NASA Astrophysics Data System (ADS)
Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui
2013-12-01
A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.
NASA Astrophysics Data System (ADS)
Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu
2015-05-01
We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.
[Treatment of Persistent Somatoform Pain Disorder by Floating Needle Therapy and Duloxetine].
Ren, Wan-wen; Zhou, Zhi-ying; Xu, Mi-mi; Long, Sen; Tang, Guang-zheng; Mao, Hong-jing; Chen, Shu-lin
2016-02-01
To evaluate clinical effect and safety of floating needle therapy and duloxetine in treating patients with persistent somatoform pain disorder (PSPD). Totally 108 PSPD patients were randomly assigned to the floating needle treatment group, the duloxetine treatment group, and the placebo treatment group, 36 in each group. Patients in the floating needle treatment group received floating needle therapy and placebo. Those in the duloxetine treatment group received duloxetine and simulated floating needle therapy. Those in the placebo treatment group received the placebo and simulated floating needle therapy. All treatment lasted for six weeks. Efficacy and adverse reactions were evaluated using Simple McGill pain scale (SF-MPQ) and Treatment Emergent Symptom Scale (TESS) before treatment and immediately after treatment, as well as at the end of 1st, 2nd, 4th, and 6th week of treatment, respectively. Hamilton Depression Scale (HAMD, 17 items), Hamilton Anxiety Scale (HAMA) were assessed before treatment and at the end of 1st, 2nd, 4th, and 6th week of treatment, respectively. Patients in the floating needle treatment group and the duloxetine treatment group with the total reducing score rate of SF-MPQ in Pain Rating index (PRI) ≥ 50% after 6 weeks' treatment were involved in the follow-up study. (1) Compared with the same group before treatment, SF-MPQ score, HAMD score and HAMA total scores all decreased in all the three groups at the end of 1st, 2nd, 4th, and 6th week of treatment (P < 0.05, P < 0.01). Besides , each item of SF-MPQ significantly decreased immediately after treatment in the floating needle treatment group (P < 0.01). Compared with the placebo treatment group, SF-MPQ, HAMD, and HAMA total score in the floating needle treatment group significantly decreased after 1, 2, 4, and 6 weeks of treatment (P < 0.05, P < 0.01). SF-MPQ score, HAMD score and HAMA total score in the duloxetine treatment group also significantly decreased after 2, 4, and 6 weeks of treatment (P < 0.05, P < 0.01). (2) There were 3 patients (8.3%) who had adverse reactions in the floating needle treatment group, 17 (50.0%) in the duloxetine treatment group, and 7 (21.2%) in the placebo treatment group. Compared with the placebo treatment group, the incidence of adverse reaction increased in the duloxetine treatment group (χ² = 6.04, P < 0.05). Besides, it was higher in the duloxetine treatment group than in the floating needle treatment group (χ² = 14.9, P < 0.05). (3) There were 19 patients in the floating needle treatment group and 17 patients in the duloxetine treatment group involved in the follow-up study. Compared with 6 weeks after treatment, no significant difference was observed at 3 and 6 months after treatment in the score of SF-MPQ, HAMD, and HAMA in the floating needle treatment group and the duloxetine treatment group. No significant difference was observed between the two groups (P > 0.05). There were 5 patients (29.4%) who had adverse reactions in the duloxetine treatment group, and no adverse reactions were observed in the floating needle treatment group. The adverse reaction rate was significantly different between the two groups (χ² = 4.26, P < 0.05). Floating needle therapy and duloxetine were effective in treatment of patients with PSPD. However, floating needle therapy could relieve pain more rapidly than duloxetine, with obviously less adverse reactions.
NASA Astrophysics Data System (ADS)
Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo
2014-01-01
The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.
Sola, D; Balda, R; Peña, J I; Fernández, J
2012-05-07
In this work we report the influence of the crystallization stage of the host matrix on the spectroscopic properties of Nd3+ ions in biocompatible glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 1 and 2 wt% of Nd2O3. The samples were obtained by the laser floating zone technique at different growth rates between 50 and 500 mm/h. The microstructural analysis shows that a growth rate increase or a rod diameter decrease leads the system to a structural arrangement from three (two crystalline and one amorphous) to two phases (one crystalline and one amorphous). Electron backscattering diffraction analysis shows the presence of Ca2SiO4 and apatite-like crystalline phases. Site-selective laser spectroscopy in the (4)I(9/2)→(4)F(3/2)/(4)F(5/2) transitions confirms that Nd(3+) ions are incorporated in crystalline and amorphous phases in these glass-ceramic samples. In particular, the presence of Ca(2)SiO(4) crystalline phase in the samples grown at low rates, which has an excellent in vitro bioactivity, can be unambiguously identified from the excitation spectra and lifetime measurements of the (4)F(3/2) state of Nd(3+) ions.
Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals
NASA Astrophysics Data System (ADS)
Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki
2018-05-01
YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.
NASA Astrophysics Data System (ADS)
Zhao, Jingtao; Zhao, Zhenguo; Chen, Zidong; Lin, Zhaojun; Xu, Fukai
2017-12-01
In this study, we have investigated the electrical properties of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with floating gate structures using the measured capacitancevoltage (C-V) and current-voltage (I-V) characteristics. It is found that the two-dimensional electron gas (2DEG) density under the central gate cannot be changed by the floating gate structures. However, the floating gate structures can cause the strain variation in the barrier layer, which lead to the non-uniform distribution of the polarization charges, then induce a polarization Coulomb field and scatter the 2DEG. More floating gate structures and closer distance between the floating gates and the central gate will result in stronger scattering effect of the 2DEG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, andmore » anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.« less
Bertrand, Alexander; Seo, Dongjin; Maksimovic, Filip; Carmena, Jose M; Maharbiz, Michel M; Alon, Elad; Rabaey, Jan M
2014-01-01
In this paper, we examine the use of beamforming techniques to interrogate a multitude of neural implants in a distributed, ultrasound-based intra-cortical recording platform known as Neural Dust. We propose a general framework to analyze system design tradeoffs in the ultrasonic beamformer that extracts neural signals from modulated ultrasound waves that are backscattered by free-floating neural dust (ND) motes. Simulations indicate that high-resolution linearly-constrained minimum variance beamforming sufficiently suppresses interference from unselected ND motes and can be incorporated into the ND-based cortical recording system.
Laser annealing and in situ absorption measurement of float glass implanted with Ag ions
NASA Astrophysics Data System (ADS)
Okur, I.; Townsend, P. D.
2004-08-01
In this paper in situ pulsed laser annealing and absorption measurements results of Ag-implanted float glass are reported. A Nd:YAG laser harmonic at 266 nm was used to anneal the target area by coupling energy to the glass host, whilst an argon laser at 488 nm was used as a probe beam of changes in nanoparticle size. The equilibrium conditions show a third order power dependence on the laser pulse energy, which is attributed to the volume in which ion migration can occur during excitation.
33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false ExxonMobil Hoover Floating OCS... Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos... (1640.4 feet) from each point on the structure's outer edge is a safety zone. (b) Regulation. No vessel...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
NASA Astrophysics Data System (ADS)
Lin, Qisheng; Taufour, Valentin; Zhang, Yuemei; Wood, Max; Drtina, Thomas; Bud'ko, Sergey L.; Canfield, Paul C.; Miller, Gordon J.
2015-09-01
Single crystals of Nd4FeOS6 were grown from an Fe-S eutectic solution. Single crystal X-ray diffraction analysis revealed a Nd4MnOSe6-type structure (P63mc, a=9.2693(1) Å, c=6.6650(1)Å, V=495.94(1) Å3, Z=2), featuring parallel chains of face-sharing [FeS6×1/2]4- trigonal antiprisms and interlinked [Nd4OS3]4+ cubane-like clusters. Oxygen atoms were found to be trapped by Nd4 clusters in the [Nd4OS3]4+ chains. Structural differences among Nd4MnOSe6-type Nd4FeOS6 and the related La3CuSiS7- and Pr8CoGa3-type structures have been described. Magnetic susceptibility measurements on Nd4FeOS6 suggested the dominance of antiferromagnetic interactions at low temperature, but no magnetic ordering down to 2 K was observed. Spin-polarized electronic structure calculations revealed magnetic frustration with dominant antiferromagnetic interactions.
Structural aspects of calcium iron phosphate glass containing neodymium oxide
NASA Astrophysics Data System (ADS)
Li, Haijian; Liang, Xiaofeng; Wang, Cuiling; Yu, Huijun; Li, Zhen; Yang, Shiyuan
2014-06-01
Homogeneous glasses of the xNd2O3sbnd (100 - x)(12CaOsbnd 20Fe2O3sbnd 68P2O5) system were obtained within the 0 ⩽ x ⩽ 10 mol% composition range. The density and molar volume measurements helped to understand the structural changes occurring in these glasses. Vickers-hardness results showed that addition of Nd2O3 strengthened the crosslinking of the glass network. Spectra analysis indicated that Nd2O3 enters in the structure of the phosphate glasses as a network modifier. The depolymerization of the glass network by the addition of Nd2O3 is characterized by the increase in the concentration of pyrophosphate. The decrease of the Q1 terminal oxygen with increasing Nd2O3 content indicated that Psbnd Osbnd Nd bonds participated in the pyrophosphate glass structure, determined from the Raman spectra.
