentiating sites on the GABAA receptor. Photoactivation of a membrane-impermeant, fluorescent steroid analog demonstrates that membrane localization is critical for activity. The photoactivatable steroid silences pathological spiking in cultured rat hippocampal neurons and anesthetizes tadpoles. Fluorescent steroids photoactivated by visible light may be useful for modulating GABAA receptor function in a spatiotemporally defined manner.

  16. Nonmetal species in the carbon modified TiO2 and its visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Shi, Yanfen; Chen, Feng; Zhang, Jinlong

    2013-01-01

    A carbon modified TiO2 (CT) was synthesized by hydrolyzing titanium tetrachloride with diethylamine and calcination at 400 °C. CT was then handled with a NaOH aqueous solution elution and a subsequent re-assembling treatment. X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), thermogravimetric and differential thermal analysis (TG-DTA), chemical oxygen demand (COD) and UV-vis diffuse reflectance spectroscopy (DRS) were then used to assess the changes of CT during the whole process. It is revealed that carbon in the CT should mostly be presented as surface deposited organic matters but not likely doped into the TiO2 lattice. CT exhibits obvious visible absorption and high photocatalytic activity for the degradation of 2,4-dichlorophenol (DCP) under visible light irradiation. Meanwhile, CT photocatalyst possesses excellent stability and reusability. NaOH solution elution washes off a large amount of surface deposited organics and worsens the visible absorbance and photocatalytic activity of CT, which can be well recovered by the re-assembling treatment. The re-assembled photocatalyst, CTSL, exhibits exhibits a very similar photocataytic activity with CT for degradation of DCP under the visible light irradiation, but is much higher than that of CTS.

  17. Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage.

    PubMed

    Okamoto, Yoshinori; Hayashi, Tomohiro; Matsunami, Shinpei; Ueda, Koji; Kojima, Nakao

    2008-08-01

    Methyl paraben (MP) is often used as a preservative in foods, drugs, and cosmetics because of its high reliability in safety based on the rapid excretion and nonaccumulation following administration. Light irradiation sometimes produces unexpected activity from chemicals such as MP; furthermore, there is ample opportunity for MP to be exposed to sunlight. Here, we investigated whether MP shows DNA damage after sunlight irradiation. Two major photoproducts, p-hydroxybenzoic acid (PHBA) and 3-hydroxy methyl paraben (MP-3OH), were detected after sunlight irradiation to an aqueous MP solution. Both photoproducts were inactive in the in vitro DNA damage assay that measures oxidized guanine formed in calf thymus DNA in the presence of divalent copper ion, a known mediator of oxidative DNA damage. Simulated MP metabolism using dermal tissues after light irradiation produced these two photoproducts, which reacted with a microsomal fraction (S9) of the skin. A metabolite from MP-3OH, not PHBA, caused distinct DNA damage in the in vitro assay. This active metabolite was identified as protocatechuic acid, a hydrolyzed MP-3OH product. In addition, NADH, a cellular reductant, enhanced DNA damage by approximately five times. These results suggest that reactive oxygen species generated by the redox cycle via metal ion and catechol autoxidation are participating in oxidative DNA damage. This study reveals that MP might cause skin damage involving carcinogenesis through the combined activation of sunlight irradiation and skin esterases.

  18. Seasonal Flight Activity of the Sugarcane Beetle (Coleoptera: Scarabaeidae) in North Carolina Using Black Light Traps.

    PubMed

    Billeisen, T L; Brandenburg, R L

    2016-04-01

    Seasonal flight activity, adult beetle sex count, and egg production were examined in sugarcane beetles Euetheola rugiceps (LeConte) caught in light traps in North Carolina from the fall of 2009 through the summer of 2014. A regression model using variable environmental conditions as predictive parameters was developed to examine the impact of these conditions on flight activity. Depending on flight trap location and sampling years, beetles exhibited an inconsistent flight pattern, with the majority of adults flying in the spring (April-June) and intermittently in the fall (September-October). Our model indicated that larger numbers of adults collected from traps coincided with an increase in average soil temperature. Sugarcane beetles also exhibit a synchronous emergence during both periods of flight activity. Eggs were detected in females collected from light traps every week throughout the entire sampling period. The majority of females produced 7-12 eggs, with most egg production occurring between 15 May and 1 August. The findings of this research provide adult sugarcane beetle emergence and flight behavior information necessary to determine optimal pesticide application timing.

