NULL Convention Floating Point Multiplier
Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069
NULL convention floating point multiplier.
Albert, Anitha Juliette; Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.
Floating-point performance of ARM cores and their efficiency in classical molecular dynamics
NASA Astrophysics Data System (ADS)
Nikolskiy, V.; Stegailov, V.
2016-02-01
Supercomputing of the exascale era is going to be inevitably limited by power efficiency. Nowadays different possible variants of CPU architectures are considered. Recently the development of ARM processors has come to the point when their floating point performance can be seriously considered for a range of scientific applications. In this work we present the analysis of the floating point performance of the latest ARM cores and their efficiency for the algorithms of classical molecular dynamics.
Multi-input and binary reproducible, high bandwidth floating point adder in a collective network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip; Steinmacher-Burow, Burkhard
2016-11-15
To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to the collective logic device and receive outputs only once from the collective logic device.
Multi-input and binary reproducible, high bandwidth floating point adder in a collective network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Eisley, Noel A; Heidelberger, Philip
To add floating point numbers in a parallel computing system, a collective logic device receives the floating point numbers from computing nodes. The collective logic devices converts the floating point numbers to integer numbers. The collective logic device adds the integer numbers and generating a summation of the integer numbers. The collective logic device converts the summation to a floating point number. The collective logic device performs the receiving, the converting the floating point numbers, the adding, the generating and the converting the summation in one pass. One pass indicates that the computing nodes send inputs only once to themore » collective logic device and receive outputs only once from the collective logic device.« less
Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong
2007-01-01
Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.
The Unified Floating Point Vector Coprocessor for Reconfigurable Hardware
NASA Astrophysics Data System (ADS)
Kathiara, Jainik
There has been an increased interest recently in using embedded cores on FPGAs. Many of the applications that make use of these cores have floating point operations. Due to the complexity and expense of floating point hardware, these algorithms are usually converted to fixed point operations or implemented using floating-point emulation in software. As the technology advances, more and more homogeneous computational resources and fixed function embedded blocks are added to FPGAs and hence implementation of floating point hardware becomes a feasible option. In this research we have implemented a high performance, autonomous floating point vector Coprocessor (FPVC) that works independently within an embedded processor system. We have presented a unified approach to vector and scalar computation, using a single register file for both scalar operands and vector elements. The Hybrid vector/SIMD computational model of FPVC results in greater overall performance for most applications along with improved peak performance compared to other approaches. By parameterizing vector length and the number of vector lanes, we can design an application specific FPVC and take optimal advantage of the FPGA fabric. For this research we have also initiated designing a software library for various computational kernels, each of which adapts FPVC's configuration and provide maximal performance. The kernels implemented are from the area of linear algebra and include matrix multiplication and QR and Cholesky decomposition. We have demonstrated the operation of FPVC on a Xilinx Virtex 5 using the embedded PowerPC.
Implementing direct, spatially isolated problems on transputer networks
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.
40 CFR 63.1063 - Floating roof requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the point of refloating the floating roof shall be continuous and shall be performed as soon as... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Floating roof requirements. 63.1063...) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1063 Floating roof...
Identification of mothball powder composition by float tests and melting point tests.
Tang, Ka Yuen
2018-07-01
The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can identify camphor mothballs but melting point tests cannot. We suggest melting point tests for identifying mothball powder and tiny fragments while float tests are recommended for intact mothball and large fragments.
Performance of FORTRAN floating-point operations on the Flex/32 multicomputer
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1987-01-01
A series of experiments has been run to examine the floating-point performance of FORTRAN programs on the Flex/32 (Trademark) computer. The experiments are described, and the timing results are presented. The time required to execute a floating-point operation is found to vary considerbaly depending on a number of factors. One factor of particular interest from an algorithm design standpoint is the difference in speed between common memory accesses and local memory accesses. Common memory accesses were found to be slower, and guidelines are given for determinig when it may be cost effective to copy data from common to local memory.
On the Floating Point Performance of the i860 Microprocessor
NASA Technical Reports Server (NTRS)
Lee, King; Kutler, Paul (Technical Monitor)
1997-01-01
The i860 microprocessor is a pipelined processor that can deliver two double precision floating point results every clock. It is being used in the Touchstone project to develop a teraflop computer by the year 2000. With such high computational capabilities it was expected that memory bandwidth would limit performance on many kernels. Measured performance of three kernels showed performance is less than what memory bandwidth limitations would predict. This paper develops a model that explains the discrepancy in terms of memory latencies and points to some problems involved in moving data from memory to the arithmetic pipelines.
Learning to assign binary weights to binary descriptor
NASA Astrophysics Data System (ADS)
Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.
A hardware-oriented algorithm for floating-point function generation
NASA Technical Reports Server (NTRS)
O'Grady, E. Pearse; Young, Baek-Kyu
1991-01-01
An algorithm is presented for performing accurate, high-speed, floating-point function generation for univariate functions defined at arbitrary breakpoints. Rapid identification of the breakpoint interval, which includes the input argument, is shown to be the key operation in the algorithm. A hardware implementation which makes extensive use of read/write memories is used to illustrate the algorithm.
Floating-Point Units and Algorithms for field-programmable gate arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, Keith D.; Hemmert, K. Scott
2005-11-01
The software that we are attempting to copyright is a package of floating-point unit descriptions and example algorithm implementations using those units for use in FPGAs. The floating point units are best-in-class implementations of add, multiply, divide, and square root floating-point operations. The algorithm implementations are sample (not highly flexible) implementations of FFT, matrix multiply, matrix vector multiply, and dot product. Together, one could think of the collection as an implementation of parts of the BLAS library or something similar to the FFTW packages (without the flexibility) for FPGAs. Results from this work has been published multiple times and wemore » are working on a publication to discuss the techniques we use to implement the floating-point units, For some more background, FPGAS are programmable hardware. "Programs" for this hardware are typically created using a hardware description language (examples include Verilog, VHDL, and JHDL). Our floating-point unit descriptions are written in JHDL, which allows them to include placement constraints that make them highly optimized relative to some other implementations of floating-point units. Many vendors (Nallatech from the UK, SRC Computers in the US) have similar implementations, but our implementations seem to be somewhat higher performance. Our algorithm implementations are written in VHDL and models of the floating-point units are provided in VHDL as well. FPGA "programs" make multiple "calls" (hardware instantiations) to libraries of intellectual property (IP), such as the floating-point unit library described here. These programs are then compiled using a tool called a synthesizer (such as a tool from Synplicity, Inc.). The compiled file is a netlist of gates and flip-flops. This netlist is then mapped to a particular type of FPGA by a mapper and then a place- and-route tool. These tools assign the gates in the netlist to specific locations on the specific type of FPGA chip used and constructs the required routes between them. The result is a "bitstream" that is analogous to a compiled binary. The bitstream is loaded into the FPGA to create a specific hardware configuration.« less
Improving energy efficiency in handheld biometric applications
NASA Astrophysics Data System (ADS)
Hoyle, David C.; Gale, John W.; Schultz, Robert C.; Rakvic, Ryan N.; Ives, Robert W.
2012-06-01
With improved smartphone and tablet technology, it is becoming increasingly feasible to implement powerful biometric recognition algorithms on portable devices. Typical iris recognition algorithms, such as Ridge Energy Direction (RED), utilize two-dimensional convolution in their implementation. This paper explores the energy consumption implications of 12 different methods of implementing two-dimensional convolution on a portable device. Typically, convolution is implemented using floating point operations. If a given algorithm implemented integer convolution vice floating point convolution, it could drastically reduce the energy consumed by the processor. The 12 methods compared include 4 major categories: Integer C, Integer Java, Floating Point C, and Floating Point Java. Each major category is further divided into 3 implementations: variable size looped convolution, static size looped convolution, and unrolled looped convolution. All testing was performed using the HTC Thunderbolt with energy measured directly using a Tektronix TDS5104B Digital Phosphor oscilloscope. Results indicate that energy savings as high as 75% are possible by using Integer C versus Floating Point C. Considering the relative proportion of processing time that convolution is responsible for in a typical algorithm, the savings in energy would likely result in significantly greater time between battery charges.
Program Converts VAX Floating-Point Data To UNIX
NASA Technical Reports Server (NTRS)
Alves, Marcos; Chapman, Bruce; Chu, Eugene
1996-01-01
VAX Floating Point to Host Floating Point Conversion (VAXFC) software converts non-ASCII files to unformatted floating-point representation of UNIX machine. This is done by reading bytes bit by bit, converting them to floating-point numbers, then writing results to another file. Useful when data files created by VAX computer must be used on other machines. Written in C language.
Software Techniques for Non-Von Neumann Architectures
1990-01-01
Commtopo programmable Benes net.; hypercubic lattice for QCD Control CENTRALIZED Assign STATIC Memory :SHARED Synch UNIVERSAL Max-cpu 566 Proessor...boards (each = 4 floating point units, 2 multipliers) Cpu-size 32-bit floating point chips Perform 11.4 Gflops Market quantum chromodynamics ( QCD ...functions there should exist a capability to define hierarchies and lattices of complex objects. A complex object can be made up of a set of simple objects
Towards High Resolution Numerical Algorithms for Wave Dominated Physical Phenomena
2009-01-30
results are scaled as floating point operations per second, obtained by counting the number of floating point additions and multiplications in the...black horizontal line. Perhaps the most striking feature at first is the fact that the memory bandwidth measured for flux lifting transcends this...theoretical peak performance values. For a suitable CPU-limited workload, this means that a single workstation equipped with multiple GPUs can do work that
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor
NASA Astrophysics Data System (ADS)
Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram
2007-09-01
Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.
NASA Technical Reports Server (NTRS)
Pan, Jing; Levitt, Karl N.; Cohen, Gerald C.
1991-01-01
Discussed here is work to formally specify and verify a floating point coprocessor based on the MC68881. The HOL verification system developed at Cambridge University was used. The coprocessor consists of two independent units: the bus interface unit used to communicate with the cpu and the arithmetic processing unit used to perform the actual calculation. Reasoning about the interaction and synchronization among processes using higher order logic is demonstrated.
Environment parameters and basic functions for floating-point computation
NASA Technical Reports Server (NTRS)
Brown, W. S.; Feldman, S. I.
1978-01-01
A language-independent proposal for environment parameters and basic functions for floating-point computation is presented. Basic functions are proposed to analyze, synthesize, and scale floating-point numbers. The model provides a small set of parameters and a small set of axioms along with sharp measures of roundoff error. The parameters and functions can be used to write portable and robust codes that deal intimately with the floating-point representation. Subject to underflow and overflow constraints, a number can be scaled by a power of the floating-point radix inexpensively and without loss of precision. A specific representation for FORTRAN is included.
A preliminary study of molecular dynamics on reconfigurable computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolinski, C.; Trouw, F. R.; Gokhale, M.
2003-01-01
In this paper we investigate the performance of platform FPGAs on a compute-intensive, floating-point-intensive supercomputing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles through time by integrating their equations of motion. One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ] and mapped onto several reconfigurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract technology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators so that the design could be easily re-targeted. Experiments were performed using both non-pipelinedmore » and pipelined floating point modules. We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47 GFlops at 82 MHz (Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance at low power on jloating-point-intensivea pplications.« less
An integrated circuit floating point accumulator
NASA Technical Reports Server (NTRS)
Goldsmith, T. C.
1977-01-01
Goddard Space Flight Center has developed a large scale integrated circuit (type 623) which can perform pulse counting, storage, floating point compression, and serial transmission, using a single monolithic device. Counts of 27 or 19 bits can be converted to transmitted values of 12 or 8 bits respectively. Use of the 623 has resulted in substantial savaings in weight, volume, and dollar resources on at least 11 scientific instruments to be flown on 4 NASA spacecraft. The design, construction, and application of the 623 are described.
Paranoia.Ada: A diagnostic program to evaluate Ada floating-point arithmetic
NASA Technical Reports Server (NTRS)
Hjermstad, Chris
1986-01-01
Many essential software functions in the mission critical computer resource application domain depend on floating point arithmetic. Numerically intensive functions associated with the Space Station project, such as emphemeris generation or the implementation of Kalman filters, are likely to employ the floating point facilities of Ada. Paranoia.Ada appears to be a valuabe program to insure that Ada environments and their underlying hardware exhibit the precision and correctness required to satisfy mission computational requirements. As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an Ada floating point implementation. Equipped with such knowledge, programmers need not tremble before the complex task of floating point computation.
Gschwind, Michael K [Chappaqua, NY
2011-03-01
Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.
Improvements in floating point addition/subtraction operations
Farmwald, P.M.
1984-02-24
Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.
Bifurcated method and apparatus for floating point addition with decreased latency time
Farmwald, Paul M.
1987-01-01
Apparatus for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.
CT image reconstruction with half precision floating-point values.
Maaß, Clemens; Baer, Matthias; Kachelrieß, Marc
2011-07-01
Analytic CT image reconstruction is a computationally demanding task. Currently, the even more demanding iterative reconstruction algorithms find their way into clinical routine because their image quality is superior to analytic image reconstruction. The authors thoroughly analyze a so far unconsidered but valuable tool of tomorrow's reconstruction hardware (CPU and GPU) that allows implementing the forward projection and backprojection steps, which are the computationally most demanding parts of any reconstruction algorithm, much more efficiently. Instead of the standard 32 bit floating-point values (float), a recently standardized floating-point value with 16 bit (half) is adopted for data representation in image domain and in rawdata domain. The reduction in the total data amount reduces the traffic on the memory bus, which is the bottleneck of today's high-performance algorithms, by 50%. In CT simulations and CT measurements, float reconstructions (gold standard) and half reconstructions are visually compared via difference images and by quantitative image quality evaluation. This is done for analytical reconstruction (filtered backprojection) and iterative reconstruction (ordered subset SART). The magnitude of quantization noise, which is caused by a reduction in the data precision of both rawdata and image data during image reconstruction, is negligible. This is clearly shown for filtered backprojection and iterative ordered subset SART reconstruction. In filtered backprojection, the implementation of the backprojection should be optimized for low data precision if the image data are represented in half format. In ordered subset SART image reconstruction, no adaptations are necessary and the convergence speed remains unchanged. Half precision floating-point values allow to speed up CT image reconstruction without compromising image quality.
Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan
High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio andmore » good memory retention.« less
Floating point arithmetic in future supercomputers
NASA Technical Reports Server (NTRS)
Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.
1989-01-01
Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.
Floating-point scaling technique for sources separation automatic gain control
NASA Astrophysics Data System (ADS)
Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.
2012-07-01
Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.
Y-MP floating point and Cholesky factorization
NASA Technical Reports Server (NTRS)
Carter, Russell
1991-01-01
The floating point arithmetics implemented in the Cray 2 and Cray Y-MP computer systems are nearly identical, but large scale computations performed on the two systems have exhibited significant differences in accuracy. The difference in accuracy is analyzed for Cholesky factorization algorithm, and it is found that the source of the difference is the subtract magnitude operation of the Cray Y-MP. The results from numerical experiments for a range of problem sizes are presented, and an efficient method for improving the accuracy of the factorization obtained on the Y-MP is presented.
Gulp: An Imaginatively Different Approach to Learning about Water.
ERIC Educational Resources Information Center
Baird, Colette
1997-01-01
Provides details of performances by the Floating Point Science Theater working with elementary school children about the characteristics of water. Discusses student reactions to various parts of the performances. (DDR)
Defining the IEEE-854 floating-point standard in PVS
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
A significant portion of the ANSI/IEEE-854 Standard for Radix-Independent Floating-Point Arithmetic is defined in PVS (Prototype Verification System). Since IEEE-854 is a generalization of the ANSI/IEEE-754 Standard for Binary Floating-Point Arithmetic, the definition of IEEE-854 in PVS also formally defines much of IEEE-754. This collection of PVS theories provides a basis for machine checked verification of floating-point systems. This formal definition illustrates that formal specification techniques are sufficiently advanced that is is reasonable to consider their use in the development of future standards.
Implementation of kernels on the Maestro processor
NASA Astrophysics Data System (ADS)
Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.
Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.
Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities
Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun
2014-01-01
Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901
Verification of floating-point software
NASA Technical Reports Server (NTRS)
Hoover, Doug N.
1990-01-01
Floating point computation presents a number of problems for formal verification. Should one treat the actual details of floating point operations, or accept them as imprecisely defined, or should one ignore round-off error altogether and behave as if floating point operations are perfectly accurate. There is the further problem that a numerical algorithm usually only approximately computes some mathematical function, and we often do not know just how good the approximation is, even in the absence of round-off error. ORA has developed a theory of asymptotic correctness which allows one to verify floating point software with a minimum entanglement in these problems. This theory and its implementation in the Ariel C verification system are described. The theory is illustrated using a simple program which finds a zero of a given function by bisection. This paper is presented in viewgraph form.
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
Xu, B F; Wang, T G; Yuan, Y; Cao, J F
2015-02-28
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.
2015-01-01
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859
An array processing system for lunar geochemical and geophysical data
NASA Technical Reports Server (NTRS)
Eliason, E. M.; Soderblom, L. A.
1977-01-01
A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.
Design of a reversible single precision floating point subtractor.
Anantha Lakshmi, Av; Sudha, Gf
2014-01-04
In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition/subtraction to be the most used floating-point operation. However, few designs exist on efficient reversible BCD subtractors but no work on reversible floating point subtractor. In this paper, it is proposed to present an efficient reversible single precision floating-point subtractor. The proposed design requires reversible designs of an 8-bit and a 24-bit comparator unit, an 8-bit and a 24-bit subtractor, and a normalization unit. For normalization, a 24-bit Reversible Leading Zero Detector and a 24-bit reversible shift register is implemented to shift the mantissas. To realize a reversible 1-bit comparator, in this paper, two new 3x3 reversible gates are proposed The proposed reversible 1-bit comparator is better and optimized in terms of the number of reversible gates used, the number of transistor count and the number of garbage outputs. The proposed work is analysed in terms of number of reversible gates, garbage outputs, constant inputs and quantum costs. Using these modules, an efficient design of a reversible single precision floating point subtractor is proposed. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3. The total on-chip power consumed by the proposed 32-bit reversible floating point subtractor is 0.410 W.
Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian
2003-01-01
The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.
Parametric study of two-body floating-point wave absorber
NASA Astrophysics Data System (ADS)
Amiri, Atena; Panahi, Roozbeh; Radfar, Soheil
2016-03-01
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.
Apparatus and method for implementing power saving techniques when processing floating point values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young Moon; Park, Sang Phill
An apparatus and method are described for reducing power when reading and writing graphics data. For example, one embodiment of an apparatus comprises: a graphics processor unit (GPU) to process graphics data including floating point data; a set of registers, at least one of the registers of the set partitioned to store the floating point data; and encode/decode logic to reduce a number of binary 1 values being read from the at least one register by causing a specified set of bit positions within the floating point data to be read out as 0s rather than 1s.
Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis
NASA Technical Reports Server (NTRS)
Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.
2017-01-01
This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Harris, Thomas A
1933-01-01
Discussed here are a series of systematic tests being conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present tests were made with six different forms of floating tip ailerons of symmetrical section. The tests showed the effect of the various ailerons on the general performance characteristics of the wing, and on the lateral controllability and stability characteristics. In addition, the hinge moments were measured for the most interesting cases. The results are compared with those for a rectangular wing with ordinary ailerons and also with those for a rectangular wing having full-chord floating tip ailerons. Practically all the floating tip ailerons gave satisfactory rolling moments at all angles of attack and at the same time gave no adverse yawing moments of appreciable magnitude. The general performance characteristics with the floating tip ailerons, however, were relatively poor, especially the rate of climb. None of the floating tip ailerons entirely eliminated the auto rotational moments at angles of attack above the stall, but all of them gave lower moments than a plain wing. Some of the floating ailerons fluttered if given sufficiently large deflection, but this could have been eliminated by moving the hinge axis of the ailerons forward. Considering all points including hinge moments, the floating tip ailerons on the wing with 5:1 taper are probably the best of those which were tested.
Determinant Computation on the GPU using the Condensation Method
NASA Astrophysics Data System (ADS)
Anisul Haque, Sardar; Moreno Maza, Marc
2012-02-01
We report on a GPU implementation of the condensation method designed by Abdelmalek Salem and Kouachi Said for computing the determinant of a matrix. We consider two types of coefficients: modular integers and floating point numbers. We evaluate the performance of our code by measuring its effective bandwidth and argue that it is numerical stable in the floating point number case. In addition, we compare our code with serial implementation of determinant computation from well-known mathematical packages. Our results suggest that a GPU implementation of the condensation method has a large potential for improving those packages in terms of running time and numerical stability.
A floating-point/multiple-precision processor for airborne applications
NASA Technical Reports Server (NTRS)
Yee, R.
1982-01-01
A compact input output (I/O) numerical processor capable of performing floating-point, multiple precision and other arithmetic functions at execution times which are at least 100 times faster than comparable software emulation is described. The I/O device is a microcomputer system containing a 16 bit microprocessor, a numerical coprocessor with eight 80 bit registers running at a 5 MHz clock rate, 18K random access memory (RAM) and 16K electrically programmable read only memory (EPROM). The processor acts as an intelligent slave to the host computer and can be programmed in high order languages such as FORTRAN and PL/M-86.
The Efficiency and the Scalability of an Explicit Operator on an IBM POWER4 System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present an evaluation of the efficiency and the scalability of an explicit CFD operator on an IBM POWER4 system. The POWER4 architecture exhibits a common trend in HPC architectures: boosting CPU processing power by increasing the number of functional units, while hiding the latency of memory access by increasing the depth of the memory hierarchy. The overall machine performance depends on the ability of the caches-buses-fabric-memory to feed the functional units with the data to be processed. In this study we evaluate the efficiency and scalability of one explicit CFD operator on an IBM POWER4. This operator performs computations at the points of a Cartesian grid and involves a few dozen floating point numbers and on the order of 100 floating point operations per grid point. The computations in all grid points are independent. Specifically, we estimate the efficiency of the RHS operator (SP of NPB) on a single processor as the observed/peak performance ratio. Then we estimate the scalability of the operator on a single chip (2 CPUs), a single MCM (8 CPUs), 16 CPUs, and the whole machine (32 CPUs). Then we perform the same measurements for a chache-optimized version of the RHS operator. For our measurements we use the HPM (Hardware Performance Monitor) counters available on the POWER4. These counters allow us to analyze the obtained performance results.
NASA Astrophysics Data System (ADS)
Zinke, Stephan
2017-02-01
Memory sensitive applications for remote sensing data require memory-optimized data types in remote sensing products. Hierarchical Data Format version 5 (HDF5) offers user defined floating point numbers and integers and the n-bit filter to create data types optimized for memory consumption. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) applies a compaction scheme to the disseminated products of the Day and Night Band (DNB) data of Suomi National Polar-orbiting Partnership (S-NPP) satellite's instrument Visible Infrared Imager Radiometer Suite (VIIRS) through the EUMETSAT Advanced Retransmission Service, converting the original 32 bits floating point numbers to user defined floating point numbers in combination with the n-bit filter for the radiance dataset of the product. The radiance dataset requires a floating point representation due to the high dynamic range of the DNB. A compression factor of 1.96 is reached by using an automatically determined exponent size and an 8 bits trailing significand and thus reducing the bandwidth requirements for dissemination. It is shown how the parameters needed for user defined floating point numbers are derived or determined automatically based on the data present in a product.
Li, Xin-Wei; Shao, Xiao-Mei; Tan, Ke-Ping; Fang, Jian-Qiao
2013-04-01
To compare the efficacy difference in the treatment of supraspinous ligament injury between floating acupuncture at Tianying point and the conventional warm needling therapy. Ninety patients were randomized into a floating acupuncture group and a warm needling group, 45 cases in each one. In the floating acupuncture group, the floating needling technique was adopted at Tianying point. In the warm needling group, the conventional warm needling therapy was applied at Tianying point as the chief point in the prescription. The treatment was given 3 times a week and 6 treatments made one session. The visual analogue scale (VAS) was adopted for pain comparison before and after treatment of the patients in two groups and the efficacy in two groups were assessed. The curative and remarkably effective rate was 81.8% (36/44) in the floating acupuncture group and the total effective rate was 95.5% (42/44), which were superior to 44.2% (19/43) and 79.1% (34/43) in the warm needling group separately (P < 0.01, P < 0.05). VAS score was lower as compared with that before treatment of the patients in two groups (both P < 0.01) and the score in the floating acupuncture group was lower than that in the warm needling group after treatment (P < 0.01). Thirty-six cases were cured and remarkably effective in the floating acupuncture group after treatment, in which 28 cases were cured and remarkably effective in 3 treatments, accounting for 77.8 (28/36), which was apparently higher than 26.3 (5/19) in the warm-needling group (P < 0.01). The floating acupuncture at Tianying point achieves the quick and definite efficacy on supraspinous ligament injury and presents the apparent analgesic effect. The efficacy is superior to the conventional warm-needling therapy.
NASA Technical Reports Server (NTRS)
Parkinson, J B; HOUSE R O
1938-01-01
Tests were made in the NACA tank and in the NACA 7 by 10 foot wind tunnel on two models of transverse step floats and three models of pointed step floats considered to be suitable for use with single float seaplanes. The object of the program was the reduction of water resistance and spray of single float seaplanes without reducing the angle of dead rise believed to be necessary for the satisfactory absorption of the shock loads. The results indicated that all the models have less resistance and spray than the model of the Mark V float and that the pointed step floats are somewhat superior to the transverse step floats in these respects. Models 41-D, 61-A, and 73 were tested by the general method over a wide range of loads and speeds. The results are presented in the form of curves and charts for use in design calculations.
NASA Astrophysics Data System (ADS)
Drabik, Timothy J.; Lee, Sing H.
1986-11-01
The intrinsic parallelism characteristics of easily realizable optical SIMD arrays prompt their present consideration in the implementation of highly structured algorithms for the numerical solution of multidimensional partial differential equations and the computation of fast numerical transforms. Attention is given to a system, comprising several spatial light modulators (SLMs), an optical read/write memory, and a functional block, which performs simple, space-invariant shifts on images with sufficient flexibility to implement the fastest known methods for partial differential equations as well as a wide variety of numerical transforms in two or more dimensions. Either fixed or floating-point arithmetic may be used. A performance projection of more than 1 billion floating point operations/sec using SLMs with 1000 x 1000-resolution and operating at 1-MHz frame rates is made.
Floating-to-Fixed-Point Conversion for Digital Signal Processors
NASA Astrophysics Data System (ADS)
Menard, Daniel; Chillet, Daniel; Sentieys, Olivier
2006-12-01
Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automatically the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous methodologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling operations are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are described and several experiment results are presented to underline the efficiency of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James W.
This project addresses both communication-avoiding algorithms, and reproducible floating-point computation. Communication, i.e. moving data, either between levels of memory or processors over a network, is much more expensive per operation than arithmetic (measured in time or energy), so we seek algorithms that greatly reduce communication. We developed many new algorithms for both dense and sparse, and both direct and iterative linear algebra, attaining new communication lower bounds, and getting large speedups in many cases. We also extended this work in several ways: (1) We minimize writes separately from reads, since writes may be much more expensive than reads on emergingmore » memory technologies, like Flash, sometimes doing asymptotically fewer writes than reads. (2) We extend the lower bounds and optimal algorithms to arbitrary algorithms that may be expressed as perfectly nested loops accessing arrays, where the array subscripts may be arbitrary affine functions of the loop indices (eg A(i), B(i,j+k, k+3*m-7, …) etc.). (3) We extend our communication-avoiding approach to some machine learning algorithms, such as support vector machines. This work has won a number of awards. We also address reproducible floating-point computation. We define reproducibility to mean getting bitwise identical results from multiple runs of the same program, perhaps with different hardware resources or other changes that should ideally not change the answer. Many users depend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing resources, combined with nonassociativity of floating point addition, makes attaining reproducibility a challenge even for simple operations like summing a vector of numbers, or more complicated operations like the Basic Linear Algebra Subprograms (BLAS). We describe an algorithm that computes a reproducible sum of floating point numbers, independent of the order of summation. The algorithm depends only on a subset of the IEEE Floating Point Standard 754-2008, uses just 6 words to represent a “reproducible accumulator,” and requires just one read-only pass over the data, or one reduction in parallel. New instructions based on this work are being considered for inclusion in the future IEEE 754-2018 floating-point standard, and new reproducible BLAS are being considered for the next version of the BLAS standard.« less
Algorithm XXX : functions to support the IEEE standard for binary floating-point arithmetic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, W. J.; Mathematics and Computer Science
1993-12-01
This paper describes C programs for the support functions copysign(x,y), logb(x), scalb(x,n), nextafter(x,y), finite(x), and isnan(x) recommended in the Appendix to the IEEE Standard for Binary Floating-Point Arithmetic. In the case of logb, the modified definition given in the later IEEE Standard for Radix-Independent Floating-Point Arithmetic is followed. These programs should run without modification on most systems conforming to the binary standard.
40 CFR 63.653 - Monitoring, recordkeeping, and implementation plan for emissions averaging.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) For each emission point included in an emissions average, the owner or operator shall perform testing, monitoring, recordkeeping, and reporting equivalent to that required for Group 1 emission points complying... internal floating roof, external roof, or a closed vent system with a control device, as appropriate to the...
On the design of a radix-10 online floating-point multiplier
NASA Astrophysics Data System (ADS)
McIlhenny, Robert D.; Ercegovac, Milos D.
2009-08-01
This paper describes an approach to design and implement a radix-10 online floating-point multiplier. An online approach is considered because it offers computational flexibility not available with conventional arithmetic. The design was coded in VHDL and compiled, synthesized, and mapped onto a Virtex 5 FPGA to measure cost in terms of LUTs (look-up-tables) as well as the cycle time and total latency. The routing delay which was not optimized is the major component in the cycle time. For a rough estimate of the cost/latency characteristics, our design was compared to a standard radix-2 floating-point multiplier of equivalent precision. The results demonstrate that even an unoptimized radix-10 online design is an attractive implementation alternative for FPGA floating-point multiplication.
A Flexible VHDL Floating Point Module for Control Algorithm Implementation in Space Applications
NASA Astrophysics Data System (ADS)
Padierna, A.; Nicoleau, C.; Sanchez, J.; Hidalgo, I.; Elvira, S.
2012-08-01
The implementation of control loops for space applications is an area with great potential. However, the characteristics of this kind of systems, such as its wide dynamic range of numeric values, make inadequate the use of fixed-point algorithms.However, because the generic chips available for the treatment of floating point data are, in general, not qualified to operate in space environments and the possibility of using an IP module in a FPGA/ASIC qualified for space is not viable due to the low amount of logic cells available for these type of devices, it is necessary to find a viable alternative.For these reasons, in this paper a VHDL Floating Point Module is presented. This proposal allows the design and execution of floating point algorithms with acceptable occupancy to be implemented in FPGAs/ASICs qualified for space environments.
40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float glass...
40 CFR 426.50 - Applicability; description of the float glass manufacturing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... float glass manufacturing subcategory. 426.50 Section 426.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.50 Applicability; description of the float glass...
From 16-bit to high-accuracy IDCT approximation: fruits of single architecture affliation
NASA Astrophysics Data System (ADS)
Liu, Lijie; Tran, Trac D.; Topiwala, Pankaj
2007-09-01
In this paper, we demonstrate an effective unified framework for high-accuracy approximation of the irrational co-effcient floating-point IDCT by a single integer-coeffcient fixed-point architecture. Our framework is based on a modified version of the Loeffler's sparse DCT factorization, and the IDCT architecture is constructed via a cascade of dyadic lifting steps and butterflies. We illustrate that simply varying the accuracy of the approximating parameters yields a large family of standard-compliant IDCTs, from rare 16-bit approximations catering to portable computing to ultra-high-accuracy 32-bit versions that virtually eliminate any drifting effect when pairing with the 64-bit floating-point IDCT at the encoder. Drifting performances of the proposed IDCTs along with existing popular IDCT algorithms in H.263+, MPEG-2 and MPEG-4 are also demonstrated.
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
Wang, Ji-Wei; Cui, Zhi-Ting; Cui, Hong-Wei; Wei, Chang-Nian; Harada, Koichi; Minamoto, Keiko; Ueda, Kimiyo; Ingle, Kapilkumar N; Zhang, Cheng-Gang; Ueda, Atsushi
2010-12-01
The floating population refers to the large and increasing number of migrants without local household registration status and has become a new demographic phenomenon in China. Most of these migrants move from the rural areas of the central and western parts of China to the eastern and coastal metropolitan areas in pursuit of a better life. The floating population of China was composed of 121 million people in 2000, and this number was expected to increase to 300 million by 2010. Quality of life (QOL) studies of the floating population could provide a critical starting point for recognizing the potential of regions, cities and local communities to improve QOL. This study explored the construct of QOL of the floating population in Shanghai, China. We conducted eight focus groups with 58 members of the floating population (24 males and 34 females) and then performed a qualitative thematic analysis of the interviews. The following five QOL domains were identified from the analysis: personal development, jobs and career, family life, social relationships and social security. The results indicated that stigma and discrimination permeate these life domains and influence the framing of life expectations. Proposals were made for reducing stigma and discrimination against the floating population to improve the QOL of this population.
50 CFR 679.94 - Economic data report (EDR) for the Amendment 80 sector.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: NMFS, Alaska Fisheries Science Center, Economic Data Reports, 7600 Sand Point Way NE, F/AKC2, Seattle... Operation Description of code Code NMFS Alaska region ADF&G FCP Catcher/processor Floating catcher processor. FLD Mothership Floating domestic mothership. IFP Stationary Floating Processor Inshore floating...
Kraus, Wayne A; Wagner, Albert F
1986-04-01
A triatomic classical trajectory code has been modified by extensive vectorization of the algorithms to achieve much improved performance on an FPS 164 attached processor. Extensive timings on both the FPS 164 and a VAX 11/780 with floating point accelerator are presented as a function of the number of trajectories simultaneously run. The timing tests involve a potential energy surface of the LEPS variety and trajectories with 1000 time steps. The results indicate that vectorization results in timing improvements on both the VAX and the FPS. For larger numbers of trajectories run simultaneously, up to a factor of 25 improvement in speed occurs between VAX and FPS vectorized code. Copyright © 1986 John Wiley & Sons, Inc.