Magnetic structure of the mixed antiferromagnet NdMn0.8Fe0.2O3
NASA Astrophysics Data System (ADS)
Mihalik, Matúš; Mihalik, Marián; Hoser, Andreas; Pajerowski, Daniel M.; Kriegner, Dominik; Legut, Dominik; Lebecki, Kristof M.; Vavra, Martin; Fitta, Magdalena; Meisel, Mark W.
2017-10-01
The magnetic structure of the mixed antiferromagnet NdMn0.8Fe0.2O3 was resolved. Neutron powder diffraction data definitively resolve the Mn sublattice with a magnetic propagation vector k =(000 ) and with the magnetic structure (Ax,Fy,Gz ) for 1.6 K
Quantifying Thin Mat Floating Marsh Strength and Interaction with Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Collins, J. H., III; Sasser, C.; Willson, C. S.
2016-12-01
Louisiana possesses over 350,000 acres of unique floating vegetated systems known as floating marshes or flotants. Floating marshes make up 70% of the Terrebonne and Barataria basin wetlands and exist in several forms, mainly thick mat or thin mat. Salt-water intrusion, nutria grazing, and high-energy wave events are believed to be some contributing factors to the degradation of floating marshes; however, there has been little investigation into the hydrodynamic effects on their structural integrity. Due to their unique nature, floating marshes could be susceptible to changes in the hydrodynamic environment that may result from proposed river freshwater and sediment diversion projects introducing flow to areas that are typically somewhat isolated. This study aims to improve the understanding of how thin mat floating marshes respond to increased hydrodynamic stresses and, more specifically, how higher water velocities might increase the washout probability of this vegetation type. There are two major components of this research: 1) A thorough measurement of the material properties of the vegetative mats as a root-soil matrix composite material; and 2) An accurate numerical simulation of the hydrodynamics and forces imposed on the floating marsh mats by the flow. To achieve these goals, laboratory and field experiments were conducted using a customized device to measure the bulk properties of typical floating marshes. Additionally, Delft-3D FLOW and ANSYS FLUENT were used to simulate the flow around a series of simplified mat structures in order to estimate the hydrodynamic forcings on the mats. The hydrodynamic forcings are coupled with a material analysis, allowing for a thorough analysis of their interaction under various conditions. The 2-way Fluid Structure Interaction (F.S.I.) between the flow and the mat is achieved by coupling a Finite Element Analysis (F.E.A.) solver in ANSYS with FLUENT. The flow conditions necessary for the structural failure of the floating marshes are determined for a multitude of mat shapes and sizes, leading to a quantifiable critical velocity required for washout. Ultimately, through dimensional analysis, an equation for washout potential will be developed from the results, which could be used as a design guideline.
Magnetic structure of the mixed antiferromagnet NdMn 0.8 Fe 0.2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalik, Matus; Mihalik, Marian; Hoser, Andreas
The magnetic structure of the mixed antiferromagnet NdMn 0.8Fe 0.2O 3 was resolved. Neutron powder diffraction data definitively resolve the Mn sublattice with a magnetic propagation vector k=(000) and with the magnetic structure (A x, F y, G z) for 1.6 K N(≈ 59 K). The Nd sublattice has a (0, f y, 0) contribution in the same temperature interval. The Mn sublattice undergoes a spin-reorientation transition at T 1 ≈ 13 K while the Nd magnetic moment abruptly increases at this temperature. Powder x-ray diffraction shows a strong magnetoelastic effect at T N but no additional structural phase transitionsmore » from 3 to 300 K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO 3 as part of our analysis. Taken together, these results show that the magnetic structure of the Mn sublattice in NdMn 0.8Fe 0.2O 3 is a combination of the Mn and Fe parent compounds, but the magnetic ordering of the Nd sublattice spans a broader temperature interval than in the case of NdMnO 3 and NdFeO 3. Lastly, this result is a consequence of the fact that the Nd ions do not order independently, but via polarization from the Mn/Fe sublattice.« less
Magnetic structure of the mixed antiferromagnet NdMn 0.8 Fe 0.2 O 3
Mihalik, Matus; Mihalik, Marian; Hoser, Andreas; ...
2017-10-27
The magnetic structure of the mixed antiferromagnet NdMn 0.8Fe 0.2O 3 was resolved. Neutron powder diffraction data definitively resolve the Mn sublattice with a magnetic propagation vector k=(000) and with the magnetic structure (A x, F y, G z) for 1.6 K N(≈ 59 K). The Nd sublattice has a (0, f y, 0) contribution in the same temperature interval. The Mn sublattice undergoes a spin-reorientation transition at T 1 ≈ 13 K while the Nd magnetic moment abruptly increases at this temperature. Powder x-ray diffraction shows a strong magnetoelastic effect at T N but no additional structural phase transitionsmore » from 3 to 300 K. Density functional theory calculations confirm the magnetic structure of the undoped NdMnO 3 as part of our analysis. Taken together, these results show that the magnetic structure of the Mn sublattice in NdMn 0.8Fe 0.2O 3 is a combination of the Mn and Fe parent compounds, but the magnetic ordering of the Nd sublattice spans a broader temperature interval than in the case of NdMnO 3 and NdFeO 3. Lastly, this result is a consequence of the fact that the Nd ions do not order independently, but via polarization from the Mn/Fe sublattice.« less
NASA Astrophysics Data System (ADS)
Zharvan, V.; Kamaruddin, Y. N. I.; Samnur, S.; Sujiono, E. H.
2017-05-01
Perovskite is an oxide alloy which has a structure of ABO3 (A = La, Nd, Sm, Gd; B = Fe, CO, Ni) and has an excellent catalytic activity and gas-sensitive properties. NdFeO3 and its derivatives are important candidates for gas sensors. In this study, the effect of molar ratio (x=0.1, 0.2 and 0.3) on crystal structure and morphology of Nd1+xFeO3 synthesized by solid state reaction method has been studied. Nd1+xFeO3 samples were prepared using Nd2O3 (99.99 %) and Fe2O3 (99.99 %) as precursors. All of the samples were characterized using XRD to identify the phase and using SEM to identify the morphology. The synthesized Nd1+xFeO3 samples showed that molar ratio strongly influences the intensity, FWHM, and crystalline size. The samples of Nd1+xFeO3 have homogenous morphology and have three major phases, i.e. NdFeO3, Nd(OH)3 and Nd2O3 with crystalline sizes of NdFeO3 of 137.0±0.1 nm, 152.2±0.1 nm and 137.0±0.1 nm for Nd1.1FeO3, Nd1.2FeO3, and Nd1.3FeO3, respectively. These results indicated that the sample of Nd1.2FeO3 was a good candidate for a gas sensor material.
Magnetic structure of the ferromagnetic new ternary silicide Nd5CoSi2.
Mayer, C; Gaudin, E; Gorsse, S; Porcher, F; André, G; Chevalier, B
2012-04-04
Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) Å as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3). © 2012 IOP Publishing Ltd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Liang, Le; Yang, Bin
2015-09-15
Systematic characterization of electronic structures in the (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B system, especially the 4f behavior, provides an insight to the physical nature of the evolution of magnetic properties. A series of X-ray photoelectron spectroscopy (XPS) core-level and valence-band spectra were used to study the electronic structures. It was found that substitution of Dy for Nd in Nd{sub 2}Fe{sub 14}B results in a nonlinear variation in the evolution of electronic structures. Only the finite coupling between the Nd 4f states and the Fe 3d states is found at both the Nd-rich regime and the Dy-rich regime. When the Dymore » concentration and the Nd concentration approach to be equal, a strong coupling between the Nd 4f states and the Fe 3d states is found, which results in a bonding state between them. Additionally, the 4f components in the (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B system are ascribed to three parts: 1) the individual contribution of the Dy 4f states, which emerges just after the Dy-substitution; 2) the contribution of the coupling between the Nd 4f states and the Dy 4f states, which arises only when 0.4 ≤ x ≤ 0.6; 3) the associated contributions of the Nd 4f states and the Dy 4f states, where the contribution of the Nd 4f states and that of the Dy 4f states are prominent in the Nd-rich regime and Dy-rich regime, respectively.« less
Probing structural changes in Ca(1-x)Nd2x/3TiO3 ceramics by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Lowndes, Robert; Deluca, Marco; Azough, Feridoon; Freer, Robert
2013-01-01
Ceramics in the system Ca(1-x)Nd2x/3TiO3, intended for mobile communication applications, exhibit grossly non-linear variations in microwave dielectric properties with composition. There is evidence of a structural transition and the formation of vacancies on the A-site of the perovskite structure. High density, single phase perovskite Ca(1-x)Nd2x/3TiO3 ceramics have been prepared by the mixed oxide route. Raman spectroscopy was used to investigate the structural variations, which impact on dielectric properties. The Raman spectra show that with increasing Nd content, there is a transition from an ordered structure, to a disordered arrangement of cations and vacancies, and back to an ordered arrangement in Ca0.1Nd0.6TiO3. A structural phase transition from orthorhombic Pbnm to monoclinic C2/m coincides with the order-disorder transition at Ca0.1Nd0.6TiO3. Polarized Raman spectroscopy facilitated the assignment of the Raman modes and investigation of the role of importance of domain structures. Large variation in the plane angles was attributed to differences in domain structures. Differences in the angular dependence of the Raman modes with Nd content reflect changes in the preferred orientation of the domains from lamellar twins, to wedge shaped and back to lamellar twins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn
2014-10-28
Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
18 CFR 1304.400 - Flotation devices and material, all floating structures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...