  19. Visible Light Active Cu2+/TiO2 Nanocatalyst for Degradation of Dichlorvos

    NASA Astrophysics Data System (ADS)

    Segne, Teshome Abdo; Tirukkovalluri, Siva Rao; Challapalli, Subrahmanyam

    2012-10-01

    The advantage of doping of TiO2 with copper has been utilized for enhanced degradation of pesticide under visible light irradiation. The sol-gel method has been undertaken for the synthesis of copper-doped TiO2 by varying the dopant loadings from 0.25 wt.% to 1.0 wt.% of Cu2+. The doped samples were characterized by UV-Visible Diffuse Reflectance Spectroscopy (DRS), N2 adsorption-desorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometry (EDS). The photocatalytic activity of the catalyst was tested by degradation of dichlorvos under visible light illumination. The results found that 0.75 wt.% of Cu2+ doped nanocatalysts have better photo catalytic activity than the rest of percentages doped, undoped TiO2 and Degussa P25. The reduction of band gap was estimated and the influence of the process parameters on photo catalytic activity of the catalyst has been explained.

  20. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates.

  1. The Effect of Light Rail Transit on Body Mass Index and Physical Activity

    PubMed Central

    MacDonald, John M.; Stokes, Robert J.; Cohen, Deborah A.; Kofner, Aaron; Ridgeway, Greg K.

    2010-01-01

    Background The built environment can constrain or facilitate physical activity. Most studies of the health consequences of the built environment suffer from problems of selection bias associated with confounding effects of residential choice and transportation decisions. Purpose To examine the cross-sectional associations between objective and perceived measures of the built environment, BMI, obesity (BMI>30 kg/m2), and meeting weekly recommended physical activity (RPA) levels through walking and vigorous exercise. To assess effect of using light rail transit system (LRT) on changes in BMI, obesity, and meeting weekly RPA levels. Methods Data were collected on individuals before (July 2006–February of 2007) and after (March 2008–July 2008) completion of a light rail system in Charlotte, NC. BMI, obesity, and physical activity levels were calculated for a comparison of these factors pre- and post-LRT construction. A propensity score weighting approach adjusted for differences in baseline characteristics among LRT and non-LRT users. Data were analyzed in 2009. Results More positive perceptions of one’s neighborhood at baseline were associated with a −0.36 (p<.05) lower BMI, 15% lower odds (95% CI=0.77, 0.94) of obesity, 9% higher odds (95% CI = 0.99, 1.20) of meeting weekly RPA through walking, and 11% higher odds (95% CI= 1.01, 1.22) of meeting RPA levels of vigorous exercise. The use of light rail transit to commute to work was associated with an average −1.18 reduction in BMI (p<0.05) and an 81% reduced odds (95% CI= 0.04, 0.92) of becoming obese over time. Conclusions The results of this study suggest that improving neighborhood environments and increasing the public’s use of LRT systems could provide improvements in health outcomes for millions of individuals. PMID:20621257

  2. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates. PMID:26098991

  3. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.

    PubMed

    Manninen, Albert; Kääriäinen, Teemu; Parviainen, Tomi; Buchter, Scott; Heiliö, Miika; Laurila, Toni

    2014-03-24

    A hyperspectral remote sensing instrument employing a novel near-infrared supercontinuum light source has been developed for active illumination and identification of targets. The supercontinuum is generated in a standard normal dispersion multi-mode fiber and has 16 W total optical output power covering 1000 nm to 2300 nm spectral range. A commercial 256-channel infrared spectrometer was used for broadband infrared detection. The feasibility of the presented hyperspectral measurement approach was investigated both indoors and in the field. Reflection spectra from several diffusive targets were successfully measured and a measurement range of 1.5 km was demonstrated.

  4. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment.