50 CFR 86.13 - What is boating infrastructure?
Code of Federal Regulations, 2010 CFR
2010-10-01
..., currents, etc., that provide a temporary safe anchorage point or harbor of refuge during storms); (f) Floating docks and fixed piers; (g) Floating and fixed breakwaters; (h) Dinghy docks (floating or fixed...
Compute Server Performance Results
NASA Technical Reports Server (NTRS)
Stockdale, I. E.; Barton, John; Woodrow, Thomas (Technical Monitor)
1994-01-01
Parallel-vector supercomputers have been the workhorses of high performance computing. As expectations of future computing needs have risen faster than projected vector supercomputer performance, much work has been done investigating the feasibility of using Massively Parallel Processor systems as supercomputers. An even more recent development is the availability of high performance workstations which have the potential, when clustered together, to replace parallel-vector systems. We present a systematic comparison of floating point performance and price-performance for various compute server systems. A suite of highly vectorized programs was run on systems including traditional vector systems such as the Cray C90, and RISC workstations such as the IBM RS/6000 590 and the SGI R8000. The C90 system delivers 460 million floating point operations per second (FLOPS), the highest single processor rate of any vendor. However, if the price-performance ration (PPR) is considered to be most important, then the IBM and SGI processors are superior to the C90 processors. Even without code tuning, the IBM and SGI PPR's of 260 and 220 FLOPS per dollar exceed the C90 PPR of 160 FLOPS per dollar when running our highly vectorized suite,
Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E
2017-09-01
Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.
Wang, Zhu-lou; Zhang, Wan-jie; Li, Chen-xi; Chen, Wen-liang; Xu, Ke-xin
2015-02-01
There are some challenges in near-infrared non-invasive blood glucose measurement, such as the low signal to noise ratio of instrument, the unstable measurement conditions, the unpredictable and irregular changes of the measured object, and etc. Therefore, it is difficult to extract the information of blood glucose concentrations from the complicated signals accurately. Reference measurement method is usually considered to be used to eliminate the effect of background changes. But there is no reference substance which changes synchronously with the anylate. After many years of research, our research group has proposed the floating reference method, which is succeeded in eliminating the spectral effects induced by the instrument drifts and the measured object's background variations. But our studies indicate that the reference-point will changes following the changing of measurement location and wavelength. Therefore, the effects of floating reference method should be verified comprehensively. In this paper, keeping things simple, the Monte Carlo simulation employing Intralipid solution with the concentrations of 5% and 10% is performed to verify the effect of floating reference method used into eliminating the consequences of the light source drift. And the light source drift is introduced through varying the incident photon number. The effectiveness of the floating reference method with corresponding reference-points at different wavelengths in eliminating the variations of the light source drift is estimated. The comparison of the prediction abilities of the calibration models with and without using this method shows that the RMSEPs of the method are decreased by about 98.57% (5%Intralipid)and 99.36% (10% Intralipid)for different Intralipid. The results indicate that the floating reference method has obvious effect in eliminating the background changes.
A High-Level Formalization of Floating-Point Number in PVS
NASA Technical Reports Server (NTRS)
Boldo, Sylvie; Munoz, Cesar
2006-01-01
We develop a formalization of floating-point numbers in PVS based on a well-known formalization in Coq. We first describe the definitions of all the needed notions, e.g., floating-point number, format, rounding modes, etc.; then, we present an application to polynomial evaluation for elementary function evaluation. The application already existed in Coq, but our formalization shows a clear improvement in the quality of the result due to the automation provided by PVS. We finally integrate our formalization into a PVS hardware-level formalization of the IEEE-854 standard previously developed at NASA.
33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...
Yu, Hui; Qi, Dan; Li, Heng-da; Xu, Ke-xin; Yuan, Wei-jie
2012-03-01
Weak signal, low instrument signal-to-noise ratio, continuous variation of human physiological environment and the interferences from other components in blood make it difficult to extract the blood glucose information from near infrared spectrum in noninvasive blood glucose measurement. The floating-reference method, which analyses the effect of glucose concentration variation on absorption coefficient and scattering coefficient, gets spectrum at the reference point and the measurement point where the light intensity variations from absorption and scattering are counteractive and biggest respectively. By using the spectrum from reference point as reference, floating-reference method can reduce the interferences from variation of physiological environment and experiment circumstance. In the present paper, the effectiveness of floating-reference method working on improving prediction precision and stability was assessed through application experiments. The comparison was made between models whose data were processed with and without floating-reference method. The results showed that the root mean square error of prediction (RMSEP) decreased by 34.7% maximally. The floating-reference method could reduce the influences of changes of samples' state, instrument noises and drift, and improve the models' prediction precision and stability effectively.
Program Correctness, Verification and Testing for Exascale (Corvette)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Koushik; Iancu, Costin; Demmel, James W
The goal of this project is to provide tools to assess the correctness of parallel programs written using hybrid parallelism. There is a dire lack of both theoretical and engineering know-how in the area of finding bugs in hybrid or large scale parallel programs, which our research aims to change. In the project we have demonstrated novel approaches in several areas: 1. Low overhead automated and precise detection of concurrency bugs at scale. 2. Using low overhead bug detection tools to guide speculative program transformations for performance. 3. Techniques to reduce the concurrency required to reproduce a bug using partialmore » program restart/replay. 4. Techniques to provide reproducible execution of floating point programs. 5. Techniques for tuning the floating point precision used in codes.« less
rpe v5: an emulator for reduced floating-point precision in large numerical simulations
NASA Astrophysics Data System (ADS)
Dawson, Andrew; Düben, Peter D.
2017-06-01
This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.
Recent advances in lossy compression of scientific floating-point data
NASA Astrophysics Data System (ADS)
Lindstrom, P.
2017-12-01
With a continuing exponential trend in supercomputer performance, ever larger data sets are being generated through numerical simulation. Bandwidth and storage capacity are, however, not keeping pace with this increase in data size, causing significant data movement bottlenecks in simulation codes and substantial monetary costs associated with archiving vast volumes of data. Worse yet, ever smaller fractions of data generated can be stored for further analysis, where scientists frequently rely on decimating or averaging large data sets in time and/or space. One way to mitigate these problems is to employ data compression to reduce data volumes. However, lossless compression of floating-point data can achieve only very modest size reductions on the order of 10-50%. We present ZFP and FPZIP, two state-of-the-art lossy compressors for structured floating-point data that routinely achieve one to two orders of magnitude reduction with little to no impact on the accuracy of visualization and quantitative data analysis. We provide examples of the use of such lossy compressors in climate and seismic modeling applications to effectively accelerate I/O and reduce storage requirements. We further discuss how the design decisions behind these and other compressors impact error distributions and other statistical and differential properties, including derived quantities of interest relevant to each science application.
Real object-based 360-degree integral-floating display using multiple depth camera
NASA Astrophysics Data System (ADS)
Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam
2015-03-01
A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.
Instabilities caused by floating-point arithmetic quantization.
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1972-01-01
It is shown that an otherwise stable digital control system can be made unstable by signal quantization when the controller operates on floating-point arithmetic. Sufficient conditions of instability are determined, and an example of loss of stability is treated when only one quantizer is operated.
Field programmable gate array-assigned complex-valued computation and its limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang
We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.
A performance comparison of the IBM RS/6000 and the Astronautics ZS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.M.; Abraham, S.G.; Davidson, E.S.
1991-01-01
Concurrent uniprocessor architectures, of which vector and superscalar are two examples, are designed to capitalize on fine-grain parallelism. The authors have developed a performance evaluation method for comparing and improving these architectures, and in this article they present the methodology and a detailed case study of two machines. The runtime of many programs is dominated by time spent in loop constructs - for example, Fortran Do-loops. Loops generally comprise two logical processes: The access process generates addresses for memory operations while the execute process operates on floating-point data. Memory access patterns typically can be generated independently of the data inmore » the execute process. This independence allows the access process to slip ahead, thereby hiding memory latency. The IBM 360/91 was designed in 1967 to achieve slip dynamically, at runtime. One CPU unit executes integer operations while another handles floating-point operations. Other machines, including the VAX 9000 and the IBM RS/6000, use a similar approach.« less
Floating-Point Modules Targeted for Use with RC Compilation Tools
NASA Technical Reports Server (NTRS)
Sahin, Ibrahin; Gloster, Clay S.
2000-01-01
Reconfigurable Computing (RC) has emerged as a viable computing solution for computationally intensive applications. Several applications have been mapped to RC system and in most cases, they provided the smallest published execution time. Although RC systems offer significant performance advantages over general-purpose processors, they require more application development time than general-purpose processors. This increased development time of RC systems provides the motivation to develop an optimized module library with an assembly language instruction format interface for use with future RC system that will reduce development time significantly. In this paper, we present area/performance metrics for several different types of floating point (FP) modules that can be utilized to develop complex FP applications. These modules are highly pipelined and optimized for both speed and area. Using these modules, and example application, FP matrix multiplication, is also presented. Our results and experiences show, that with these modules, 8-10X speedup over general-purpose processors can be achieved.
Non-uniqueness of the point of application of the buoyancy force
NASA Astrophysics Data System (ADS)
Kliava, Janis; Mégel, Jacques
2010-07-01
Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the cross-section of a floating body and for an arbitrary angle of heel. We show that the location of the point of application of the buoyancy force essentially depends (i) on the type of motion experienced by the floating body and (ii) on the definition of this point. In a rolling/pitching motion, considerations involving the rotational moment lead to a particular dynamical point of application of the buoyancy force, and for some simple shapes of the floating body this point coincides with the well-known metacentre. On the other hand, from the work-energy relation it follows that in the rolling/pitching motion the energetical point of application of this force is rigidly connected to the centre of buoyancy; in contrast, in a vertical translation this point is rigidly connected to the centre of gravity of the body. Finally, we consider the location of the characteristic points of the floating bodies for some particular shapes of immersed cross-sections. The paper is intended for higher education level physics teachers and students.
Verification of IEEE Compliant Subtractive Division Algorithms
NASA Technical Reports Server (NTRS)
Miner, Paul S.; Leathrum, James F., Jr.
1996-01-01
A parameterized definition of subtractive floating point division algorithms is presented and verified using PVS. The general algorithm is proven to satisfy a formal definition of an IEEE standard for floating point arithmetic. The utility of the general specification is illustrated using a number of different instances of the general algorithm.
VLSI Design Techniques for Floating-Point Computation
1988-11-18
J. C. Gibson, The Gibson Mix, IBM Systems Development Division Tech. Report(June 1970). [Heni83] A. Heninger, The Zilog Z8070 Floating-Point...Broadcast Oock Gen. ’ itp Divide Module Module byN Module Oock Communication l I T Oock Communication Bus Figure 7.2. Clock Distribution between
Exploring the Feasibility of a DNA Computer: Design of an ALU Using Sticker-Based DNA Model.
Sarkar, Mayukh; Ghosal, Prasun; Mohanty, Saraju P
2017-09-01
Since its inception, DNA computing has advanced to offer an extremely powerful, energy-efficient emerging technology for solving hard computational problems with its inherent massive parallelism and extremely high data density. This would be much more powerful and general purpose when combined with other existing well-known algorithmic solutions that exist for conventional computing architectures using a suitable ALU. Thus, a specifically designed DNA Arithmetic and Logic Unit (ALU) that can address operations suitable for both domains can mitigate the gap between these two. An ALU must be able to perform all possible logic operations, including NOT, OR, AND, XOR, NOR, NAND, and XNOR; compare, shift etc., integer and floating point arithmetic operations (addition, subtraction, multiplication, and division). In this paper, design of an ALU has been proposed using sticker-based DNA model with experimental feasibility analysis. Novelties of this paper may be in manifold. First, the integer arithmetic operations performed here are 2s complement arithmetic, and the floating point operations follow the IEEE 754 floating point format, resembling closely to a conventional ALU. Also, the output of each operation can be reused for any next operation. So any algorithm or program logic that users can think of can be implemented directly on the DNA computer without any modification. Second, once the basic operations of sticker model can be automated, the implementations proposed in this paper become highly suitable to design a fully automated ALU. Third, proposed approaches are easy to implement. Finally, these approaches can work on sufficiently large binary numbers.
Shahan, M.R.; Seaman, C.E.; Beck, T.W.; Colinet, J.F.; Mischler, S.E.
2017-01-01
Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8. PMID:28936001
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
2017-08-24
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
Arnold, Jeffrey
2018-05-14
Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.
NASA Astrophysics Data System (ADS)
Chen, Xin; Sánchez-Arriaga, Gonzalo
2018-02-01
To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.
NASA Astrophysics Data System (ADS)
Simon, Sílvia; Duran, Miquel
1997-08-01
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.; Vallely, D. P.
1978-01-01
This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.
Three-frequency BDS precise point positioning ambiguity resolution based on raw observables
NASA Astrophysics Data System (ADS)
Li, Pan; Zhang, Xiaohong; Ge, Maorong; Schuh, Harald
2018-02-01
All BeiDou navigation satellite system (BDS) satellites are transmitting signals on three frequencies, which brings new opportunity and challenges for high-accuracy precise point positioning (PPP) with ambiguity resolution (AR). This paper proposes an effective uncalibrated phase delay (UPD) estimation and AR strategy which is based on a raw PPP model. First, triple-frequency raw PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. Then, the UPD is parameterized in raw frequency form while estimating with the high-precision and low-noise integer linear combination of float ambiguity which are derived by ambiguity decorrelation. Third, with UPD corrected, the LAMBDA method is used for resolving full or partial ambiguities which can be fixed. This method can be easily and flexibly extended for dual-, triple- or even more frequency. To verify the effectiveness and performance of triple-frequency PPP AR, tests with real BDS data from 90 stations lasting for 21 days were performed in static mode. Data were processed with three strategies: BDS triple-frequency ambiguity-float PPP, BDS triple-frequency PPP with dual-frequency (B1/B2) and three-frequency AR, respectively. Numerous experiment results showed that compared with the ambiguity-float solution, the performance in terms of convergence time and positioning biases can be significantly improved by AR. Among three groups of solutions, the triple-frequency PPP AR achieved the best performance. Compared with dual-frequency AR, additional the third frequency could apparently improve the position estimations during the initialization phase and under constraint environments when the dual-frequency PPP AR is limited by few satellite numbers.
Atmospheric Modeling And Sensor Simulation (AMASS) study
NASA Technical Reports Server (NTRS)
Parker, K. G.
1984-01-01
The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.
Research in the design of high-performance reconfigurable systems
NASA Technical Reports Server (NTRS)
Slotnick, D. L.; Mcewan, S. D.; Spry, A. J.
1984-01-01
An initial design for the Bit Processor (BP) referred to in prior reports as the Processing Element or PE has been completed. Eight BP's, together with their supporting random-access memory, a 64 k x 9 ROM to perform addition, routing logic, and some additional logic, constitute the components of a single stage. An initial stage design is given. Stages may be combined to perform high-speed fixed or floating point arithmetic. Stages can be configured into a range of arithmetic modules that includes bit-serial one or two-dimensional arrays; one or two dimensional arrays fixed or floating point processors; and specialized uniprocessors, such as long-word arithmetic units. One to eight BP's represent a likely initial chip level. The Stage would then correspond to a first-level pluggable module. As both this project and VLSI CAD/CAM progress, however, it is expected that the chip level would migrate upward to the stage and, perhaps, ultimately the box level. The BP RAM, consisting of two banks, holds only operands and indices. Programs are at the box (high-level function) and system level. At the system level initial effort has been concentrated on specifying the tools needed to evaluate design alternatives.
Rational Arithmetic in Floating-Point.
1986-09-01
RD-RI75 190 RATIONAL ARITHMETIC IN FLOTING-POINT(U) CALIFORNIA~UNIY BERKELEY CENTER FOR PURE AND APPLIED MATHEMATICS USI FE N KAHAN SEP 86 PRM-343...8217 ," .’,.-.’ .- " .- . ,,,.". ".. .. ". CENTER FOR PURE AND APPLIED MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY PAf4343 0l RATIONAL ARITHMIETIC IN FLOATING-POINT W. KAHAN SETMER18 SEPTEMBE...delicate balance between, on the one hand, the simplicity and aesthetic appeal of the specifications and, on the other hand, the complexity and
33 CFR 165.704 - Safety Zone; Tampa Bay, Florida.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Florida. (a) A floating safety zone is established consisting of an area 1000 yards fore and aft of a... ending at Gadsden Point Cut Lighted Buoys “3” and “4”. The safety zone starts again at Gadsden Point Cut... the marked channel at Tampa Bay Cut “K” buoy “11K” enroute to Rattlesnake, Tampa, FL, the floating...
Solving Navier-Stokes equations on a massively parallel processor; The 1 GFLOP performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saati, A.; Biringen, S.; Farhat, C.
This paper reports on experience in solving large-scale fluid dynamics problems on the Connection Machine model CM-2. The authors have implemented a parallel version of the MacCormack scheme for the solution of the Navier-Stokes equations. By using triad floating point operations and reducing the number of interprocessor communications, they have achieved a sustained performance rate of 1.42 GFLOPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less
Video- Demonstration of Tea and Sugar in Water Onboard the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
2003-01-01
Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Imagine what would happen if a collection of loosely attractive particles were confined in a relatively small region in the floating environment of space. Would they self organize into a compact structure, loosely organize into a fractal, or just continue to float around in their container? In this video clip, Dr. Pettit explored the possibilities. At one point he remarks, 'These things look like pictures from the Hubble Space Telescope.' Watch the video and see what happens!
Applications Performance on NAS Intel Paragon XP/S - 15#
NASA Technical Reports Server (NTRS)
Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)
1994-01-01
The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran coded. We found that the measured performance of assembly-coded BLAS is much less than what memory bandwidth limitation would predict. The influence of data cache on different sizes of vectors is also investigated using one-dimensional FFTs. c. Impact of processor layout: There are several different ways processors can be laid out within the two-dimensional grid of processors on the Paragon. We have used the FFT example to investigate performance differences based on processors layout.
The Shock and Vibration Bulletin. Part 1. Welcome, Keynote Address, Invited Papers.
1980-09-01
modes. Turning and pointing such a structure is a bit like aiming a wet noodle floating in a bowl of water. If you do it very slowly, it can be done...effective plastic strain 7P can be computed at each finite difference mesh point for each instant of time. Furthermore, the plastic work effected...attempted at any instant . In somewhat similar vein, digital control systems have the inherent capability to improve the performance of re- sponse
Kator, H; Rhodes, M
2001-06-01
Declining oyster (Crassostrea virginica) production in the Chesapeake Bay has stimulated aquaculture based on floats for off-bottom culture. While advantages of off-bottom culture are significant, the increased use of floating containers raises public health and microbiological concerns, because oysters in floats may be more susceptible to fecal contamination from storm runoff compared to those cultured on-bottom. We conducted four commercial-scale studies with market-size oysters naturally contaminated with fecal coliforms (FC) and a candidate viral indicator, F-specific RNA (FRNA) coliphage. To facilitate sampling and to test for location effects, 12 replicate subsamples, each consisting of 15 to 20 randomly selected oysters in plastic mesh bags, were placed at four characteristic locations within a 0.6- by 3.0-m "Taylor" float, and the remaining oysters were added to a depth not exceeding 15.2 cm. The float containing approximately 3,000 oysters was relaid in the York River, Virginia, for 14 days. During relay, increases in shellfish FC densities followed rain events such that final mean levels exceeded initial levels or did not meet an arbitrary product end point of 50 FC/100 ml. FRNA coliphage densities decreased to undetectable levels within 14 days (16 to 28 degrees C) in all but the last experiment, when temperatures fell between 12 and 16 degrees C. Friedman (nonparametric analysis of variance) tests performed on FC/Escherichia coli and FRNA densities indicated no differences in counts as a function of location within the float. The public health consequences of these observations are discussed, and future research and educational needs are identified.
Fast and efficient compression of floating-point data.
Lindstrom, Peter; Isenburg, Martin
2006-01-01
Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.
2013-03-01
time (milliseconds) GFlops Comparison to GPU peak performance (%) Cascade Gaussian Filtering 13 45.19 6.3 Difference of Gaussian 0.512 152...values for the GPU-targeted actor implementations in terms of Giga Floating Point Operations Per Second ( GFLOPS ). Our GFLOPS calculation for an actor...kernels. The results for GFLOPS are provided in Table . The actors were implemented on an NVIDIA GTX260 GPU, which provides 715 GFLOPS as peak
2008-04-01
Space GmbH as follows: B. TECHNICAL PRPOPOSA/DESCRIPTION OF WORK Cell: A Revolutionary High Performance Computing Platform On 29 June 2005 [1...IBM has announced that is has partnered with Mercury Computer Systems, a maker of specialized computers . The Cell chip provides massive floating-point...the computing industry away from the traditional processor technology dominated by Intel. While in the past, the development of computing power has
Bull, Diana L.
2015-09-23
The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Diana L.
The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less
Interpretation of IEEE-854 floating-point standard and definition in the HOL system
NASA Technical Reports Server (NTRS)
Carreno, Victor A.
1995-01-01
The ANSI/IEEE Standard 854-1987 for floating-point arithmetic is interpreted by converting the lexical descriptions in the standard into mathematical conditional descriptions organized in tables. The standard is represented in higher-order logic within the framework of the HOL (Higher Order Logic) system. The paper is divided in two parts with the first part the interpretation and the second part the description in HOL.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... to the point of origin. The restricted area will be marked by a lighted and signed floating buoy line... a signed floating buoy line without permission from the Supervisor of Shipbuilding, Conversion and...
Floating electrode dielectrophoresis.
Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri
2006-12-01
In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.
2008-07-31
Unlike the Lyrtech, each DSP on a Bittware board offers 3 MB of on-chip memory and 3 GFLOPs of 32-bit peak processing power. Based on the performance...Each NVIDIA 8800 Ultra features 576 GFLOPS on 128 612-MHz single-precision floating-point SIMD processors, arranged in 16 clusters of eight. Each
Hardware math for the 6502 microprocessor
NASA Technical Reports Server (NTRS)
Kissel, R.; Currie, J.
1985-01-01
A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds.
Term Cancellations in Computing Floating-Point Gröbner Bases
NASA Astrophysics Data System (ADS)
Sasaki, Tateaki; Kako, Fujio
We discuss the term cancellation which makes the floating-point Gröbner basis computation unstable, and show that error accumulation is never negligible in our previous method. Then, we present a new method, which removes accumulated errors as far as possible by reducing matrices constructed from coefficient vectors by the Gaussian elimination. The method manifests amounts of term cancellations caused by the existence of approximate linearly dependent relations among input polynomials.
Common Pitfalls in F77 Code Conversion
2003-02-01
implementation versus another are the source of these errors rather than typography . It is well to use the practice of commenting-out original source file lines...identifier), every I in the format field must be replaced with f followed by an appropriate floating point format designator . Floating point numeric...helps even more. Finally, libraries are a major source of non-portablility[sic], with graphics libraries one of the chief culprits. We in Fusion
A comparison of the Cray-2 performance before and after the installation of memory pseudo-banking
NASA Technical Reports Server (NTRS)
Schmickley, Ronald D.; Bailey, David H.
1987-01-01
A suite of 13 large Fortran benchmark codes were run on a Cray-2 configured with memory pseudo-banking circuits, and floating point operation rates were measured for each under a variety of system load configurations. These were compared with similar flop measurements taken on the same system before installation of the pseudo-banking. A useful memory access efficiency parameter was defined and calculated for both sets of performance rates, allowing a crude quantitative measure of the improvement in efficiency due to pseudo-banking. Programs were categorized as either highly scalar (S) or highly vectorized (V) and either memory-intensive or register-intensive, giving 4 categories: S-memory, S-register, V-memory, and V-register. Using flop rates as a simple quantifier of these 4 categories, a scatter plot of efficiency gain vs Mflops roughly illustrates the improvement in floating point processing speed due to pseudo-banking. On the Cray-2 system tested this improvement ranged from 1 percent for S-memory codes to about 12 percent for V-memory codes. No significant gains were made for V-register codes, which was to be expected.
Design of crossed-mirror array to form floating 3D LED signs
NASA Astrophysics Data System (ADS)
Yamamoto, Hirotsugu; Bando, Hiroki; Kujime, Ryousuke; Suyama, Shiro
2012-03-01
3D representation of digital signage improves its significance and rapid notification of important points. Our goal is to realize floating 3D LED signs. The problem is there is no sufficient device to form floating 3D images from LEDs. LED lamp size is around 1 cm including wiring and substrates. Such large pitch increases display size and sometimes spoils image quality. The purpose of this paper is to develop optical device to meet the three requirements and to demonstrate floating 3D arrays of LEDs. We analytically investigate image formation by a crossed mirror structure with aerial aperture, called CMA (crossed-mirror array). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. We have fabricated CMA for 3D array of LEDs. One CMA unit contains 20 x 20 apertures that are located diagonally. Floating image of LEDs was formed in wide range of incident angle. The image size of focused beam agreed to the apparent aperture size. When LEDs were located three-dimensionally (LEDs in three depths), the focused distances were the same as the distance between the real LED and the CMA.
DSS 13 Microprocessor Antenna Controller
NASA Technical Reports Server (NTRS)
Gosline, R. M.
1984-01-01
A microprocessor based antenna controller system developed as part of the unattended station project for DSS 13 is described. Both the hardware and software top level designs are presented and the major problems encounted are discussed. Developments useful to related projects include a JPL standard 15 line interface using a single board computer, a general purpose parser, a fast floating point to ASCII conversion technique, and experience gained in using off board floating point processors with the 8080 CPU.
High-precision arithmetic in mathematical physics
Bailey, David H.; Borwein, Jonathan M.
2015-05-12
For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.
Design of permanent magnet synchronous motor speed control system based on SVPWM
NASA Astrophysics Data System (ADS)
Wu, Haibo
2017-04-01
The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.
Drift trajectories of a floating human body simulated in a hydraulic model of Puget Sound.
Ebbesmeyer, C C; Haglund, W D
1994-01-01
After a young man jumped off a 221-foot (67 meters) high bridge, the drift of the body that beached 20 miles (32 km) away at Alki Point in Seattle, Washington was simulated with a hydraulic model. Simulations for the appropriate time period were performed using a small floating bead to represent the body in the hydraulic model at the University of Washington. Bead movements were videotaped and transferred to Computer Aided Drafting (AutoCAD) charts on a personal computer. Because of strong tidal currents in the narrow passage under the bridge (The Narrows near Tacoma, WA), small changes in the time of the jump (+/- 30 minutes) made large differences in the distance the body traveled (30 miles; 48 km). Hydraulic and other types of oceanographic models may be located by contacting technical experts known as physical oceanographers at local universities, and can be utilized to demonstrate trajectories of floating objects and the time required to arrive at selected locations. Potential applications for forensic death investigators include: to be able to set geographic and time limits for searches; determine potential origin of remains found floating or beached; and confirm and correlate information regarding entry into the water and sightings of remains.
A Mathematical Approach for Compiling and Optimizing Hardware Implementations of DSP Transforms
2010-08-01
FPGA throughput [billion samples per second] performance [ Gflop /s] 0 30 60 90 120 150 0 1 2 3 4 5 0 5,000 10,000 15,000 20,000 25,000...30,000 35,000 40,000 45,000 area [slices] DFT 64 (floating point) on Xilinx Virtex-6 FPGA throughput [billion samples per second] performance [ Gflop ...Virtex-6 FPGA throughput [billion samples per second] performance [ Gflop /s] 0 50 100 150 200 250 0 1 2 3 4 5 0 10,000 20,000 30,000 40,000
Nakamura, N; Nakano, K; Sugiura, N; Matsumura, M
2003-12-01
A process using a floating carrier for immobilization of cyanobacteriolytic bacteria, B.cereus N-14, was proposed to realize an effective in situ control of natural floating cyanobacterial blooms. The critical concentrations of the cyanobacteriolytic substance and B.cereus N-14 cells required to exhibit cyanobacteriolytic activity were investigated. The results indicated the necessity of cell growth to produce sufficiently high amounts of the cyanobacteriolytic substance to exhibit its activity and also for conditions enabling good contact between high concentrations of the cyanobacteriolytic substance and cyanobacteria. Floating biodegradable plastics made of starch were applied as a carrier material to maintain close contact between the immobilized cyanobacteriolytic bacteria and floating cyanobacteria. The floating starch-carriers could eliminate 99% of floating cyanobacteria in 4 d. Since B.cereus N-14 could produce the cyanobacteriolytic substance under the presence of starch and some amino acids, the cyanobacteriolytic activity could be attributed to carbon source fed from starch carrier and amino acids eluted from lysed cyanobacteria. Therefore, the effect of using a floating starch-carrier was confirmed from both view points as a carrier for immobilization and a nutrient source to stimulate cyanobacteriolytic activity. The new concept to apply a floating carrier immobilizing useful microorganisms for intensive treatment of a nuisance floating target was demonstrated.
NASA Technical Reports Server (NTRS)
Irvine, R.; Van Alstine, R.
1979-01-01
The paper compares and describes the advantages of dry tuned gyros over floated gyros for space applications. Attention is given to describing the Teledyne SDG-5 gyro and the second-generation NASA Standard Dry Rotor Inertial Reference Unit (DRIRU II). Certain tests which were conducted to evaluate the SDG-5 and DRIRU II for specific mission requirements are outlined, and their results are compared with published test results on other gyro types. Performance advantages are highlighted.
RRTMGP: A High-Performance Broadband Radiation Code for the Next Decade
2014-09-30
Hardware counters were used to measure several performance metrics, including the number of double-precision (DP) floating- point operations ( FLOPs ...0.2 DP FLOPs per CPU cycle. Experience with production science code is that it is possible to achieve execution rates in the range of 0.5 to 1.0...DP FLOPs per cycle. Looking at the ratio of vectorized DP FLOPs to total DP FLOPs we see (Figure PROF) that for most of the execution time the
Optimum design point for a closed-cycle OTEC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikegami, Yasuyuki; Uehara, Haruo
1994-12-31
Performance analysis is performed for optimum design point of a closed-cycle Ocean Thermal Energy Conversion (OTEC) system. Calculations are made for an OTEC model plant with a gross power of 100 MW, which was designed by the optimization method proposed by Uehara and Ikegami for the design conditions of 21 C--29 C warm sea water temperature and 4 C cold sea water temperature. Ammonia is used as working fluid. Plate type evaporator and condenser are used as heat exchangers. The length of the cold sea water pipe is 1,000 m. This model plant is a floating-type OTEC plant. The objectivemore » function of optimum design point is defined as the total heat transfer area of heat exchangers per the annual net power.« less
Formal verification of mathematical software
NASA Technical Reports Server (NTRS)
Sutherland, D.
1984-01-01
Methods are investigated for formally specifying and verifying the correctness of mathematical software (software which uses floating point numbers and arithmetic). Previous work in the field was reviewed. A new model of floating point arithmetic called the asymptotic paradigm was developed and formalized. Two different conceptual approaches to program verification, the classical Verification Condition approach and the more recently developed Programming Logic approach, were adapted to use the asymptotic paradigm. These approaches were then used to verify several programs; the programs chosen were simplified versions of actual mathematical software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, G. Scott
This floating-point arithmetic library contains a software implementation of Universal Numbers (unums) as described by John Gustafson [1]. The unum format is a superset of IEEE 754 floating point with several advantages. Computing with unums provides more accurate answers without rounding errors, underflow or overflow. In contrast to fixed-sized IEEE numbers, a variable number of bits can be used to encode unums. This all allows number with only a few significant digits or with a small dynamic range to be represented more compactly.
NASA Technical Reports Server (NTRS)
Manos, P.; Turner, L. R.
1972-01-01
Approximations which can be evaluated with precision using floating-point arithmetic are presented. The particular set of approximations thus far developed are for the function TAN and the functions of USASI FORTRAN excepting SQRT and EXPONENTIATION. These approximations are, furthermore, specialized to particular forms which are especially suited to a computer with a small memory, in that all of the approximations can share one general purpose subroutine for the evaluation of a polynomial in the square of the working argument.
Floating-point function generation routines for 16-bit microcomputers
NASA Technical Reports Server (NTRS)
Mackin, M. A.; Soeder, J. F.
1984-01-01
Several computer subroutines have been developed that interpolate three types of nonanalytic functions: univariate, bivariate, and map. The routines use data in floating-point form. However, because they are written for use on a 16-bit Intel 8086 system with an 8087 mathematical coprocessor, they execute as fast as routines using data in scaled integer form. Although all of the routines are written in assembly language, they have been implemented in a modular fashion so as to facilitate their use with high-level languages.
Floating-point geometry: toward guaranteed geometric computations with approximate arithmetics
NASA Astrophysics Data System (ADS)
Bajard, Jean-Claude; Langlois, Philippe; Michelucci, Dominique; Morin, Géraldine; Revol, Nathalie
2008-08-01
Geometric computations can fail because of inconsistencies due to floating-point inaccuracy. For instance, the computed intersection point between two curves does not lie on the curves: it is unavoidable when the intersection point coordinates are non rational, and thus not representable using floating-point arithmetic. A popular heuristic approach tests equalities and nullities up to a tolerance ɛ. But transitivity of equality is lost: we can have A approx B and B approx C, but A not approx C (where A approx B means ||A - B|| < ɛ for A,B two floating-point values). Interval arithmetic is another, self-validated, alternative; the difficulty is to limit the swell of the width of intervals with computations. Unfortunately interval arithmetic cannot decide equality nor nullity, even in cases where it is decidable by other means. A new approach, developed in this paper, consists in modifying the geometric problems and algorithms, to account for the undecidability of the equality test and unavoidable inaccuracy. In particular, all curves come with a non-zero thickness, so two curves (generically) cut in a region with non-zero area, an inner and outer representation of which is computable. This last approach no more assumes that an equality or nullity test is available. The question which arises is: which geometric problems can still be solved with this last approach, and which cannot? This paper begins with the description of some cases where every known arithmetic fails in practice. Then, for each arithmetic, some properties of the problems they can solve are given. We end this work by proposing the bases of a new approach which aims to fulfill the geometric computations requirements.