Mental correlates of neuromotoric deviation in 6-year-olds at heightened risk for schizophrenia.
McNeil, Thomas F; Cantor-Graae, Elizabeth; Blennow, Gösta
2003-04-01
The meaning and relevance of the increased rates of neuromotoric deviation (ND) observed in patients with schizophrenia and their biological relatives remain unclear. ND could represent free-floating, independent characteristics of individuals in these families vs. signs of an increased risk for current or future mental disorder. The co-temporaneous relationship between ND and mental disorder at 6 years of age was investigated among 31 children with an increased risk for schizophrenia and similar psychoses, defined as having a mother with a history of schizophrenia or unspecified functional psychosis. As compared with high-risk cases with a low level of ND, the subgroup of 10 high-risk offspring showing notably increased rates of ND had significantly more frequent psychiatric diagnoses (typically language disorders and enuresis), poor functioning on global assessment, poor interpersonal competency and high anxiety proneness. Neuromotoric items representing "overflow" (e.g., choreatic movements, tremor) were significantly positively related to each of these mental characteristics. Among high-risk offspring, an increased rate of ND is very clearly associated with increased rates of current mental disorder, and might potentially identify a subgroup with an especially high risk for serious mental disorder in the future.
Electronic structure of layered titanate Nd 2Ti 2O 7
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Gavrilova, T. A.; Grivel, J.-C.; Kesler, V. G.
2008-10-01
The electronic structure of the binary titanate Nd 2Ti 2O 7 has been studied by X-ray photoelectron spectroscopy (XPS). Spectral features of the valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Nd 2Ti 2O 7 are determined as αTi = 873.5 and αO = 1042.2 eV. Chemical bonding effects have been discussed with the binding energies differences ΔTi = (BE O 1s - BE Ti 2p 3/2) = 71.5 eV and ΔNd = (BE Nd 3d 5/2 - BE O 1s) = 452.5 eV as key parameters in comparison with those in other titanium- and neodymium-bearing oxides.
NASA Astrophysics Data System (ADS)
Sujiono, E. H.; Agus, J.; Samnur, S.; Triyana, K.
2018-05-01
The effects of molar ratios and sintering times on crystal structures and surface morphology on NdFeO3 oxide alloy have been studied. NdFeO3 oxide alloy formed by chemical preparation with solid reaction method using raw oxide Fe2O3 (99.9 %) and Nd2O3 (99.9 %) powders. In this article we reported the effects of molar ratios x = (–0.1, –0.2 and –0.3) and sintering times for 15 h and 20 h on crystal structures and surface morphology of Nd1+xFeO3 synthesized by solid-state reaction method. The results indicate that variation of molar ratio and sintering time has influenced the FWHM, crystalline size and grain size. The Nd1+xFeO3 have a major phase is NdFeO3, and other minor phases are Fe2O3, Nd2O3 and Nd(OH)3. The dominant intensity of hkl (121) with a value in FWHM, crystallite size, and grain size an indication the results will be applied as a gas sensor material as the focus of the further study.
Zhou, Sixuan; Mishra, Trinath; Wang, Man; Shatruk, Michael; Cao, Huibo; Latturner, Susan E
2014-06-16
The intermetallic compounds R2Co2SiC (R = Pr, Nd) were prepared from the reaction of silicon and carbon in either Pr/Co or Nd/Co eutectic flux. These phases crystallize with a new stuffed variant of the W2CoB2 structure type in orthorhombic space group Immm with unit cell parameters a = 3.978(4) Å, b = 6.094(5) Å, c = 8.903(8) Å (Z = 2; R1 = 0.0302) for Nd2Co2SiC. Silicon, cobalt, and carbon atoms form two-dimensional flat sheets, which are separated by puckered layers of rare-earth cations. Magnetic susceptibility measurements indicate that the rare earth cations in both analogues order ferromagnetically at low temperature (TC ≈ 12 K for Nd2Co2SiC and TC ≈ 20 K for Pr2Co2SiC). Single-crystal neutron diffraction data for Nd2Co2SiC indicate that Nd moments initially align ferromagnetically along the c axis around ∼12 K, but below 11 K, they tilt slightly away from the c axis, in the ac plane. Electronic structure calculations confirm the lack of spin polarization for Co 3d moments.
Structure and magnetic properties of Nd2Fe14B fine particles produced by spark erosion
NASA Astrophysics Data System (ADS)
Wan, H.; Berkowitz, A. E.
1994-11-01
At present Nd2Fe14B is the best permanent magnet because of its extremely high coercivity and energy product. Optimum properties of Nd2Fe14B magnets can be attained by producing single domain particles, and then aligning and compacting them. Due to the reactivity of the Nd constitutent, it is challenging to produce and handle a large amount of fine particles of this material. We have prepared fine particles of Nd2Fe14B by spark erosion with various dielectric media. Yield, size, size distribution, structure, and magnetic properties are discussed. The Nd2Fe14B particles were made by the sharker pot spark erosion method. Relaxation oscillators or a pulse generator were used to power the park erosion. Commercial Neomax 35 was employed as the primary material. The dielectric media were liquid Ar, Ar gas, and hydrocarbons, which provided an oxygen free environment. Structure and size were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and x-ray diffraction. Magnetic properties were measured by vibrating sample magnetometer (VSM) with temperatures in range of 4.2-1200 K. The particles produced in these three different dielectric media had different microstructures and crystal structures. The particles made in Ar gas were pure Nd2Fe14B phase. The particles made in liquid Ar were a mixture of amorphous and crystalline Nd2Fe14B, because the liquid Ar provided a much higher quench rate than Ar gas, which produced some amorphous Nd2Fe14B. Upon annealing, the amorphous particles became crystalline. The fine particles produced in hydrocarbons, such as pentane and dodecane, had more complex mixed phases, since the rare earth reacted with the hydrocarbons during the sparking process. The phases were NdC2, alpha-Fe, and amorphous and crystalline Nd2Fe14B. The effects of power parameters, such as voltage and capacitance, on particle size were investigated. Particle sizes from 20 nm to 50 microns were obtained.
NASA Astrophysics Data System (ADS)
Tulina, N. A.; Rossolenko, A. N.; Ivanov, A. A.; Sirotkin, V. V.; Shmytko, I. M.; Borisenko, I. Yu.; Ionov, A. M.
2016-08-01
Reverse and stable bipolar resistive switching effect (BRSE) was observed in planar Nd2-xCex CuO4-y/Nd2-xCexOx/Ag heterostructure. It was shown that the СVС of the BRSE observed has a diode character. Simulations were used to consider the influence of the nonuniform distribution of an electric field at the interface of a heterojunction on the effect of bipolar resistive switching in investigated structures. The inhomogeneous distribution of the electric field near the contact edge creates regions of higher electric field strength which, in turn, stimulates motion and redistribution of defects, changes of the resistive properties of the whole structure and formation of a percolation channel.
NASA Astrophysics Data System (ADS)
Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing
2018-05-01
Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).
NASA Astrophysics Data System (ADS)
Delmonte, B.; Petit, J. R.; Michard, A.; Basile-Doelsch, I.; Lipenkov, V.
2003-04-01
We investigated properties of the basal ice from Vostok ice core as well as the sediment inclusions within the accreted ice. The Vostok ice core preserves climatic information for the last 420 kyrs down to 3310m depth, but below this depth the horizontal layers of the climatic record are disrupted by the glacier dynamics. From 3450 m to 3538 m depth thin bedrock particles, as glacial flour, are entrapped. Glacial flour is released in the northern area lake, where glacier mostly melts and contributes to sediment accumulation. In the southern area, close to Vostok station, the lake water freezes and the upstream glacial flour does not contribute to sedimentation. The accreted ice contains visible sediment inclusions down to 3608 m (accretion ice 1), while below this depth and likely down to the water interface (˜3750 m), the ice is clear (accretion ice 2). The fine inclusions (1-2mm in diameter) from Accretion Ice 1 mostly consist of fine clays and quartz aggregates and we suggest they are entrained into ice as the glacier floats over shallow depth bay then it grounds against a relief rise. Afterward the glacier freely floats over the deep lake before reaching Vostok, and accreted ice 2 is clean. Sm-Nd dating of one of two inclusions at 3570 m depth gives 1.88 (+/-0.13)Ga (DM model age), corresponding to 1.47 Ga (TCHUR), suggesting a Precambrian origin. Also the isotopic signature of such inclusion (87Sr/86Sr= 0.8232 and eNd= -16) and that of a second one (87Sr/86Sr= 0.7999 and eNd= -15) are coherent with the nature of an old continental shield. Sediments that may initially accumulate in the shallow bay prior the Antarctic glaciation, should have been eroded and exported out of the lake by the glacier movement, this assuming processes for ice accretion and for sediment entrapping operate since a long time. As the glacial flour from upstream does not contribute to sedimentation, sediments need to be renewed at the surface of the bedrock rising question about the way of clay and quartz production. Among hypothesis, a tectonic and hydrothermal circulation appears a possible scenario. Local tectonic affecting deep faults may produce rock crushing and the tinny produced material might be conveyed through faults by hydrothermal circulation up to their vents at the surface where there are swept by glacier and included in accreted ice.