    PubMed

    Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young

    2015-01-01

    This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments.

  5. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).

    PubMed

    Kakuszi, Andrea; Sárvári, Éva; Solti, Ádám; Czégény, Gyula; Hideg, Éva; Hunyadi-Gulyás, Éva; Bóka, Károly; Böddi, Béla

    2016-08-01

    Photosynthetic activity was identified in the under-soil hypocotyl part of 14-day-old soil-grown bean plants (Phaseolus vulgaris L. cv. Magnum) cultivated in pots under natural light-dark cycles. Electron microscopic, proteomic and fluorescence kinetic and imaging methods were used to study the photosynthetic apparatus and its activity. Under-soil shoots at 0-2cm soil depth featured chloroplasts with low grana and starch grains and with pigment-protein compositions similar to those of the above-soil green shoot parts. However, the relative amounts of photosystem II (PSII) supercomplexes were higher; in addition a PIP-type aquaporin protein was identified in the under-soil thylakoids. Chlorophyll-a fluorescence induction measurements showed that the above- and under-soil hypocotyl segments had similar photochemical yields at low (10-55μmolphotonsm(-2)s(-1)) light intensities. However, at higher photon flux densities the electron transport rate decreased in the under-soil shoot parts due to inactivation of the PSII reaction centers. These properties show the development of a low-light adapted photosynthetic apparatus driven by light piping of the above-soil shoot. The results of this paper demonstrate that the classic model assigning source and sink functions to above- and under-soil tissues is to be refined, and a low-light adapted photosynthetic apparatus in under-soil bean hypocotyls is capable of contributing to its own carbon supply.

  6. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).

    PubMed

    Kakuszi, Andrea; Sárvári, Éva; Solti, Ádám; Czégény, Gyula; Hideg, Éva; Hunyadi-Gulyás, Éva; Bóka, Károly; Böddi, Béla

    2016-08-01

    Photosynthetic activity was identified in the under-soil hypocotyl part of 14-day-old soil-grown bean plants (Phaseolus vulgaris L. cv. Magnum) cultivated in pots under natural light-dark cycles. Electron microscopic, proteomic and fluorescence kinetic and imaging methods were used to study the photosynthetic apparatus and its activity. Under-soil shoots at 0-2cm soil depth featured chloroplasts with low grana and starch grains and with pigment-protein compositions similar to those of the above-soil green shoot parts. However, the relative amounts of photosystem II (PSII) supercomplexes were higher; in addition a PIP-type aquaporin protein was identified in the under-soil thylakoids. Chlorophyll-a fluorescence induction measurements showed that the above- and under-soil hypocotyl segments had similar photochemical yields at low (10-55μmolphotonsm(-2)s(-1)) light intensities. However, at higher photon flux densities the electron transport rate decreased in the under-soil shoot parts due to inactivation of the PSII reaction centers. These properties show the development of a low-light adapted photosynthetic apparatus driven by light piping of the above-soil shoot. The results of this paper demonstrate that the classic model assigning source and sink functions to above- and under-soil tissues is to be refined, and a low-light adapted photosynthetic apparatus in under-soil bean hypocotyls is capable of contributing to its own carbon supply. PMID:27318297

  7. Light-responsive polymer microcapsules as delivery systems for natural active agents

    NASA Astrophysics Data System (ADS)

    Bizzarro, Valentina; Carfagna, Cosimo; Cerruti, Pierfrancesco; Marturano, Valentina; Ambrogi, Veronica

    2016-05-01

    In this work we report the preparation and the release behavior of UV-responsive polymeric microcapsules containing essential oils as a core. The oil acted also as a monomer solvent during polymerization. Accordingly, the potentially toxic organic solvent traditionally used was replaced with a natural active substance, resulting in a more sustainable functional system. Polymer shell was based on a lightly cross-linked polyamide containing UV-sensitive azobenzene moieties in the main chain. The micro-sized capsules were obtained via interfacial polycondensation in o/w emulsion, and their mean size was measured via Dynamic Light Scattering. Shape and morphology were analyzed through Scanning Electron and Optical Microscopy. UV-responsive behavior was evaluated via spectrofluorimetry, by assessing the release kinetics of a fluorescent probe molecule upon UV light irradiation (λmax=360 nm). The irradiated samples showed an increase in fluorescence intensity, in accordance with the increase of the probe molecule concentration in the release medium. As for the un-irradiated sample, no changes could be detected demonstrating the effectiveness of the obtained releasing system.