2012-03-01
Description A dass that handles Imming the JAUS header pmUon of JAUS messages. jaus_hmd~_msg is included as a data member in all JAUS messages. Member...scaleTolnt16 (float val, float low, float high) [related] Scales signed short value val, which is bounded by low and high. Shifts the center point of low...and high to zero, and shifts val accordingly. V a! is then up scaled by the ratio of the range of short values to the range of values from high to low
Fixed-point image orthorectification algorithms for reduced computational cost
NASA Astrophysics Data System (ADS)
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation to be used in place of the traditional floating point division. This method increases the throughput of the orthorectification operation by 38% when compared to floating point processing. Additionally, this method improves the accuracy of the existing integer-based orthorectification algorithms in terms of average pixel distance, increasing the accuracy of the algorithm by more than 5x. The quadratic function reduces the pixel position error to 2% and is still 2.8x faster than the 128-bit floating point algorithm.
Gravity-induced dynamics of a squirmer microswimmer in wall proximity
NASA Astrophysics Data System (ADS)
Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger
2018-02-01
We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2012-04-01
By extending the exponent of floating point numbers with an additional integer as the power index of a large radix, we compute fully normalized associated Legendre functions (ALF) by recursion without underflow problem. The new method enables us to evaluate ALFs of extremely high degree as 232 = 4,294,967,296, which corresponds to around 1 cm resolution on the Earth's surface. By limiting the application of exponent extension to a few working variables in the recursion, choosing a suitable large power of 2 as the radix, and embedding the contents of the basic arithmetic procedure of floating point numbers with the exponent extension directly in the program computing the recurrence formulas, we achieve the evaluation of ALFs in the double-precision environment at the cost of around 10% increase in computational time per single ALF. This formulation realizes meaningful execution of the spherical harmonic synthesis and/or analysis of arbitrary degree and order.
Implementing Molecular Dynamics on Hybrid High Performance Computers - Three-Body Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Yamada, Masako
The use of coprocessors or accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power re- quirements. Hybrid high-performance computers, defined as machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. Although there has been extensive research into methods to efficiently use accelerators to improve the performance of molecular dynamics (MD) employing pairwise potential energy models, little is reported in the literature for models that includemore » many-body effects. 3-body terms are required for many popular potentials such as MEAM, Tersoff, REBO, AIREBO, Stillinger-Weber, Bond-Order Potentials, and others. Because the per-atom simulation times are much higher for models incorporating 3-body terms, there is a clear need for efficient algo- rithms usable on hybrid high performance computers. Here, we report a shared-memory force-decomposition for 3-body potentials that avoids memory conflicts to allow for a deterministic code with substantial performance improvements on hybrid machines. We describe modifications necessary for use in distributed memory MD codes and show results for the simulation of water with Stillinger-Weber on the hybrid Titan supercomputer. We compare performance of the 3-body model to the SPC/E water model when using accelerators. Finally, we demonstrate that our approach can attain a speedup of 5.1 with acceleration on Titan for production simulations to study water droplet freezing on a surface.« less
Differential porosimetry and permeametry for random porous media.
Hilfer, R; Lemmer, A
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.
An Adaptive Prediction-Based Approach to Lossless Compression of Floating-Point Volume Data.
Fout, N; Ma, Kwan-Liu
2012-12-01
In this work, we address the problem of lossless compression of scientific and medical floating-point volume data. We propose two prediction-based compression methods that share a common framework, which consists of a switched prediction scheme wherein the best predictor out of a preset group of linear predictors is selected. Such a scheme is able to adapt to different datasets as well as to varying statistics within the data. The first method, called APE (Adaptive Polynomial Encoder), uses a family of structured interpolating polynomials for prediction, while the second method, which we refer to as ACE (Adaptive Combined Encoder), combines predictors from previous work with the polynomial predictors to yield a more flexible, powerful encoder that is able to effectively decorrelate a wide range of data. In addition, in order to facilitate efficient visualization of compressed data, our scheme provides an option to partition floating-point values in such a way as to provide a progressive representation. We compare our two compressors to existing state-of-the-art lossless floating-point compressors for scientific data, with our data suite including both computer simulations and observational measurements. The results demonstrate that our polynomial predictor, APE, is comparable to previous approaches in terms of speed but achieves better compression rates on average. ACE, our combined predictor, while somewhat slower, is able to achieve the best compression rate on all datasets, with significantly better rates on most of the datasets.
Float processing of high-temperature complex silicate glasses and float baths used for same
NASA Technical Reports Server (NTRS)
Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)
2000-01-01
A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.
ICRF-Induced Changes in Floating Potential and Ion Saturation Current in the EAST Divertor
NASA Astrophysics Data System (ADS)
Perkins, Rory; Hosea, Joel; Taylor, Gary; Bertelli, Nicola; Kramer, Gerrit; Qin, Chengming; Wang, Liang; Yang, Jichan; Zhang, Xinjun
2017-10-01
Injection of waves in the ion cyclotron range of frequencies (ICRF) into a tokamak can potentially raise the plasma potential via RF rectification. Probes are affected both by changes in plasma potential and also by RF-averaging of the probe characteristic, with the latter tending to drop the floating potential. We present the effect of ICRF heating on divertor Langmuir probes in the EAST experiment. Over a scan of the outer gap, probes connected to the antennas have increases in floating potential with ICRF, but probes in between the outer-vessel strike point and flux surface tangent to the antenna have decreased floating potential. This behaviour is investigated using field-line mapping. Preliminary results show that mdiplane gas puffing can suppress the strong influence of ICRF on the probes' floating potential.
NASA Technical Reports Server (NTRS)
Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.
1972-01-01
The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.
NASA Technical Reports Server (NTRS)
Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.
1973-01-01
The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.
Have Floating Rates Been a Success?
ERIC Educational Resources Information Center
Higham, David
1983-01-01
Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)
Lithium-ion drifting: Application to the study of point defects in floating-zone silicon
NASA Technical Reports Server (NTRS)
Walton, J. T.; Wong, Y. K.; Zulehner, W.
1997-01-01
The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.
Wang, Jun; Cui, Xiao; Ni, Huan-Huan; Huang, Chun-Shui; Zhou, Cui-Xia; Wu, Ji; Shi, Jun-Chao; Wu, Yi
2013-04-01
To compare the efficacy difference in the treatment of shoulder pain in post-stroke shoulder-hand syndrome among floating acupuncture, oral administration of western medicine and local fumigation of Chinese herbs. Ninety cases of post-stroke shoulder-hand syndrome (stage I) were randomized into a floating acupuncture group, a western medicine group and a local Chinese herbs fumigation group, 30 cases in each one. In the floating acupuncture group, two obvious tender points were detected on the shoulder and the site 80-100 mm inferior to each tender point was taken as the inserting point and stimulated with floating needling technique. In the western medicine group, mobic 7.5 mg was prescribed for oral administration. In the local Chinese herbs fumigation group, the formula for activating blood circulation and relaxing tendon was used for local fumigation. All the patients in three groups received rehabilitation training. The floating acupuncture, oral administration of western medicine, local Chinese herbs fumigation and rehabilitation training were given once a day respectively in corresponding group and the cases were observed for 1 month. The visual analogue scale (VAS) and Takagishi shoulder joint function assessment were adopted to evaluate the dynamic change of the patients with shoulder pain before and after treatment in three groups. The modified Barthel index was used to evaluate the dynamic change of daily life activity of the patients in three groups. With floating acupuncture, shoulder pain was relieved and the daily life activity was improved in the patients with post-stroke shoulder-hand syndrome, which was superior to the oral administration of western medicine and local Chinese herbs fumigation (P < 0.01). With local Chinese herbs fumigation, the improvement of shoulder pain was superior to the oral administration of western medicine. The difference in the improvement of daily life activity was not significant statistically between the local Chinese herbs fumigation and oral administration of western medicine, the efficacy was similar between these two therapies (P > 0.05). The floating acupuncture relieves shoulder pain of the patients with post-stroke shoulder-hand syndrome promptly and effectively, and the effects on shoulder pain and the improvements of daily life activity are superior to that of the oral administration of western medicine and local Chinese herbs fumigation.
Evaluation of the FIR Example using Xilinx Vivado High-Level Synthesis Compiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Finkel, Hal; Yoshii, Kazutomo
Compared to central processing units (CPUs) and graphics processing units (GPUs), field programmable gate arrays (FPGAs) have major advantages in reconfigurability and performance achieved per watt. This development flow has been augmented with high-level synthesis (HLS) flow that can convert programs written in a high-level programming language to Hardware Description Language (HDL). Using high-level programming languages such as C, C++, and OpenCL for FPGA-based development could allow software developers, who have little FPGA knowledge, to take advantage of the FPGA-based application acceleration. This improves developer productivity and makes the FPGA-based acceleration accessible to hardware and software developers. Xilinx Vivado HLSmore » compiler is a high-level synthesis tool that enables C, C++ and System C specification to be directly targeted into Xilinx FPGAs without the need to create RTL manually. The white paper [1] published recently by Xilinx uses a finite impulse response (FIR) example to demonstrate the variable-precision features in the Vivado HLS compiler and the resource and power benefits of converting floating point to fixed point for a design. To get a better understanding of variable-precision features in terms of resource usage and performance, this report presents the experimental results of evaluating the FIR example using Vivado HLS 2017.1 and a Kintex Ultrascale FPGA. In addition, we evaluated the half-precision floating-point data type against the double-precision and single-precision data type and present the detailed results.« less
Expert Systems on Multiprocessor Architectures. Volume 4. Technical Reports
1991-06-01
Floated-Current-Time0 -> The time that this function is called in user time uflts, expressed as a floating point number. Halt- Poligono Arrests the...default a statistics file will be printed out, if it can be. To prevent this make No-Statistics true. Unhalt- Poligono Unarrests the process in which the
76 FR 19290 - Safety Zone; Commencement Bay, Tacoma, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... the following points Latitude 47[deg]17'38'' N, Longitude 122[deg]28'43'' W; thence south easterly to... protruding from the shoreline along Ruston Way. Floating markers will be placed by the sponsor of the event... rectangle protruding from the shoreline along Ruston Way. Floating markers will be placed by the sponsor of...
40 CFR 63.685 - Standards: Tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in paragraph (c)(2)(i) of this section when a tank is used as an interim transfer point to transfer... fixed-roof tank equipped with an internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the...
Oil/gas collector/separator for underwater oil leaks
Henning, Carl D.
1993-01-01
An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.
An embedded controller for a 7-degree of freedom prosthetic arm.
Tenore, Francesco; Armiger, Robert S; Vogelstein, R Jacob; Wenstrand, Douglas S; Harshbarger, Stuart D; Englehart, Kevin
2008-01-01
We present results from an embedded real-time hardware system capable of decoding surface myoelectric signals (sMES) to control a seven degree of freedom upper limb prosthesis. This is one of the first hardware implementations of sMES decoding algorithms and the most advanced controller to-date. We compare decoding results from the device to simulation results from a real-time PC-based operating system. Performance of both systems is shown to be similar, with decoding accuracy greater than 90% for the floating point software simulation and 80% for fixed point hardware and software implementations.
Evaluation of floating-point sum or difference of products in carry-save domain
NASA Technical Reports Server (NTRS)
Wahab, A.; Erdogan, S.; Premkumar, A. B.
1992-01-01
An architecture to evaluate a 24-bit floating-point sum or difference of products using modified sequential carry-save multipliers with extensive pipelining is described. The basic building block of the architecture is a carry-save multiplier with built-in mantissa alignment for the summation during the multiplication cycles. A carry-save adder, capable of mantissa alignment, correctly positions products with the current carry-save sum. Carry propagation in individual multipliers is avoided and is only required once to produce the final result.
Paranoia.Ada: Sample output reports
NASA Technical Reports Server (NTRS)
1986-01-01
Paranoia.Ada is a program to diagnose floating point arithmetic in the context of the Ada programming language. The program evaluates the quality of a floating point arithmetic implementation with respect to the proposed IEEE Standards P754 and P854. Paranoia.Ada is derived from the original BASIC programming language version of Paranoia. The Paranoia.Ada replicates in Ada the test algorithms originally implemented in BASIC and adheres to the evaluation criteria established by W. M. Kahan. Paranoia.Ada incorporates a major structural redesign and employs applicable Ada architectural and stylistic features.
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.
2013-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.
Fixed-Rate Compressed Floating-Point Arrays.
Lindstrom, Peter
2014-12-01
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.
A novel grounded to floating admittance converter with electronic control
NASA Astrophysics Data System (ADS)
Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank
2018-01-01
This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.
NASA Astrophysics Data System (ADS)
Li, W.; Shigeta, K.; Hasegawa, K.; Li, L.; Yano, K.; Tanaka, S.
2017-09-01
Recently, laser-scanning technology, especially mobile mapping systems (MMSs), has been applied to measure 3D urban scenes. Thus, it has become possible to simulate a traditional cultural event in a virtual space constructed using measured point clouds. In this paper, we take the festival float procession in the Gion Festival that has a long history in Kyoto City, Japan. The city government plans to revive the original procession route that is narrow and not used at present. For the revival, it is important to know whether a festival float collides with houses, billboards, electric wires or other objects along the original route. Therefore, in this paper, we propose a method for visualizing the collisions of point cloud objects. The advantageous features of our method are (1) a see-through visualization with a correct depth feel that is helpful to robustly determine the collision areas, (2) the ability to visualize areas of high collision risk as well as real collision areas, and (3) the ability to highlight target visualized areas by increasing the point densities there.
Applications Performance Under MPL and MPI on NAS IBM SP2
NASA Technical Reports Server (NTRS)
Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)
1994-01-01
On July 5, 1994, an IBM Scalable POWER parallel System (IBM SP2) with 64 nodes, was installed at the Numerical Aerodynamic Simulation (NAS) Facility Each node of NAS IBM SP2 is a "wide node" consisting of a RISC 6000/590 workstation module with a clock of 66.5 MHz which can perform four floating point operations per clock with a peak performance of 266 Mflop/s. By the end of 1994, 64 nodes of IBM SP2 will be upgraded to 160 nodes with a peak performance of 42.5 Gflop/s. An overview of the IBM SP2 hardware is presented. The basic understanding of architectural details of RS 6000/590 will help application scientists the porting, optimizing, and tuning of codes from other machines such as the CRAY C90 and the Paragon to the NAS SP2. Optimization techniques such as quad-word loading, effective utilization of two floating point units, and data cache optimization of RS 6000/590 is illustrated, with examples giving performance gains at each optimization step. The conversion of codes using Intel's message passing library NX to codes using native Message Passing Library (MPL) and the Message Passing Interface (NMI) library available on the IBM SP2 is illustrated. In particular, we will present the performance of Fast Fourier Transform (FFT) kernel from NAS Parallel Benchmarks (NPB) under MPL and MPI. We have also optimized some of Fortran BLAS 2 and BLAS 3 routines, e.g., the optimized Fortran DAXPY runs at 175 Mflop/s and optimized Fortran DGEMM runs at 230 Mflop/s per node. The performance of the NPB (Class B) on the IBM SP2 is compared with the CRAY C90, Intel Paragon, TMC CM-5E, and the CRAY T3D.
Does size and buoyancy affect the long-distance transport of floating debris?
NASA Astrophysics Data System (ADS)
Ryan, Peter G.
2015-08-01
Floating persistent debris, primarily made from plastic, disperses long distances from source areas and accumulates in oceanic gyres. However, biofouling can increase the density of debris items to the point where they sink. Buoyancy is related to item volume, whereas fouling is related to surface area, so small items (which have high surface area to volume ratios) should start to sink sooner than large items. Empirical observations off South Africa support this prediction: moving offshore from coastal source areas there is an increase in the size of floating debris, an increase in the proportion of highly buoyant items (e.g. sealed bottles, floats and foamed plastics), and a decrease in the proportion of thin items such as plastic bags and flexible packaging which have high surface area to volume ratios. Size-specific sedimentation rates may be one reason for the apparent paucity of small plastic items floating in the world’s oceans.
NASA Astrophysics Data System (ADS)
Li, Jun; Qin, Qiming; Xie, Chao; Zhao, Yue
2012-10-01
The update frequency of digital road maps influences the quality of road-dependent services. However, digital road maps surveyed by probe vehicles or extracted from remotely sensed images still have a long updating circle and their cost remain high. With GPS technology and wireless communication technology maturing and their cost decreasing, floating car technology has been used in traffic monitoring and management, and the dynamic positioning data from floating cars become a new data source for updating road maps. In this paper, we aim to update digital road maps using the floating car data from China's National Commercial Vehicle Monitoring Platform, and present an incremental road network extraction method suitable for the platform's GPS data whose sampling frequency is low and which cover a large area. Based on both spatial and semantic relationships between a trajectory point and its associated road segment, the method classifies each trajectory point, and then merges every trajectory point into the candidate road network through the adding or modifying process according to its type. The road network is gradually updated until all trajectories have been processed. Finally, this method is applied in the updating process of major roads in North China and the experimental results reveal that it can accurately derive geometric information of roads under various scenes. This paper provides a highly-efficient, low-cost approach to update digital road maps.
The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations
NASA Astrophysics Data System (ADS)
Orf, L.
2017-12-01
In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress extremely well. We observe that the overhead for compressing data with ZFP is low, and that compressing data in memory reduces the amount of memory overhead needed to store the virtual files before they are flushed to disk.
33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vessel astern, alongside, or by pushing ahead; and (iii) Each dredge and floating plant. (4) The traffic... towing another vessel astern, alongside or by pushing ahead; and (iv) Each dredge and floating plant. (c... Captain of the Port of Detroit, Michigan. Detroit River means the connecting waters from Windmill Point...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
...]37[min]10.0[sec] W; thence easterly along the Marinette Marine Corporation pier to the point of origin. The restricted area will be marked by a lighted and signed floating boat barrier. (b) The... floating boat barrier without permission from the United States Navy, Supervisor of Shipbuilding Gulf Coast...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... changed so that the restricted area could be marked with a signed floating buoy line instead of a signed floating barrier. That change has been made to the final rule. Procedural Requirements a. Review Under...; thence easterly along the Marinette Marine Corporation pier to the point of origin. The restricted area...
A Floating Cylinder on an Unbounded Bath
NASA Astrophysics Data System (ADS)
Chen, Hanzhe; Siegel, David
2018-03-01
In this paper, we reconsider a circular cylinder horizontally floating on an unbounded reservoir in a gravitational field directed downwards, which was studied by Bhatnagar and Finn (Phys Fluids 18(4):047103, 2006). We follow their approach but with some modifications. We establish the relation between the total energy E_T relative to the undisturbed state and the total force F_T , that is, F_T = -dE_T/dh , where h is the height of the center of the cylinder relative to the undisturbed fluid level. There is a monotone relation between h and the wetting angle φ _0 . We study the number of equilibria, the floating configurations and their stability for all parameter values. We find that the system admits at most two equilibrium points for arbitrary contact angle γ , the one with smaller φ _0 is stable and the one with larger φ _0 is unstable. Since the one-sided solution can be translated horizontally, the fluid interfaces may intersect. We show that the stable equilibrium point never lies in the intersection region, while the unstable equilibrium point may lie in the intersection region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Shashi; Balasubramanian, S. K.; Takashima, Wataru
2014-09-07
A comparative study on electrical performance, optical properties, and surface morphology of poly(3-hexylthiophene) (P3HT) and P3HT-nanofibers based “normally on” type p-channel field effect transistors (FETs), fabricated by two different coating techniques has been reported here. Nanofibers are prepared in the laboratory with the approach of self-assembly of P3HT molecules into nanofibers in an appropriate solvent. P3HT (0.3 wt. %) and P3HT-nanofibers (∼0.25 wt. %) are used as semiconductor transport materials for deposition over FETs channel through spin coating as well as through our recently developed floating film transfer method (FTM). FETs fabricated using FTM show superior performance compared to spin coated devices;more » however, the mobility of FTM films based FETs is comparable to the mobility of spin coated one. The devices based on P3HT-nanofibers (using both the techniques) show much better performance in comparison to P3HT FETs. The best performance among all the fabricated organic field effect transistors are observed for FTM coated P3HT-nanofibers FETs. This improved performance of nanofiber-FETs is due to ordering of fibers and also due to the fact that fibers offer excellent charge transport facility because of point to point transmission. The optical properties and structural morphologies (P3HT and P3HT-nanofibers) are studied using UV-visible absorption spectrophotometer and atomic force microscopy , respectively. Coating techniques and effect of fiber formation for organic conductors give information for fabrication of organic devices with improved performance.« less
Measuring FLOPS Using Hardware Performance Counter Technologies on LC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, D H
2008-09-05
FLOPS (FLoating-point Operations Per Second) is a commonly used performance metric for scientific programs that rely heavily on floating-point (FP) calculations. The metric is based on the number of FP operations rather than instructions, thereby facilitating a fair comparison between different machines. A well-known use of this metric is the LINPACK benchmark that is used to generate the Top500 list. It measures how fast a computer solves a dense N by N system of linear equations Ax=b, which requires a known number of FP operations, and reports the result in millions of FP operations per second (MFLOPS). While running amore » benchmark with known FP workloads can provide insightful information about the efficiency of a machine's FP pipelines in relation to other machines, measuring FLOPS of an arbitrary scientific application in a platform-independent manner is nontrivial. The goal of this paper is twofold. First, we explore the FP microarchitectures of key processors that are underpinning the LC machines. Second, we present the hardware performance monitoring counter-based measurement techniques that a user can use to get the native FLOPS of his or her program, which are practical solutions readily available on LC platforms. By nature, however, these native FLOPS metrics are not directly comparable across different machines mainly because FP operations are not consistent across microarchitectures. Thus, the first goal of this paper represents the base reference by which a user can interpret the measured FLOPS more judiciously.« less
A test data compression scheme based on irrational numbers stored coding.
Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan
2014-01-01
Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.
Extending the BEAGLE library to a multi-FPGA platform.
Jin, Zheming; Bakos, Jason D
2013-01-19
Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein's pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein's pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform's peak memory bandwidth and the implementation's memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE's CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE's GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor.
26 CFR 1.1274-2 - Issue price of debt instruments to which section 1274 applies.
Code of Federal Regulations, 2010 CFR
2010-04-01
...- borrower to the seller-lender that is designated as interest or points. See Example 2 of § 1.1273-2(g)(5... ignored. (f) Treatment of variable rate debt instruments—(1) Stated interest at a qualified floating rate... qualified floating rate (or rates) is determined by assuming that the instrument provides for a fixed rate...
76 FR 71322 - Taking and Importing Marine Mammals; U.S. Navy Training in the Hawaii Range Complex
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
..., most operationally sound method of initiating a demolition charge on a floating mine or mine at depth...; require building/ deploying an improvised, bulky, floating system for the receiver; and add another 180 ft... charge initiating device are taken to the detonation point. Military forms of C-4 are used as the...
A floating-point digital receiver for MRI.
Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki
2002-07-01
A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.
ERIC Educational Resources Information Center
Riley McKee, Megan
2012-01-01
Floating describes the act of staff moving from one unit to another based on the needs of the patients in a hospital. Many staff who float to different units express negative feelings, including anxiety and lack in self-efficacy. However, floating is both an economical and efficient method to use staff across the hospital, especially with current…
Zhai, H; Jones, D S; McCoy, C P; Madi, A M; Tian, Y; Andrews, G P
2014-10-06
The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.
Low Power Computing in Distributed Systems
2006-04-01
performance applications. It has been adopted in embedded systems such as the Stargate from Crossbow [15] and the PASTA 4 0 0.1 0.2 0.3 0.4 (A) flo at...current consumption of the Stargate board is measured by an Agilent digital multimeter 34401A. The digital multimeter is connected with the PC for data...floating point operation vs. integer operation Power supply Digital multimeter Stargate board with Xscale processor 5 2.2 Library math function vs
26 CFR 1.483-2 - Unstated interest.
Code of Federal Regulations, 2010 CFR
2010-04-01
... percentage points above the yield on 6-month Treasury bills at the mid-point of the semiannual period immediately preceding each interest payment date. Assume that the interest rate is a qualified floating rate...
Eddy Seeding in the Labrador Sea: a Submerged Autonomous Launching Platform (SALP) Application
NASA Astrophysics Data System (ADS)
Furey, Heather H.; Femke de Jong, M.; Bower, Amy S.
2013-04-01
A simplified Submerged Autonomous Launch Platform (SALP) was used to release profiling floats into warm-core Irminger Rings (IRs) in order to investigate their vertical structure and evolution in the Labrador Sea from September 2007 - September 2009. IRs are thought to play an important role in restratification after convection in the Labrador Sea. The SALP is designed to release surface drifters or subsurface floats serially from a traditional ocean mooring, using real-time ocean measurements as criteria for launch. The original prototype instrument used properties measured at multiple depths, with information relayed to the SALP controller via acoustic modems. In our application, two SALP carousels were attached at 500 meters onto a heavily-instrumented deep water mooring, in the path of recently-shed IRs off the west Greenland shelf. A release algorithm was designed to use temperature and pressure measured at the SALP depth only to release one or two APEX profiling drifters each time an IR passed the mooring, using limited historical observations to set release thresholds. Mechanically and electronically, the SALP worked well: out of eleven releases, there was only one malfunction when a float was caught in the cage after the burn-wire had triggered. However, getting floats trapped in eddies met with limited success due to problems with the release algorithm and float ballasting. Out of seven floats launched from the platform using oceanographic criteria, four were released during warm water events that were not related to passing IRs. Also, after float release, it took on average about 2.6 days for the APEX to adjust from its initial ballast depth, about 600 meters, to its park point of 300 meters, leaving the float below the trapped core of water in the IRs. The other mooring instruments (at depths of 100 to 3000 m), revealed that 12 IRs passed by the mooring in the 2-year monitoring period. With this independent information, we were able to assess and improve the release algorithm, still based on ocean conditions measured only at one depth. We found that much better performance could have been achieved with an algorithm that detected IRs based on a temperature difference from a long-term running mean rather than a fixed temperature threshold. This highlights the challenge of designing an appropriate release strategy with limited a priori information on the amplitude and time scales of the background variability.
Motion performance and mooring system of a floating offshore wind turbine
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Liang; Wu, Haitao
2012-09-01
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information
NASA Technical Reports Server (NTRS)
Pence, William D.; White, R. L.; Seaman, R.
2010-01-01
We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.
Harada, Ichiro; Kim, Sung-Gon; Cho, Chong Su; Kurosawa, Hisashi; Akaike, Toshihiro
2007-01-01
In this study, a simple combined method consisting of floating and anchored collagen gel in a ligament or tendon equivalent culture system was used to produce the oriented fibrils in fibroblast-populated collagen matrices (FPCMs) during the remodeling and contraction of the collagen gel. Orientation of the collagen fibrils along single axis occurred over the whole area of the floating section and most of the fibroblasts were elongated and aligned along the oriented collagen fibrils, whereas no significant orientation of fibrils was observed in normally contracted FPCMs by the floating method. Higher elasticity and enhanced mechanical strength were obtained using our simple method compared with normally contracted floating FPCMs. The Young's modulus and the breaking point of the FPCMs were dependent on the initial cell densities. This simple method will be applied as a convenient bioreactor to study cellular processes of the fibroblasts in the tissues with highly oriented fibrils such as ligaments or tendons. (c) 2006 Wiley Periodicals, Inc.
High-performance floating-point image computing workstation for medical applications
NASA Astrophysics Data System (ADS)
Mills, Karl S.; Wong, Gilman K.; Kim, Yongmin
1990-07-01
The medical imaging field relies increasingly on imaging and graphics techniques in diverse applications with needs similar to (or more stringent than) those of the military, industrial and scientific communities. However, most image processing and graphics systems available for use in medical imaging today are either expensive, specialized, or in most cases both. High performance imaging and graphics workstations which can provide real-time results for a number of applications, while maintaining affordability and flexibility, can facilitate the application of digital image computing techniques in many different areas. This paper describes the hardware and software architecture of a medium-cost floating-point image processing and display subsystem for the NeXT computer, and its applications as a medical imaging workstation. Medical imaging applications of the workstation include use in a Picture Archiving and Communications System (PACS), in multimodal image processing and 3-D graphics workstation for a broad range of imaging modalities, and as an electronic alternator utilizing its multiple monitor display capability and large and fast frame buffer. The subsystem provides a 2048 x 2048 x 32-bit frame buffer (16 Mbytes of image storage) and supports both 8-bit gray scale and 32-bit true color images. When used to display 8-bit gray scale images, up to four different 256-color palettes may be used for each of four 2K x 2K x 8-bit image frames. Three of these image frames can be used simultaneously to provide pixel selectable region of interest display. A 1280 x 1024 pixel screen with 1: 1 aspect ratio can be windowed into the frame buffer for display of any portion of the processed image or images. In addition, the system provides hardware support for integer zoom and an 82-color cursor. This subsystem is implemented on an add-in board occupying a single slot in the NeXT computer. Up to three boards may be added to the NeXT for multiple display capability (e.g., three 1280 x 1024 monitors, each with a 16-Mbyte frame buffer). Each add-in board provides an expansion connector to which an optional image computing coprocessor board may be added. Each coprocessor board supports up to four processors for a peak performance of 160 MFLOPS. The coprocessors can execute programs from external high-speed microcode memory as well as built-in internal microcode routines. The internal microcode routines provide support for 2-D and 3-D graphics operations, matrix and vector arithmetic, and image processing in integer, IEEE single-precision floating point, or IEEE double-precision floating point. In addition to providing a library of C functions which links the NeXT computer to the add-in board and supports its various operational modes, algorithms and medical imaging application programs are being developed and implemented for image display and enhancement. As an extension to the built-in algorithms of the coprocessors, 2-D Fast Fourier Transform (FF1), 2-D Inverse FFF, convolution, warping and other algorithms (e.g., Discrete Cosine Transform) which exploit the parallel architecture of the coprocessor board are being implemented.
Tarte, Stephen R.; Schmidt, A.R.; Sullivan, Daniel J.
1992-01-01
A floating sample-collection platform is described for stream sites where the vertical or horizontal distance between the stream-sampling point and a safe location for the sampler exceed the suction head of the sampler. The platform allows continuous water sampling over the entire storm-runoff hydrogrpah. The platform was developed for a site in southern Illinois.
Receptive fields selection for binary feature description.
Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal
2014-06-01
Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.
Floating assembly of diatom Coscinodiscus sp. microshells.
Wang, Yu; Pan, Junfeng; Cai, Jun; Zhang, Deyuan
2012-03-30
Diatoms have silica frustules with transparent and delicate micro/nano scale structures, two dimensional pore arrays, and large surface areas. Although, the diatom cells of Coscinodiscus sp. live underwater, we found that their valves can float on water and assemble together. Experiments show that the convex shape and the 40 nm sieve pores of the valves allow them to float on water, and that the buoyancy and the micro-range attractive forces cause the valves to assemble together at the highest point of water. As measured by AFM calibrated glass needles fixed in manipulator, the buoyancy force on a single floating valve may reach up to 10 μN in water. Turning the valves over, enlarging the sieve pores, reducing the surface tension of water, or vacuum pumping may cause the floating valves to sink. After the water has evaporated, the floating valves remained in their assembled state and formed a monolayer film. The bonded diatom monolayer may be valuable in studies on diatom based optical devices, biosensors, solar cells, and batteries, to better use the optical and adsorption properties of frustules. The floating assembly phenomenon can also be used as a self-assembly method for fabricating monolayer of circular plates. Copyright © 2012 Elsevier Inc. All rights reserved.
Applications considerations in the system design of highly concurrent multiprocessors
NASA Technical Reports Server (NTRS)
Lundstrom, Stephen F.
1987-01-01
A flow model processor approach to parallel processing is described, using very-high-performance individual processors, high-speed circuit switched interconnection networks, and a high-speed synchronization capability to minimize the effect of the inherently serial portions of applications on performance. Design studies related to the determination of the number of processors, the memory organization, and the structure of the networks used to interconnect the processor and memory resources are discussed. Simulations indicate that applications centered on the large shared data memory should be able to sustain over 500 million floating point operations per second.
Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim
2016-01-01
Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.
Investigation of Springing Responses on the Great Lakes Ore Carrier M/V STEWART J. CORT
1980-12-01
175k tons.6 Using these values one can write : JL@APBD - ACTflALIVIRTVAL (MALAST) (4.) BeALLAST &VAC TUAL U(L@ADN@) and 0.94 10 The shifting of theI’M...will have to write a routine to convert the floating-point num- bers into the other machine’s internal floating-point format. The CCI record is again...THE RESULTS AND WRITES W1l TO THE LINE PRINTER. C IT ALSO PUTS THE RESUL~rs IN A DISA FIL1E .C C WRITTEN BY JCD3 NOVEMBER 1970f C C C
Optimal Compression Methods for Floating-point Format Images
NASA Technical Reports Server (NTRS)
Pence, W. D.; White, R. L.; Seaman, R.