Tunability of morphological properties of Nd-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran
2016-11-01
In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.
Effects of high-temperature gas dealkalization on surface mechanical properties of float glass
NASA Astrophysics Data System (ADS)
Senturk, Ufuk
The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The contact damage behavior of the treated surfaces is shown to differ from those of untreated surfaces, for SOsb2-treated float glass, where the crack initiation characteristics indicate crack formation from the surface and the indenter tip, different than the expected anomalous deformation. This behavior resembles that of a silica glass deformation on the surface, which is in agreement with the other foundations in this study.
Crystal and electronic structure of the new quaternary sulfides TlLnAg2S3 (Ln = Nd, Sm and Gd)
NASA Astrophysics Data System (ADS)
Assoud, Abdeljalil; Shi, Yixuan; Guo, Quansheng; Kleinke, Holger
2017-12-01
The quaternary sulfides TlLnAg2S3 (Ln: Nd, Sm and Gd) were prepared via solid state reactions by heating the elements in the stoichiometric ratio under exclusion of air up to 750 °C. They are isostructural, adopting a new structure type in the space group Pnma with a = 13.8141(3) Å, b = 4.1649(1) Å, c = 11.4008(2) Å, V = 655.94(2) Å3, Z = 4 for TlNdAg2S3. The crystal structure contains AgS4 tetrahedra and LnS6 octahedra, which are interconnected to form linear chains running along the b axis. The melting point of TlNdAg2S3 was determined to be 540 °C. Electronic structure calculations show that these materials are semiconductors in agreement with their orange/yellow colors.
ERIC Educational Resources Information Center
Hardy, Ilonca; Jonen, Angela; Moller, Komelia; Stern, Elsbeth
2006-01-01
In a repeated measures design (pretest, posttest, 1-year follow-up) with 161 3rd-grade students, the authors compared 2 curricula on floating and sinking within constructivist learning environments, varying in instructional support. The 2 curricula differed in the sequencing of content and the teacher's cognitively structuring statements. At the…
NASA Astrophysics Data System (ADS)
Sahoo, Kishor Kumar; Singh Rajput, Shailendra; Gupta, Rajeev; Roy, Amritendu; Garg, Ashish
2018-02-01
We report the ferroelectric properties of pulsed laser deposited thin films of Nd and Ru co-doped bismuth titanate (Bi4-x Nd x Ti3-y Ru y O12). Structural analysis of the as-grown films, using x-ray diffraction, showed a single-phase formation with a polycrystalline structure. In comparison to un-doped and Nd-doped films, ferroelectric measurements on co-doped films demonstrated improved properties with remnant polarization (P r) ~ 12.5 µC cm-2 and an enhanced electrical fatigue life for Bi3.25Nd0.75Ti2.8Ru0.20O12 films. The enhancement in remanent polarization is attributed to microscopic changes, such as local structural distortion and the modification of the dynamical/effective charges on constituent ions due to chemical strain upon simultaneous Bi- (A) and Ti- (B) site doping with Nd and Ru, which has a far stronger effect than only A-site doping with Nd. Piezoresponse force microscopy further confirmed the polar structure and domain switching at nanoscale. The films exhibit small yet finite magnetization at 10 K resulting from strain.
NASA Astrophysics Data System (ADS)
Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita
2016-05-01
Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, T.V.; Efimova, T.G.; Lebedev, O.I.
2017-04-15
The phase equilibria in the ½Nd{sub 2}O{sub 3}–SrO–CoO system were systematically studied at 1373 K in air. The intermediate phases formed in the ½Nd{sub 2}O{sub 3}–SrO–CoO system at 1373 K in air are: Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.0≤x≤0.5 with orthorhombic structure, sp. gr. Pbnm and 0.6≤x≤0.95 whose structure was detected as cubic according to XRD sp. gr. Pm3m, but shown to be tetragonal by TEM due to the oxygen vacancy ordering), Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} (0.6≤y≤1.1 with tetragonal K{sub 2}NiF{sub 4}-type structure, sp. gr. I4/mmm) and Nd{sub 2-z}Sr{sub z}O{sub 3} (0.0≤z≤0.15 with hexagonal structure, sp. gr. P-3m1). The unit cellmore » parameters for the single phase samples were refined by the Rietveld analysis. The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} (0.6≤x≤0.95) and Ruddlesden-Popper oxide Nd{sub 2-y}Sr{sub y}CoO{sub 4-δ} were examined by TGA. All were found to be oxygen deficient phases. High-temperature dilatometry allows calculating the thermal expansion coefficient and evaluating the chemical expansion coefficient at high temperature. The projection of isothermal-isobaric phase diagram for the Nd–Sr–Co–O system at 1373 K in air to the compositional triangle of metallic components has been constructed. The phase equilibria in the studied Nd–Sr–Co–O system were compared to La–Sr–Co–O and Nd–M–Co–O (M=Ca and Ba). - Graphical abstract: Crystal structure of vacancy ordered supercell for Nd{sub 0.2}Sr{sub 0.8}CoO{sub 3-δ} and projection of phase diagram for the Nd–Sr–Co–O system onto the triangle edge of metallic components at 1373 K in air. - Highlights: • The diagram for the Nd–Sr–Co–O system at 1373 K in air has been constructed. • The crystal structure of Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} was refined. • The formation of superstructure due to the oxygen vacancy ordering was proved. • The changes of oxygen content in Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} and Nd{sub 2-y}Sr{sub y}CoO{sub 4±δ} were examined. • Thermal expansion and chemical expansion for Nd{sub 1-x}Sr{sub x}CoO{sub 3-δ} were evaluated.« less
Interfacial magnetic coupling in hetero-structure of Fe/double-perovskite NdBaMn2O6 single crystal
NASA Astrophysics Data System (ADS)
Lin, W. C.; Tsai, C. L.; Ogawa, K.; Yamada, S.; Gandhi, Ashish C.; Lin, J. G.
2018-04-01
The interfacial magnetic coupling between metallic Fe and the double-perovskite NdBaMn2O6 single crystal was investigated in the heterostructure of 4-nm Pd/10-nm Fe/NdBaMn2O6. A considerable magnetic coupling effect was observed in the temperature range coincident with the magnetic phase transition of NdBaMn2O6. When the temperature was elevated above 270 K, NdBaMn2O6 transformed from a state of antiferromagnetic fluctuating domains to a superparamagnetism-like (ferromagnetic fluctuation) state with high magnetic susceptibility. Concurrently, the interfacial magnetic coupling between the Fe layer and the NdBaMn2O6 crystal was observed, as indicated by the considerable squareness reduction and coercivity enhancement in the Fe layer. Moreover, the presence of the Fe layer changed the magnetic structure of NdBaMn2O6 from conventional 4-fold symmetry to 2-fold symmetry. These observations offer applicable insights into the mutual magnetic interaction in the heterostructures of metallic ferromagnetism/perovskite materials.
Lanthanite-(Nd), Nd2(CO3)3·8H2O
Morrison, Shaunna M.; Andrade, Marcelo B.; Wenz, Michelle D.; Domanik, Kenneth J.; Downs, Robert T.
2013-01-01
Lanthanite-(Nd), ideally Nd2(CO3)3·8H2O [dineodymium(III) tricarbonate octahydrate], is a member of the lanthanite mineral group characterized by the general formula REE 2(CO3)3·8H2O, where REE is a 10-coordinated rare earth element. Based on single-crystal X-ray diffraction of a natural sample from Mitsukoshi, Hizen-cho, Karatsu City, Saga Prefecture, Japan, this study presents the first structure determination of lanthanite-(Nd). Its structure is very similar to that of other members of the lanthanite group. It is composed of infinite sheets made up of corner- and edge-sharing of two NdO10-polyhedra (both with site symmetry ..2) and two carbonate triangles (site symmetries ..2 and 1) parallel to the ab plane, and stacked perpendicular to c. These layers are linked to one another only through hydrogen bonding involving the water molecules. PMID:23476479
Design of LaPO4:Nd3+ materials by using ionic liquids
NASA Astrophysics Data System (ADS)
Cybinska, J.; Guzik, M.; Lorbeer, C.; Zych, E.; Guyot, Y.; Boulon, G.; Mudring, A.-V.
2017-01-01
Monoclinic monazite-type Nd3+-doped lanthanum orthophosphate (LaPO4:Nd3+) nanoparticles were prepared by microwave treatment of simple lanthanide precursors such as Nd(OAc)3•xH2O, OAc = acetate) with task-specific dihydrogen phosphate ionic liquids (ILs) 1-butyl-1-methylpyrrolidinium dihydrogenphosphate- BmPyrH2PO4 (IL1) and 2-hydroxyethyl-N,N,N-trimethylammonium, [choline][H2PO4] (IL2) as the reaction medium, reactant and in-situ nanoparticle stabilizer. This synthesis route possesses many advantages as it is a fast and facile preparation method of the desired phosphate nanomaterials without the necessity for post-reaction heat treatment to obtain the anhydrous high temperature monazite phosphate phase. The nano-sized phosphors Nd3+:LaPO4 were carefully analyzed by the powder X-ray diffraction, electron microscopy and spectroscopic techniques taking advantage of the Nd3+ spectroscopic probe to analyze in detail the structural properties. Applied high resolution low temperature absorption and emission techniques allowed to complete the structural information unavailable from the XRD powder patterns. A clear influence of the used task-specific dihydrogen phosphate ILs on the structure, morphology, luminescence intensity and lifetimes of the obtained Nd3+:LaPO4 was found. It is worth noting that the Nd3+ luminescence in LaPO4 has never been reported up to now.