  8. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation.

    PubMed

    Liu, Haijun; Zhang, Hao; King, jeremy D; Wolf, Nathan R; Prado, Mindy; Gross, Michael L; Blankenship, Robert E

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  9. Mass spectrometry footprinting reveals the structural rearrangements of cyanobacterial orange carotenoid protein upon light activation

    SciTech Connect

    Liu, Haijun; Zhang, Hao; King, Jeremy D.; Wolf, Nathan R.; Prado, Mindy; Gross, Michael L.; Blankenship, Robert E.

    2014-12-01

    The orange carotenoid protein (OCP), a member of the family of blue light photoactive proteins, is required for efficient photoprotection in many cyanobacteria. Photoexcitation of the carotenoid in the OCP results in structural changes within the chromophore and the protein to give an active red form of OCP that is required for phycobilisome binding and consequent fluorescence quenching. We characterized the light-dependent structural changes by mass spectrometry-based carboxyl footprinting and found that an α helix in the N-terminal extension of OCP plays a key role in this photoactivation process. Although this helix is located on and associates with the outside of the β-sheet core in the C-terminal domain of OCP in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent carotenoid conformational changes to global protein conformational dynamics in favor of functional phycobilisome binding, and is an essential part of the OCP photocycle.

  10. The amino terminal helix modulates light activated conformational changes in AsLOV2

    PubMed Central

    Zayner, Josiah P.; Antoniou, Chloe; Sosnick, Tobin R.

    2012-01-01

    The mechanism of light-triggered conformational change and signaling in light-oxygen-voltage (LOV) domains remains elusive in spite of extensive investigation and their use in optogenetic studies. The LOV2 domain of Avena Sativa phototropin1 (AsLOV2), a member of the Per-Arnt-Sim (PAS) family, contains an FMN chromophore that forms a covalent bond with a cysteine upon illumination. This event leads to the release of the carboxy terminal Jα helix, the biological output signal. Using mutational analysis, circular dichroism and NMR, we find that the largely ignored amino terminal helix is a control element in AsLOV2’s light-activated conformational change. We further identify a direct amino-to-carboxy terminal “input-output” signaling pathway. These findings provide a framework to rationalize the LOV domain architecture, as well as the signaling mechanisms in both isolated and tandem arrangements of PAS domains. This knowledge can be applied in engineering LOV-based photoswitches, opening up new design strategies and improving existing ones. PMID:22406525

  11. Light activation of genotoxic components in natural and synthetic crude oils

    SciTech Connect

    Strniste, G.

    1982-01-01

    Undefined components in natural and synthetically-produced petroleums elicit a genotoxic response in cultured mammalian cells after exposure to light. The NUV component of the solar spectrum is the radiation responsible for photochemical transformation. The type(s) of lesion(s) induced in DNA by the photoactivation process is mimetic of FUV light-induced genotoxic lesions (bulky adduct-like) due to the similar sensitizing abilities of either insult in cells deficient in excision repair. Because of their intimate contact with the oil in the various stages associated with the production of shale oil, process waters contain significant quantities of uv-absorbing organic materials. Chemical fractionation of a process water has been achieved using an acid/base extraction scheme and reverse-phase HPLC. Resulting fractions have been assessed for photo-induced genotoxicity using a modification of the Ames/Salmonella bioassay in which NUV light is the source of activation in place of metabolic enzymes. Chemical identification of components in a photoactive peak fraction is in progress employing an additional class fractionation scheme and GC/MS methods.

  12. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  13. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator.