2009-01-01
We report on the results of a comparison study of different techniques for compressing FITS images that have floating-point (real*4) pixel values. Standard file compression methods like GZIP are generally ineffective in this case (with compression ratios only in the range 1.2 - 1.6), so instead we use a technique of converting the floating-point values into quantized scaled integers which are compressed using the Rice algorithm. The compressed data stream is stored in FITS format using the tiled-image compression convention. This is technically a lossy compression method, since the pixel values are not exactly reproduced, however all the significant photometric and astrometric information content of the image can be preserved while still achieving file compression ratios in the range of 4 to 8. We also show that introducing dithering, or randomization, when assigning the quantized pixel-values can significantly improve the photometric and astrometric precision in the stellar images in the compressed file without adding additional noise. We quantify our results by comparing the stellar magnitudes and positions as measured in the original uncompressed image to those derived from the same image after applying successively greater amounts of compression.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
Wang, Chih-Yu; Sample, David J
2014-05-01
The application of floating treatment wetlands (FTWs) in point and non-point source pollution control has received much attention recently. Although the potential of this emerging technology is supported by various studies, quantifying FTW performance in urban retention ponds remains elusive due to significant research gaps. Actual urban retention pond water was utilized in this mesocosm study to evaluate phosphorus and nitrogen removal efficiency of FTWs. Multiple treatments were used to investigate the contribution of each component in the FTW system with a seven-day retention time. The four treatments included a control, floating mat, pickerelweed (Pontederia cordata L.), and softstem bulrush (Schoenoplectus tabernaemontani). The water samples collected on Day 0 (initial) and 7 were analyzed for total phosphorus (TP), total particulate phosphorus, orthophosphate, total nitrogen (TN), organic nitrogen, ammonia nitrogen, nitrate-nitrite nitrogen, and chlorophyll-a. Statistical tests were used to evaluate the differences between the four treatments. The effects of temperature on TP and TN removal rates of the FTWs were described by the modified Arrhenius equation. Our results indicated that all three FTW designs, planted and unplanted floating mats, could significantly improve phosphorus and nitrogen removal efficiency (%, E-TP and E-TN) compared to the control treatment during the growing season, i.e., May through August. The E-TP and E-TN was enhanced by 8.2% and 18.2% in the FTW treatments planted with the pickerelweed and softstem bulrush, respectively. Organic matter decomposition was likely to be the primary contributor of nutrient removal by FTWs in urban retention ponds. Such a mechanism is fostered by microbes within the attached biofilms on the floating mats and plant root surfaces. Among the results of the four treatments, the FTWs planted with pickerelweed had the highest E-TP, and behaved similarly with the other two FTW treatments for nitrogen removal during the growth period. The temperature effects described by the modified Arrhenius equation revealed that pickerelweed is sensitive to temperature and provides considerable phosphorus removal when water temperature is greater than 25 °C. However, the nutrient removal effectiveness of this plant species may be negligible for water temperatures below 15 °C. The study also assessed potential effects of shading from the FTW mats on water temperature, DO, pH, and attached-to-substrate periphyton/vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Analysis of the Full-Floating Journal Bearing
NASA Technical Reports Server (NTRS)
Shaw, M C; Nussdorfer, T J , Jr
1947-01-01
An analysis of the operating characteristics of a full-floating journal bearing, a bearing in which a floating sleeve is located between the journal and bearing surfaces, is presented together with charts from which the performance of such bearings may be predicted. Examples are presented to illustrate the use of these charts and a limited number of experiments conducted upon a glass full-floating bearing are reported to verify some results of the analysis.
40 CFR 63.695 - Inspection and monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring procedures required to perform the following: (1) To inspect tank fixed roofs and floating roofs... and floating roof inspection requirements. (1) Owners and operators that use a tank equipped with an internal floating roof in accordance with the provisions of § 63.685(e) of this subpart shall meet the...
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Experience in highly parallel processing using DAP
NASA Technical Reports Server (NTRS)
Parkinson, D.
1987-01-01
Distributed Array Processors (DAP) have been in day to day use for ten years and a large amount of user experience has been gained. The profile of user applications is similar to that of the Massively Parallel Processor (MPP) working group. Experience has shown that contrary to expectations, highly parallel systems provide excellent performance on so-called dirty problems such as the physics part of meteorological codes. The reasons for this observation are discussed. The arguments against replacing bit processors with floating point processors are also discussed.
Deflection of Resilient Materials for Reduction of Floor Impact Sound
Lee, Jung-Yoon; Kim, Jong-Mun
2014-01-01
Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor. PMID:25574491
Deflection of resilient materials for reduction of floor impact sound.
Lee, Jung-Yoon; Kim, Jong-Mun
2014-01-01
Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.
Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A.; Peiffer, Antoine; Schlipf, David
This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less
33 CFR 110.127b - Flaming Gorge Lake, Wyoming-Utah.
Code of Federal Regulations, 2010 CFR
2010-07-01
... launching ramp to a point beyond the floating breakwater and then westerly, as established by the... following points, excluding a 150-foot-wide fairway, extending southeasterly from the launching ramp, as... inclosed by the shore and a line connecting the following points, excluding a 100-foot-wide fairway...
R Jivani, Rishad; N Patel, Chhagan; M Patel, Dashrath; P Jivani, Nurudin
2010-01-01
The present study deals with development of a floating in-situ gel of the narrow absorption window drug baclofen. Sodium alginate-based in-situ gelling systems were prepared by dissolving various concentrations of sodium alginate in deionized water, to which varying concentrations of drug and calcium bicarbonate were added. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to check the presence of any interaction between the drug and the excipients. A 3(2) full factorial design was used for optimization. The concentrations of sodium alginate (X1) and calcium bicarbonate (X2) were selected as the independent variables. The amount of the drug released after 1 h (Q1) and 10 h (Q10) and the viscosity of the solution were selected as the dependent variables. The gels were studied for their viscosity, in-vitro buoyancy and drug release. Contour plots were drawn for each dependent variable and check-point batches were prepared in order to get desirable release profiles. The drug release profiles were fitted into different kinetic models. The floating lag time and floating time found to be 2 min and 12 h respectively. A decreasing trend in drug release was observed with increasing concentrations of CaCO3. The computed values of Q1 and Q10 for the check-point batch were 25% and 86% respectively, compared to the experimental values of 27.1% and 88.34%. The similarity factor (f 2) for the check-point batch being 80.25 showed that the two dissolution profiles were similar. The drug release from the in-situ gel follows the Higuchi model, which indicates a diffusion-controlled release. A stomach specific in-situ gel of baclofen could be prepared using floating mechanism to increase the residence time of the drug in stomach and thereby increase the absorption.
30 CFR 250.428 - What must I do in certain cementing and casing situations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... point. (h) Need to use less than required cement for the surface casing during floating drilling... permafrost zone uncemented Fill the annulus with a liquid that has a freezing point below the minimum...
Ran, Bin; Song, Li; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. PMID:27448326
Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
NASA Technical Reports Server (NTRS)
Bailey, David H.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
With programs such as the US High Performance Computing and Communications Program (HPCCP), the attention of scientists and engineers worldwide has been focused on the potential of very high performance scientific computing, namely systems that are hundreds or thousands of times more powerful than those typically available in desktop systems at any given point in time. Extending the frontiers of computing in this manner has resulted in remarkable advances, both in computing technology itself and also in the various scientific and engineering disciplines that utilize these systems. Within the month or two, a sustained rate of 1 Tflop/s (also written 1 teraflops, or 10(exp 12) floating-point operations per second) is likely to be achieved by the 'ASCI Red' system at Sandia National Laboratory in New Mexico. With this objective in sight, it is reasonable to ask what lies ahead for high-end computing.
What is the size of a floating sheath? An answer
NASA Astrophysics Data System (ADS)
Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter
2016-09-01
The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.
Xu, Zhongqi; Murata, Kenji; Arai, Akihiro; Hirokawa, Takeshi
2010-03-12
A featured microchip owning three big reservoirs and long turned geometry channel was designed to improve the detection limit of DNA fragments by using floating electrokinetic supercharging (FEKS) method. The novel design matches the FEKS preconcentration needs of a large sample volume introduction with electrokinetic injection (EKI), as well as long duration of isotachophoresis (ITP) process to enrich low concentration sample. In the curved channel [ approximately 45.6 mm long between port 1 (P1) and the intersection point of two channels], EKI and ITP were performed while the side port 3 (P3) was electrically floated. The turn-induced band broadening with or without ITP process was investigated by a computer simulation (using CFD-ACE+ software) when the analytes traveling through the U-shaped geometry. It was found that the channel curvature determined the extent of band broadening, however, which could be effectively eliminated by the way of ITP. After the ITP-stacked zones passed the intersection point from P1, they were rapidly destacked for separation and detection from ITP to zone electrophoresis by using leading ions from P3. The FEKS carried on the novel chip successfully contributed to higher sensitivities of DNA fragments in comparison with our previous results realized on either a single channel or a cross microchip. The analysis of low concentration 50 bp DNA step ladders (0.23 mugml after 1500-fold diluted) was achieved with normal UV detection at 260 nm. The obtained limit of detections (LODs) were on average 100 times better than using conventional pinched injection, down to several ngml for individual DNA fragment.
FloPSy - Search-Based Floating Point Constraint Solving for Symbolic Execution
NASA Astrophysics Data System (ADS)
Lakhotia, Kiran; Tillmann, Nikolai; Harman, Mark; de Halleux, Jonathan
Recently there has been an upsurge of interest in both, Search-Based Software Testing (SBST), and Dynamic Symbolic Execution (DSE). Each of these two approaches has complementary strengths and weaknesses, making it a natural choice to explore the degree to which the strengths of one can be exploited to offset the weakness of the other. This paper introduces an augmented version of DSE that uses a SBST-based approach to handling floating point computations, which are known to be problematic for vanilla DSE. The approach has been implemented as a plug in for the Microsoft Pex DSE testing tool. The paper presents results from both, standard evaluation benchmarks, and two open source programs.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1973-01-01
The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.
Strübing, Sandra; Abboud, Tâmara; Contri, Renata Vidor; Metz, Hendrik; Mäder, Karsten
2008-06-01
The purpose of this study was to investigate the mechanism of floating and drug release behaviour of poly(vinyl acetate)-based floating tablets with membrane controlled drug delivery. Propranolol HCl containing tablets with Kollidon SR as an excipient for direct compression and different Kollicoat SR 30 D/Kollicoat IR coats varying from 10 to 20mg polymer/cm2 were investigated regarding drug release in 0.1N HCl. Furthermore, the onset of floating, the floating duration and the floating strength of the device were determined. In addition, benchtop MRI studies of selected samples were performed. Coated tablets with 10mg polymer/cm2 SR/IR, 8.5:1.5 coat exhibited the shortest lag times prior to drug release and floating onset, the fastest increase in and highest maximum values of floating strength. The drug release was delayed efficiently within a time interval of 24 h by showing linear drug release characteristics. Poly(vinyl acetate) proved to be an appropriate excipient to ensure safe and reliable drug release. Floating strength measurements offered the possibility to quantify the floating ability of the developed systems and thus to compare different formulations more efficiently. Benchtop MRI studies allowed a deeper insight into drug release and floating mechanisms noninvasively and continuously.
NASA Astrophysics Data System (ADS)
Nikmehr, Hooman; Phillips, Braden; Lim, Cheng-Chew
2005-02-01
Recently, decimal arithmetic has become attractive in the financial and commercial world including banking, tax calculation, currency conversion, insurance and accounting. Although computers are still carrying out decimal calculation using software libraries and binary floating-point numbers, it is likely that in the near future, all processors will be equipped with units performing decimal operations directly on decimal operands. One critical building block for some complex decimal operations is the decimal carry-free adder. This paper discusses the mathematical framework of the addition, introduces a new signed-digit format for representing decimal numbers and presents an efficient architectural implementation. Delay estimation analysis shows that the adder offers improved performance over earlier designs.
Extending the BEAGLE library to a multi-FPGA platform
2013-01-01
Background Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein’s pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein’s pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. Results The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform’s peak memory bandwidth and the implementation’s memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE’s CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE’s GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. Conclusions The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor. PMID:23331707
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Fang, Jing; Yuan, Jianping
2018-03-01
The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.
Yang, Jiangxia; Xiao, Hong
2015-08-01
To explore the improvement of hand motion function,spasm and self-care ability of daily life for stroke patients treated with floating-needle combined with rehabilitation training. Eighty hand spasm patients of post-stroke within one year after stroke were randomly divided into an observation group and a control group, 40 cases in each one. In the two groups, rehabilitation was adopted for eight weeks,once a day,40 min one time. In the observation group, based on the above treatment and according to muscle fascia trigger point, 2~3 points in both the internal and external sides of forearm were treated with floating-needle. The positive or passive flexion and extension of wrist and knuckle till the relief of spasm hand was combined. The floating-needle therapy was given for eight weeks, on the first three days once a day and later once every other day. Modified Ashworth Scale(MAS), activity of daily life(ADL, Barthel index) scores and Fugl-Meyer(FMA) scores were used to assess the spasm hand degree,activity of daily life and hand motion function before and after 7-day, 14-day and 8-week treatment. After 7-day, 14-day and 8-week treatment, MAS scores were apparently lower than those before treatment in the two groups(all P<0. 05), and Barthel scores and FMA scores were obviously higher than those before-treatment(all P<0. 05). After 14-day and 8-week treatment, FMA scores in the observation group were markedly higher than those in the control group(both P<0. 05). Floating-needle therapy combined with rehabilitation training and simple rehabilitation training could both improve hand spasm degree, hand function and activity of daily life of post-stroke patients, but floating-needle therapy combined with rehabilitation training is superior to simple rehabilitation training for the improvement of hand function.
Centrifuge Modeling of the Thermo-Mechanical Response of Energy Foundations
NASA Astrophysics Data System (ADS)
Goode, Joseph Collin, III
This thesis presents the results from a series of centrifuge tests performed to understand the profiles of thermo-mechanical axial strain, axial displacement, and axial stress in semi-floating and end-bearing energy foundations installed in dry Nevada sand and Bonny silt layers during different combinations of mechanical loading and foundation heating. In addition to the construction details for the centrifuge scale-model reinforced concrete energy foundations, the results from 1 g thermo-mechanical characterization tests performed on the foundations to evaluate their mechanical and thermal material properties are presented in this thesis. In general, the centrifuge-scale tests involve application of an axial load to the head of the foundation followed by circulation of a heat exchange fluid through embedded tubing to bring the foundation to a constant temperature. After this point, mechanical loads were applied to the foundation to characterize their thermo-mechanical response. Specifically, loading tests to failure were performed on the semi-floating foundation installed in different soil layers to characterize the impact of temperature on the load-settlement curve, and elastic loading tests were performed on the end-bearing foundation to characterize the impact of temperature on the mobilized side shear distributions. During application of mechanical loads and changes in foundation temperature, the axial strains are measured using embedded strain gages. The soil and foundation temperatures, foundation head movement, and soil surface deformations are also monitored to characterize the thermo-mechanical response of the system. The tests performed in this study were used to investigate different phenomena relevant to the thermo-mechanical response of energy foundations. First, the role of end-restraint boundary conditions in both sand and silt were investigated by comparing the strain distributions for the end-bearing and semi-floating foundations in each soil type. The tests on sand and silt permit evaluation of the soil-structure interaction in dry and unsaturated soils with different mechanisms of side shear resistance (i.e., primarily frictional and primarily cohesive, respectively). End-bearing foundations were observed to have higher magnitudes of thermal axial stress than semi-floating foundations, with a more uniform distribution in thermal axial strain in the sand. A general conclusion from these tests is that the unsaturated silt led to a more pronounced soil structure interaction effect than the dry sand. For example, temperature did not affect the ultimate capacity of the semi-floating foundation in dry sand, while it had a pronounced effect in unsaturated silt. Two approaches for controlling the foundation head restraint boundary condition were investigated for the end-bearing foundation in sand: load control conditions (free expansion) as well as stiffness control conditions (restrained expansion). As expected, greater expansion was observed in the case of free expansion, and greater thermal axial stresses were observed in the case of restrained expansion. The effects of temperature cycles were also investigated for the semi-floating foundation in Bonny silt, and less upward movement was observed during each cycle of heating, with a slight softening in behavior on each cycle. Overall, the results provide a suite of information which is suitable to define soil-structure interaction parameters under realistic stress states for deep foundations.
Billore, S K; Prashant; Sharma, J K
2009-01-01
The discharge of untreated wastewater in River Kshipra had brought annual average of BOD, TKN and TS levels up to 39 mg/l, 38 mg/l and 781 mg/l respectively in the study area. Treatment performance by Artificial Floating Reed Beds (AFRB) was evaluated for removal efficiency of TS, NH4-N, NO3-N, TKN and BOD from river water, initially, under a pilot scale by an AFRB of size 200 m2 planted with local reed grass, Phragmites karka, in the part of River Kshipra at the confluence with meeting point of a wastewater stream. The system performance was recorded as 43% reduction in TS, 38% reduction in TKN and 39% BOD reduction. The experimental AFRBs were buoyant structure planted with reed grass, each unit had a rectangular size and covered an effective surface area of 2 m2. The experiment with the mesocosms with treatment of River water resulted that AFRB was reducing pollution load by 55-60% of TS, 45-55% of NH4-N, 33-45% of NO3-N, 45-50% of TKN and 40-50% of BOD. AFRB may be recommended as an in-situ, eco-friendly river water treatment structures for small shallow, slow flowing (or slightly stagnant) water bodies.
NAS technical summaries: Numerical aerodynamic simulation program, March 1991 - February 1992
NASA Technical Reports Server (NTRS)
1992-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefiting other supercomputer centers in Government and industry. This report contains selected scientific results from the 1991-92 NAS Operational Year, March 4, 1991 to March 3, 1992, which is the fifth year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP. The Cray-2, the first generation supercomputer, has four processors, 256 megawords of central memory, and a total sustained speed of 250 million floating point operations per second. The Cray Y-MP, the second generation supercomputer, has eight processors and a total sustained speed of one billion floating point operations per second. Additional memory was installed this year, doubling capacity from 128 to 256 megawords of solid-state storage-device memory. Because of its higher performance, the Cray Y-MP delivered approximately 77 percent of the total number of supercomputer hours used during this year.
Floating shoulders: Clinical and radiographic analysis at a mean follow-up of 11 years
Pailhes, ReÌ gis; Bonnevialle, Nicolas; Laffosse, JeanMichel; Tricoire, JeanLouis; Cavaignac, Etienne; Chiron, Philippe
2013-01-01
Context: The floating shoulder (FS) is an uncommon injury, which can be managed conservatively or surgically. The therapeutic option remains controversial. Aims: The goal of our study was to evaluate the long-term results and to identify predictive factors of functional outcomes. Settings and Design: Retrospective monocentric study. Materials and Methods: Forty consecutive FS were included (24 nonoperated and 16 operated) from 1984 to 2009. Clinical results were assessed with Simple Shoulder Test (SST), Oxford Shoulder Score (OSS), Single Assessment Numeric Evaluation (SANE), Short Form-12 (SF12), Disabilities of the Arm Shoulder and Hand score (DASH), and Constant score (CST). Plain radiographs were reviewed to evaluate secondary displacement, fracture healing, and modification of the lateral offset of the gleno-humeral joint (chest X-rays). New radiographs were made to evaluate osteoarthritis during follow-up. Statistical Analysis Used: T-test, Mann-Whitney test, and the Pearson's correlation coefficient were used. The significance level was set at 0.05. Results: At mean follow-up of 135 months (range 12-312), clinical results were satisfactory regarding different mean scores: SST 10.5 points, OSS 14 points, SANE 81%, SF12 (50 points and 60 points), DASH 14.5 points and CST 84 points. There were no significant differences between operative and non-operative groups. However, the loss of lateral offset influenced the results negatively. Osteoarthritis was diagnosed in five patients (12.5%) without correlation to fracture patterns and type of treatment. Conclusions: This study advocates that floating shoulder may be treated conservatively and surgically with satisfactory clinical long-term outcomes. However, the loss of gleno-humeral lateral offset should be evaluated carefully before taking a therapeutic option. PMID:23960364
Code of Federal Regulations, 2010 CFR
2010-07-01
... collection point for stormwater runoff received directly from refinery surfaces and for refinery wastewater... chamber in a stationary manner and which does not move with fluctuations in wastewater levels. Floating... separator. Junction box means a manhole or access point to a wastewater sewer system line. No detectable...
Hash function based on chaotic map lattices.
Wang, Shihong; Hu, Gang
2007-06-01
A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
Hash function based on chaotic map lattices
NASA Astrophysics Data System (ADS)
Wang, Shihong; Hu, Gang
2007-06-01
A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.
A randomization approach to handling data scaling in nuclear medicine.
Bai, Chuanyong; Conwell, Richard; Kindem, Joel
2010-06-01
In medical imaging, data scaling is sometimes desired to handle the system complexity, such as uniformity calibration. Since the data are usually saved in short integer, conventional data scaling will first scale the data in floating point format and then truncate or round the floating point data to short integer data. For example, when using truncation, scaling of 9 by 1.1 results in 9 and scaling of 10 by 1.1 results in 11. When the count level is low, such scaling may change the local data distribution and affect the intended application of the data. In this work, the authors use an example gated cardiac SPECT study to illustrate the effect of conventional scaling by factors of 1.1 and 1.2. The authors then scaled the data with the same scaling factors using a randomization approach, in which a random number evenly distributed between 0 and 1 is generated to determine how the floating point data will be saved as short integer data. If the random number is between 0 and 0.9, then 9.9 will be saved as 10, otherwise 9. In other words, the floating point value 9.9 will be saved in short integer value as 10 with 90% probability or 9 with 10% probability. For statistical analysis of the performance, the authors applied the conventional approach with rounding and the randomization approach to 50 consecutive gated studies from a clinical site. For the example study, the image reconstructed from the original data showed an apparent perfusion defect at the apex of the myocardium. The defect size was noticeably changed by scaling with 1.1 and 1.2 using the conventional approaches with truncation and rounding. Using the randomization approach, in contrast, the images from the scaled data appeared identical to the original image. Line profile analysis of the scaled data showed that the randomization approach introduced the least change to the data as compared to the conventional approaches. For the 50 gated data sets, significantly more studies showed quantitative differences between the original images and the images from the data scaled by 1.2 using the rounding approach than the randomization approach [46/50 (92%) versus 3/50 (6%), p < 0.05]. Likewise, significantly more studies showed visually noticeable differences between the original images and the images from the data scaled by 1.2 using the rounding approach than randomization [29/50 (58%) versus 1/50 (2%), p < 0.05]. In conclusion, the proposed randomization approach minimizes the scaling-introduced local data change as compared to the conventional approaches. It is preferred for nuclear medicine data scaling.
Performance Analysis of GYRO: A Tool Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, P.; Roth, P.; Candy, J.
2005-06-26
The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five high performance computing systems. First, a manual approach is taken, using custom scripts to analyze the output of embedded wall clock timers, floating point operation counts collected using hardware performance counters, and traces of user and communication events collected using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis are then repeated or extended using a number of sophisticated performance analysis tools: IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses what has been discovered via this manualmore » analysis process, what performance analyses are inconvenient or infeasible to attempt manually, and to what extent the tools show promise in accelerating or significantly extending the manual performance analyses.« less
NASA Technical Reports Server (NTRS)
Darcy, Eric; Strangways, Brad
2003-01-01
Contents include the following: 1. Introduction: What is the (Floating Potential Probe) FPP? Why was NiMH battery selected? Haw well would crimped seal cell performed in long term vacuum exposure? 2. Verification tests: Battery description. Test methods. Results. Main findings. FPP status.
Floating Double Deck Pier Fenders
2011-07-01
Center FDDP Floating Double Deck Pier FEM Finite Element Model MHP Modular Hybrid Pier NAVFAC Naval Facilities RDT&E Research, Development, Testing...4. FEM Performance of MV1000x900B Elements ........................................................ 14 Figure 4-5. Biaxial UE1200x1200E3.1 Fender...Deflection .......................................................... 15 Figure 4-6. FEM Performance of Biaxial UE Fender
2015-01-01
crafts on floating ice sheets near McMurdo, Antarctica (Katona and Vaudrey 1973; Katona 1974; Vaudrey 1977). To comply with the first criterion, one...Nomographs for operating wheeled aircraft on sea- ice runways: McMurdo Station, Antarctica . In Proceedings of the Offshore Mechanics and Arctic Engineering... Ice Thickness Requirements for Vehicles and Heavy Equipment at McMurdo Station, Antarctica . CRREL Project Report 04- 09, “Safe Sea Ice for Vehicle
The anatomy of floating shock fitting. [shock waves computation for flow field
NASA Technical Reports Server (NTRS)
Salas, M. D.
1975-01-01
The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.
Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training.
McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory
2013-12-01
Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float.
NASA Astrophysics Data System (ADS)
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.
2014-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.
A review of outcomes in 18 patients with floating elbow.
Solomon, Harrison B; Zadnik, Mary; Eglseder, W Andrew
2003-09-01
To assess functional outcomes and predictors of success in floating elbow injuries. Retrospective clinical review. Level 1 trauma center. Eighteen patients with floating elbow injuries seen at the trauma center from 1995-2001. All injuries were managed surgically. Each forearm fracture was managed with open reduction and internal fixation. Humerus fractures were managed with either open reduction and internal fixation or intramedullary nail. Definitive fixation was performed in all cases within 48 hours of arrival at the trauma center. Eighteen patients were available for follow-up at a minimum of 1 year and consented to enroll in the study. Each patient was evaluated with a standardized elbow score based on a 100-point scale. These scores were correlated with injury features including age, severity of fracture (AO classification), open fractures, nerve injuries, vascular injuries, type of fixation on the humerus, and the presence of concomitant intra-articular elbow injuries. The average elbow score was 68/100. Outcomes were divided into two groups. Eleven patients had a score greater than 75 (group I), with a mean score of 83, and were considered to have a good or excellent result. Seven patients had a score less than 75 (group II), with a mean score of 45, and were considered to have a satisfactory or poor result. The distribution of outcomes revealed two statistically distinct clusters. Additionally, there was a significantly higher incidence of nerve injuries in group 2 compared with group 1. Functional outcomes in floating elbow injuries tend to cluster into two groups-patients with good or excellent results and patients with poor results. Patients with associated nerve injuries have lower functional outcomes at a minimum of 1-year follow-up.
Magnetic field controlled floating-zone single crystal growth of intermetallic compounds
NASA Astrophysics Data System (ADS)
Hermann, R.; Gerbeth, G.; Priede, J.
2013-03-01
Radio-frequency (RF) floating zone single crystal growth is an important technique for the preparation of single bulk crystals. The advantage of the floating-zone method is the crucible-free growth of single crystals of reactive materials with high melting points. The strong heat diffusion on the surface, as well as the melt convection in the molten zone due to induction heating, often leads to an undesired solid-liquid interface geometry with a concave (towards the solid phase) outer rim. These concave parts aggravate the single crystal growth over the full cross-section. A two-phase stirrer was developed at IFW Dresden in order to avoid the problems connected with these concave parts. It acts as a magnetic field pump and changes the typical double vortex structure to a single roll structure, thus pushing hot melt into the regions where the concave parts may arise. The current in the secondary coil is induced by the primary coil, and the capacitor and the resistance of the secondary circuit are adjusted to get a stable 90 degree phase-shift between the coil currents. Single crystal growth of industrial relevant RuAl and TiAl intermetallic compounds was performed based on the material parameters and using the adjusted two-phase stirrer. Very recently, the magnetic system was applied to the crystal growth of biocompatible TiNb alloys and antiferromagnetic Heusler MnSi compounds.
An Application-Based Performance Characterization of the Columbia Supercluster
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Djomehri, Jahed M.; Hood, Robert; Jin, Hoaqiang; Kiris, Cetin; Saini, Subhash
2005-01-01
Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and currently ranked as the second-fastest computer in the world. In this paper, we present the performance characteristics of Columbia obtained on up to four computing nodes interconnected via the InfiniBand and/or NUMAlink4 communication fabrics. We evaluate floating-point performance, memory bandwidth, message passing communication speeds, and compilers using a subset of the HPC Challenge benchmarks, and some of the NAS Parallel Benchmarks including the multi-zone versions. We present detailed performance results for three scientific applications of interest to NASA, one from molecular dynamics, and two from computational fluid dynamics. Our results show that both the NUMAlink4 and the InfiniBand hold promise for application scaling to a large number of processors.
33 CFR 161.18 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... call. H HOTEL Date, time and point of entry system Entry time expressed as in (B) and into the entry... KILO Date, time and point of exit from system Exit time expressed as in (B) and exit position expressed....; for a dredge or floating plant: configuration of pipeline, mooring configuration, number of assist...
NASA Technical Reports Server (NTRS)
Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.
2017-01-01
Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.
1959-01-01
A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.
Parallel processor for real-time structural control
NASA Astrophysics Data System (ADS)
Tise, Bert L.
1993-07-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-to-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection to host computer, parallelizing code generator, and look- up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating- point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An OpenWindows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.
Floating liquid phase in sedimenting colloid-polymer mixtures.
Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre
2004-08-20
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.
Sparse matrix-vector multiplication on network-on-chip
NASA Astrophysics Data System (ADS)
Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.
2010-12-01
In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.
Zeeberg, Barry R; Riss, Joseph; Kane, David W; Bussey, Kimberly J; Uchio, Edward; Linehan, W Marston; Barrett, J Carl; Weinstein, John N
2004-01-01
Background When processing microarray data sets, we recently noticed that some gene names were being changed inadvertently to non-gene names. Results A little detective work traced the problem to default date format conversions and floating-point format conversions in the very useful Excel program package. The date conversions affect at least 30 gene names; the floating-point conversions affect at least 2,000 if Riken identifiers are included. These conversions are irreversible; the original gene names cannot be recovered. Conclusions Users of Excel for analyses involving gene names should be aware of this problem, which can cause genes, including medically important ones, to be lost from view and which has contaminated even carefully curated public databases. We provide work-arounds and scripts for circumventing the problem. PMID:15214961
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2017-01-01
Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability. PMID:28555001
Nojima, Daisuke; Ishizuka, Yuki; Muto, Masaki; Ujiro, Asuka; Kodama, Fumito; Yoshino, Tomoko; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2017-05-27
Water surface-floating microalgae have great potential for biofuel applications due to the ease of the harvesting process, which is one of the most problematic steps in conventional microalgal biofuel production. We have collected promising water surface-floating microalgae and characterized their capacity for biomass and lipid production. In this study, we performed chemical mutagenesis of two water surface-floating microalgae to elevate productivity. Floating microalgal strains AVFF007 and FFG039 (tentatively identified as Botryosphaerella sp. and Chlorococcum sp., respectively) were exposed to ethyl methane sulfonate (EMS) or 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), and pale green mutants (PMs) were obtained. The most promising FFG039 PM formed robust biofilms on the surface of the culture medium, similar to those formed by wild type strains, and it exhibited 1.7-fold and 1.9-fold higher biomass and lipid productivities than those of the wild type. This study indicates that the chemical mutation strategy improves the lipid productivity of water surface-floating microalgae without inhibiting biofilm formation and floating ability.
Napping on the Night Shift: A Study of Sleep, Performance, and Learning in Physicians-in-Training
McDonald, Jennifer; Potyk, Darryl; Fischer, David; Parmenter, Brett; Lillis, Teresa; Tompkins, Lindsey; Bowen, Angela; Grant, Devon; Lamp, Amanda; Belenky, Gregory
2013-01-01
Background Physicians in training experience fatigue from sleep loss, high workload, and working at an adverse phase of the circadian rhythm, which collectively degrades task performance and the ability to learn and remember. To minimize fatigue and sustain performance, learning, and memory, humans generally need 7 to 8 hours of sleep in every 24-hour period. Methods In a naturalistic, within-subjects design, we studied 17 first- and second-year internal medicine residents working in a tertiary care medical center, rotating between day shift and night float every 4 weeks. We studied each resident for 2 weeks while he/she worked the day shift and for 2 weeks while he/she worked the night float, objectively measuring sleep by wrist actigraphy, vigilance by the Psychomotor Vigilance Task test, and visual-spatial and verbal learning and memory by the Brief Visuospatial Memory Test-Revised and the Rey Auditory-Verbal Learning Test. Results Residents, whether working day shift or night float, slept approximately 7 hours in every 24-hour period. Residents, when working day shift, consolidated their sleep into 1 main sleep period at night. Residents working night float split their sleep, supplementing their truncated daytime sleep with nighttime on-duty naps. There was no difference in vigilance or learning and memory, whether residents worked day shift or night float. Conclusions Off-duty sleep supplemented with naps while on duty appears to be an effective strategy for sustaining vigilance, learning, and memory when working night float. PMID:24455014
Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek
2014-01-01
This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1, 920 × 1, 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems. PMID:24526303
Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek
2014-02-12
This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1; 920 × 1; 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems.
Floating drug delivery systems: a review.
Arora, Shweta; Ali, Javed; Ahuja, Alka; Khar, Roop K; Baboota, Sanjula
2005-10-19
The purpose of writing this review on floating drug delivery systems (FDDS) was to compile the recent literature with special focus on the principal mechanism of floatation to achieve gastric retention. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. This review also summarizes the in vitro techniques, in vivo studies to evaluate the performance and application of floating systems, and applications of these systems. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.
Trajectory NG: portable, compressed, general molecular dynamics trajectories.
Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David
2011-10-01
We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., below a height of 4 inches measured from the lowest point in the boat where liquid can collect when the boat is in its static floating position, except engine rooms. Connected means allowing a flow of water... the engine room or a connected compartment below a height of 12 inches measured from the lowest point...
33 CFR 110.60 - Captain of the Port, New York.
Code of Federal Regulations, 2011 CFR
2011-07-01
... yachts and other recreational craft. A mooring buoy is permitted. (4) Manhattan, Fort Washington Point... special anchorage area is principally for use by yachts and other recreational craft. A temporary float or... shoreline to the point of origin. Note to paragraph (d)(5): The area will be principally for use by yachts...
Geographic Resources Analysis Support System (GRASS) Version 4.0 User’s Reference Manual
1992-06-01
inpur-image need not be square; before processing, the X and Y dimensions of the input-image are padded with zeroes to the next highest power of two in...structures an input kowledge /control script with an appropriate combination of map layer category values (GRASS raster map layers that contain data on...F cos(x) cosine of x (x is in degrees) F exp(x) exponential function of x F exp(x,y) x to the power y F float(x) convert x to floating point F if
Basic mathematical function libraries for scientific computation
NASA Technical Reports Server (NTRS)
Galant, David C.
1989-01-01
Ada packages implementing selected mathematical functions for the support of scientific and engineering applications were written. The packages provide the Ada programmer with the mathematical function support found in the languages Pascal and FORTRAN as well as an extended precision arithmetic and a complete complex arithmetic. The algorithms used are fully described and analyzed. Implementation assumes that the Ada type FLOAT objects fully conform to the IEEE 754-1985 standard for single binary floating-point arithmetic, and that INTEGER objects are 32-bit entities. Codes for the Ada packages are included as appendixes.
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
An Input Routine Using Arithmetic Statements for the IBM 704 Digital Computer
NASA Technical Reports Server (NTRS)
Turner, Don N.; Huff, Vearl N.