Effect of pore structure on the removal of clofibric acid by magnetic anion exchange resin.
Tan, Liang; Shuang, Chendong; Wang, Yunshu; Wang, Jun; Su, Yihong; Li, Aimin
2018-01-01
The effect of pore structure of resin on clofibric acid (CA) adsorption behavior was investigated by using magnetic anion exchange resins (ND-1, ND-2, ND-3) with increasing pore diameter by 11.68, 15.37, 24.94 nm. Resin with larger pores showed faster adsorption rates and a higher adsorption capacity because the more opened tunnels provided by larger pores benefit the CA diffusion into the resin matrix. The ion exchange by the electrostatic interactions between Cl-type resin and CA resulted in chloride releasing to the solution, and the ratio of released chloride to CA adsorption amount decreased from 0.90 to 0.65 for ND-1, ND-2 and ND-3, indicating that non-electrostatic interactions obtain a larger proportional part of the adsorption into the pores. Co-existing inorganic anions and organic acids reduced the CA adsorption amounts by the competition effect of electrostatic interaction, whereas resins with more opened pore structures weakened the negative influence on CA adsorption because of the existence of non-electrostatic interactions. 85.2% and 65.1% adsorption amounts decrease are calculated for resin ND-1 and ND-3 by the negative influence of 1 mmol L -1 NaCl. This weaken effect of organic acid is generally depends on its hydrophobicity (Log Kow) for carboxylic acid and its ionization degree (pKb) for sulfonic acid. The resins could be reused with the slightly decreases by 1.9%, 3.2% and 5.4% after 7 cycles of regeneration, respectively for ND-1, ND-2 and ND-3, suggesting the ion exchange resin with larger pores are against its reuse by the brine solution regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; ...
2017-02-24
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
Organic transistor memory with a charge storage molecular double-floating-gate monolayer.
Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai
2015-05-13
A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.
2003-08-15
floating structures create novel habitats for subtidal epibiota?, MARINE ECOLOGY -PROGRESS SERIES, 43-52 Mar. Ecol.- Prog. Ser., 2002 Vegueria, SFJ Godoy... ECOLOGICAL APPLICATIONS, 350-366 Ecol. Appl., 2000 Niedzwecki, JM van de Lindt, JW Gage, JH Teigen, PS, Design estimates of surface wave interaction with...The ecological effects beyond the offshore platform, Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management, v 2, n pt2, 1989, p
14 CFR 25.527 - Hull and main float load factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float load factors. 25.527... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.527 Hull and main... 1=empirical hull station weighing factor, in accordance with figure 2 of appendix B. (7) r x=ratio...
X-ray absorption studies of gamma irradiated Nd doped phosphate glass
NASA Astrophysics Data System (ADS)
Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.
2015-06-01
This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of LIII edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd3+ to Nd2+ in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd2O3 suggests that coordination geometry around Nd3+ in glass samples may be identical to that of Nd2O3.
Magnetic properties and magnetostriction of PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys at low temperature
NASA Astrophysics Data System (ADS)
Wang, Yong; Tang, Shao-Long; Li, Yu-Long; Xie, Ren; Du, You-Wei
2013-03-01
The crystal structure, magnetic and magnetostrictive properties of high-pressure synthesized PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys were studied. The alloys exhibit single cubic Laves phase with MgCu2-type structure. The initial magnetization curve reveals that Pr0.2Nd0.8Fe1.9 has a minimum magnetocrystalline anisotropy at 5 K. The magnetostriction curve at 5 K shows that Pr0.2Nd0.8Fe1.9 has a very good low-field magnetostrictive property, and the magnetostriction of the PrxNd1-xFe1.9 alloy in high magnetic field is attributable mainly to Pr. The temperature dependence of the magnetostriction (λ‖) at the field of 5 kOe shows that the substitution of Nd reduces the K1 remarkably, and the values of λ‖ of Pr0.2Nd0.8Fe1.9 and Pr0.8Nd0.2Fe1.9 alloys are nearly five times larger than that of the PrFe1.9 alloy below 50 K; the λ‖ of Pr0.8Nd0.2Fe1.9 reaches up to 1082 ppm at 100 K, which makes it a potential candidate for application in this temperature range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkendir, Osman Murat, E-mail: ozkendir@gmail.com
Highlights: • Crystal and electronic structure properties of Nd{sub x}Ti{sub 1−x}BO{sub 2+d} structure were investigated. • New crystal structures for Nd–Ti complexes are determined. • Distortions in the crystal structure were observed as a result of Boron shortage. • Prominent change in electronic properties of the samples with the increasing Nd amount. - Abstract: Neodymium substituted TiBO{sub 3} samples were investigated according to their crystal, electric and electronic properties. Studies were conducted by X-ray absorption fine structure spectroscopy (XAFS) technique for the samples with different substitutions in the preparation processes. To achieve better crystal structure results during the study, XRDmore » pattern results were supported by extended-XAFS (EXAFS) analysis. The electronic structure analysis were studied by X-ray absorption near-edge structure spectroscopy (XANES) measurements at the room temperatures. Due to the substituted Nd atoms, prominent changes in crystal structure, new crystal geometries for Nd-Ti complexes, phase transitions in the crystals structure were detected according to the increasing Nd substitutions in the samples. In the entire stages of the substitutions, Nd atoms were observed as governing the whole phenomena due to their dominant characteristics in Ti geometries. Besides, electrical resistivity decay was determined in the materials with the increasing amount of Nd substitution.« less
Beyond night float? The impact of call structure on internal medicine residents.
Rosenberg, M; McNulty, D
1995-02-01
Limitation of resident working hours has been a critical issue for training programs in recent years. At Providence Medical Center, residents and faculty collaborated in developing goals, implementation strategies, and an evaluation process for a new ward float system. The goals of the float system were to reduce fatigue, facilitate education, maintain continuity of care, and minimize the negative impact of training on residents' personal lives. Evaluation revealed: 1) 74% of the residents preferred Providence Medical Center float system (PMCF) to either night float (NF) (13%) or standard every-fourth-night call (EFNC) (13%); and 2) PMCF was perceived to ensure quality patient care to a greater degree than was NF, to better facilitate resident education than was NF, and to have a less negative impact on personal lives than was EFNC.
Superhyperfine Structure of the EPR Spectra of Nd3+ Impurity Ions in Fluorite CaF2
NASA Astrophysics Data System (ADS)
Aminov, L. K.; Gafurov, M. R.; Kurkin, I. N.; Malkin, B. Z.; Rodionov, A. A.
2018-05-01
EPR spectra of a CaF2 single crystal that was grown from melt containing a small addition of NdF3 were studied. Signals corresponding to tetragonal centers of Nd3+ ions and cubic centers of Er3+ and Yb3+ ions were found. Superhyperfine structure (SHFS) in the spectra of the Nd3+ ions was observed for the first time in this crystal; parameters of the superhyperfine interaction of the Nd3+ ions with the nearest nine fluorine ions were determined. The dependence of the resolution of the Nd3+ EPR spectrum SHFS on the incident microwave power at the temperature of T ≈ 6 K was studied. Obtained results are discussed and compared with the literature data.
Murtaza, Adil; Yang, Sen; Zhou, Chao; ...
2016-08-04
In this study, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb 1-xNd xCo 2 and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo 2-rich side is detected to be rhombohedral and that of NdCo 2-rich side is tetragonal below their respective Curie temperatures TC. The MPB composition Tb 0.35Nd 0.65Co 2 corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase ( T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb 0.35Nd 0.65Co 2 shows minimummore » magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb 1-xNd xCo 2 decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Finally, our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.« less
Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1-yNd y)O 2±x Solid Solution
Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.; ...
2016-02-02
The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less
NASA Astrophysics Data System (ADS)
Liu, Lihua; Sepehri-Amin, H.; Sasaki, T. T.; Ohkubo, T.; Yano, M.; Sakuma, N.; Kato, A.; Shoji, T.; Hono, K.
2018-05-01
Nd80Ga15Cu5 and Nd62Fe14Ga20Cu4 alloys were used as diffusion sources for the eutectic grain boundary diffusion process, applying to 4 mm-thick Nd-Fe-B hot-deformed magnets. Both samples showed nearly same coercivity of 2.2 T, while the sample processed with Nd62Fe14Ga20Cu4 showed smaller remanence deterioration from 1.50 T to 1.30 T, in contrast to that of the sample processed with Nd80Ga15Cu5 to 1.08 T. Mr/Ms of the initial sample and the samples processed with Nd62Fe14Ga20Cu4 and Nd80Ga15Cu5 were 0.946, 0.934 and 0.917, respectively, suggesting that the sample processed with Nd62Fe14Ga20Cu4 retains stronger c-axis texture after the diffusion process. Nd-rich phases with Ia3 ¯ and fcc structures were observed in the sample processed with Nd80Ga15Cu5, while the Nd-rich phases with the Ia3 ¯ and hcp structures were found in the sample processed with Nd62Fe14Ga20Cu4, all of which are the phases commonly observed in Nd-Fe-B sintered magnets.
Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor
NASA Technical Reports Server (NTRS)
Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)
2014-01-01
A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.
Investigation on demagnetization of Nd2Fe14B permanent magnets induced by irradiation
NASA Astrophysics Data System (ADS)
Li, Zhefu; Jia, Yanyan; Liu, Renduo; Xu, Yuhai; Wang, Guanghong; Xia, Xiaobin
2017-12-01
Nd2Fe14B is an important component of insertion devices, which are used in synchrotron radiation sources, and could be demagnetized by irradiation. In the present study, the Monte Carlo code FLUKA was used to analyze the irradiation field of Nd2Fe14B, and it was confirmed that the main demagnetization particle was neutron. Nd2Fe14B permanent magnet samples were irradiated by Ar ions at different doses to simulate neutron irradiation damage. The hysteresis loops were measured using a vibrating sample magnetometer, and the microstructure evolutions were characterized by transmission electron microscopy. Moreover, the relationship between them was discussed. The results indicate that the decrease in saturated magnetization is caused by the changes in microstructure. The evolution of single crystals into an amorphous structure is the reason for the demagnetization phenomenon of Nd2Fe14B permanent magnets when considering its microscopic structure.
Single-crystal and textured polycrystalline Nd2Fe14B flakes with a submicron or nanosize thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, BZ; Zheng, LY; Li, WF
2012-02-01
This paper reports on the fabrication, structure and magnetic property optimization of Nd2Fe14B single-crystal and [0 0 1] textured poly-nanocrystalline flakes prepared by surfactant-assisted high-energy ball milling (HEBM). Single-crystal Nd2Fe14B flakes first with micron and then with submicron thicknesses were formed via continuous basal cleavage along the (1 1 0) planes of the irregularly shaped single-crystal microparticles during the early stage of HEBM. With further milling, [0 0 1] textured polycrystalline submicron Nd2Fe14B flakes were formed. Finally, crystallographically anisotropic polycrystalline Nd2Fe14B nanoflakes were formed after milling for 5-6 h. Anisotropic magnetic behavior was found in all of the flake samples.more » Nd2Fe14B flakes prepared with either oleic acid (OA) or oleylamine (OY) as the surfactant exhibited similar morphology, structure and magnetic properties. Both the addition of some low-melting-point eutectic Nd70Cu30 alloy and an appropriate post-annealing can increase the coercivity of the Nd2Fe14B flakes. The coercivity of Nd2Fe14B nanoflakes with an addition of 16.7 wt.% Nd70Cu30 by milling for 5 h in heptane with 20 wt.% OY increased from 3.7 to 6.8 kOe after annealing at 450 degrees C for 0.5 h. The mechanism for formation and coercivity enhancement of Nd2Fe14B single-crystal and textured poly-nanocrystalline flakes with a submicron or nanosize thickness was discussed. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Shen, Yue-Ling; Mao, Jiang-Gao
2005-07-25
Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into a 1D two-unit repeating (zweier) chain via corner-sharing. These 1D copper(I) chloride chains are inserted into the tunnels of the neodymium(III) tellurite via Nd-Cl-Cu bridges. Luminescent studies show that ErCuTe(2)O(6)Cl and Nd(4)Cu(TeO(3))(5)Cl(3) exhibit strong luminescence in the near-IR region. Magnetic measurements indicate the antiferromagnetic interactions between magnetic centers in these compounds.
Plasma treatment switches the regime of wetting and floating of pepper seeds.
Shapira, Yekaterina; Multanen, Victor; Whyman, Gene; Bormashenko, Yelena; Chaniel, Gilad; Barkay, Zahava; Bormashenko, Edward
2017-09-01
Cold radiofrequency plasma treatment modified wetting and floating regimes of pepper seeds. The wetting regime of plasma-treated seeds was switched from the Wenzel-like partial wetting to the complete wetting. No hydrophobic recovery following the plasma treatment was registered. Environmental scanning electron microscopy of the fine structure of the (three-phase) triple line observed with virgin and plasma-treated seeds is reported. Plasma treatment promoted rapid sinking of pepper seeds placed on the water/air interface. Plasma treatment did not influence the surface topography of pepper seeds, while charged them electrically. Electrostatic repulsion of floating plasma-treated seeds was observed. The surface charge density was estimated from the data extracted from floating of charged seeds and independently with the electrostatic pendulum as σ≈1-2μC/m 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Zinatloo-Ajabshir, Sahar; Mortazavi-Derazkola, Sobhan; Salavati-Niasari, Masoud
2018-04-01
Nd 2 O 3 -SiO 2 nanocomposites with enhanced photocatalytic activity have been obtained through simple and rapid sonochemical route in presence of putrescine as a new basic agent, for the first time. The influence of the mole ratio of Si:Nd, basic agent and ultrasonic power have been optimized to obtain the best Nd 2 O 3 -SiO 2 nanocomposites on shape, size and photocatalytic activity. The produced Nd 2 O 3 -SiO 2 nanocomposites have been characterized utilizing XRD, EDX, TEM, FT-IR, DRS and FESEM. Application of the as-formed Nd 2 O 3 -SiO 2 nano and bulk structures as photocatalyst with photodegradation of methyl violet contaminant under ultraviolet illumination was compared. Results demonstrated that SiO 2 has remarkable effect on catalytic performance of Nd 2 O 3 photocatalyst for decomposition. By introducing of SiO 2 to Nd 2 O 3 , decomposition efficiency of Nd 2 O 3 toward methyl violet contaminant under ultraviolet illumination was increased. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao
2016-08-01
In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimummore » magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.« less
Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.
Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L
2017-04-28
High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.
Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.
2015-05-01
We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.
NASA Astrophysics Data System (ADS)
Wei, Jiaxing; Liu, Siyang; Liu, Xiaoqiang; Sun, Weifeng; Liu, Yuwei; Liu, Xiaohong; Hou, Bo
2017-08-01
The endurance degradation mechanisms of p-channel floating gate flash memory device with two-transistor (2T) structure are investigated in detail in this work. With the help of charge pumping (CP) measurements and Sentaurus TCAD simulations, the damages in the drain overlap region along the tunnel oxide interface caused by band-to-band (BTB) tunneling programming and the damages in the channel region resulted from Fowler-Nordheim (FN) tunneling erasure are verified respectively. Furthermore, the lifetime model of endurance characteristic is extracted, which can extrapolate the endurance degradation tendency and predict the lifetime of the device.
NASA Astrophysics Data System (ADS)
Liu, Liying; Qiu, Yongbin; Mai, Yongzhi; Wu, Qibai; Zhang, Haiyan
2015-11-01
A series of neodymium doped Li3V2-xNdx(PO4)3/C cathode materials have been successfully synthesized by a citric acid assisted sol-gel method. Nd doped samples (x ≤ 0.10) have well developed monoclinic structure of Li3V2(PO4)3 with enlarged unit cell volume. All samples present typical characteristics of paramagnetism in 4 < T ≤ 300 K, but the magnetic susceptibilities of Nd doped samples increase with Nd content (except for x = 0.15). Nd doped composites show better electrochemical property than that of the undoped one. Among them, the Li3V1.95Nd0.05(PO4)3/C displays the highest capacity and best cycle stability. The Li3V1.95Nd0.05(PO4)3/C presents the first discharge capacity of 129.2 mAh g-1 at 1 C rate in the voltage range of 3.0-4.3 V, 21.7% higher than that of Li3V2(PO4)3/C. And no capacity loss occurs after 100 cycles. The high structural stability, low charge-transfer resistance and rapid Li+ diffusion due to the presence of Nd3+ are mainly responsible for the superior electrochemical performance of Nd doped Li3V2(PO4)3/C cathode materials.
NASA Astrophysics Data System (ADS)
Lupei, A.; Lupei, V.; Hau, S.; Gheorghe, C.; Voicu, F.
2015-09-01
New spectroscopic data obtained from high resolution low temperature absorption and emission spectra of Nd3+ in mixed scandium aluminum garnets Y3ScxAl5-xO12 - (x = 0-2) translucent ceramics revealed transition dependent composition effects: modification of the shapes (Lorentz at x = 0 and 2, quasi-Gauss at x = 1, x-dependent asymmetric for other x values, with obvious multicenter structure for low x), widths and shifts of the lines. Nd3+ electronic structure dependence on structural changes with composition is analyzed in terms of nephelauxetic effect and maximum splitting of manifolds: Sc3+ co-doping reduces the nephelauxetic effect, and the increase of 4F3/2 splitting from 85 cm-1 (x = 0) to 98 cm-1 (x = 2) denotes the lowering of local symmetry. The multicenter structure and inhomogeneous broadening of Nd3+ lines is attributed to crystal field distributions determined by the random occupancy of the octahedral sites by Sc3+ and Al3+. For low x (0.2) the resolved two satellites S1, S2 that accompany Nd:YAG lines are correlated to anisotropic crystal field perturbations produced by the n.n. Sc3+ by analogy to those determined by Y3+-antisites (excess of Y3+ ions that enter in octahedral sites of the melt-grown YAG crystals). The temperature evolution of the Nd3+ spectral characteristics (line intensity, shift, broadening) in the 10-300 K range is analyzed in terms of thermal population of the Stark levels, of the effect on electron-phonon interaction and on lattice expansion. The relevance of the spectroscopic properties on the laser emission characteristics in these systems is discussed.
Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A.; Peiffer, Antoine; Schlipf, David
This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less
Air-Deployable Profiling Floats for Tropical Cyclone Research
NASA Astrophysics Data System (ADS)
Jayne, S. R.; Robbins, P.; Owens, B.; Ekholm, A.; Dufour, J. E.; Sanabia, E.
2016-02-01
The development of a smaller profiling float that can be launched from Hurricane Hunter aircraft offers the opportunity to monitor the upper-ocean thermal structure over a time span of many months. These Argo-type profiling floats can be deployed in advance of, or during, a tropical cyclone from any aircraft equipped with an A-sized (AXBT) launch tube, or from the stern ramp of a C-130. The floats have the same dimensions as an AXBT and weigh about 8.5 kg. Upon deployment, the floats parachute to the surface, detach and automatically begin their programmed mission. The recorded temperature data is averaged over 1-meter bins that are reported back via the Iridium satellite phone network, which is then automatically processed and posted to the GTS. The floats are also reprogrammable via the 2-way communication afforded by Iridium. We report on the results of deployments during the 2014 and 2015 hurricane seasons. Unique observations of the ocean response from Hurricane Ignacio are particularly noteworthy and will be presented. Further plans for continued development of floats include measuring salinity (from an inductive conductivity sensor) and observations of the surface wave field (measured by an onboard accelerometer) will also be described.
De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis
2014-03-28
New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.
One pot synthesis of exchange coupled Nd2Fe14B/alpha-Fe by pechini type sol-gel method.
Hussain, Abid; Jadhav, Abhijit P; Baek, Yeon Kyung; Choi, Hul Jin; Lee, Jaeho; Kang, Young Soo
2013-11-01
In this work, a combination of nanoparticles of Nd2Fe14B hard magnetic phase and alpha-Fe soft magnetic phase were synthesized by one pot chemical synthesis technique using sol-gel method. A gel of Nd-Fe-B was prepared using NdCl3 x 6H2O, FeCl3 x 6H2O, H3BO3, citric acid, and ethylene glycol by pechini type sol-gel method. The gel was subsequently calcined and annealed to obtain the mixed oxide powders. The produced metal oxide particles were identified with XRD, SEM, TEM to obtain the crystal structure, shape and domain structure of them. The nanoparticles of mixed phase of Nd2Fe14B/alpha-Fe were obtained from these oxides by a process of reduction-diffusion in vacuum by employing CaH2 as reducing agent. During this process it was optimized by controlling temperature, reaction time and concentration of the reducing agent (CaH2). The phase formation of Nd2Fe14B was resulted by the direct diffusion of NdH2, Fe and B. The magnetic property of produced hard and soft phases was successfully identified with vibrating sample magnetometer (VSM). The mixed domains of the hard and soft phases were identified with selected area electron diffraction method (SAED) patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iturbe-Zabalo, E., E-mail: iturbe@ill.fr; Fisika Aplikatua II Saila, Zientzia eta Teknologia Fakultatea, UPV/EHU, P.O. Box 644, 48080 Bilbao; Igartua, J.M.
2013-02-15
Crystal structures of SrNdZnRuO{sub 6}, SrNdCoRuO{sub 6}, SrNdMgRuO{sub 6} and SrNdNiRuO{sub 6} double perovskites have been studied by X-ray, synchrotron radiation and neutron powder diffraction method, at different temperatures, and using the symmetry-mode analysis. All compounds adopt the monoclinic space group P2{sub 1}/n at room-temperature, and contain a completely ordered array of the tilted MO{sub 6} and RuO{sub 6} octahedra, whereas Sr/Nd cations are completely disordered. The analysis of the structures in terms of symmetry-adapted modes of the parent phase allows the identification of the modes responsible for the phase-transition. The high-temperature study (300-1250 K) has shown that the compoundsmore » present a temperature induced structural phase-transition: P2{sub 1}/n{yields}P4{sub 2}/n{yields}Fm3{sup Macron }m. - Graphical abstract: Representation of the dominant distortion modes of the symmetry mode decomposition of the room-temperature (P2{sub 1}/n), intermediate (P4{sub 2}/n) and cubic (Fm-3m) phase SrNdMRuO{sub 6} (M=Zn,Co,Mg,Ni), with respect to the parent phase Fm-3m. The dominant distortion modes are: in the monoclinic phase-GM{sub 4}{sup +} (blue arrow), X{sub 3}{sup +} (green arrow) and X{sub 5}{sup +} acting on A-site cations (red arrow); in the tetragonal phase-GM{sub 4}{sup +} (pink arrow), X{sub 3}{sup +} (light blue arrow) and X{sub 5}{sup +} acting on A-site cations (brown arrow). Highlights: Black-Right-Pointing-Pointer Structural study of four ruthenate double perovskites. Black-Right-Pointing-Pointer Room-temperature structural determination using symmetry-mode procedure. Black-Right-Pointing-Pointer Determination of temperature induced structural phase-transitions. Black-Right-Pointing-Pointer Symmetry adapted-mode analysis.« less
Intermediate phases in some rare earth-ruthenium systems
NASA Technical Reports Server (NTRS)
Sharifrazi, P.; Raman, A.; Mohanty, R. C.
1984-01-01
The phase equilibria and crystal structures of intermediate phases were investigated in eight representative RE-Ru systems using powder X-ray diffraction and metallographic techniques. The Fe3C, Mn5C2 and Er5Ru3 structures occur in all but the Ce-Ru systems. Phases analogous to Er5Ru3 possess an unknown crystal structure similar to Er5Rh3(I). MgCu2 and MgZn2 type Laves phases are encountered in the light rare earth and heavy rare earth systems, respectively, and RERu2 phases, where RE = Nd and Sm, possess both the Laves phase structures. An intermediate phase, NdRu, with an unknown structure, occurs only in the Nd-Ru system. A bcc structure with 40 atoms per unit cell is encountered in the phases Er3Ru2 and Y3Ru2. The behavior of cerium in Ce-Ru alloys is unique in that four unidentified structures, not encountered in other RE-Ru systems, have been encountered. Also a phase designated as Ce3Ru is found with the Th7Fe3 type structure.
NASA Astrophysics Data System (ADS)
Vázquez, G. V.; Muñoz H., G.; Camarillo, I.; Falcony, C.; Caldiño, U.; Lira, A.
2015-08-01
Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd-Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron-phonon coupling between Nd3+ and free OH- ions, which is consistent with the phonon energy maximum (3442.1 cm-1) recorded by Raman spectroscopy. This strong electron-phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2 → 4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2 → 4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2 → 4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2 → 4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.
A case study of middle size floating airports for shallower and deeper waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Koichiro; Suzuki, Hideyuki; Nishigaki, Makoto
1996-12-31
Demands for large and middle size airports are expanding in Japan with continuous increase of air transportation. However these demands will not be satisfied without effective ocean space utilization. Most of the wide and shallower waters suitable for reclamation have already been reclaimed. Furthermore those shallower waters are generally close to the residential area, and noise and environmental problems will be caused if they were used for airports. Deeper waters, which are relatively distant from the shore, are suitable for airport but reclamation of these waters are extremely difficult. This paper presents a structural planning of an open sea typemore » middle size floating airport to promote local economy and also improve transportation infrastructure of isolated islands. The airports of this plan are a semisubmersible type floating structure with a relatively thin deck, a number of slender columns and large size lower hulls. The floating structure is moored by inclined tension legs to restrain the motion. The diameter of the leg becomes much larger compared with the legs of existing tension leg platforms. Parameters related to the configuration of the floating structure and the mooring system are determined by comparing analyses results with the proper design criteria. Several kinds of static and dynamic computer programs are used in the planning. The proposed structural plan and the mooring system are considered as a typical floating airport appropriate for the open sea.« less
Liston, S.E.; Trexler, J.C.
2005-01-01
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (???1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and ???100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-??m-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3x to 15x from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30%, and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem. ?? 2005 by The North American Benthological Society.
Zhang, D. L.; Huang, W. C.; Chen, Z. W.; Zhao, W. B.; Feng, L.; Li, M.; Yin, Y. W.; Dong, S. N.; Li, X. G.
2017-01-01
Here, we report the structure evolution, magnetic and ferroelectric properties in Co-doped 4- and 3-layered intergrowth Aurivillius compounds Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ. The compounds suffer a structure evolution from the parent 4-layered phase (Bi4NdTi3FeO15) to 3-layered phase (Bi3NdTi2CoO12-δ) with increasing cobalt doping level from 0 to 1. Meanwhile the remanent magnetization and polarization show opposite variation tendencies against the doping level, and the sample with x = 0.3 has the largest remanent magnetization and the smallest polarization. It is believed that the Co concentration dependent magnetic properties are related to the population of the Fe3+ -O-Co3+ bonds, while the suppressed ferroelectric polarization is due to the enhanced leakage current caused by the increasing Co concentration. Furthermore, the samples (x = 0.1–0.7) with ferromagnetism show magnetoelectric coupling effects at room temperature. The results indicate that it is an effective method to create new multiferroic materials through modifying natural superlattices. PMID:28272495
NASA Astrophysics Data System (ADS)
Chin, Chun-Mann; Paria Sena, Robert; Hunter, Emily C.; Hadermann, Joke; Battle, Peter D.