    PubMed

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416

  14. Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator

    PubMed Central

    Kornijcuk, Vladimir; Lim, Hyungkwang; Seok, Jun Yeong; Kim, Guhyun; Kim, Seong Keun; Kim, Inho; Choi, Byung Joon; Jeong, Doo Seok

    2016-01-01

    The artificial spiking neural network (SNN) is promising and has been brought to the notice of the theoretical neuroscience and neuromorphic engineering research communities. In this light, we propose a new type of artificial spiking neuron based on leaky integrate-and-fire (LIF) behavior. A distinctive feature of the proposed FG-LIF neuron is the use of a floating-gate (FG) integrator rather than a capacitor-based one. The relaxation time of the charge on the FG relies mainly on the tunnel barrier profile, e.g., barrier height and thickness (rather than the area). This opens up the possibility of large-scale integration of neurons. The circuit simulation results offered biologically plausible spiking activity (<100 Hz) with a capacitor of merely 6 fF, which is hosted in an FG metal-oxide-semiconductor field-effect transistor. The FG-LIF neuron also has the advantage of low operation power (<30 pW/spike). Finally, the proposed circuit was subject to possible types of noise, e.g., thermal noise and burst noise. The simulation results indicated remarkable distributional features of interspike intervals that are fitted to Gamma distribution functions, similar to biological neurons in the neocortex. PMID:27242416

  15. Floating Oil-Spill Containment Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2012-01-01

    Previous oil containment booms have an open top that allows natural gas to escape, and have significant oil leakage due to wave action. Also, a subsea pyramid oil trap exists, but cannot move relative to moving oil plumes from deepsea oil leaks. The solution is to have large, moveable oil traps. One version floats on the sea surface and has a flexible tarp cover and a lower weighted skirt to completely entrap the floating oil and natural gas. The device must have at least three sides with boats pulling at each apex, and sonar or other system to track the slowly moving oil plume, so that the boats can properly locate the booms. The oil trap device must also have a means for removal of the oil and the natural gas. A second design version has a flexible pyramid cover that is attached by lines to ballast on the ocean floor. This is similar to fixed, metal pyramid oil capture devices in the Santa Barbara Channel off the coast of California. The ballast lines for the improved design, however, would have winches that can move the pyramid to always be located above the oil and gas plume. A third design is a combination of the first two. It uses a submerged pyramid to trap oil, but has no anchor and uses boats to locate the trap. It has ballast weights located along the bottom of the tarp and/or at the corners of the trap. The improved floating oil-spill containment device has a large floating boom and weighted skirt surrounding the oil and gas entrapment area. The device is triangular (or more than three sides) and has a flexible tarp cover with a raised gas vent area. Boats pull on the apex of the triangles to maintain tension and to allow the device to move to optimum locations to trap oil and gas. The gas is retrieved from a higher buoyant part of the tarp, and oil is retrieved from the floating oil layer contained in the device. These devices can be operated in relatively severe weather, since waves will break over the devices without causing oil leaking. Also, natural

  16. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye.

    PubMed

    Baxter, M; Joseph, N; Osborne, V R; Bédécarrats, G Y

    2014-05-01

    Photoperiod is essential in manipulating sexual maturity and reproductive performance in avian species. Light can be perceived by photoreceptors in the retina of the eye, pineal gland, and hypothalamus. However, the relative sensitivity and specificity of each organ to wavelength, and consequently the physiological effects, may differ. The purpose of this experiment was to test the impacts of light wavelengths on reproduction, growth, and stress in laying hens maintained in cages and to determine whether the retina of the eye is necessary. Individual cages in 3 optically isolated sections of a single room were equipped with LED strips providing either pure green, pure red or white light (red, green, and blue) set to 10 lx (hens levels). The involvement of the retina on mediating the effects of light wavelength was assessed by using a naturally blind line (Smoky Joe) of chickens. Red and white lights resulted in higher estradiol concentrations after photostimulation, indicating stronger ovarian activation, which translated into a significantly lower age at first egg when compared with the green light. Similarly, hens maintained under red and white lights had a longer and higher peak production and higher cumulative egg number than hens under green light. No significant difference in BW gain was observed until sexual maturation. However, from 23 wk of age onward, birds exposed to green light showed higher body growth, which may be the result of their lower egg production. Although corticosterone levels were higher at 20 wk of age in hens under red light, concentrations were below levels that can be considered indicative of stress. Because no significant differences were observed between blind and sighted birds maintained under red and white light, the retina of the eye did not participate in the activation of reproduction. In summary, red light was required to stimulate the reproductive axis whereas green light was ineffective, and the effects of stimulatory

  17. Advances in recording scattered light changes in crustacean nerve with electrical activation

    SciTech Connect

    Carter, K. M.; Rector, D. M.; Martinez, A. T.; Guerra, F. M.; George, J. S.