1961-01-01
An input routine has been designed for use with FORTRAN or SAP coded programs which are to be executed on an IBM 704 digital computer. All input to be processed by the routine is punched on IBM cards as declarative statements of the arithmetic type resembling the FORTRAN language. The routine is 850 words in length. It is capable of loading fixed- or floating-point numbers, octal numbers, and alphabetic words, and of performing simple arithmetic as indicated on input cards. Provisions have been made for rapid loading of arrays of numbers in consecutive memory locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
The primary goal of the basin model test program discussed herein is to properly scale and accurately capture physical data of the rigid body motions, accelerations and loads for different floating wind turbine platform technologies. The intended use for this data is for performing comparisons with predictions from various aero-hydro-servo-elastic floating wind turbine simulators for calibration and validation. Of particular interest is validating the floating offshore wind turbine simulation capabilities of NREL’s FAST open-source simulation tool. Once the validation process is complete, coupled simulators such as FAST can be used with a much greater degree of confidence in design processesmore » for commercial development of floating offshore wind turbines. The test program subsequently described in this report was performed at MARIN (Maritime Research Institute Netherlands) in Wageningen, the Netherlands. The models considered consisted of the horizontal axis, NREL 5 MW Reference Wind Turbine (Jonkman et al., 2009) with a flexible tower affixed atop three distinct platforms: a tension leg platform (TLP), a spar-buoy modeled after the OC3 Hywind (Jonkman, 2010) and a semi-submersible. The three generic platform designs were intended to cover the spectrum of currently investigated concepts, each based on proven floating offshore structure technology. The models were tested under Froude scale wind and wave loads. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibits negligible swirl and low turbulence intensity in the flow field. Recorded data from the floating wind turbine models included rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with irregular sea states and dynamic winds.« less
AmeriFlux US-WPT Winous Point North Marsh
Chen, Jiquan [University of Toledo / Michigan State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-WPT Winous Point North Marsh. Site Description - The marsh site has been owned by the Winous Point Shooting Club since 1856 and has been managed by wildlife biologists since 1946. The hydrology of the marsh is relatively isolated by the surrounding dikes and drainages and only receives drainage from nearby croplands through three connecting ditches. Since 2001, the marsh has been managed to maintain year-round inundation with the lowest water levels in September. Within the 0–250 m fetch of the tower, the marsh comprises 42.9% of floating-leaved vegetation, 52.7% of emergent vegetation, and 4.4% of dike and upland during the growing season. Dominant emergent plants include narrow-leaved cattail (Typha angustifolia), rose mallow (Hibiscus moscheutos), and bur reed (Sparganium americanum). Common floating-leaved species are water lily (Nymphaea odorata) and American lotus (Nelumbo lutea) with foliage usually covering the water surface from late May to early October.
Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.
Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori
2011-01-01
Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization of a medium-sized washer-gun for an axisymmetric mirror
NASA Astrophysics Data System (ADS)
Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan
2018-04-01
A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.
Characterization of a medium-sized washer-gun for an axisymmetric mirror.
Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan
2018-04-01
A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun
2018-01-01
In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.
Characteristics of a Single Float Seaplane During Take-off
NASA Technical Reports Server (NTRS)
Crowley, J W , Jr; Ronan, K M
1925-01-01
At the request of the Bureau of Aeronautics, Navy Department, the National Advisory Committee for Aeronautics at Langley Field is investigating the get-away characteristics of an N-9H, a DT-2, and an F-5l, as representing, respectively, a single float, a double float, and a boat type of seaplane. This report covers the investigation conducted on the N-9H. The results show that a single float seaplane trims aft in taking off. Until a planing condition is reached the angle of attack is about 15 degrees and is only slightly affected by controls. When planing it seeks a lower angle, but is controllable through a widening range, until at the take-off it is possible to obtain angles of 8 degrees to 15 degrees with corresponding speeds of 53 to 41 M. P. H. or about 40 per cent of the speed range. The point of greatest resistance occurs at about the highest angle of a pontoon planing angle of 9 1/2 degrees and at a water speed of 24 M. P. H.
Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Hwang, K. S.; Wu, S. T.
1995-01-01
Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., community or corporate docks, or at any fixed or permanent mooring point, may only be used for overnight... floating or stationary mooring facilities on, adjacent to, or interfering with a buoy, channel marker or...
Software For Tie-Point Registration Of SAR Data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Dubois, Pascale; Okonek, Sharon; Van Zyl, Jacob; Burnette, Fred; Borgeaud, Maurice
1995-01-01
SAR-REG software package registers synthetic-aperture-radar (SAR) image data to common reference frame based on manual tie-pointing. Image data can be in binary, integer, floating-point, or AIRSAR compressed format. For example, with map of soil characteristics, vegetation map, digital elevation map, or SPOT multispectral image, as long as user can generate binary image to be used by tie-pointing routine and data are available in one of the previously mentioned formats. Written in FORTRAN 77.
Liu, Xiaona; Erasmus, Vicki; Wu, Qing; Richardus, Jan Hendrik
2014-01-01
Floating populations have been repeatedly characterized as "the tipping point" for the HIV epidemic in China. This study aims to systematically summarize and assess the effectiveness of HIV prevention interventions in floating populations in China over the past decade. We conducted a systematic search in three international databases for literature published between 2005 and 2012 with condom use as the primary outcome, and knowledge about HIV transmission and prevention and stigma towards HIV-infected individuals as secondary outcomes. The impact of interventions on changing the primary and secondary outcomes was calculated by risk difference (RD). We also performed subgroup analyses and meta-regression based on different study characteristics, using Stata 12.0, for the primary outcome. Sixteen studies (out of 149) involved 19 different programs and a total of 10,864 participants at entry from 11 provinces in China. The pooled effect estimate of all studies indicated that people participating in HIV-related interventions were 13% more likely to use condoms (95%CI: 0.07, 0.18), however, the effects on increasing condom use exhibited significant heterogeneity across programs (P<0.01, I2 = 0.93). The meta-regression results suggest that interventions have been significantly less successful in changing condom use in more recent studies (β, 0.14; 95%CI: 0.01, 0.27), adjusted for sexual relationship, study design and follow-up period. Regarding the secondary outcomes, HIV-related interventions were successful at improving knowledge about HIV transmission and prevention (RD, -0.26; 95%CI: -0.36, -0.16 and RD, -0.25; 95%CI: -0.33, -0.16, respectively), and decreasing stigma (RD, 0.18; 95%CI: 0.09, 0.27). The included studies between 2005 and 2012 indicate that HIV prevention interventions among Chinese floating populations in the past decade were only marginally effective at increasing condom use, but relatively successful at increasing HIV knowledge and decreasing stigma. To avert new infections, novel sexual risk-reduction interventions taking into account the changing socio-economic and cultural situation of Chinese floating populations are urgently needed.
Zhou, Zhao-Hui; Zhuang, Li-Xing; Chen, Zhen-Hu; Lang, Jian-Ying; Li, Yan-Hui; Jiang, Gang-Hui; Xu, Zhan-Qiong; Liao, Mu-Xi
2014-07-01
To compare the clinical efficacy in the treatment of post-stroke shoulder-hand syndrome between floating-needle therapy and conventional acupuncture on the basis of rehabilitation training. One hundred cases of post-stroke shoulder-hand syndrome were randomized into a floating-needle group and an acupuncture group, 50 cases in each one. The passive and positive rehabilitation training was adopted in the two groups. Additionally, in the floating-needle group, the floating-needle therapy was used. The needle was inserted at the site 5 to 10 cm away from myofasical trigger point (MTrP), manipulated and scattered subcutaneously, for 2 min continuously. In the acupuncture group, the conventional acupuncture was applied at Jianqian (EX-UE), Jianyu (LI 15), Jianliao (TE 14), etc. The treatment was given once every two days, 3 times a week, and 14 days of treatment were required. The shoulder hand syndrome scale (SHSS), the short form McGill pain scale (SF-MPQ) and the modified Fugl-Meyer motor function scale (FMA) were used to evaluate the damage severity, pain and motor function of the upper limbs before and after treatment in the two groups. The clinical efficacy was compared between the two groups. SHSS score, SF-MPQ score and FMA score were improved significantly after treatment in the two groups (all P < 0.01), and the improvements in the floating-needle group were superior to those in the acupuncture group (all P < 0.05). The total effective rate was 94.0% (47/50) in the floating-needle group, which was better than 90.0% (45/50) in the acupuncture group (P < 0.05). The floating-needle therapy combined with rehabilitation training achieves a satisfactory efficacy on post-stroke shoulder-hand syndrome, which is better than the combined therapy of conventional acupuncture and rehabilitation training.
Investigating the potential of floating mires as record of palaeoenvironmental changes
NASA Astrophysics Data System (ADS)
Zaccone, C.; Adamo, P.; Giordano, S.; Miano, T. M.
2012-04-01
Peat-forming floating mires could provide an exceptional resource for palaeoenvironmental and environmental monitoring studies, as much of their own history, as well as the history of their surrounds, is recorded in their peat deposits. In his Naturalis historia (AD 77-79), Pliny the Elder described floating islands on Lake Vadimonis (now Posta Fibreno Lake, Italy). Actually, a small floating island (ca. 35 m of diameter and 3 m of submerged thickness) still occurs on this calcareous lake fed by karstic springs at the base of the Apennine Mountains. Here the southernmost Italian populations of Sphagnum palustre occur on the small surface of this floating mire known as "La Rota", i.e., a cup-formed core of Sphagnum peat and rhizomes of Helophytes, erratically floating on the water-body of a submerged doline, annexed to the easternmost edge of the lake, characterised by the extension of a large reed bed. Geological evidence point out the existence in the area of a large lacustrine basin since Late Pleistocene. The progressive filling of the lake caused by changing in climatic conditions and neotectonic events, brought about the formation of peat deposits in the area, following different depositional cycles in a swampy environment. Then, a round-shaped portion of fen, originated around lake margins in waterlogged areas, was somehow isolated from the bank and started to float. Coupling data about concentrations and fluxes of several major and trace elements of different origin (i.e., dust particles, volcanic emissions, cosmogenic dusts and marine aerosols), with climate records (plant micro- and macrofossils, pollens, isotopic ratios), biomolecular records (e.g., lipids), detailed age-depth modelling (i.e., 210Pb, 137Cs, 14C), and humification indexes, the present work is hoped to identify and better understand the reliability of this particular "archive", and thus possible relationships between biogeochemical processes occurring in this floating bog and environmental changes.
Galoian, V R
1988-01-01
It is well known that the eye is a phylogenetically stabilized body with rotation properties. The eye has an elastic cover and is filled with uniform fluid. According to the theory of covers and other concepts on the configuration of turning fluid mass we concluded that the eyeball has an elliptic configuration. Classification of the eyeball is here presented with simultaneous studies of the principles of the eye situation. The parallelism between the state and different types of heterophory and orthophory was studied. To determine normal configuration it is necessary to have in mind some principles of achieving advisable correct situation of the eye in orbit. We determined the centre of the eye rotation and showed that it is impossible to situate it out of the geometrical centre of the eyeball. It was pointed out that for adequate perception the rotation centre must be situated on the visual axis. Using the well known theory of floating we experimentally determined that the centre of the eye rotation lies on the level of the floating eye, just on the point of cross of the visual line with the optical axis. It was shown experimentally on the basis of recording the eye movements in the process of eyelid closing that weakening of the eye movements is of gravitational pattern and proceeds under the action of stability forces, which directly indicates the floating state of the eye. For the first time using the model of the floating eye it was possible to show the formation of extraeye vacuum by straining the back wall. This effect can be obtained without any difficulty, if the face is turned down. The role of negative pressure in the formation of the eye ametropy, as well as new conclusions and prognostications about this new model are discussed.
Functional outcomes of "floating elbow" injuries in adult patients.
Yokoyama, K; Itoman, M; Kobayashi, A; Shindo, M; Futami, T
1998-05-01
To assess elbow function, complications, and problems of floating elbow fractures in adults receiving surgical treatment. Retrospective clinical review. Level I trauma center in Kanagawa, Japan. Fourteen patients with fifteen floating elbow injuries, excluding one immediate amputation, seen at the Kitasato University Hospital from January 1, 1984, to April 30, 1995. All fractures were managed surgically by various methods. In ten cases, the humeral and forearm fractures were treated simultaneously with immediate fixation. In three cases, both the humeral and forearm fractures were treated with delayed fixation on Day 1, 4, or 7. In the remaining two cases, the open forearm fracture was managed with immediate fixation and the humerus fracture with delayed fixation on Day 10 or 25. All subjects underwent standardized elbow evaluations, and results were compared with an elbow score based on a 100-point scale. The parameters evaluated were pain, motion, elbow and grip strength, and function during daily activities. Complications such as infections, nonunions, malunions, and refractures were investigated. Mean follow-up was forty-three months (range 13 to 112 months). At final follow-up, the mean elbow function score was 79 points, with 67 percent (ten of fifteen) of the subjects having good or excellent results. The functional outcome did not correlate with the Injury Severity Score of the individual patients, the existence of open injuries or neurovascular injuries, or the timing of surgery. There were one deep infection, two nonunions of the humerus, two nonunions of the forearm, one varus deformity of the humerus, and one forearm refracture. Based on the present data, we could not clarify the factors influencing the final functional outcome after floating elbow injury. These injuries, however, potentially have many complications, such as infection or nonunion, especially when there is associated brachial plexus injury. We consider that floating elbow injuries are severe injuries and that surgical stabilization is needed; beyond that, there are no specific forms of surgical treatment to reliably guarantee excellent results.
30 CFR 250.907 - Where must I locate foundation boreholes?
Code of Federal Regulations, 2014 CFR
2014-07-01
... soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize catenary or..., other points throughout the anchor pattern to establish the soil profile suitable for foundation design...
30 CFR 250.907 - Where must I locate foundation boreholes?
Code of Federal Regulations, 2013 CFR
2013-07-01
... soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize catenary or..., other points throughout the anchor pattern to establish the soil profile suitable for foundation design...
... weight normally for the first month. After that point, the baby will lose weight and become irritable, and will have worsening jaundice. Other symptoms may include: Dark urine Enlarged spleen Floating stools Foul-smelling stools Pale or clay-colored ...
30 CFR 250.907 - Where must I locate foundation boreholes?
Code of Federal Regulations, 2012 CFR
2012-07-01
... soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize catenary or..., other points throughout the anchor pattern to establish the soil profile suitable for foundation design...
Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza
2015-10-01
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid Design of Gravity Assist Trajectories
NASA Technical Reports Server (NTRS)
Carrico, J.; Hooper, H. L.; Roszman, L.; Gramling, C.
1991-01-01
Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described.
NASA Technical Reports Server (NTRS)
Kelly, G. L.; Berthold, G.; Abbott, L.
1982-01-01
A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.
Parallel processor for real-time structural control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tise, B.L.
1992-01-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection tomore » host computer, parallelizing code generator, and look-up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating-point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An Open Windows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.« less
Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate
NASA Astrophysics Data System (ADS)
Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.
2009-11-01
In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.
Advances in petascale kinetic plasma simulation with VPIC and Roadrunner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Kevin J; Albright, Brian J; Yin, Lin
2009-01-01
VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration andmore » modeling reconnection in magnetic confinement fusion experiments.« less
A performance comparison of the Cray-2 and the Cray X-MP
NASA Technical Reports Server (NTRS)
Schmickley, Ronald; Bailey, David H.
1986-01-01
A suite of thirteen large Fortran benchmark codes were run on Cray-2 and Cray X-MP supercomputers. These codes were a mix of compute-intensive scientific application programs (mostly Computational Fluid Dynamics) and some special vectorized computation exercise programs. For the general class of programs tested on the Cray-2, most of which were not specially tuned for speed, the floating point operation rates varied under a variety of system load configurations from 40 percent up to 125 percent of X-MP performance rates. It is concluded that the Cray-2, in the original system configuration studied (without memory pseudo-banking) will run untuned Fortran code, on average, about 70 percent of X-MP speeds.
VIEW OF FACILITY NO. S 20 NEAR THE POINT WHERE ...
VIEW OF FACILITY NO. S 20 NEAR THE POINT WHERE IT JOINS FACILITY NO. S 21. NOTE THE ASPHALT-FILLED NARROW-GAUGE TRACKWAY WITH SOME AREAS OF STEEL TRACK SHOWING. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Floating Dry Dock Quay, Hurt Avenue at northwest side of Magazine Loch, Pearl City, Honolulu County, HI
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Offshore... 40 CFR 125.30-32, any existing point source subject to this subpart must achieve the following... Minimum of 1 mg/l and maintained as close to this concentration as possible. Sanitary M91M Floating solids...
33 CFR 183.558 - Hoses and connections.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (A) The hose is severed at the point where maximum drainage of fuel would occur, (B) The boat is in its static floating position, and (C) The fuel system is filled to the capacity market on the tank... minutes when: (A) The hose is severed at the point where maximum drainage of fuel would occur, (B) The...
Experimental and Numerical Investigations of Floating Breakwater Performance.
USDA-ARS?s Scientific Manuscript database
Floating breakwaters are commonly used to protect small marinas and for shoreline erosion control in coastal areas. They are efficient wave attenuation structures for relatively short waves and shallow water depths. The main objective of the current study is to investigate the hydrodynamic interacti...
The Development of Floats and Equipment for Research in Promoting It
NASA Technical Reports Server (NTRS)
Pabst, Wilhelm
1934-01-01
Providing information that will make possible a favorable compromise between landing impact and planing resistance is the immediate problem in experimental float development. A description of equipment to perform dropping tests are included as well as how to determine the landing impact.
In-service tests of the effectiveness of vibration control measures on the BART rail transit system
NASA Astrophysics Data System (ADS)
Saurenman, Hugh; Phillips, James
2006-06-01
This paper presents results of a number of vibration measurements of the different track forms used on the current San Francisco Bay Area Rapid Transit (BART) system including floating slab, resiliently supported half-ties and high-resilience direct fixation fasteners in subway and one section of floating slab used on at-grade track. The goal was to obtain data that would improve the predictions of future vibration levels and perhaps lead to more cost effective vibration mitigation strategies for the proposed BART extension to San Jose. The tests show that the floating slabs are performing much as designed, the resiliently supported half-ties are less effective than expected, and the high resilience track fasteners are probably performing as expected although the results are clouded because of severe rail corrugation in the area where the new fasteners were installed. One unanticipated result is the apparent interaction of the floating slab resonance, the wheel rotation frequency, the bogie dynamics, and vibration propagation characteristics of the ground.
Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long
2018-01-01
With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637
The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Clifford; School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030; Ji, Weixiao
2014-02-01
We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm,more » which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.« less
Flight Operations Analysis Tool
NASA Technical Reports Server (NTRS)
Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca
2006-01-01
Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.
NASA Astrophysics Data System (ADS)
Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-05-01
As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 106 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.
Processing large remote sensing image data sets on Beowulf clusters
Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Schmidt, Gail
2003-01-01
High-performance computing is often concerned with the speed at which floating- point calculations can be performed. The architectures of many parallel computers and/or their network topologies are based on these investigations. Often, benchmarks resulting from these investigations are compiled with little regard to how a large dataset would move about in these systems. This part of the Beowulf study addresses that concern by looking at specific applications software and system-level modifications. Applications include an implementation of a smoothing filter for time-series data, a parallel implementation of the decision tree algorithm used in the Landcover Characterization project, a parallel Kriging algorithm used to fit point data collected in the field on invasive species to a regular grid, and modifications to the Beowulf project's resampling algorithm to handle larger, higher resolution datasets at a national scale. Systems-level investigations include a feasibility study on Flat Neighborhood Networks and modifications of that concept with Parallel File Systems.
33 CFR 149.625 - What are the design standards?
Code of Federal Regulations, 2010 CFR
2010-07-01
... elsewhere in this subpart (for example, single point moorings, hoses, and aids to navigation buoys), must be... components. (c) Heliports on floating deepwater ports must be designed in compliance with the regulations at...
33 CFR 329.6 - Interstate or foreign commerce.
Code of Federal Regulations, 2010 CFR
2010-07-01
... United States. Note, however, that the mere presence of floating logs will not of itself make the river... the future, or at a past point in time. (b) Nature of commerce: interstate and intrastate. Interstate...
30 CFR 250.907 - Where must I locate foundation boreholes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... foundation pile to a soil boring must not exceed 500 feet. (b) For deepwater floating platforms which utilize... necessary, other points throughout the anchor pattern to establish the soil profile suitable for foundation...
Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers.
Jaksic, V; Wright, C S; Murphy, J; Afeef, C; Ali, S F; Mandic, D P; Pakrashi, V
2015-02-28
In this paper, we experimentally study and compare the effects of three combinations of multiple tuned liquid column dampers (MTLCDs) on the dynamic performance of a model floating tension-leg platform (TLP) structure in a wave basin. The structural stability and safety of the floating structure during operation and maintenance is of concern for the performance of a renewable energy device that it might be supporting. The dynamic responses of the structure should thus be limited for these renewable energy devices to perform as intended. This issue is particularly important during the operation of a TLP in extreme weather conditions. Tuned liquid column dampers (TLCDs) can use the power of sloshing water to reduce surge motions of a floating TLP exposed to wind and waves. This paper demonstrates the potential of MTLCDs in reducing dynamic responses of a scaled TLP model through an experimental study. The potential of using output-only statistical markers for monitoring changes in structural conditions is also investigated through the application of a delay vector variance (DVV) marker for different conditions of control for the experiments. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
2009-06-01
to floating point , to multi-level logic. 2 Overview Self-aware computation can be distinguished from existing computational models which are...systems have advanced to the point that the time is ripe to realize such a system. To illustrate, let us examine each of the key aspects of self...servers for each service, there are no single points of failure in the system. If an OS or user core has a failure, one of several introspection cores
Single crystal growth of 67%BiFeO 3 -33%BaTiO 3 solution by the floating zone method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Y.; Zheng, H.; Krogstad, M. J.
The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects ofmore » CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.« less
Rear surface effects in high efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenham, S.R.; Robinson, S.J.; Dai, X.
1994-12-31
Rear surface effects in PERL solar cells can lead not only to degradation in the short circuit current and open circuit voltage, but also fill factor. Three mechanisms capable of changing the effective rear surface recombination velocity with injection level are identified, two associated with oxidized p-type surfaces, and the third with two dimensional effects associated with a rear floating junction. Each of these will degrade the fill factor if the range of junction biases corresponding to the rear surface transition, coincides with the maximum power point. Despite the identified non idealities, PERL cells with rear floating junctions (PERF cells)more » have achieved record open circuit voltages for silicon solar cells, while simultaneously achieving fill factor improvements relative to standard PERL solar cells. Without optimization, a record efficiency of 22% has been demonstrated for a cell with a rear floating junction. The results of both theoretical and experimental studies are provided.« less
Single crystal growth of 67%BiFeO3-33%BaTiO3 solution by the floating zone method
NASA Astrophysics Data System (ADS)
Rong, Y.; Zheng, H.; Krogstad, M. J.; Mitchell, J. F.; Phelan, D.
2018-01-01
The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects of CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.
Bächli, Heidi; Steiner, Michel A; Habersetzer, Ursula; Wotjak, Carsten T
2008-02-11
To investigate genotype x environment interactions in the forced swim test, we tested the influence of water temperature (20 degrees C, 25 degrees C, 30 degrees C) on floating behaviour in single-housed male C57BL/6J and BALB/c mice. We observed a contrasting relationship between floating and water temperature between the two strains, with C57BL/6J floating more and BALB/c floating less with increasing water temperature, independent of the lightening conditions and the time point of testing during the animals' circadian rhythm. Both strains showed an inverse relationship between plasma corticosterone concentration and water temperature, indicating that the differences in stress coping are unrelated to different perception of the aversive encounter. Treatment with desipramine (20mg/kg, i.p.) caused a reduction in immobility time in C57BL/6J mice if the animals were tested at 30 degrees C water temperature, with no effect at 25 degrees C and no effects on forced swim stress-induced corticosterone secretion. The same treatment failed to affect floating behaviour in BALB/c at any temperature, but caused a decrease in plasma corticosterone levels. Taken together we demonstrate that an increase in water temperature in the forced swim test exerts opposite effects on floating behaviour in C57BL/6J and BALB/c and renders single-housed C57BL/6J mice, but not BALB/c mice, susceptible to antidepressant-like behavioral effects of desipramine.
Peljo, Pekka; Scanlon, Micheál D; Olaya, Astrid J; Rivier, Lucie; Smirnov, Evgeny; Girault, Hubert H
2017-08-03
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
USDA-ARS?s Scientific Manuscript database
Floating breakwaters are typically used on limited-fetch water bodies, such as lakes, reservoirs, and bays, where wavelengths are relatively short. They are also often preferred for sites with large water level changes. Common uses are to protect small marinas or for shoreline erosion control. While...
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Heber, Gerd; Biswas, Rupak
2000-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply (SPMV) usually accounts for most of the floating-point operations within a CG iteration. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and SPMV using different programming paradigms and architectures. Results show that for this class of applications, ordering significantly improves overall performance, that cache reuse may be more important than reducing communication, and that it is possible to achieve message passing performance using shared memory constructs through careful data ordering and distribution. However, a multi-threaded implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain high efficiency and scalability.
Fast neural net simulation with a DSP processor array.
Muller, U A; Gunzinger, A; Guggenbuhl, W
1995-01-01
This paper describes the implementation of a fast neural net simulator on a novel parallel distributed-memory computer. A 60-processor system, named MUSIC (multiprocessor system with intelligent communication), is operational and runs the backpropagation algorithm at a speed of 330 million connection updates per second (continuous weight update) using 32-b floating-point precision. This is equal to 1.4 Gflops sustained performance. The complete system with 3.8 Gflops peak performance consumes less than 800 W of electrical power and fits into a 19-in rack. While reaching the speed of modern supercomputers, MUSIC still can be used as a personal desktop computer at a researcher's own disposal. In neural net simulation, this gives a computing performance to a single user which was unthinkable before. The system's real-time interfaces make it especially useful for embedded applications.
Biogeochemical sensor performance in the SOCCOM profiling float array
NASA Astrophysics Data System (ADS)
Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.
2017-08-01
The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... Murray Docks, Inc./Windward Point Yacht Club to use project waters to expand an existing boat dock facility through the addition of an 8-slip floating dock to accommodate a maximum of 12 additional boats. The proposed new structures would be for the private use of members of the Windward Point Yacht Club...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY... provided in 40 CFR 125.30-32, any existing point source subject to this subpart must achieve the following... maintained as close to this concentration as possible. 3 There shall be no floating solids as a result of the...
[Study on preparation of phenols gastric floating tablet].
Zhai, Xiao-Ling; Ni, Jian; Gu, Yu-Long
2008-01-01
To study the preparation of phenols gastric floating tablet. The tablets which were prepared using Eudragit IV, HPMC(K4M), MCC101 and Octadecanol as excipients were evaluated by vitro floatation and releasing performance. The pressure of preparationg was also study to select the optimal preparation. The tablets were successfully prepared in which the drug, Eudragit IV, Octadecanol were 31% respectively,and MCC101 was 7%. And 3-4 kg was found to be the eligible pressure. The study was found to be effective in the process of phenols gastric floating tablet.
NASA Astrophysics Data System (ADS)
Morrison, R. E.; Robinson, S. H.
A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.
Optimized Latching Control of Floating Point Absorber Wave Energy Converter
NASA Astrophysics Data System (ADS)
Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om
2018-03-01
There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.
Microfluidic quadrupole and floating concentration gradient.
Qasaimeh, Mohammad A; Gervais, Thomas; Juncker, David
2011-09-06
The concept of fluidic multipoles, in analogy to electrostatics, has long been known as a particular class of solutions of the Navier-Stokes equation in potential flows; however, experimental observations of fluidic multipoles and of their characteristics have not been reported yet. Here we present a two-dimensional microfluidic quadrupole and a theoretical analysis consistent with the experimental observations. The microfluidic quadrupole was formed by simultaneously injecting and aspirating fluids from two pairs of opposing apertures in a narrow gap formed between a microfluidic probe and a substrate. A stagnation point was formed at the centre of the microfluidic quadrupole, and its position could be rapidly adjusted hydrodynamically. Following the injection of a solute through one of the poles, a stationary, tunable, and movable-that is, 'floating'-concentration gradient was formed at the stagnation point. Our results lay the foundation for future combined experimental and theoretical exploration of microfluidic planar multipoles including convective-diffusive phenomena.
NASA Astrophysics Data System (ADS)
Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.
2012-12-01
This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.
A micro-computer-based system to compute magnetic variation
NASA Technical Reports Server (NTRS)
Kaul, Rajan
1987-01-01
A mathematical model of magnetic variation in the continental United States was implemented in the Ohio University Loran-C receiver. The model is based on a least squares fit of a polynomial function. The implementation on the microprocessor based Loran-C receiver is possible with the help of a math chip which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter is used to communicate between the 6502 based microcomputer and the 9511 math chip. The implementation provides magnetic variation data to the pilot as a function of latitude and longitude. The model and the real time implementation in the receiver are described.
A CPU benchmark for protein crystallographic refinement.
Bourne, P E; Hendrickson, W A
1990-01-01
The CPU time required to complete a cycle of restrained least-squares refinement of a protein structure from X-ray crystallographic data using the FORTRAN codes PROTIN and PROLSQ are reported for 48 different processors, ranging from single-user workstations to supercomputers. Sequential, vector, VLIW, multiprocessor, and RISC hardware architectures are compared using both a small and a large protein structure. Representative compile times for each hardware type are also given, and the improvement in run-time when coding for a specific hardware architecture considered. The benchmarks involve scalar integer and vector floating point arithmetic and are representative of the calculations performed in many scientific disciplines.
A Very High Order, Adaptable MESA Implementation for Aeroacoustic Computations
NASA Technical Reports Server (NTRS)
Dydson, Roger W.; Goodrich, John W.
2000-01-01
Since computational efficiency and wave resolution scale with accuracy, the ideal would be infinitely high accuracy for problems with widely varying wavelength scales. Currently, many of the computational aeroacoustics methods are limited to 4th order accurate Runge-Kutta methods in time which limits their resolution and efficiency. However, a new procedure for implementing the Modified Expansion Solution Approximation (MESA) schemes, based upon Hermitian divided differences, is presented which extends the effective accuracy of the MESA schemes to 57th order in space and time when using 128 bit floating point precision. This new approach has the advantages of reducing round-off error, being easy to program. and is more computationally efficient when compared to previous approaches. Its accuracy is limited only by the floating point hardware. The advantages of this new approach are demonstrated by solving the linearized Euler equations in an open bi-periodic domain. A 500th order MESA scheme can now be created in seconds, making these schemes ideally suited for the next generation of high performance 256-bit (double quadruple) or higher precision computers. This ease of creation makes it possible to adapt the algorithm to the mesh in time instead of its converse: this is ideal for resolving varying wavelength scales which occur in noise generation simulations. And finally, the sources of round-off error which effect the very high order methods are examined and remedies provided that effectively increase the accuracy of the MESA schemes while using current computer technology.
Dynamics modeling and loads analysis of an offshore floating wind turbine
NASA Astrophysics Data System (ADS)
Jonkman, Jason Mark
The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land-based turbine. Instabilities were also found in the system. The influence of conventional wind turbine blade-pitch control actions on the pitch damping of the floating turbine was also assessed. Design modifications for reducing the platform motions, improving the turbine response, and eliminating the instabilities are suggested. These suggestions are aimed at obtaining cost-effective designs that achieve favorable performance while maintaining structural integrity.
NASA Astrophysics Data System (ADS)
Elayeb, O. K.; Alghoul, M. A.; Sopian, K.; Khrita, N. G.
2017-11-01
Despite Double skin façade (DSF) buildings are widely deployed worldwide, daylighting strategy is not commonly incorporated in these buildings compare to other strategies. Therefore, further theoretical and experimental studies would lead to adopting daylighting strategy in DSF office buildings. The aim of this study is to investigate the daylighting performance of office building at different design parameters of box window DSF using different glazing types under sub interval of intermediate sky conditions (20-40) klux using the (IES VE) simulation tool from Integrated Environmental Solutions - Virtual Environment. The implemented design parameters are window wall ratio (WWR) of internal façade (10-100) %, cavity depth (CD) of DSF (1-2.5) m and different glazing types. The glazing types were selected from the list available in the (IES VE) simulation tool. After series of evaluations, bronze tinted coating (STOPSOL) is implemented for the exterior façade while clear float, clear reflective coating (STOPSOL), grey and brown tinted coating (Anti-sun float) and blue coating tinted (SUNCOOL float) are implemented for the interior façade. In this paper, several evaluation parameters are used to quantify the optimum design parameters that would balance the daylighting requirements of a box window DSF office versus sky conditions range (20-40) klux. The optimum design parameters of DSF office building obtained under different glazing types are highlighted as follows. When using bronze tinted coating (STOPSOL) for the exterior façade, the glazing types of interior façade that showed superior daylighting performance of DSF office at (CD of 1.0m with WWR of 70%), (CD of 1.5m with WWR of 70%), (CD of 2.0m with WWR of 70%) and (CD of 2.0m with WWR of 70%) are grey tinted coating (Anti-sun float), clear reflective coating (STOPSOL), brown tinted coating (Anti-sun float), and clear float glazing respectively. Blue Coating tinted (SUNCOOL float) of interior façade glazing failed to meet outstanding daylighting performance at any cavity depth.
Mansour, Fotouh R; Danielson, Neil D
2017-08-01
Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-mode sliding mode control for precision linear stage based on fixed or floating stator.
Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei
2016-02-01
This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.
Method and apparatus for high speed data acquisition and processing
Ferron, J.R.
1997-02-11
A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.
Method and apparatus for high speed data acquisition and processing
Ferron, John R.
1997-01-01
A method and apparatus for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register.
Aerial LED signage by use of crossed-mirror array
NASA Astrophysics Data System (ADS)
Yamamoto, Hirotsugu; Kujime, Ryousuke; Bando, Hiroki; Suyama, Shiro
2013-03-01
3D representation of digital signage improves its significance and rapid notification of important points. Real 3D display techniques such as volumetric 3D displays are effective for use of 3D for public signs because it provides not only binocular disparity but also motion parallax and other cues, which will give 3D impression even people with abnormal binocular vision. Our goal is to realize aerial 3D LED signs. We have specially designed and fabricated a reflective optical device to form an aerial image of LEDs with a wide field angle. The developed reflective optical device composed of crossed-mirror array (CMA). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. The depth between LED lamps is represented in the same depth in the floating 3D image. Floating image of LEDs was formed in wide range of incident angle with a peak reflectance at 35 deg. The image size of focused beam (point spread function) agreed to the apparent aperture size.
Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.
Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan
2018-01-15
Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 426.54 Section 426.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.54 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 426.54 Section 426.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.54 [Reserved] ...
33 CFR 100.101 - Harvard-Yale Regatta, Thames River, New London, CT.
Code of Federal Regulations, 2010 CFR
2010-07-01
... race course, between Scotch Cap and Bartlett Point Light. (ii) Within the race course boundaries or in... not cause waves which result in damage to submarines or other vessels in the floating drydocks. (11...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... facilities associated with the Willow Glynn at Willow Point residential subdivision. These facilities include 2 floating docks, with 16 double-slips each, a wooden pedestrian bridge, a wooden boardwalk along 1...
40 CFR 125.133 - What special definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Subcategories of the Oil and Gas Extraction Point Source Category Effluent Guidelines in 40 CFR 435.10 or 40 CFR..., floating, mobile, facility engaged in the processing of fresh, frozen, canned, smoked, salted or pickled...
33 CFR 110.29 - Boston Inner Harbor, Mass.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Park Yacht Club, Winthrop. Southerly of a line bearing 276° from a point on the west side of Pleasant.... [NAD83]. (2) The area is principally for use by yachts and other recreational craft. Temporary floats or...
33 CFR 110.29 - Boston Inner Harbor, Mass.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Park Yacht Club, Winthrop. Southerly of a line bearing 276° from a point on the west side of Pleasant.... [NAD83]. (2) The area is principally for use by yachts and other recreational craft. Temporary floats or...
Low-complexity object detection with deep convolutional neural network for embedded systems
NASA Astrophysics Data System (ADS)
Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong
2017-09-01
We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.
Wu, Chunxia; Liu, Huimin; Liu, Weihua; Wu, Qiuhua; Wang, Chun; Wang, Zhi
2010-07-01
A simple dispersive liquid-liquid microextraction based on solidification of floating organic droplet coupled with high-performance liquid chromatography-diode array detection was developed for the determination of five organophosphorus pesticides (OPs) in water samples. In this method, the extraction solvent used is of low density, low toxicity, and proper melting point near room temperature. The extractant droplet could be collected easily by solidifying it in the lower temperature. Some important experimental parameters that affect the extraction efficiencies were optimized. Under the optimum conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the five OPs (triazophos, parathion, diazinon, phoxim, and parathion-methyl), with the correlation coefficients (r) varying from 0.9991 to 0.9998. High enrichment factors were achieved ranging from 215 to 557. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes from water samples at spiking levels of 5.0 and 50.0 ng mL(-1) were 82.2-98.8% and 83.6-104.0%, respectively. The relative standard deviations fell in the range of 4.4% to 6.3%. The method was suitable for the determination of the OPs in real water samples.
NASA Astrophysics Data System (ADS)
Ould Bachir, Tarek
The real-time simulation of electrical networks gained a vivid industrial interest during recent years, motivated by the substantial development cost reduction that such a prototyping approach can offer. Real-time simulation allows the progressive inclusion of real hardware during its development, allowing its testing under realistic conditions. However, CPU-based simulations suffer from certain limitations such as the difficulty to reach time-steps of a few microsecond, an important challenge brought by modern power converters. Hence, industrial practitioners adopted the FPGA as a platform of choice for the implementation of calculation engines dedicated to the rapid real-time simulation of electrical networks. The reconfigurable technology broke the 5 kHz switching frequency barrier that is characteristic of CPU-based simulations. Moreover, FPGA-based real-time simulation offers many advantages, including the reduced latency of the simulation loop that is obtained thanks to a direct access to sensors and actuators. The fixed-point format is paradigmatic to FPGA-based digital signal processing. However, the format imposes a time penalty in the development process since the designer has to asses the required precision for all model variables. This fact brought an import research effort on the use of the floating-point format for the simulation of electrical networks. One of the main challenges in the use of the floating-point format are the long latencies required by the elementary arithmetic operators, particularly when an adder is used as an accumulator, an important building bloc for the implementation of integration rules such as the trapezoidal method. Hence, single-cycle floating-point accumulation forms the core of this research work. Our results help building such operators as accumulators, multiply-accumulators (MACs), and dot-product (DP) operators. These operators play a key role in the implementation of the proposed calculation engines. Therefore, this thesis contributes to the realm of FPGA-based real-time simulation in many ways. The research work proposes a new summation algorithm, which is a generalization of the so-called self-alignment technique. The new formulation is broader, simpler in its expression and hardware implementation. Our research helps formulating criteria to guarantee good accuracy, the criteria being established on a theoretical, as well as empirical basis. Moreover, the thesis offers a comprehensive analysis on the use of the redundant high radix carry-save (HRCS) format. The HRCS format is used to perform rapid additions of large mantissas. Two new HRCS operators are also proposed, namely an endomorphic adder and a HRCS to conventional converter. Once the mean to single-cycle accumulation is defined as a combination of the self-alignment technique and the HRCS format, the research focuses on the FPGA implementation of SIMD calculation engines using parallel floating-point MACs or DPs. The proposed operators are characterized by low latencies, allowing the engines to reach very low time-steps. The document finally discusses power electronic circuits modelling, and concludes with the presentation of a versatile calculation engine capable of simulating power converter with arbitrary topologies and up to 24 switches, while achieving time steps below 1 mus and allowing switching frequencies in the range of tens kilohertz. The latter realization has led to commercialization of a product by our industrial partner.
Zhang, An-yang; Fan, Tian-yuan
2010-04-18
To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.
NASA Astrophysics Data System (ADS)
Steffen, K.; Huff, R. D.; Cullen, N.; Rignot, E.; Stewart, C.; Jenkins, A.
2003-12-01
Petermann Gletscher is the largest and most influential outlet glacier in central northern Greenland. Located at 81 N, 60 W, it drains an area of 71,580 km2, with a discharge of 12 cubic km of ice per year into the Arctic Ocean. We finished a second field season in spring 2003 collecting in situ data on local climate, ice velocity, strain rates, ice thickness profiles and bottom melt rates of the floating ice tongue. Last years findings have been confirmed that large channels of several hundred meters in depth at the underside of the floating ice tongue are running roughly parallel to the flow direction. We mapped these channels using ground penetrating radar at 25 MHz frequency and multi-phase radar in profiling mode over half of the glacier's width. In addition, NASA airborne laser altimeter data was collected along and cross-glacier for accurate assessment of surface topography. We will present a 3-D model of the floating ice tongue and provide hypothesis of the origin and mechanism that caused these large ice channels at the bottom of the floating ice tongue. Multi-phase radar point measurements revealed interesting results of bottom melt rates, which exceed all previous estimates. It is worth mentioned that the largest bottom melt rates were not found at the grounding line, which is common on ice shelves in the Antarctica. In addition, GPS tidal motion has been measured over one lunar cycle at the flex zone and on the free floating ice tongue and the result will be compared to historic measurements made at the beginning of last century. The surface climate has been recorded by two automatic weather stations over a 12 month period, and the local climate of this remote region will be presented.
In-service tests of the effectiveness of vibration control measures on the BART rail transit system
NASA Astrophysics Data System (ADS)
Saurenman, Hugh
2005-09-01
Controlling vibration from new rail transit systems can be quite expensive when the alignment passes through residential areas. However, there is relatively little documented information on how effective different vibration mitigation approaches perform under in-service conditions. This paper presents results of a number of vibration measurements of the different track forms used on the current San Francisco Bay Area Rapid Transit (BART) system including floating slab, resiliently supported half ties, and high-resilience direct fixation fasteners in subways and one section of floating slab used on at-grade tracks. The goal was to obtain data that would improve the predictions of future vibration levels and perhaps lead to more cost effective vibration mitigation strategies for the proposed BART extension to San Jose. The tests show that the floating slabs are performing much as designed, the resiliently supported half ties are less effective than expected, and the high resilience track fasteners are probably performing as expected, although the results are clouded because of severe rail corrugation in the area where the new fasteners were installed. Some unanticipated results are the apparent interaction of the floating slab resonance, the wheel rotation frequency, the bogey dynamics, and vibration propagation characteristics of the ground.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... animals, such as pelagic fishes and sea turtles, tend to congregate to naturally-occurring floating... American Samoa enclosed by straight lines connecting the following coordinates: Point S. latitude W. longitude AS-3-A 11[deg]12[min] 172[deg]18[min] AS-3-B 12[deg]12[min] 169[deg]56[min] and from Point AS-3-A...
75 FR 33692 - Safety Zone; Tacoma Freedom Fair Air Show, Commencement Bay, Tacoma, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... this rule encompasses all waters within the points 47[deg]-17.63' N., 122[deg]-28.724' W.; 47[deg]-17... Ruston Way and extending approximately 1100 yards into Commencement Bay. Floating markers will be placed... designated safety zone: All waters within the points 47[deg]-17.63' N., 122[deg]-28.724' W.; 47[deg]-17.059...
Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen
2015-01-01
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870
Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Zaccone, Claudio; Lobianco, Daniela; Shotyk, William; Ciavatta, Claudio; Appleby, Peter G.; Brugiapaglia, Elisabetta; Casella, Laura; Miano, Teodoro M.; D’Orazio, Valeria
2017-01-01
Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m2/yr), OC (0.28 vs. 0.18 kg/m2/yr) and TN (3.7 vs. 6.1 g/m2/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using 14C age dating, were confirmed using 210Pb and 137Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene. PMID:28230066
40 CFR 426.51 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 426.51 Section 426.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.51...
40 CFR 426.51 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Specialized definitions. 426.51 Section 426.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.51...
Efficient Atomization and Combustion of Emulsified Crude Oil
2014-09-18
2.26 Naphthenes , vol % 50.72 Aromatics, vol % 16.82 Freezing Point, °F -49.7 Freezing Point, °C -45.4 Smoke Point, mm (ASTM) 19.2 Acid ...needed by the proposed method for capturing and oil removal , in particular the same vessels and booms used to herd the floating crude oil into a thick...slicks need to be removed more rapidly than they can be transported, in situ burning offers a rapid disposal method that minimizes risk to marine life
Computer Program to Add NOISEMAP Grids of Different Spacings
1980-04-01
GRIC POINT. C 1,J ARE THE INDICES !-OR THE #-IN’- GRIL , PUINT CLOSLSTP C uUT TO THE LkFT AND 8tLGW9 T~ic Oi.JIRL&j iEIG GkIO POIt4TO C .(1,RJ ARE THE...ACTUAL FLOATING POINT CUORGINATES THE bIG C i.kID POINT WOULD HAVE WERL IT IN THE i-INL GRIL .. C CUMMION /GRIOS/ NBF, NBFL, OG(IOUIOO), dSo FG(iI.0QI,1
Efficient Boundary Extraction of BSP Solids Based on Clipping Operations.
Wang, Charlie C L; Manocha, Dinesh
2013-01-01
We present an efficient algorithm to extract the manifold surface that approximates the boundary of a solid represented by a Binary Space Partition (BSP) tree. Our polygonization algorithm repeatedly performs clipping operations on volumetric cells that correspond to a spatial convex partition and computes the boundary by traversing the connected cells. We use point-based representations along with finite-precision arithmetic to improve the efficiency and generate the B-rep approximation of a BSP solid. The core of our polygonization method is a novel clipping algorithm that uses a set of logical operations to make it resistant to degeneracies resulting from limited precision of floating-point arithmetic. The overall BSP to B-rep conversion algorithm can accurately generate boundaries with sharp and small features, and is faster than prior methods. At the end of this paper, we use this algorithm for a few geometric processing applications including Boolean operations, model repair, and mesh reconstruction.
Planted floating bed performance in treatment of eutrophic river water.
Bu, Faping; Xu, Xiaoyi
2013-11-01
The objective of the study was to treat eutrophic river water using floating beds and to identify ideal plant species for design of floating beds. Four parallel pilot-scale units were established and vegetated with Canna indica (U1), Accords calamus (U2), Cyperus alternifolius (U3), and Vetiveria zizanioides (U4), respectively, to treat eutrophic river water. The floating bed was made of polyethylene foam, and plants were vegetated on it. Results suggest that the floating bed is a viable alternative for treating eutrophic river water, especially for inhibiting algae growth. When the influent chemical oxygen demand (COD) varied from 6.53 to 18.45 mg/L, total nitrogen (TN) from 6.82 to 12.25 mg/L, total phosphorus (TP) from 0.65 to 1.64 mg/L, and Chla from 6.22 to 66.46 g/m(3), the removal of COD, TN, TP, and Chla was 15.3%-38.4%, 25.4%-48.4%, 16.1%-42.1%, and 29.9 %-88.1%, respectively. Ranked by removal performance, U1 was best, followed by U2, U3, and U4. In the floating bed, more than 60% TN and TP were removed by sedimentation; plant uptake was quantitatively of low importance with an average removal of 20.2% of TN and 29.4% of TP removed. The loss of TN (TP) was of the least importance. Compared with the other three, U1 exhibited better dissolved oxygen (DO) gradient distributions, higher DO levels, higher hydraulic efficiency, and a higher percentage of nutrient removal attributable to plant uptake; in addition, plant development and the volume of nutrient storage in the C. indica tissues outperformed the other three species. C. indica thus could be selected when designing floating beds for the Three Gorges Reservoir region of P. R. China.
NASA Astrophysics Data System (ADS)
Hill, C.
2008-12-01
Low cost graphic cards today use many, relatively simple, compute cores to deliver support for memory bandwidth of more than 100GB/s and theoretical floating point performance of more than 500 GFlop/s. Right now this performance is, however, only accessible to highly parallel algorithm implementations that, (i) can use a hundred or more, 32-bit floating point, concurrently executing cores, (ii) can work with graphics memory that resides on the graphics card side of the graphics bus and (iii) can be partially expressed in a language that can be compiled by a graphics programming tool. In this talk we describe our experiences implementing a complete, but relatively simple, time dependent shallow-water equations simulation targeting a cluster of 30 computers each hosting one graphics card. The implementation takes into account the considerations (i), (ii) and (iii) listed previously. We code our algorithm as a series of numerical kernels. Each kernel is designed to be executed by multiple threads of a single process. Kernels are passed memory blocks to compute over which can be persistent blocks of memory on a graphics card. Each kernel is individually implemented using the NVidia CUDA language but driven from a higher level supervisory code that is almost identical to a standard model driver. The supervisory code controls the overall simulation timestepping, but is written to minimize data transfer between main memory and graphics memory (a massive performance bottle-neck on current systems). Using the recipe outlined we can boost the performance of our cluster by nearly an order of magnitude, relative to the same algorithm executing only on the cluster CPU's. Achieving this performance boost requires that many threads are available to each graphics processor for execution within each numerical kernel and that the simulations working set of data can fit into the graphics card memory. As we describe, this puts interesting upper and lower bounds on the problem sizes for which this technology is currently most useful. However, many interesting problems fit within this envelope. Looking forward, we extrapolate our experience to estimate full-scale ocean model performance and applicability. Finally we describe preliminary hybrid mixed 32-bit and 64-bit experiments with graphics cards that support 64-bit arithmetic, albeit at a lower performance.
DSP Implementation of the Retinex Image Enhancement Algorithm
NASA Technical Reports Server (NTRS)
Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn
2004-01-01
The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-02-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
NASA Technical Reports Server (NTRS)
Liu, Yuan-Kwei
1991-01-01
The feasibility is analyzed of upgrading the Intel 386 microprocessor, which has been proposed as the baseline processor for the Space Station Freedom (SSF) Data Management System (DMS), to the more advanced i486 microprocessors. The items compared between the two processors include the instruction set architecture, power consumption, the MIL-STD-883C Class S (Space) qualification schedule, and performance. The advantages of the i486 over the 386 are (1) lower power consumption; and (2) higher floating point performance. The i486 on-chip cache does not have parity check or error detection and correction circuitry. The i486 with on-chip cache disabled, however, has lower integer performance than the 386 without cache, which is the current DMS design choice. Adding cache to the 386/386 DX memory hierachy appears to be the most beneficial change to the current DMS design at this time.
NASA Technical Reports Server (NTRS)
Liu, Yuan-Kwei
1991-01-01
The feasibility is analyzed of upgrading the Intel 386 microprocessor, which has been proposed as the baseline processor for the Space Station Freedom (SSF) Data Management System (DMS), to the more advanced i486 microprocessors. The items compared between the two processors include the instruction set architecture, power consumption, the MIL-STD-883C Class S (Space) qualification schedule, and performance. The advantages of the i486 over the 386 are (1) lower power consumption; and (2) higher floating point performance. The i486 on-chip cache does not have parity check or error detection and correction circuitry. The i486 with on-chip cache disabled, however, has lower integer performance than the 386 without cache, which is the current DMS design choice. Adding cache to the 386/387 DX memory hierarchy appears to be the most beneficial change to the current DMS design at this time.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Technical Reports Server (NTRS)
Kamat, Manohar P.; Watson, Brian C.
1992-01-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
Floating arterial thrombus related stroke treated by intravenous thrombolysis.
Vanacker, P; Cordier, M; Janbieh, J; Federau, C; Michel, P
2014-01-01
The effects of intravenous thrombolysis on floating thrombi in cervical and intracranial arteries of acute ischemic stroke patients are unknown. Similarly, the best prevention methods of early recurrences remain controversial. This study aimed to describe the clinical and radiological outcome of thrombolyzed strokes with floating thrombi. We retrospectively analyzed all thrombolyzed stroke patients in our institution between 2003 and 2010 with floating thrombi on acute CT-angiography before the intravenous thrombolysis. The floating thrombus was diagnosed if an elongated thrombus of at least 5 mm length, completely surrounded by contrast on supra-aortic neck or intracerebral arteries, was present on CT-angiography. Demographics, vascular risk factors, and comorbidities were recorded and stroke etiology was determined after a standardized workup. Repeat arterial imaging was performed by CTA at 24 h or before if clinical worsening was noted and then by Doppler and MRA during the first week and at four months. Of 409 thrombolyzed stroke patients undergoing acute CT Angiography, seven (1.7%) had a floating thrombus; of these seven, six had it in the anterior circulation. Demographics, risk factors and stroke severity of these patients were comparable to the other thrombolyzed patients. After intravenous thrombolysis, the floating thrombi resolved completely at 24 h in four of the patients, whereas one had an early recurrent stroke and one developed progressive worsening. One patient developed early occlusion of the carotid artery with floating thrombus and subsequently a TIA. The two patients with a stable floating thrombus had no clinical recurrences. In the literature, only one of four reported cases were found to have a thrombolysis-related early recurrence. Long-term outcome seemed similar in thrombolyzed patients with floating thrombus, despite a possible increase of very early recurrence. It remains to be established whether acute mechanical thrombectomy could be a safer and more effective treatment to prevent early recurrence. However, intravenous thrombolysis should not be withheld in eligible stroke patients. © 2014 S. Karger AG, Basel.
Flow-induced oscillations of a floating moored cylinder
NASA Astrophysics Data System (ADS)
Carlson, Daniel; Modarres-Sadeghi, Yahya
2016-11-01
An experimental study of flow-induced oscillations of a floating model spar buoy was conducted. The model spar consisted of a floating uniform cylinder moored in a water tunnel test section, and free to oscillate about its mooring attachment point near the center of mass. For the bare cylinder, counter-clockwise (CCW) figure-eight trajectories approaching A* =1 in amplitude were observed at the lower part of the spar for a reduced velocity range of U* =4-11, while its upper part experienced clockwise (CW) orbits. It was hypothesized that the portion of the spar undergoing CCW figure eights is the portion within which the flow excites the structure. By adding helical strakes to the portion of the cylinder with CCW figure eights, the response amplitude was significantly reduced, while adding strakes to portions with clockwise orbital motion had a minimal influence on the amplitude of response. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna R.; Wickert, Mark A.
2017-05-01
A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Butler, Ricky (Technical Monitor)
2003-01-01
PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.
NASA Technical Reports Server (NTRS)
Dimeff, J.; Rositano, S.; Taylor, R. C.
1977-01-01
Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.
40 CFR 426.56 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Pretreatment standards for new sources. 426.56 Section 426.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory...
40 CFR 426.56 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Pretreatment standards for new sources. 426.56 Section 426.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory...
46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... which the vessel is floating but not for the weight of fuel, water, etc., required for consumption between the point of departure and the open sea, and no allowance is to be made for bilge or ballast water...
Efficient volume computation for three-dimensional hexahedral cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukowicz, J.K.
1988-02-01
Currently, algorithms for computing the volume of hexahedral cells with ''ruled'' surfaces require a minimum of 122 FLOPs (floating point operations) per cell. A new algorithm is described which reduces the operation count to 57 FLOPs per cell. copyright 1988 Academic Press, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... BW PIONEER, a Floating Production, Storage and Offloading (FPSO) system, at Walker Ridge 249 in the... point at 26[deg]41'46.25'' N and 090[deg]30'30.16'' W. This action is based on a thorough and... regulations. The FPSO can swing in a 360 degree arc around the center point. The safety zone will reduce...
Cao, Yu; Brady, Gerald J; Gui, Hui; Rutherglen, Chris; Arnold, Michael S; Zhou, Chongwu
2016-07-26
In this paper, we report record radio frequency (RF) performance of carbon nanotube transistors based on combined use of a self-aligned T-shape gate structure, and well-aligned, high-semiconducting-purity, high-density polyfluorene-sorted semiconducting carbon nanotubes, which were deposited using dose-controlled, floating evaporative self-assembly method. These transistors show outstanding direct current (DC) performance with on-current density of 350 μA/μm, transconductance as high as 310 μS/μm, and superior current saturation with normalized output resistance greater than 100 kΩ·μm. These transistors create a record as carbon nanotube RF transistors that demonstrate both the current-gain cutoff frequency (ft) and the maximum oscillation frequency (fmax) greater than 70 GHz. Furthermore, these transistors exhibit good linearity performance with 1 dB gain compression point (P1dB) of 14 dBm and input third-order intercept point (IIP3) of 22 dBm. Our study advances state-of-the-art of carbon nanotube RF electronics, which have the potential to be made flexible and may find broad applications for signal amplification, wireless communication, and wearable/flexible electronics.
Observation of planets by a circumpolar stratospheric telescope
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Nakano, T.; Shoji, Y.; Takahashi, Y.; Hamamoto, K.; Nakamoto, J.; Imai, M.
2012-12-01
Phenomena in the planetary atmospheres and plasmaspheres have been studied by various methods using emissions emitted from there in the spectral regions from radio wave to X-ray. Optical observation of a planet has been performed by a ground-based telescope, a satellite telescope and an orbiter. A balloon-borne telescope is proposed as another platform for optical remote sensing of planets. Since it is floated in the stratosphere at an altitude of about 32 km, fine weather condition, excellent seeing and high transmittance of the atmosphere in the near ultraviolet and infrared regions are expected. Especially a planet can be continuously monitored by a long-period circumpolar flight. For these reasons we have been developing a balloon-borne telescope system for planetary observations from the polar stratosphere. In this system a Schmidt-Cassegrain telescope with a 300-mm clear aperture is mounted on a gondola whose attitude is controlled by control moment gyros, an active decoupling motor, and attitude sensors. The gondola can float in the stratosphere for periods longer than 1 week. Pointing stability of 0.1"rms will be achieved by the cooperative operation of the following three-stage pointing devices: a gondola-attitude control system, two axis telescope gimbals for coarse guiding, and a tip/tilt mirror mount for guiding error correction. The optical path is divided to three paths to an ultraviolet camera, an infrared camera and a position-sensitive photomultiplier tube for detection of guiding error. The size of gondola is 1 m by 1 m by 2.7 m high, and the weight is 784 kg including the weight of ballast of 300 kg. The first experiment of the balloon-borne telescope system was conducted on June 3, 2009 at Taikicho, Hokkaido targeting Venus. However, it failed due to a trouble in an onboard computer. The balloon-borne telescope was redesigned for the second experiment in August in 2012, when the target planet is also Venus. In the presentation, the balloon-borne telescope system, the ground-test results of its pointing performance and the results of balloon experiment in 2012 will be reported. Overview of the gondola ;
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
NASA Astrophysics Data System (ADS)
Guo, Chun-yu; Xie, Chang; Zhang, Jin-zhao; Wang, Shuai; Zhao, Da-gang
2018-04-01
In order to analyze the ice-going ship's performance under the pack ice conditions, synthetic ice was introduced into a towing tank. A barrier using floating cylinder in the towing tank was designed to carry out the resistance experiment. The test results indicated that the encountering frequency between the ship model and the pack ice shifts towards a high-velocity point as the concentration of the pack ice increases, and this encountering frequency creates an unstable region of the resistance, and the unstable region shifts to the higher speed with the increasing concentration. The results also showed that for the same speed points, the ratio of the pack ice resistance to the open water resistance increases with the increasing concentration, and for the same concentrations, this ratio decreases as the speed increases. Motion characteristics showed that the mean value of the heave motion increases as the speed increases, and the pitch motion tends to increase with the increasing speed. In addition, the total resistance of the fullscale was predicted.
A micro-computer based system to compute magnetic variation
NASA Technical Reports Server (NTRS)
Kaul, R.
1984-01-01
A mathematical model of magnetic variation in the continental United States (COT48) was implemented in the Ohio University LORAN C receiver. The model is based on a least squares fit of a polynomial function. The implementation on the microprocessor based LORAN C receiver is possible with the help of a math chip, Am9511 which performs 32 bit floating point mathematical operations. A Peripheral Interface Adapter (M6520) is used to communicate between the 6502 based micro-computer and the 9511 math chip. The implementation provides magnetic variation data to the pilot as a function of latitude and longitude. The model and the real time implementation in the receiver are described.
NASA Astrophysics Data System (ADS)
Rodriguez, Steven; Jaworski, Justin
2017-11-01
The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.
Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders
NASA Astrophysics Data System (ADS)
Jain, A.; Jadhav, M. M.; Karimulla, S.; Chakravarty, A.
2017-12-01
Most modern medium and large capacity helium liquefaction/refrigeration plants employ high speed cryogenic turboexpanders in their refrigeration/liquefaction cycles as active cooling devices. The operating speed of these turboexpanders is in the range of 3000-5000 Hz and hence specialized types of bearings are required. Floating pad journal bearing, which is a special type of tilting pad journal bearing, where mechanical pivots are absent and pads are fully suspended in gas, can be a good solution for stable operation of these high speed compact rotors. The pads are separated from shaft as well as from housing by fluid film between them, and both these sides of pad are interconnected by a network of feed holes. The work presented in this article aims to characterize floating pad journal bearings through parametric studies. The steady state performance characteristics of the bearing are represented by load capacity, stiffness coefficients and heat generation rate of the bearing. The geometrical parameters such as bearing clearances, preload of pads, etc. are varied and performance characteristics of the floating pad journal bearing are studied and presented. The dependence of stiffness coefficients on rotational speed of shaft is also analyzed.
Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen
2015-02-28
The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hydrodynamics of sailing of the Portuguese man-of-war Physalia physalis
Iosilevskii, G.; Weihs, D.
2008-01-01
Physalia physalis, commonly known as the Portuguese man-of-war (PMW), is a peculiar looking colony of specialized polyps. The most conspicuous members of this colony are the gas-filled sail-like float and the long tentacles, budding asymmetrically beneath the float. This study addresses the sailing of the PMW, and, in particular, the hydrodynamics of its trailing tentacles, the interaction between the tentacles and the float and the actual sailing performance. This paper attempts to provide answers for two of the many open questions concerning P. physalis: why does it need a sail? and how does it harness the sail? PMID:19091687
Gomez-Pulido, Juan A; Cerrada-Barrios, Jose L; Trinidad-Amado, Sebastian; Lanza-Gutierrez, Jose M; Fernandez-Diaz, Ramon A; Crawford, Broderick; Soto, Ricardo
2016-08-31
Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.
NASA Astrophysics Data System (ADS)
Joita, A. C.; Nistor, S. V.
2018-04-01
Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Code of Federal Regulations, 2010 CFR
2010-07-01
... banks of the river, and no floating plant other than launches and similar small craft shall land against... white background readable from the waterway side, placed on each side of the river near the point where...
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-01-01
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714
Verification of Numerical Programs: From Real Numbers to Floating Point Numbers
NASA Technical Reports Server (NTRS)
Goodloe, Alwyn E.; Munoz, Cesar; Kirchner, Florent; Correnson, Loiec
2013-01-01
Numerical algorithms lie at the heart of many safety-critical aerospace systems. The complexity and hybrid nature of these systems often requires the use of interactive theorem provers to verify that these algorithms are logically correct. Usually, proofs involving numerical computations are conducted in the infinitely precise realm of the field of real numbers. However, numerical computations in these algorithms are often implemented using floating point numbers. The use of a finite representation of real numbers introduces uncertainties as to whether the properties veri ed in the theoretical setting hold in practice. This short paper describes work in progress aimed at addressing these concerns. Given a formally proven algorithm, written in the Program Verification System (PVS), the Frama-C suite of tools is used to identify sufficient conditions and verify that under such conditions the rounding errors arising in a C implementation of the algorithm do not affect its correctness. The technique is illustrated using an algorithm for detecting loss of separation among aircraft.
A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.
Tayara, Hilal; Ham, Woonchul; Chong, Kil To
2016-12-15
This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.
Fortran Program for X-Ray Photoelectron Spectroscopy Data Reformatting
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1989-01-01
A FORTRAN program has been written for use on an IBM PC/XT or AT or compatible microcomputer (personal computer, PC) that converts a column of ASCII-format numbers into a binary-format file suitable for interactive analysis on a Digital Equipment Corporation (DEC) computer running the VGS-5000 Enhanced Data Processing (EDP) software package. The incompatible floating-point number representations of the two computers were compared, and a subroutine was created to correctly store floating-point numbers on the IBM PC, which can be directly read by the DEC computer. Any file transfer protocol having provision for binary data can be used to transmit the resulting file from the PC to the DEC machine. The data file header required by the EDP programs for an x ray photoelectron spectrum is also written to the file. The user is prompted for the relevant experimental parameters, which are then properly coded into the format used internally by all of the VGS-5000 series EDP packages.
Capture of free-floating planets by planetary systems
NASA Astrophysics Data System (ADS)
Goulinski, Nadav; Ribak, Erez N.
2018-01-01
Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest that not all bound planets were born in the protoplanetary disc of their current planetary system. Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we construct a three-dimensional simulation of a three-body scattering between a free-floating planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three different possible scattering outcomes, where the free-floating planet may get weakly captured after the brief interaction with the binary, remain unbound or 'kick out' the bound planet and replace it. The simulation was performed for different masses of the free-floating planets and stars, as well as different impact parameters, inclination angles and approach velocities. The outcome statistics are used to construct an analytical approximation of the cross-section for capturing a free-floating planet by fitting their dependence on the tested variables. The analytically approximated cross-section is used to predict the capture rate for these kinds of objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary capture of a free-floating planet during their lifetime. Finally, we propose additional physical processes that may increase the capture statistics and whose contribution should be considered in future simulations in order to determine the fate of the temporarily captured planets.
A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Griffith, D. Todd; Paquette, Joshua; Barone, Matthew; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana; Owens, Brian
2016-09-01
Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.
NASA Technical Reports Server (NTRS)
Leung, P. S.; Craighead, I. A.; Wilkinson, T. S.
1991-01-01
The development of a new device to control stability of turbogenerators is described. The device comprises a floating ring installed between the journal and bearing housing of a fluid film bearing. The journal and the inner surface of the ring are cylindrical while the outer surface of the ring and bearing surface are spherical providing axial location of the ring and self-alignment of the bearing. The employment of this device would lead to a consistent machine performance. System stability may be controlled by changing a number of bearing and floating ring parameters. This device also offers an additional advantage of having a very low frictional characteristic. A feasibility study was carried out to investigate the suitability of the new device to turbogenerator applications. Both theoretical analysis and experimental observations were carried out. Initial results suggest that the new floating ring device is a competitive alternative to other conventional arrangements.
Steingoetter, A; Kunz, P; Weishaupt, D; Mäder, K; Lengsfeld, H; Thumshirn, M; Boesiger, P; Fried, M; Schwizer, W
2003-10-01
Modern medical imaging modalities can trace labelled oral drug dosage forms in the gastrointestinal tract, and thus represent important tools for the evaluation of their in vivo performance. The application of gastric-retentive drug delivery systems to improve bioavailability and to avoid unwanted plasma peak concentrations of orally administered drugs is of special interest in clinical and pharmaceutical research. To determine the influence of meal composition and timing of tablet administration on the intragastric performance of a gastric-retentive floating tablet using magnetic resonance imaging in the sitting position. A tablet formulation was labelled with iron oxide particles as negative magnetic resonance contrast marker to allow the monitoring of the tablet position in the food-filled human stomach. Labelled tablet was administered, together with three different solid meals, to volunteers seated in a 0.5-T open-configuration magnetic resonance system. Volunteers were followed over a 4-h period. Labelled tablet was detectable in all subjects throughout the entire study. The tablet showed persistent good intragastric floating performance independent of meal composition. Unfavourable timing of tablet administration had a minor effect on the intragastric tablet residence time and floating performance. Magnetic resonance imaging can reliably monitor and analyse the in vivo performance of labelled gastric-retentive tablets in the human stomach.
Peng, Guilong; He, Qiang; Al-Hamadani, Sulala M Z F; Zhou, Guangming; Liu, Mengzi; Zhu, Hui; Chen, Junhua
2015-05-01
Dispersive liquid-liquid microextraction with solidification of a floating organic droplet (DLLME-SFO) followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection was applied for the determination of thiamphenicol (TAP), florfenicol (FF) in water samples. 1-Undecanol was used as the extraction solvent which has lower density than water, low toxicity, and low melting point (19°C). A mixture of 800mL acetone (disperser solvent) and 80µL of 1-undecanol (extraction solvent) was injected into 20mL of aqueous solution. After 5min, 0.6g of NaCl was added and the sample vial was shaken. After 5min, the sample was centrifuged at 3500rpm for 3min, and then placed in an ice bath. When the extraction solvent floating on the aqueous solution had solidified, it was transferred into another conical vial where it was melted quickly at room temperature, and was diluted with methanol to 1mL, and analyzed by HPLC-UV detection. Parameters influencing the extraction efficiency were thoroughly examined and optimized. The extraction recoveries (ER) and the enrichment factors (EF) ranged from 67% to 72% and 223 to 241, respectively. The limits of detection (LODs) (S/N=3) were 0.33 and 0.56µgL(-1) for TAP and FF, respectively. Linear dynamic range (LDR) was in the range of 1.0-550µgL(-1) for TAP and 1.5-700µgL(-1) for FF, the relative standard deviations (RSDs) were in the range of 2.6-3.5% and the recoveries of spiked samples ranged from 94% to 106%. Copyright © 2015 Elsevier Inc. All rights reserved.
Neighbour lists for smoothed particle hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Winkler, Daniel; Rezavand, Massoud; Rauch, Wolfgang
2018-04-01
The efficient iteration of neighbouring particles is a performance critical aspect of any high performance smoothed particle hydrodynamics (SPH) solver. SPH solvers that implement a constant smoothing length generally divide the simulation domain into a uniform grid to reduce the computational complexity of the neighbour search. Based on this method, particle neighbours are either stored per grid cell or for each individual particle, denoted as Verlet list. While the latter approach has significantly higher memory requirements, it has the potential for a significant computational speedup. A theoretical comparison is performed to estimate the potential improvements of the method based on unknown hardware dependent factors. Subsequently, the computational performance of both approaches is empirically evaluated on graphics processing units. It is shown that the speedup differs significantly for different hardware, dimensionality and floating point precision. The Verlet list algorithm is implemented as an alternative to the cell linked list approach in the open-source SPH solver DualSPHysics and provided as a standalone software package.
Challenges of Future High-End Computing
NASA Technical Reports Server (NTRS)
Bailey, David; Kutler, Paul (Technical Monitor)
1998-01-01
The next major milestone in high performance computing is a sustained rate of one Pflop/s (also written one petaflops, or 10(circumflex)15 floating-point operations per second). In addition to prodigiously high computational performance, such systems must of necessity feature very large main memories, as well as comparably high I/O bandwidth and huge mass storage facilities. The current consensus of scientists who have studied these issues is that "affordable" petaflops systems may be feasible by the year 2010, assuming that certain key technologies continue to progress at current rates. One important question is whether applications can be structured to perform efficiently on such systems, which are expected to incorporate many thousands of processors and deeply hierarchical memory systems. To answer these questions, advanced performance modeling techniques, including simulation of future architectures and applications, may be required. It may also be necessary to formulate "latency tolerant algorithms" and other completely new algorithmic approaches for certain applications. This talk will give an overview of these challenges.
Numerical aerodynamic simulation facility preliminary study: Executive study
NASA Technical Reports Server (NTRS)
1977-01-01
A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.
Floating-Point Numerical Function Generators Using EVMDDs for Monotone Elementary Functions
2009-01-01
Villa, R. K. Brayton , and A. L. Sangiovanni- Vincentelli, “Multi-valued decision diagrams: Theory and appli- cations,” Multiple-Valued Logic: An...Shmerko, and R. S. Stankovic, Decision Diagram Techniques for Micro- and Na- noelectronic Design, CRC Press, Taylor & Francis Group, 2006. Appendix
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. 426.57 Section 426.57 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Float Glass Manufacturing Subcategory § 426.57 Effluent limitations guidelines representing the degree of effluent reduction...
ERIC Educational Resources Information Center
Wu, Yenna
1991-01-01
Exploration of and comparisons between structural, stylistic, and linguistic similarities and differences in two modern Chinese semiautobiographical texts points out both authors' methods for depicting the ironies within their socio-political and ideological conditions. (19 references) (CB)
Torque-balanced vibrationless rotary coupling
Miller, Donald M.
1980-01-01
This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.
78 FR 46258 - Drawbridge Operation Regulation Lake Washington, Seattle, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
... Operation Regulation Lake Washington, Seattle, WA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from... that governs the Evergreen Point Floating Bridge (State Route 520 across Lake Washington) at Seattle... Route 520 across Lake Washington) remain closed to vessel traffic to facilitate safe passage of...
Determination of the Stresses Produced by the Landing Impact in the Bulkheads of a Seaplane Bottom
NASA Technical Reports Server (NTRS)
Darevsky, V. M.
1944-01-01
The present report deals with the determination of the impact stresses in the bulkhead floors of a seaplane bottom. The dynamic problem is solved on the assumption of a certain elastic system, the floor being assumed as a weightless elastic beam with concentrated masses at the ends (due to the mass of the float) and with a spring which replaces the elastic action of the keel in the center. The distributed load on the floor is that due to the hydrodynamic force acting over a certain portion of the bottom. The pressure distribution over the width of the float is assumed to follow the Wagner law. The formulas given for the maximum bending moment are derived on the assumption that the keel is relatively elastic, in which case it can be shown that at each instant of time the maximum bending moment is at the point of juncture of the floor with the keel. The bending moment at this point is a function of the half width of the wetted surface c and reaches its maximum value when c is approximately equal to b/2 where b is the half width of the float. In general, however, for computing the bending moment the values of the bending moment at the keel for certain values of c are determined and a curve is drawn. The illustrative sample computation gave for the stresses a result approximately equal to that obtained by the conventional factory computation.
Zhang, Changzhe; Bu, Yuxiang
2016-09-14
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
NASA Astrophysics Data System (ADS)
Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.
2016-06-01
We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.
Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi
2012-01-01
We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030
ERIC Educational Resources Information Center
Baehr, Marie
1994-01-01
Provides a problem where students are asked to find the point at which a soda can floating in some liquid changes its equilibrium between stable and unstable as the soda is removed from the can. Requires use of Newton's first law, center of mass, Archimedes' principle, stable and unstable equilibrium, and buoyant force position. (MVL)
The floating mass transducer at the round window: direct transmission or bone conduction?
Arnold, Andreas; Kompis, Martin; Candreia, Claudia; Pfiffner, Flurin; Häusler, Rudolf; Stieger, Christof
2010-05-01
The round window placement of a floating mass transducer (FMT) is a new approach for coupling an implantable hearing system to the cochlea. We evaluated the vibration transfer to the cochlear fluids of an FMT placed at the round window (rwFMT) with special attention to the role of bone conduction. A posterior tympanotomy was performed on eleven ears of seven human whole head specimens. Several rwFMT setups were examined using laser Doppler vibrometry measurements at the stapes and the promontory. In three ears, the vibrations of a bone anchored hearing aid (BAHA) and an FMT fixed to the promontory (pFMT) were compared to explore the role of bone conduction. Vibration transmission to the measuring point at the stapes was best when the rwFMT was perpendicularly placed in the round window and underlayed with connective tissue. Fixation of the rwFMT to the round window exhibited significantly lower vibration transmission. Although measurable, bone conduction from the pFMT was much lower than that of the BAHA. Our results suggest that the rwFMT does not act as a small bone anchored hearing aid, but instead, acts as a direct vibratory stimulator of the round window membrane. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Design and Optimization of Floating Drug Delivery System of Acyclovir
Kharia, A. A.; Hiremath, S. N.; Singhai, A. K.; Omray, L. K.; Jain, S. K.
2010-01-01
The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 32 full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1) and hydroxypropylmethylcellulose K4M (X2) were selected as independent variables. The times required for 50% (t50%) and 70% (t70%) drug dissolution were selected as dependent variables. All the designed nine batches of formulations were evaluated for hardness, friability, weight variation, drug content uniformity, swelling index, in vitro buoyancy, and in vitro drug release profile. All formulations had floating lag time below 3 min and constantly floated on dissolution medium for more than 24 h. Validity of the developed polynomial equation was verified by designing two check point formulations (C1 and C2). The closeness of predicted and observed values for t50% and t70% indicates validity of derived equations for the dependent variables. These studies indicated that the proper balance between psyllium husk and hydroxypropylmethylcellulose K4M can produce a drug dissolution profile similar to the predicted dissolution profile. The optimized formulations followed Higuchi's kinetics while the drug release mechanism was found to be anomalous type, controlled by diffusion through the swollen matrix. PMID:21694992
Design and optimization of floating drug delivery system of acyclovir.
Kharia, A A; Hiremath, S N; Singhai, A K; Omray, L K; Jain, S K
2010-09-01
The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 3(2) full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1) and hydroxypropylmethylcellulose K4M (X2) were selected as independent variables. The times required for 50% (t(50%)) and 70% (t(70%)) drug dissolution were selected as dependent variables. All the designed nine batches of formulations were evaluated for hardness, friability, weight variation, drug content uniformity, swelling index, in vitro buoyancy, and in vitro drug release profile. All formulations had floating lag time below 3 min and constantly floated on dissolution medium for more than 24 h. Validity of the developed polynomial equation was verified by designing two check point formulations (C1 and C2). The closeness of predicted and observed values for t(50%) and t(70%) indicates validity of derived equations for the dependent variables. These studies indicated that the proper balance between psyllium husk and hydroxypropylmethylcellulose K4M can produce a drug dissolution profile similar to the predicted dissolution profile. The optimized formulations followed Higuchi's kinetics while the drug release mechanism was found to be anomalous type, controlled by diffusion through the swollen matrix.
Music and audio - oh how they can stress your network
NASA Astrophysics Data System (ADS)
Fletcher, R.
Nearly ten years ago a paper written by the Audio Engineering Society (AES)[1] made a number of interesting statements: 1. 2. The current Internet is inadequate for transmitting music and professional audio. Performance and collaboration across a distance stress beyond acceptable bounds the quality of service Audio and music provide test cases in which the bounds of the network are quickly reached and through which the defects in a network are readily perceived. Given these key points, where are we now? Have we started to solve any of the problems from the musician's point of view? What is it that musician would like to do that can cause the network so many problems? To understand this we need to appreciate that a trained musician's ears are extremely sensitive to very subtle shifts in temporal materials and localisation information. A shift of a few milliseconds can cause difficulties. So, can modern networks provide the temporal accuracy demanded at this level? The sample and bit rates needed to represent music in the digital domain is still contentious, but a general consensus in the professional world is for 96 KHz and IEEE 64-bit floating point. If this was to be run between two points on the network across 24 channels in near real time to allow for collaborative composition/production/performance, with QOS settings to allow as near to zero latency and jitter, it can be seen that the network indeed has to perform very well. Lighting the Blue Touchpaper for UK e-Science - Closing Conference of ESLEA Project The George Hotel, Edinburgh, UK 26-28 March, 200
Plastic debris in the open ocean
Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.
2014-01-01
There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less
Plastic debris in the open ocean.
Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M
2014-07-15
There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.
UFO in the Left Atrium: How to Capture Metal Debris Floating in the Left Atrium.
Fassini, Gaetano; Moltrasio, Massimo; Conti, Sergio; Biagioli, Viviana; Tondo, Claudio
2016-06-01
Electrophysiology procedures involving left atrium navigation are becoming more frequent, mostly due to the increase of atrial fibrillation ablation. Mapping catheters of different shapes and size as well as dedicated sheaths are mandatory tools for the accomplishment of procedural end point. Therefore, technical issues are expected, usually unrelated to significant risk. However, any accidental intra-atrial device loss of integrity implies a risk of cerebrovascular embolization. The lack of clear evidence on how to manage these events and the need for a quick solution complicate the scenario. We report an empirical solution in the case of debris floating in the left atrium. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
1991-07-31
have floating-point type declarations requiring more digits than SYSTEM.MAXDIGITS: C24113L..Y (14 tests) C35705L..Y (14 tests) C357C6L..Y (14 tests...2_147_483_648..2_147_483_647; type FLOAT is digits 6 range -2#l.0#E128.. 2#0.IIIIIIIIIIIIIIIIIIIII#El28; type LONGFLOAT is digits 15 range -2#l.0#EI024.. 2...are instan- tated into libary packages or subprograms.) F-14 Appendix F of the Ada Reference Manual F.8.1. Address Clauses for Variables Address
Anderson, A F; Qingsi, Z; Hua, X; Jianfeng, B
2003-04-01
Historical, geo-economic and behavioural perspectives are used in an exploratory analysis of China's migrant or 'floating' population as a factor in the spread of HIV on the mainland. Participants in the interview format survey (N = 506) included in-transit individuals in Beijing, and peddlers, restaurant workers, and employment seekers in Shanghai. When viewed in light of various social dynamics, the convenience survey data suggest that elements within this migrant population, as well as their rurally located partners and spouses, may be at increased risk of acquiring the virus. Given the sheer size and broad movement of this population, it is contended that it may well be a 'tipping point' factor in AIDS prevention and control in China.
Growth, and magnetic study of Sm0.4Er0.6FeO3 single crystal grown by optical floating zone technique
NASA Astrophysics Data System (ADS)
Wu, Anhua; Zhao, Xiangyang; Man, Peiwen; Su, Liangbi; Kalashnikova, A. M.; Pisarev, R. V.
2018-03-01
Sm0.4Er0.6FeO3 single crystals were successfully grown by optical floating zone method; high quality samples with various orientations were manufactured. Based on these samples, Magnetic property of Sm0.4Er0.6FeO3 single crystals were investigated systemically by means of the temperature dependence of magnetization. It indicated that compositional variations not only alter the spin reorientation temperature, but also the compensation temperature of the orthoferrites. Unlike single rare earth orthoferrites, the reversal transition temperature point of Sm0.4Er0.6FeO3 increases as magnetic field increases, which is positive for designing novel spin switching or magnetic sensor device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wwei99@jlu.edu.cn; Han, Jinhua; Ying, Jun
2014-09-22
Two types of floating-gate based organic thin-film transistor nonvolatile memories (FG-OTFT-NVMs) were demonstrated, with poly(methyl methacrylate co glycidyl methacrylate) (P(MMA-GMA)) and tetratetracontane (TTC) as the tunneling layer, respectively. Their device performances were measured and compared. In the memory with a P(MMA-GMA) tunneling layer, typical unipolar hole transport was obtained with a relatively small mobility of 0.16 cm{sup 2}/V s. The unidirectional shift of turn-on voltage (V{sub on}) due to only holes trapped/detrapped in/from the floating gate resulted in a small memory window of 12.5 V at programming/erasing voltages (V{sub P}/V{sub E}) of ±100 V and a nonzero reading voltage. Benefited from the well-ordered moleculemore » orientation and the trap-free surface of TTC layer, a considerably high hole mobility of 1.7 cm{sup 2}/V s and a visible feature of electrons accumulated in channel and trapped in floating-gate were achieved in the memory with a TTC tunneling layer. High hole mobility resulted in a high on current and a large memory on/off ratio of 600 at the V{sub P}/V{sub E} of ±100 V. Both holes and electrons were injected into floating-gate and overwritten each other, which resulted in a bidirectional V{sub on} shift. As a result, an enlarged memory window of 28.6 V at the V{sub P}/V{sub E} of ±100 V and a zero reading voltage were achieved. Based on our results, a strategy is proposed to optimize FG-OTFT-NVMs by choosing a right tunneling layer to improve the majority carrier mobility and realize ambipolar carriers injecting and trapping in the floating-gate.« less
GR712RC- Dual-Core Processor- Product Status
NASA Astrophysics Data System (ADS)
Sturesson, Fredrik; Habinc, Sandi; Gaisler, Jiri
2012-08-01
The GR712RC System-on-Chip (SoC) is a dual core LEON3FT system suitable for advanced high reliability space avionics. Fault tolerance features from Aeroflex Gaisler’s GRLIB IP library and an implementation using Ramon Chips RadSafe cell library enables superior radiation hardness.The GR712RC device has been designed to provide high processing power by including two LEON3FT 32- bit SPARC V8 processors, each with its own high- performance IEEE754 compliant floating-point-unit and SPARC reference memory management unit.This high processing power is combined with a large number of serial interfaces, ranging from high-speed links for data transfers to low-speed control buses for commanding and status acquisition.
Chosen interval methods for solving linear interval systems with special type of matrix
NASA Astrophysics Data System (ADS)
Szyszka, Barbara
2013-10-01
The paper is devoted to chosen direct interval methods for solving linear interval systems with special type of matrix. This kind of matrix: band matrix with a parameter, from finite difference problem is obtained. Such linear systems occur while solving one dimensional wave equation (Partial Differential Equations of hyperbolic type) by using the central difference interval method of the second order. Interval methods are constructed so as the errors of method are enclosed in obtained results, therefore presented linear interval systems contain elements that determining the errors of difference method. The chosen direct algorithms have been applied for solving linear systems because they have no errors of method. All calculations were performed in floating-point interval arithmetic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, K.R.; Hansen, F.R.; Napolitano, L.M.
1992-01-01
DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate ( C'' or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability bymore » using DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, K.R.; Hansen, F.R.; Napolitano, L.M.
1992-01-01
DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate (``C`` or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability by usingmore » DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, T.; Atac, R.; Cook, A.
1989-03-06
The ACPMAPS multipocessor is a highly cost effective, local memory parallel computer with a hypercube or compound hypercube architecture. Communication requires the attention of only the two communicating nodes. The design is aimed at floating point intensive, grid like problems, particularly those with extreme computing requirements. The processing nodes of the system are single board array processors, each with a peak power of 20 Mflops, supported by 8 Mbytes of data and 2 Mbytes of instruction memory. The system currently being assembled has a peak power of 5 Gflops. The nodes are based on the Weitek XL Chip set. Themore » system delivers performance at approximately $300/Mflop. 8 refs., 4 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal
Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication andmore » kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.« less
A new event detector designed for the Seismic Research Observatories
Murdock, James N.; Hutt, Charles R.
1983-01-01
A new short-period event detector has been implemented on the Seismic Research Observatories. For each signal detected, a printed output gives estimates of the time of onset of the signal, direction of the first break, quality of onset, period and maximum amplitude of the signal, and an estimate of the variability of the background noise. On the SRO system, the new algorithm runs ~2.5x faster than the former (power level) detector. This increase in speed is due to the design of the algorithm: all operations can be performed by simple shifts, additions, and comparisons (floating point operations are not required). Even though a narrow-band recursive filter is not used, the algorithm appears to detect events competitively with those algorithms that employ such filters. Tests at Albuquerque Seismological Laboratory on data supplied by Blandford suggest performance commensurate with the on-line detector of the Seismic Data Analysis Center, Alexandria, Virginia.
High performance flight computer developed for deep space applications
NASA Technical Reports Server (NTRS)
Bunker, Robert L.
1993-01-01
The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.
[Red meat intake among employees of floating population aged 18-59 years old in China, 2012].
Yin, Xiangjun; Wang, Limin; Li, Yichong; Zhang, Mei; Wang, Zhihui; Deng, Qian; Wang, Linhong
2014-11-01
To evaluate the level of daily red meat intake and prevalence of excessive red meat intake among employees of floating population in China. 48 511 employees of floating population aged 18 to 59 from 170 counties of 31 provinces (autonomous regions and municipalities) and Xinjiang Production and Construction Corps (District) were selected by stratified cluster sampling method. Information on red meat intake was collected by semi-quantitative food frequency questionnaire. Average intake of 100 g/day, recommended by the World Cancer Research Fund, was used as the cut-off point to estimate the prevalence of excessive red meat intake. After performing the complex weighted analysis, level of daily red meat intake and prevalence of excessive red meat intake were calculated by demographic characteristics including age, education, industries and body mass index etc. 1)The mean daily red meat intake was 125.9 g (95%CI: 116.5 g-132.5 g), higher in men (141.6 g, 95%CI:131.3 g-148.9 g)than in women (104.7 g, 95%CI: 95.8 g-111.2 g) (P < 0.01). Results from the Tendency Test did not show statistically significant changes on the red meat intake related to age, education level or body mass index (P values for trend were all greater than 0.05). The standardized mean daily intake of red meat, adjusted by 2010 census data of China, was 121.0 g (95% CI:113.4 g-128.7 g). 2) The prevalence of excessive red meat intake was 36.2% (95% CI:33.0%-39.3%) significantly higher in males (42.4% , 95% CI:38.9%-45.8%) than in females (27.8%, 95%CI:27.1%-31.0%) (P < 0.01). The prevalence was estimated to be the highest among the population aged 30-39, with 43.5% (95%CI:39.7%-47.4%) in males and 30.1% (95%CI:26.5%-33.9%)in females. The standardized prevalence, adjusted by 2010 census data of China, appeared to be 34.6% (95%CI:31.9%-38.0%). The level of daily red meat intake was higher than 100 g/d, the standard recommended by the World Cancer Foundation, among floating population of China. Both the mean daily red meat intake and prevalence of excessive red meat intake were higher in floating population than that in the local residents in China.
On the dynamic singularities in the control of free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, E.; Dubowsky, S.
1989-01-01
It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.
Hydroponic root mats for wastewater treatment-a review.
Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter
2016-08-01
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.
Development of a new instrument for direct skin friction measurements
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.
1986-01-01
A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.
Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes.
Erable, B; Lacroix, R; Etcheverry, L; Féron, D; Delia, M L; Bergel, A
2013-08-01
Here is presented a new design of a floating marine MFC in which the inter-electrode space is constant. This design allows the generation of stable current for applications in environments where the water column is large or subject to fluctuations such as tidal effects. The operation of the first prototype was validated by running a continuous test campaign for 6months. Performance in terms of electricity generation was already equivalent to what is conventionally reported in the literature with basic benthic MFCs despite the identification of a large internal resistance in the proposed design of the floating system. This high internal resistance is mainly explained by poor positioning of the membrane separating the anode compartment from the open seawater. The future objectives are to achieve more consistent performance and a second-generation prototype is now being developed, mainly incorporating a modification of the separator position and a stainless steel biocathode with a large bioavailable surface. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.
Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea
2017-07-03
A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.
A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction
Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea
2017-01-01
A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision. PMID:28671632
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanelli, F., E-mail: fabrizio.fanelli@uniroma1.it; Gazzetti, M.; Boatta, E.
Free floating thrombus in the proximal descending aorta is an uncommon and dangerous condition that can be associated with acute peripheral embolization. The few cases described were solved with surgical and/or medical therapy. We report the case of a patient with acute left arm ischemia secondary to the presence of floating thrombus in the proximal descending aorta extending into the left subclavian artery, solved with combined endovascular and surgical therapy. Treatment was successfully performed with thrombembolectomy combined with temporary deployment, into the descending aorta, of a Wallstent in a 'basket-fashion' to avoid distal embolization secondary to thrombus fragmentation. At 1more » year follow-up the patient remained symptom-free.« less
ERIC Educational Resources Information Center
Richardson, William H., Jr.
2006-01-01
Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…
Numerical Integration with Graphical Processing Unit for QKD Simulation
2014-03-27
Windows system application programming interface (API) timer. The problem sizes studied produce speedups greater than 60x on the NVIDIA Tesla C2075...13 2.3.3 CUDA API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.4 CUDA and NVIDIA GPU Hardware...Theoretical Floating-Point Operations per Second for Intel CPUs and NVIDIA GPUs [3
Floating Data and the Problem with Illustrating Multiple Regression.
ERIC Educational Resources Information Center
Sachau, Daniel A.
2000-01-01
Discusses how to introduce basic concepts of multiple regression by creating a large-scale, three-dimensional regression model using the classroom walls and floor. Addresses teaching points that should be covered and reveals student reaction to the model. Finds that the greatest benefit of the model is the low fear, walk-through, nonmathematical…
Code of Federal Regulations, 2010 CFR
2010-07-01
...(h)(2); or (b) Equip with a floating roof that meets the equipment specifications of § 60.693(a)(1)(i... and other points of access to a conveyance system. c A fixed roof may have openings necessary for...
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), a United Space Alliance technician examines the attachment points for the spars on the exterior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), United Space Alliance technicians replace the attachment points for the spars on the interior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
2003-09-03
KENNEDY SPACE CENTER, FLA. -In the Orbiter Processing Facility (OPF), a United Space Alliance technician examines the attachment points for the spars on the exterior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.
Anatomic variations found on dissection of depressor septi nasi muscles in cadavers.
Ebrahimi, Ali; Nejadsarvari, Nasrin; Motamedi, Mohammad Hosein Kalantar; Rezaee, Maryam; Koushki, Ehsan Shams
2012-01-01
To define variations of the depressor septi muscle in Iranians; to provide guidance for modification of this muscle during rhinoplasty in patients with an active muscle and short upper lip; and to correlate our findings with our clinical experience to develop the applied algorithms. This study was conducted by dissecting 82 depressor septi nasi muscles in 41 Iranian cadavers. Origin and insertion points of each muscle were studied. Three variations were found in muscle insertion points: periosteal, orbicularis oris, and floating. Forty-four percent of the muscles were inserted into the periosteum of the maxilla (n = 36); 39% of muscles were inserted into the orbicularis oris muscle (n = 32); and 17% were diminutive or floating (n = 14). Periosteal insertion was thicker and stronger than the other variations. In all cadavers, the origin of the muscle was medial crus of alar cartilage and caudal of the nasal septum. This cadaveric dissection showed that the percentage of depressor septi muscle insertions is not similar to that found in other surveys. In this study, periosteal insertion of the depressor septi muscle was the most common variation.
Multi-modal two-step floating catchment area analysis of primary health care accessibility.
Langford, Mitchel; Higgs, Gary; Fry, Richard
2016-03-01
Two-step floating catchment area (2SFCA) techniques are popular for measuring potential geographical accessibility to health care services. This paper proposes methodological enhancements to increase the sophistication of the 2SFCA methodology by incorporating both public and private transport modes using dedicated network datasets. The proposed model yields separate accessibility scores for each modal group at each demand point to better reflect the differential accessibility levels experienced by each cohort. An empirical study of primary health care facilities in South Wales, UK, is used to illustrate the approach. Outcomes suggest the bus-riding cohort of each census tract experience much lower accessibility levels than those estimated by an undifferentiated (car-only) model. Car drivers' accessibility may also be misrepresented in an undifferentiated model because they potentially profit from the lower demand placed upon service provision points by bus riders. The ability to specify independent catchment sizes for each cohort in the multi-modal model allows aspects of preparedness to travel to be investigated. Copyright © 2016. Published by Elsevier Ltd.
Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)
NASA Astrophysics Data System (ADS)
Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook
1997-05-01
This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.
Pérez Suárez, Santiago T.; Travieso González, Carlos M.; Alonso Hernández, Jesús B.
2013-01-01
This article presents a design methodology for designing an artificial neural network as an equalizer for a binary signal. Firstly, the system is modelled in floating point format using Matlab. Afterward, the design is described for a Field Programmable Gate Array (FPGA) using fixed point format. The FPGA design is based on the System Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator allows one to design in a fast and flexible way. It uses low level details of the circuits and the functionality of the system can be fully tested. System Generator can be used to check the architecture and to analyse the effect of the number of bits on the system performance. Finally the System Generator design is compiled for the Xilinx Integrated System Environment (ISE) and the system is described using a hardware description language. In ISE the circuits are managed with high level details and physical performances are obtained. In the Conclusions section, some modifications are proposed to improve the methodology and to ensure portability across FPGA manufacturers.
Floating elbow injuries in adults: prognostic factors affecting clinical outcomes.
Ditsios, Konstantinos; Boutsiadis, Achilleas; Papadopoulos, Pericles; Karataglis, Dimitrios; Givissis, Panagiotis; Hatzokos, Ippokratis; Christodoulou, Anastasios
2013-01-01
Floating elbow fractures in adults are rare and complex injuries with unpredictable outcomes. The present study was designed to assess our experience, analyze possible compilations and illustrate prognostic factors of the final outcome. Between 2002 and 2009, 19 patients with floating elbow fractures were treated in our department (mean follow-up, 26 months). The fractures were open in 10 patients (52.6%), and concomitant nerve palsy was present in 10 patients. Although the term "floating elbow" refers only to concomitant ipsilateral humeral and forearm shaft fractures, we also included injuries with intra-articular involvement. We categorized the patients into 4 groups: group I (10 patients) included shaft fractures of humerus and forearm, group IIa (5 patients) and IIb (1 patient) included partial intra-articular injuries, and group III (3 patients) involved only intra-articular comminuted fractures of the elbow region. Fracture healing was observed 14 weeks postoperatively, except in 2 patients, in which elbow arthroplasty was applied, and in 1 with brachial artery injury. Nine patients with nerve neuropraxia recovered 4 months postoperatively, and tendon transfers were necessary in 1 patient. Recovery in patients with nerve palsy was worse than in those without nerve injury (Mayo Elbow Performance Score, 73 vs 88.34; Khalfayan score, 72 vs 88.3). In addition, intra-articular involvement (groups II and III) negatively influenced the final clinical outcome compared with isolated shaft fractures (group I; Mayo Elbow Performance Score, 71.1 vs 88.5; Khalfayan score, 72.67 vs 86.1). Although the nature of floating elbow injuries is complex, the presence of nerve injury and intra-articular involvement predispose to worse clinical outcomes. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Initial Results from the Floating Potential Measurement Unit aboard the International Space Station
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Swenson, Charles; Thompson, Don; Barjatya, Aroh; Koontz, Steven L.; Schneider, Todd; Vaughn, Jason; Minow, Joseph; Craven, Paul; Coffey, Victoria;
2007-01-01
The Floating Potential Measurement Unit (FPMU) is a multi-probe package designed to measure the floating potential of the 1nternational Space Station (ISS) as well as the density and temperature of the local ionospheric plasma environment. The role oj the FPMU is to provide direct measurements of ISS spacecraft charging as continuing construction leads to dramatic changes in ISS size and configuration. FPMU data are used for refinement and validation of the ISS spacecraft charging models used to evaluate the severity and frequency of occurrence of ISS charging hazards. The FPMU data and the models are also used to evaluate the effectiveness of proposed hazard controls. The FPMU consists of four probes: a floating potential probe, two Langmuir probes. and a plasma impedance probe. These probes measure the floating potential of the ISS, plasma density, and electron temperature. Redundant measurements using different probes support data validation by inter-probe comparisons. The FPMU was installed by ISS crewmembers, during an ExtraVehicular Activity, on the starboard (Sl) truss of the ISS in early August 2006, when the ISS incorporated only one 160V US photovoltaic (PV) array module. The first data campaign began a few hours after installation and continued for over five days. Additional data campaigns were completed in 2007 after a second 160V US PV array module was added to the ISS. This paper discusses the general performance characteristics of the FPMU as integrated on ISS, the functional performance of each probe, the charging behavior of the ISS before and after the addition of a second 160V US PV array module, and initial results from model comparisons.
Yoon, Jung-Ro; Yang, Jae-Hyuk
2018-03-20
The purpose of this retrospective study was to analyze and compare the clinical and radiologic outcomes of fixed bearing ultracongruent (UC) insert total knee arthroplasty (TKA) and mobile bearing (MB) floating platform TKA using the navigation-assisted gap balancing technique with a minimum follow-up of five years. The study retrospectively enrolled 105 patients who received the UC type fixed bearing insert (group 1) and 95 patients who received the floating platform MB insert (group 2) during the period from August 2009 to June 2012. All surgery was performed using the navigation-assisted gap balancing technique. For strict assessment of gap measurements, the offset-type-force-controlled-spreader-system was used. Radiologic and clinical outcomes were assessed before operation and at the most recent follow-up using the Knee Society Score (KSS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score. For statistical analysis, paired sample t tests were used. A p value less than 0.05 was considered significant. Although the radiologic alignments were satisfactory for both groups (99/105 [94%] cases were neutral for group 1 and 90/95 [94%] for group 2), the functional and total WOMAC scores were inferior in group 2 (p < 0.05). There were two cases of insert breakage in group 2 that required bearing exchange. The Kaplan-Meier survivorship rates for groups 1 and 2 at 77 months were 100.0 and 97.9%, respectively. Second-generation MB floating platform TKA cases did not have satisfactory outcomes. There were two cases of insert breakage, which required bearing exchange. Other patients who underwent surgery with second-generation MB floating platform were encouraged to avoid high knee flexion activities, resulting in lower clinical performance.
NASA Astrophysics Data System (ADS)
Song, Jingke; Wang, Xuejiang; Bu, Yunjie; Wang, Xin; Zhang, Jing; Huang, Jiayu; Ma, RongRong; Zhao, Jianfu
2017-01-01
Due to the advantage of floating on water surface, floating photocatalysts show higher rates of radical formation and collection efficiencies. And they were expected to be used for solar remediation of non-stirred and non-oxygenated reservoirs. In this research, floating fly ash cenospheres (FAC) supported layer-by- layer hybrid carbonized chitosan and Fe-N-codoped TiO2 was prepared by a simple sol-gel method. The catalysts were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy(DRS), nitrogen adsorption analyses for Brunauer-Emmett-Teller (BET) specific surface area. It is indicated that Fe-N codoped narrowed the material's band gap, and the layer of carbonized chitosan (Cts) increased the catalyst's adsorption capacity and the absorption ability of visible light. Comparing with Fe-N-TiO2/FAC and N-TiO2/FAC, the composite photocatalyst show excellent performance on the degradation of RhB. Photodegradation rate of RhB by Fe-N-TiO2/FAC-Cts was 0.01018 min-1, which is about 1.5 and 2.09 times higher than Fe-N-TiO2/FAC and N-TiO2/FAC under visible light irradiation in 240 min, respectively. The dye photosentization, capture of holes and electrons by Fe3+ ion, and synergistic effect of adsorption and photodegradation were attributed to the results for the improvement of photocatalytic performance. The floating photocatalyst can be reused for at least three consecutive times without any significant decrease on the degradation of Rhodamin B after each reuse.