    2002-01-01

    We investigated optical changes associated with crustacean nerve stimulation using birefringent and large angle scattered light. Improved detection schemes disclosed high temporal structure of the optical signals and allowed further investigations of biophysical mechanisms responsible for such changes. Most studies of physiological activity in neuronal tissue use techniques that measure the electrical behavior or ionic permeability of the nerve, such as voltage or ion sensitive dyes injected into cells, or invasive electric recording apparatus. While these techniques provide high resolution, they are detrimental to tissue and do not easily lend themselves to clinical applications in humans. Electrical and chemical components of neural excitation evoke physical responses observed through changes in scattered and absorbed light. This method is suited for in-vivo applications. Intrinsic optical changes have shown themselves to be multifaceted in nature and point to several different physiological processes that occur with different time courses during neural excitation. Fast changes occur concomitantly with electrical events, and slow changes parallel metabolic events including changes in blood flow and oxygenation. Previous experiments with isolated crustacean nerves have been used to study the biophysical mechanisms of fast optical changes. However, they have been confounded by multiple superimposed action potentials which make it difficult to discriminate the temporal signatures of individual optical responses. Often many averages were needed to adequately resolve the signal. More recently, optical signals have been observed in single trials. Initially large angle scattering measurements were used to record these events with much of the signal coming from cellular swelling associated with water influx during activation. By exploiting the birefringent properties derived from the molecular stiucture of nerve membranes, signals appear larger with a greater contrast

  18. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  19. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

    PubMed

    Wang, Gongming; Xiao, Xiangheng; Li, Wenqing; Lin, Zhaoyang; Zhao, Zipeng; Chen, Chi; Wang, Chen; Li, Yongjia; Huang, Xiaoqing; Miao, Ling; Jiang, Changzhong; Huang, Yu; Duan, Xiangfeng

    2015-07-01

    Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.

  20. Phosphoenolpyruvate Carboxylase Kinase in Tobacco Leaves Is Activated by Light in a Similar but Not Identical Way as in Maize.

    PubMed Central

    Li, B.; Zhang, X. Q.; Chollet, R.

    1996-01-01

    We have previously reported the partial purification of a Ca2+- independent phosphoenolpyruvate carboxylase (PEPC) protein-serine/threonine kinase (PEPC-PK) from illuminated leaves of N-sufficient tobacco (Nicotiana tabacum L.) plants (Y.-H. Wang, R. Chollet [1993] FEBS Lett 328: 215-218). We now report that this C3 PEPC-kinase is reversibly light activated in vivo in a time-dependent manner. As the kinase becomes light activated, the activity and L-malate sensitivity of its target protein increases and decreases, respectively. The light activation of tobacco PEPC-PK is prevented by pretreatment of detached leaves with various photosynthesis and cytosolic protein-synthesis inhibitors. Similarly, specific inhibitors of glutamine synthetase block the light activation of tobacco leaf PEPC-kinase under both photorespiratory and nonphotorespiratory conditions. This striking effect is partially and specifically reversed by exogenous glutamine, whereas it has no apparent effect on the light activation of the maize (Zea mays L.) leaf kinase. Using an in situ "activity-gel" phosphorylation assay, we have identified two major Ca2+-independent PEPC-kinase catalytic polypeptides in illuminated tobacco leaves that have the same molecular masses (approximately 30 and 37 kD) as found in illuminated maize leaves. Collectively, these results indicate that the phosphorylation of PEPC in N-sufficient leaves of tobacco (C3) and maize (C4) is regulated through similar but not identical light-signal transduction pathways. PMID:12226305