Accelerating scientific computations with mixed precision algorithms
NASA Astrophysics Data System (ADS)
Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire
2009-12-01
On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented. Program summaryProgram title: ITER-REF Catalogue identifier: AECO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 41 862 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: desktop, server Operating system: Unix/Linux RAM: 512 Mbytes Classification: 4.8 External routines: BLAS (optional) Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. A common approach to the solution of linear systems, either dense or sparse, is to perform the LU factorization of the coefficient matrix using Gaussian elimination. First, the coefficient matrix A is factored into the product of a lower triangular matrix L and an upper triangular matrix U. Partial row pivoting is in general used to improve numerical stability resulting in a factorization PA=LU, where P is a permutation matrix. The solution for the system is achieved by first solving Ly=Pb (forward substitution) and then solving Ux=y (backward substitution). Due to round-off errors, the computed solution, x, carries a numerical error magnified by the condition number of the coefficient matrix A. In order to improve the computed solution, an iterative process can be applied, which produces a correction to the computed solution at each iteration, which then yields the method that is commonly known as the iterative refinement algorithm. Provided that the system is not too ill-conditioned, the algorithm produces a solution correct to the working precision. Running time: seconds/minutes
Hanus, Daniel; Mendes, Natacha; Tennie, Claudio; Call, Josep
2011-01-01
Recently, Mendes et al. [1] described the use of a liquid tool (water) in captive orangutans. Here, we tested chimpanzees and gorillas for the first time with the same “floating peanut task.” None of the subjects solved the task. In order to better understand the cognitive demands of the task, we further tested other populations of chimpanzees and orangutans with the variation of the peanut initially floating or not. Twenty percent of the chimpanzees but none of the orangutans were successful. Additional controls revealed that successful subjects added water only if it was necessary to obtain the nut. Another experiment was conducted to investigate the reason for the differences in performance between the unsuccessful (Experiment 1) and the successful (Experiment 2) chimpanzee populations. We found suggestive evidence for the view that functional fixedness might have impaired the chimpanzees' strategies in the first experiment. Finally, we tested how human children of different age classes perform in an analogous experimental setting. Within the oldest group (8 years), 58 percent of the children solved the problem, whereas in the youngest group (4 years), only 8 percent were able to find the solution. PMID:21687710
Hanus, Daniel; Mendes, Natacha; Tennie, Claudio; Call, Josep
2011-01-01
Recently, Mendes et al. [1] described the use of a liquid tool (water) in captive orangutans. Here, we tested chimpanzees and gorillas for the first time with the same "floating peanut task." None of the subjects solved the task. In order to better understand the cognitive demands of the task, we further tested other populations of chimpanzees and orangutans with the variation of the peanut initially floating or not. Twenty percent of the chimpanzees but none of the orangutans were successful. Additional controls revealed that successful subjects added water only if it was necessary to obtain the nut. Another experiment was conducted to investigate the reason for the differences in performance between the unsuccessful (Experiment 1) and the successful (Experiment 2) chimpanzee populations. We found suggestive evidence for the view that functional fixedness might have impaired the chimpanzees' strategies in the first experiment. Finally, we tested how human children of different age classes perform in an analogous experimental setting. Within the oldest group (8 years), 58 percent of the children solved the problem, whereas in the youngest group (4 years), only 8 percent were able to find the solution.
Software feedback for monochromator tuning at UNICAT (abstract)
NASA Astrophysics Data System (ADS)
Jemian, Pete R.
2002-03-01
Automatic tuning of double-crystal monochromators presents an interesting challenge in software. The goal is to either maximize, or hold constant, the throughput of the monochromator. An additional goal of the software feedback is to disable itself when there is no beam and then, at the user's discretion, re-enable itself when the beam returns. These and other routine goals, such as adherence to limits of travel for positioners, are maintained by software controls. Many solutions exist to lock in and maintain a fixed throughput. Among these include a hardware solution involving a wave form generator, and a lock-in amplifier to autocorrelate the movement of a piezoelectric transducer (PZT) providing fine adjustment of the second crystal Bragg angle. This solution does not work when the positioner is a slow acting device such as a stepping motor. Proportional integral differential (PID) loops have been used to provide feedback through software but additional controls must be provided to maximize the monochromator throughput. Presented here is a software variation of the PID loop which meets the above goals. By using two floating point variables as inputs, representing the intensity of x rays measured before and after the monochromator, it attempts to maximize (or hold constant) the ratio of these two inputs by adjusting an output floating point variable. These floating point variables are connected to hardware channels corresponding to detectors and positioners. When the inputs go out of range, the software will stop making adjustments to the control output. Not limited to monochromator feedback, the software could be used, with beam steering positioners, to maintain a measure of beam position. Advantages of this software feedback are the flexibility of its various components. It has been used with stepping motors and PZTs as positioners. Various devices such as ion chambers, scintillation counters, photodiodes, and photoelectron collectors have been used as detectors. The software provides significant cost savings over hardware feedback methods. Presently implemented in EPICS, the software is sufficiently general to any automated instrument control system.
Brekke, Patricia; Ewen, John G; Clucas, Gemma; Santure, Anna W
2015-01-01
Floating males are usually thought of as nonbreeders. However, some floating individuals are able to reproduce through extra-pair copulations. Floater reproductive success can impact breeders’ sex ratio, reproductive variance, multiple paternity and inbreeding, particularly in small populations. Changes in reproductive variance alter the rate of genetic drift and loss of genetic diversity. Therefore, genetic management of threatened species requires an understanding of floater reproduction and determinants of floating behaviour to effectively conserve species. Here, we used a pedigreed, free-living population of the endangered New Zealand hihi (Notiomystis cincta) to assess variance in male reproductive success and test the genetic (inbreeding and heritability) and conditional (age and size) factors that influence floater behaviour and reproduction. Floater reproduction is common in this species. However, floater individuals have lower reproductive success and variance in reproductive success than territorial males (total and extra-pair fledglings), so their relative impact on the population's reproductive performance is low. Whether an individual becomes a floater, and if so then how successful they are, is determined mainly by individual age (young and old) and to lesser extents male size (small) and inbreeding level (inbred). Floating males have a small, but important role in population reproduction and persistence of threatened populations. PMID:26366197
Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin
2011-06-24
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts
NASA Technical Reports Server (NTRS)
Ginn, Starr
2011-01-01
The Starr Soft Support isolation system incorporates an automatically reconfigurable aircraft jack into NASA's existing 1-Hertz isolators. This enables an aircraft to float in mid-air without the need for a critical lift during ground vibration testing (GVT), significantly reducing testing risk, time, and costs. Currently incorporating the most advanced technology available, the 60,000-poundcapacity (27-metric-ton) isolation system is used for weight and measurement tests, control-surface free-play tests, and structural mode interaction tests without the need for any major reconfiguration, often saving days of time and significantly reducing labor costs. The Starr Soft Support isolation system consists of an aircraft-jacking device with three jacking points, each of which has an individual motor and accommodates up to 20,000 pounds (9 metric tons) for a total 60,000-pound (27-metric-ton) capacity. The system can be transported to the aircraft by forklift and placed at its jacking points using a pallet jack. The motors power the electric actuators, raising the aircraft above the ground until the landing gear can retract. Inflatable isolators then deploy, enabling the aircraft to float in mid-air, simulating a 1-Hertz free-free boundary condition. Inflatable isolators have been in use at NASA for years, enabling aircraft to literally float unsupported for highly accurate GVT. These isolators must be placed underneath the aircraft for this to occur. Traditionally, this is achieved by a critical lift a high-risk procedure in which a crane and flexible cord system are used to lift the aircraft. In contrast, the Starr Soft Support isolation system eliminates the need for critical lift by integrating the inflatable isolators into an aircraft jacking system. The system maintains vertical and horizontal isolating capabilities. The aircraft can be rolled onto the system, jacked up, and then the isolators can be inflated and positioned without any personnel needing to work underneath the aircraft. Also, the system accommodates changes in aircraft configuration, automatically adapting to changes in mass, and it can adjust the height of the isolators in one basic setup. Dryden personnel used the Starr Soft Support system to successfully perform a GVT on an F-15 being structurally modified by Gulfstream, Dryden's Gulfstream III used for science research and the crew exploration module and adaptor cone assembly.
Floating gate transistors as biosensors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Frisbie, C. Daniel
2016-11-01
Electrolyte gated transistors (EGTs) are a sub-class of thin film transistors that are extremely promising for biological sensing applications. These devices employ a solid electrolyte as the gate insulator; the very large capacitance of the electrolyte results in low voltage operation and high transconductance or gain. This talk will describe the fabrication of floating gate EGTs and their use as ricin sensors. The critical performance metrics for EGTs compared with other types of TFTs will also be reviewed.
Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies
NASA Astrophysics Data System (ADS)
Vishnoi, U.; Noll, T. G.
2012-09-01
The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit simulation of extracted netlist is 768 MHz under typical, and 463 MHz under worst case technology and application corner conditions, respectively. Simulated dynamic power dissipation is 0.24 uW MHz-1 at 0.9 V; static power is 38 uW in slow corner, 65 uW in typical corner and 518 uW in fast corner, respectively. The latter can be reduced by 43% in a 40-nm CMOS technology using 0.5 V reverse-backbias. These features are compared with the results from different design styles as well as with an implementation in 28-nm CMOS technology. It is interesting that in the latter case area scales as expected, but worst case performance and energy do not scale well anymore.
NASA Astrophysics Data System (ADS)
Leroy, Yann; Armeanu, Dumitru; Cordan, Anne-Sophie
2011-05-01
The improvement of our model concerning a single nanocrystal that belongs to a nanocrystal floating gate of a flash memory is presented. In order to extend the gate voltage range applicability of the model, the 3D continuum of states of either metallic or semiconducting electrodes is discretized into 2D subbands. Such an approach gives precise information about the mechanisms behind the charging or release processes of the nanocrystal. Then, the self-energy and screening effects of an electron within the nanocrystal are evaluated and introduced in the model. This enables a better determination of the operating point of the nanocrystal memory. The impact of those improvements on the charging or release time of the nanocrystal is discussed.
Laminar mixing in a small floating zone
NASA Technical Reports Server (NTRS)
Harriott, George M.
1987-01-01
The relationship between the flow and solute fields during steady mass transfer of a dilute component is analyzed for multi-cellular rotating flows in the floating zone process of semiconductor growth. When the recirculating flows are weak in relation to the rate of crystal growth, a closed-form solution clearly shows the link between the convection pattern in the melt and the solute distribution across the surface of the growing solid. In the limit of strong convection, finite element calculations demonstrate the tendency of the composition to become uniform over the majority of the melt. The solute segregation in the product crystal is greatest when the recirculating motion is comparable to the rate of crystal growth, and points to the danger in attempting to grow compositionally uniform materials from a nearly convectionless melt.
Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign
NASA Astrophysics Data System (ADS)
Shuckburgh, Emily F.
2012-09-01
Ideas from dynamical systems theory have been used in an observational field campaign in the Southern Ocean to provide information on the mixing structure of the flow. Instantaneous snapshops of data from satellite altimetry provide information concerning surface currents at a scale of 100 km or so. We show that by using time-series of satellite altimetry we are able to deduce reliable information about the structure of the surface flow at scales as small as 10 km or so. This information was used in near-real time to provide an estimate of the location of stable and unstable manifolds in the vicinity of the Antarctic Circumpolar Current. As part of a large U.K./U.S. observational field campaign (DIMES: Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) a number of drifters and floats were then released (at the surface and at a depth of approximately 1 km) close to the estimated hyperbolic point at the intersection of the two manifolds, in several locations with apparently different dynamical characteristics. The subsequent trajectories of the drifters/floats has allowed the unstable manifolds to be tracked, and the relative separation of pairs of floats has allowed an estimation of Lyapunov exponents. The results of these deployments have given insight into the strengths and limitations of the satellite data which does not resolve small scales in the velocity field, and have elucidated the transport and mixing structure of the Southern Ocean at the surface and at depth.
Design and evaluation of a dry coated drug delivery system with floating-pulsatile release.
Zou, Hao; Jiang, Xuetao; Kong, Lingshan; Gao, Shen
2008-01-01
The objective of this work was to develop and evaluate a floating-pulsatile drug delivery system intended for chronopharmacotherapy. Floating-pulsatile concept was applied to increase the gastric residence of the dosage form having lag phase followed by a burst release. To overcome limitations of various approaches for imparting buoyancy, we generated the system which consisted of three different parts, a core tablet, containing the active ingredient, an erodible outer shell and a top cover buoyant layer. The dry coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer which is responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with Methocel K4M, Carbopol 934P and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their buoyancy, dissolution and pharmacokinetic, as well gamma-scintigraphically. The results showed that a certain lag time before the drug released generally due to the erosion of the dry coated layer. Floating time was controlled by the quantity and composition of the buoyant layer. Both pharmacokinetic and gamma-scintigraphic data point out the capability of the system of prolonged residence of the tablets in the stomach and releasing drugs after a programmed lag time. (c) 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zasso, A.; Argentini, T.; Bayati, I.; Belloli, M.; Rocchi, D.
2017-12-01
The super long fjord crossings in E39 Norwegian project pose new challenges to long span bridge design and construction technology. Proposed solutions should consider the adoption of bridge deck with super long spans or floating solutions for at least one of the towers, due to the relevant fjord depth. At the same time, the exposed fjord environment, possibly facing the open ocean, calls for higher aerodynamic stability performances. In relation to this scenario, the present paper addresses two topics: 1) the aerodynamic advantages of multi-box deck sections in terms of aeroelastic stability, and 2) an experimental setup in a wind tunnel able to simulate the aeroelastic bridge response including the wave forcing on the floating.
Langmuir Probe Measurements in a Grid-Assisted Magnetron Sputtering System
NASA Astrophysics Data System (ADS)
Sagás, Julio César; Pessoa, Rodrigo Sávio; Maciel, Homero Santiago
2018-02-01
The grid-assisted magnetron sputtering is a variation of the magnetron sputtering commonly used for thin film deposition. In this work, Langmuir probe measurements were performed in such a system by using the grid under two basic and practical electrical conditions, i.e., floating and grounded. The results show that grounding the grid leads to an enhancement of the plasma confinement and to increases in both floating and plasma potential, as inferred from the probe characteristics. The grounded grid drains electrons from the plasma, acting as an auxiliary anode and reducing the plasma diffusion toward the chamber walls. For the same discharge current, the improved confinement results in a lower electron temperature when compared to floating condition, although the electron densities are comparable in both cases.
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai
2008-01-01
The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementationmore » of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... the deepwater area of the Gulf of Mexico at Walker Ridge 249. The FPSO can swing in a 360 degree arc... point at 26°41′46.25″ N and 090°30′30.16″ W is a safety zone. (b) Regulation. No vessel may enter or...
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron
1992-01-01
Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.
Application of the ANNA neural network chip to high-speed character recognition.
Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D
1992-01-01
A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.
UNIX as an environment for producing numerical software
NASA Technical Reports Server (NTRS)
Schryer, N. L.
1978-01-01
The UNIX operating system supports a number of software tools; a mathematical equation-setting language, a phototypesetting language, a FORTRAN preprocessor language, a text editor, and a command interpreter. The design, implementation, documentation, and maintenance of a portable FORTRAN test of the floating-point arithmetic unit of a computer is used to illustrate these tools at work.
Code of Federal Regulations, 2010 CFR
2010-07-01
... floating roof that meets the equipment specifications of § 60.693 (a)(1)(i), (a)(1)(ii), (a)(2), (a)(3... and other points of access to a conveyance system. c Applies to tanks with capacities of 38 m3 or...
Implicit-shifted Symmetric QR Singular Value Decomposition of 3x3 Matrices
2016-04-01
Graph 33, 4, 138:1– 138:11. TREFETHEN, L. N., AND BAU III, D. 1997. Numerical linear algebra , vol. 50. Siam. XU, H., SIN, F., ZHU, Y., AND BARBIČ, J...matrices with minimal branching and elementary floating point operations. Tech. rep., University of Wisconsin- Madison. SAITO, S., ZHOU, Z.-Y., AND
IIPImage: Large-image visualization
NASA Astrophysics Data System (ADS)
Pillay, Ruven
2014-08-01
IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.
Failure detection in high-performance clusters and computers using chaotic map computations
Rao, Nageswara S.
2015-09-01
A programmable media includes a processing unit capable of independent operation in a machine that is capable of executing 10.sup.18 floating point operations per second. The processing unit is in communication with a memory element and an interconnect that couples computing nodes. The programmable media includes a logical unit configured to execute arithmetic functions, comparative functions, and/or logical functions. The processing unit is configured to detect computing component failures, memory element failures and/or interconnect failures by executing programming threads that generate one or more chaotic map trajectories. The central processing unit or graphical processing unit is configured to detect a computing component failure, memory element failure and/or an interconnect failure through an automated comparison of signal trajectories generated by the chaotic maps.
2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation
Warren, Michael S.
2014-01-01
We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2 18 ) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096 3 ) particle cosmological simulations, accounting for 4×10 20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy andmore » scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.« less
Recurrence quantification analysis of global stock markets
NASA Astrophysics Data System (ADS)
Bastos, João A.; Caiado, Jorge
2011-04-01
This study investigates the presence of deterministic dependencies in international stock markets using recurrence plots and recurrence quantification analysis (RQA). The results are based on a large set of free float-adjusted market capitalization stock indices, covering a period of 15 years. The statistical tests suggest that the dynamics of stock prices in emerging markets is characterized by higher values of RQA measures when compared to their developed counterparts. The behavior of stock markets during critical financial events, such as the burst of the technology bubble, the Asian currency crisis, and the recent subprime mortgage crisis, is analyzed by performing RQA in sliding windows. It is shown that during these events stock markets exhibit a distinctive behavior that is characterized by temporary decreases in the fraction of recurrence points contained in diagonal and vertical structures.
A 2000-Hour Durability Test of a 5-Centimeter Diameter Mercury Bombardment Ion Thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.; Finke, R. G.
1972-01-01
A 2000-hour durability test of a modified Hughes SIT-5 (Structurally Integrated Thruster, 5 cm) was conducted at the Lewis Research Center. The thruster operated with a translating screen thrust vector grid locked in position for 10 deg beam deflection. The test was essentially continuous except for seven stoppages of beam current. The neutralizer keeper voltage and thruster floating potential increased slightly with time. Performance profiles and maps of thruster characteristics were obtained at 453 and 2023 hours into the test. Overall efficiency was nearly constant at 31 - 32 percent, and operating characteristics were similar at both points in the test. A post-shutdown inspection showed negligible erosion damage to the accelerator and cathode baffle. Some erosion was found in the aperture of the neutralizer cathode.
Design of a broadband active silencer using μ-synthesis
NASA Astrophysics Data System (ADS)
Bai, Mingsian R.; Zeung, Pingshun
2004-01-01
A robust spatially feedforward controller is developed for broadband attenuation of noise in ducts. To meet the requirements of robust performance and robust stability in the presence of plant uncertainties, a μ-synthesis procedure via D- K iteration is exploited to obtain the optimal controller. This approach considers uncertainties as modelling errors of the nominal plant in high frequency and is implemented using a floating point digital signal processor (DSP). Experimental investigation was undertaken on a finite-length duct to justify the proposed controller. The μ- controller is compared to other control algorithms such as the H2 method, the H∞ method and the filtered-U least mean square (FULMS) algorithm. Experimental results indicate that the proposed system has attained 25.8 dB maximal attenuation in the band 250-650 Hz.
JANUS: a bit-wise reversible integrator for N-body dynamics
NASA Astrophysics Data System (ADS)
Rein, Hanno; Tamayo, Daniel
2018-01-01
Hamiltonian systems such as the gravitational N-body problem have time-reversal symmetry. However, all numerical N-body integration schemes, including symplectic ones, respect this property only approximately. In this paper, we present the new N-body integrator JANUS , for which we achieve exact time-reversal symmetry by combining integer and floating point arithmetic. JANUS is explicit, formally symplectic and satisfies Liouville's theorem exactly. Its order is even and can be adjusted between two and ten. We discuss the implementation of JANUS and present tests of its accuracy and speed by performing and analysing long-term integrations of the Solar system. We show that JANUS is fast and accurate enough to tackle a broad class of dynamical problems. We also discuss the practical and philosophical implications of running exactly time-reversible simulations.
NASA Astrophysics Data System (ADS)
Bhanota, Gyan; Chen, Dong; Gara, Alan; Vranas, Pavlos
2003-05-01
The architecture of the BlueGene/L massively parallel supercomputer is described. Each computing node consists of a single compute ASIC plus 256 MB of external memory. The compute ASIC integrates two 700 MHz PowerPC 440 integer CPU cores, two 2.8 Gflops floating point units, 4 MB of embedded DRAM as cache, a memory controller for external memory, six 1.4 Gbit/s bi-directional ports for a 3-dimensional torus network connection, three 2.8 Gbit/s bi-directional ports for connecting to a global tree network and a Gigabit Ethernet for I/O. 65,536 of such nodes are connected into a 3-d torus with a geometry of 32×32×64. The total peak performance of the system is 360 Teraflops and the total amount of memory is 16 TeraBytes.
Japanese project aims at supercomputer that executes 10 gflops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burskey, D.
1984-05-03
Dubbed supercom by its multicompany design team, the decade-long project's goal is an engineering supercomputer that can execute 10 billion floating-point operations/s-about 20 times faster than today's supercomputers. The project, guided by Japan's Ministry of International Trade and Industry (MITI) and the Agency of Industrial Science and Technology encompasses three parallel research programs, all aimed at some angle of the superconductor. One program should lead to superfast logic and memory circuits, another to a system architecture that will afford the best performance, and the last to the software that will ultimately control the computer. The work on logic and memorymore » chips is based on: GAAS circuit; Josephson junction devices; and high electron mobility transistor structures. The architecture will involve parallel processing.« less
Fourier transform wavefront control with adaptive prediction of the atmosphere.
Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre
2007-09-01
Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.
A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Bard, Christopher M.; Dorelli, John C.
2014-02-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure
NASA Astrophysics Data System (ADS)
Jung, In-Soo; Oh, Myung-Hoon; Park, No-Jin; Kumar, K. Sharvan; Wee, Dang-Moon
2007-12-01
In this study, a β solidification procedure was used to align the lamellae in a Ti-47Al-2W (at.%) alloy parallel to the growth direction. The Bridgman technique and the floating zone process were used for directional solidification. The mechanical properties of the directionally solidified alloy were evaluated in tension at room temperature and at 800°C. At a growth rate of 30 mm/h (with the floating zone approach), the lamellae were well aligned parallel to the growth direction. The aligned lamellae yielded excellent room temperature tensile ductility. The tensile yield strength at 800°C was similar to that at room temperature. The orientation of the γ lamellar laths in the directionally solidified ingots, which were manufactured by means of a floating zone process, was identified with the aid of electron backscattered diffraction analysis. On the basis of this analysis, the preferred growth direction of the bcc-β dendrites that formed at high temperatures close to the melting point was inferred to be [001]β at a growth rate of 30 mm/h and [111]β at a growth rate of 90 mm/h.
NASA Astrophysics Data System (ADS)
Olondriz, Joannes; Elorza, Iker; Trojaola, Ignacio; Pujana, Aron; Landaluze, Joseba
2016-09-01
Semi-submersible floating offshore wind turbines present significant advantages over other designs in terms of cost, deployment, maintenance and site-independence. However, these advantages are achieved by shifting a part of the burden of stabilising the platform pitch and roll motions to the turbine control system. A study is presented here of the effects of basic platform dimensions on the performance of a standard pitch controller and the possible methods for mitigating said effects.
Low vibration laboratory with a single-stage vibration isolation for microscopy applications.
Voigtländer, Bert; Coenen, Peter; Cherepanov, Vasily; Borgens, Peter; Duden, Thomas; Tautz, F Stefan
2017-02-01
The construction and the vibrational performance of a low vibration laboratory for microscopy applications comprising a 100 ton floating foundation supported by passive pneumatic isolators (air springs), which rest themselves on a 200 ton solid base plate, are discussed. The optimization of the air spring system leads to a vibration level on the floating floor below that induced by an acceleration of 10 ng for most frequencies. Additional acoustic and electromagnetic isolation is accomplished by a room-in-room concept.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1988-01-01
The focus of the work is to develop and perform a set of research projects using laboratory models of satellite robots. These devices use air cushion technology to simulate in two dimensions the drag-free, zero-g conditions of space. Five research areas are examined: cooperative manipulation on a fixed base; cooperative manipulation on a free-floating base; global navigation and control of a free-floating robot; an alternative transport mode call Locomotion Enhancement via Arm Push-Off (LEAP), and adaptive control of LEAP.
A new approach in gastroretentive drug delivery system using cholestyramine.
Umamaheshwari, R B; Jain, Subheet; Jain, N K
2003-01-01
We prepared cellulose acetate butyrate (CAB)-coated cholestyramine microcapsules as a intragastric floating drug delivery system endowed with floating ability due to the carbon dioxide generation when exposed to the gastric fluid. The microcapsules also have a mucoadhesive property. Ion-exchange resin particles can be loaded with bicarbonate followed by acetohydroxamic acid (AHA) and coated with CAB by emulsion solvent evaporation method. The drug concentration was monitored to maintain the floating property and minimum effective concentration. The effect of CAB: drug-resin ratio (2:1, 4:1, 6:1 w/w) on the particle size, floating time, and drug release was determined. Cholestyramine microcapsules were characterized for shape, surface characteristics, and size distribution; cholestyramine/acetohydroxamic acid interactions inside microcapsules were investigated by X-ray diffractometry. The buoyancy time of CAB-coated formulations was better than that of uncoated resin particles. Also, a longer floating time was observed with a higher polymer:drug resin complex ratio (6:1). With increasing coating thickness the particle size was increased but drug release rate was decreased. The drug release rate was higher in simulated gastric fluid (SGF) than in simulated intestinal fluid (SIF). The in vivo mucoadhesion studies were performed with rhodamine-isothiocyanate (RITC) by fluorescent probe method. The amount of CAB-coated cholestyramine microcapsules that remained in the stomach was slightly lower than that of uncoated resin particles. Cholestyramine microcapsules were distributed throughout the stomach and exhibited prolonged gastric residence via mucoadhesion. These results suggest that CAB-coated microcapsules could be a floating as well as a mucoadhesive drug delivery system. Thus, it has promise in the treatment of Helicobacter pylori.
NASA Astrophysics Data System (ADS)
Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng
2016-12-01
This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.
NASA Astrophysics Data System (ADS)
Jacobs, A. E.; Harrison, J. A.
2012-12-01
Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.
14 CFR 27.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
14 CFR 29.753 - Main float design.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
1983-01-01
MFR Model Computer Subsystem 1. Cabinet 0, PDP-11/70 CPU with 11/70 CPU, and Floating point processor DEC 11/79-UK 2. Cabinet 1, with SDLC ... software T-square. o Unit lock causes a user-defined roundoff factor to be applied to all points selected with the cursor. V - 1 0 Grid lock...1 NL • • 1 I i * v • _ • _ . *. . - m m I 1 3 I = K» lää 12.2 1.1 2.0 1.8 1.25 11.4 Ho EJ V Ml ^"OPY RESOLUTION
Close-packed floating clusters: granular hydrodynamics beyond the freezing point?
Meerson, Baruch; Pöschel, Thorsten; Bromberg, Yaron
2003-07-11
Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.
He, Shuang; Li, Feng; Zhou, Dan; Du, Junrong; Huang, Yuan
2012-10-01
A novel coated gastric floating drug-delivery system (GFDDS) of bergenin (BN) and cetirizine dihydrochloride (CET) was developed. First, the pharmacodynamic studies were performed and the results revealed that the new compounds of bergenin/cetirizine dihydrochloride had comparative efficacy as commercial products (bergenin/chlorphenamine maleate) but with fewer side effects on central nervous system (CNS). Subsequently, bergenin was formulated as an extended-release core tablet while cetirizine dihydrochloride was incorporated into the gastric coating film for immediate release. The formulation of GFDDS was optimized by CET content uniformity test, in vitro buoyancy and drug release. Herein, the effects of sodium bicarbonate (effervescent), hydroxypropyl methylcellulose (HPMC, matrix polymer) and coating weight gain were investigated respectively. The optimized GFDDS exhibited good floating properties (buoyancy lag time < 2 min; floating duration > 10 h) and satisfactory drug-release profiles (immediate release of CET in 10 min and sustained release of BN for 12 h). In vivo gamma scintigraphy proved that the optimized GFDDS could retain in the stomach with a prolonged gastric retention time (GRT) of 5 h, and the coating layer showed no side effect for gastric retention. The novel coated gastric floating drug-delivery system offers a new approach to enhance BN's absorption at its absorption site and the efficacy of both CET and BN.
40 CFR 65.45 - External floating roof converted into an internal floating roof.
Code of Federal Regulations, 2010 CFR
2010-07-01
... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...
Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles
NASA Astrophysics Data System (ADS)
Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten
2013-03-01
The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.
Xian, Qiming; Hu, Lixia; Chen, Hancheng; Chang, Zhizhou; Zou, Huixian
2010-12-01
The potential of three varieties of Italian ryegrass (Lolium multiflorum Lam.), Dryan, Tachimasari and Waseyutaka, to improve the water quality of swine wastewater was evaluated using a constructed macrophyte floating bed system. With respect to reductions in levels of nutrients, chemical oxygen demand (COD), and sulfonamide antimicrobials (SAs, including sulfadiazine, sulfamethazine, and sulfamethoxazole), Dryan performed better than Tachimasari and Waseyutaka. For Dryan, total N was reduced by 84.0%, total P by 90.4%, COD by 83.4% and sulfonamide antimicrobials by 91.8-99.5%. Similar results were observed for Tachimasari and Waseyutaka. The results indicated that the treatment of swine wastewater using the constructed macrophyte floating bed system was effective in the removal of nutrients and veterinary antibiotics. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amate, Juan; Sánchez, Gustavo D.; González, Gonzalo
2016-09-01
One of the biggest challenges to introduce Tension Leg Platform (TLP) technology into the Offshore Wind market are the Transport & Installation (T&I) stages, since most of TLPs are not self-stable as semisubmersible or SPAR platforms, and consequently requires additional means to perform these operations. This paper addresses this problem that has been overcome through the development of a Semi-submersible “Transport & Installation” Barge (SSB) for Iberdrola's TLPWIND® floating support structure. The Semi-submersible Barge has been designed both through the use of numerical models and an extensive basin testing campaign carried out at the University of Strathclyde facilities. This paper also includes an estimation of the duration in time to carry out the installation process of a Floating Offshore Wind Farm, comprising 100x5MW TLPWIND® units in different scenarios.
You, Xiangwei; Xing, Zhuokan; Liu, Fengmao; Zhang, Xu
2015-05-22
A novel air assisted liquid-liquid microextraction using the solidification of a floating organic droplet method (AALLME-SFO) was developed for the rapid and simple determination of seven fungicide residues in juice samples, using the gas chromatography with electron capture detector (GC-ECD). This method combines the advantages of AALLME and dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFO) for the first time. In this method, a low-density solvent with a melting point near room temperature was used as the extraction solvent, and the emulsion was rapidly formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent for ten times repeatedly using a 10-mL glass syringe. After centrifugation, the extractant droplet could be easily collected from the top of the aqueous samples by solidifying it at a temperature lower than the melting point. Under the optimized conditions, good linearities with the correlation coefficients (γ) higher than 0.9959 were obtained and the limits of detection (LOD) varied between 0.02 and 0.25 μgL(-1). The proposed method was applied to determine the target fungicides in juice samples and acceptable recoveries ranged from 72.6% to 114.0% with the relative standard deviations (RSDs) of 2.3-13.0% were achieved. Compared with the conventional DLLME method, the newly proposed method will neither require a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnetic resonance imaging for the in vivo evaluation of gastric-retentive tablets.
Steingoetter, Andreas; Weishaupt, Dominik; Kunz, Patrick; Mäder, Karsten; Lengsfeld, Hans; Thumshirn, Miriam; Boesiger, Peter; Fried, Michael; Schwizer, Werner
2003-12-01
To develop a magnetic resonance imaging (MRI) technique for assessing in vivo properties of orally ingested gastric-retentive tablets under physiologic conditions. Tablets with different floating characteristics (tablet A-C) were marked with superparamagnetic Fe3O4 particles to analyze intragastric tablet position and residence time in human volunteers. Optimal Fe3O4 concentration was determined in vitro. Intragastric release characteristic of one slow-release tablet (tablet D) was analyzed by embedding gadolinium chelates (Gd-DOTA) as a drug model into the tablet. All volunteers underwent MRI in the sitting position. Tablet performance was analyzed in terms of relative position of tablet to intragastric meal level (with 100% at meal surface), intragastric residence time (min) and Gd-DOTA distribution volume (% of meal volume). Intragastric tablet floating performance and residence time of tablets (tablet A-D) as well as the intragastric Gd-DOTA distribution of tablet D could be monitored using MRI. Tablet floating performance was different between the tablets (A, 93%(95 - 9%); B, 80%(80 - 68%): C, 38%(63 - 32%); p < 0.05). The intragastric distribution volume of Gd-DOTA was 19.9% proximally and 35.5% distally. The use of MRI allows the assessment of galenic properties of orally ingested tablets in humans in seated position.
NASA Astrophysics Data System (ADS)
Stinn, Caspar; Nose, Katsuhiro; Okabe, Toru; Allanore, Antoine
2017-12-01
The phase diagram of the barium sulfide-copper(I) sulfide system was investigated above 873 K (600 °C) using a custom-built differential thermal analysis (DTA) apparatus. The melting point of barium sulfide was determined utilizing a floating zone furnace. Four new compounds, Ba2Cu14S9, Ba2Cu2S3, Ba5Cu4S7, and Ba9Cu2S10, were identified through quench experiments analyzed with wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray analysis (EDS). A miscibility gap was observed between 72 and 92 mol pct BaS using both DTA experiments and in situ melts observation in a floating zone furnace. A monotectic was observed at 94.5 mol pct BaS and 1288 K (1015 °C).
Comparisons of Two Plasma Instruments on the International Space Station
NASA Astrophysics Data System (ADS)
Balthazor, R.; McHarg, M. G.; Minow, J. I.; Chandler, M. O.; Musick, J. D.; Feldmesser, H.; Darrin, M. A.; Osiander, R.
2011-12-01
The United States Air Force Academy's Canary instrument, a low-cost ion spectrometer with integrated charge multiplication, was installed on the International Space Station (ISS) on shuttle flight STS-134. The primary goal of the Canary experiment is to measure ion signals in the wake when ISS is flying in the standard +XVV attitude. However, the instrument is pointed (approximately) into ram and detects ambient Low Earth Orbit ions when the ISS is flying in the -XVV attitude. Simultaneous observations with NASA's Floating Plasma Measurement Unit (FPMU) have been taken during these times, and the results from each instrument are compared, in order to determine the origin of energy variations observed in the Canary ion signal. In addition, insights into the ISS floating plasma potential at the two different instrument locations can be obtained.