2017-07-01
Polycrystalline samples of CaLn2Ni2WO9 (Ln=La, Pr, Nd) have been synthesized and characterised by a combination of X-ray and neutron diffraction, electron microscopy and magnetometry. Each composition adopts a perovskite-like structure with a 5.50, b 5.56, c 7.78 Å, β 90.1° in space group P21/n. Of the two crystallographically distinct six-coordinate sites, one is occupied entirely (Ln=Pr) or predominantly (Ln=La, Nd) by Ni2+ and the other by Ni2+ and W6+ in a ratio of approximately 1:2. None of the compounds shows long-range magnetic order at 5 K. The magnetometry data show that the magnetic moments of the Ni2+ cations form a spin glass below 30 K in each case. The Pr3+ moments in CaPr2Ni2WO9 also freeze but the Nd3+ moments in CaNd2Ni2WO9 do not. This behaviour is contrasted with that observed in other (A,A')B2B'O9 perovskites.
Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.
Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan
2018-01-15
Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.
The response of pile-guided floats subjected to dynamic loading.
DOT National Transportation Integrated Search
2014-08-01
Pile-Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis for esti...
Synthesis and characterization of iron based superconductor Nd-1111
NASA Astrophysics Data System (ADS)
Alborzi, Z.; Daadmehr, V.
2018-06-01
Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.
NASA Astrophysics Data System (ADS)
Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji
2012-02-01
A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Chao; Hong Fashui; Wu Kang
Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd{sup 3+} treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gelmore » electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd{sup 3+}-treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd{sup 3+}-treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively.« less
Preparation of γ-Al2O3 films by laser chemical vapor deposition
NASA Astrophysics Data System (ADS)
Gao, Ming; Ito, Akihiko; Goto, Takashi
2015-06-01
γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.
Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper
NASA Astrophysics Data System (ADS)
Hu, Yaqi; He, Erming
2017-12-01
Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.
Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia.
Syakti, Agung Dhamar; Bouhroum, Rafika; Hidayati, Nuning Vita; Koenawan, Chandra Joei; Boulkamh, Abdelaziz; Sulistyo, Isdy; Lebarillier, Stephanie; Akhlus, Syafsir; Doumenq, Pierre; Wong-Wah-Chung, Pascal
2017-09-15
Qualitative analysis of the structures of the polymers composing floating plastic debris was performed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the aging of the debris was assessed by measuring carbonyl group formation on the particle surfaces. Plastic material made up >75% of the 2313 items collected during a three-year survey. The size, shape and color of the microplastic were correlated with the polymer structure. The most abundant plastic materials were polypropylene (68%) and low-density polyethylene (11%), and the predominant colors of the plastics were white, blue and green. Cilacap Bay, Indonesia, was contaminated with microplastic at a concentration of 2.5mg·m 3 . The carbonyl index demonstrated that most of the floating microplastic was only slightly degraded. This study highlights the need to raise environmental awareness through citizen science education and adopting good environmental practices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparative electronic structure of a lanthanide and actinide diatomic oxide: Nd versus U
NASA Astrophysics Data System (ADS)
Krauss, M.; Stevens, W. J.
2003-01-01
Using a modified version of the Alchemy electronic structure code and relativistic pseudopotentials, the electronic structure of the ground and low lying excited states of UO, NdO, and NdO + have been calculated at the Hartree-Fock (HF) and multiconfiguration self-consistent field (MCSCF) levels of theory. Including results from an earlier study of UO + this provides the information for a comparative analysis of a lanthanide and an actinide diatomic oxide. UO and NdO are both described formally as M +2 O -2 and the cations as M +3 O -2 , but the HF and MCSCF calculations show that these systems are considerably less ionic due to large charge back-transfer in the πorbitals. The electronic states putatively arise from the ligand field (oxygen anion) perturbed f 4 , sf 3 , df 3 , sdf 2 , or s 2 f 2 states of M +2 and f 3 , sf 2 or df 2 states of M +3 . Molecular orbital results show a substantial stabilization of the sf 3 or s 2 f 2 configurations relative to the f 4 or df 3 configurations that are the even or odd parity ground states in the M +2 free ion. The compact f and d orbitals are more destabilized by the anion field than the diffuse s orbital. The ground states of the neutral species are dominated by orbitals arising from the M +2 sf 3 term, and all the potential energy curves arising from this configuration are similar, which allows an estimate of the vibrational frequencies for UO and NdO of 862 cm -1 and 836 cm -1 , respectively. For NdO + and UO + the excitation energies for the Ωstates were calculated with a valence configuration interaction method using ab initio effective spin-orbit operators to couple the molecular orbital configurations. The results for NdO + are very comparable with the results for UO + , and show the vibrational and electronic states to be interleaved.
NASA Astrophysics Data System (ADS)
Palade, C.; Lepadatu, A. M.; Slav, A.; Lazanu, S.; Teodorescu, V. S.; Stoica, T.; Ciurea, M. L.
2018-01-01
Trilayer memory capacitors with Ge nanocrystals (NCs) floating gate in HfO2 were obtained by magnetron sputtering deposition on p-type Si substrate followed by rapid thermal annealing at relatively low temperature of 600 °C. The frequency dispersion of capacitance and resistance was measured in accumulation regime of Al/HfO2 gate oxide/Ge NCs in HfO2 floating gate/HfO2 tunnel oxide/SiOx/p-Si/Al memory capacitors. For simulation of the frequency dispersion a complex circuit model was used considering an equivalent parallel RC circuit for each layer of the trilayer structure. A series resistance due to metallic contacts and Si substrate was necessary to be included in the model. A very good fit to the experimental data was obtained and the parameters of each layer in the memory capacitor, i.e. capacitances and resistances were determined and in turn the intrinsic material parameters, i.e. dielectric constants and resistivities of layers were evaluated. The results are very important for the study and optimization of the hysteresis behaviour of floating gate memories based on NCs embedded in oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com
2014-05-01
Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decompositionmore » of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.« less
Development of Multi-Layered Floating Floor for Cabin Noise Reduction
NASA Astrophysics Data System (ADS)
Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung
2017-12-01
Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.
NASA Astrophysics Data System (ADS)
Menushenkov, V. P.; Shchetinin, I. V.; Chernykh, S. V.; Savchenko, A. G.; Gorshenkov, M. V.; Zhukov, D. G.
2017-10-01
The effect of severe plastic deformation (SPD) by torsion and subsequent annealing on the structure and magnetic properties of the cast Nd9.5Fe84.5B6 alloy is studied. SPD by torsion is shown to lead to partial amorphization of the Nd2Fe14B phase and the precipitation of α-Fe; subsequent annealing results in the crystallization of the amorphous phase and the formation of a nanocomposite Nd2Fe14B/α-Fe structure. After SPD by torsion at 20 revolutions and annealing at 873 K, the (101) texture is formed; in this case, the coercive force is H c = 360 kA/m and the maximum energy product is ( BH) max = 166 kJ/m3. The residual magnetization and the squareness ratio of the hysteretic loop of the textured alloy decrease as the ambient temperature decreases.
Science and engineering of nanodiamond particle surfaces for biological applications (Review).
Shenderova, Olga A; McGuire, Gary E
2015-09-05
Diamond has outstanding bulk properties such as super hardness, chemical inertness, biocompatibility, luminescence, to name just a few. In the nanoworld, in order to exploit these outstanding bulk properties, the surfaces of nanodiamond (ND) particles must be accordingly engineered for specific applications. Modification of functional groups on the ND's surface and the corresponding electrostatic properties determine their colloidal stability in solvents, formation of photonic crystals, controlled adsorption and release of cargo molecules, conjugation with biomolecules and polymers, and cellular uptake. The optical activity of the luminescent color centers in NDs depends on their proximity to the ND's surface and surface termination. In order to engineer the ND surface, a fundamental understanding of the specific structural features and sp(3)-sp(2) phase transformations on the surface of ND particles is required. In the case of ND particles produced by detonation of carbon containing explosives (detonation ND), it should also be taken into account that its structure depends on the synthesis parameters and subsequent processing. Thus, for development of a strategy of surface modification of detonation ND, it is imperative to know details of its production. In this review, the authors discuss ND particles structure, strategies for surface modification, electrokinetic properties of NDs in suspensions, and conclude with a brief overview of the relevant bioapplications.
Nd3Ge1.18In0.82 and Sm3Ge1.33In0.67 - New ternary indides with La3GeIn type structure
NASA Astrophysics Data System (ADS)
Kravets, Oksana; Nychyporuk, Galyna; Muts, Ihor; Hlukhyy, Viktor; Pöttgen, Rainer; Zaremba, Vasyl'
2014-06-01
New indides, Nd3Ge1.18In0.82 and Sm3Ge1.33In0.67, were synthesized from the elements by arc-melting and subsequent annealing at 870 K. Single crystals were grown through special annealing procedures in sealed tantalum tubes in a resistance furnace. Both compounds were investigated on the basis of X-ray powder and single crystal data: La3GeIn type structure, Pearson code tI80, space group I4/mcm; a = 1200.1(1), c = 1562.8(1) pm, wR2 = 0.0781, 716 F2 values, 34 variables for Nd3Ge1.18In0.82 and a = 1184.7(2), c = 1537.0(3) pm, wR2 = 0.0305, 911 F2 values, 34 variables for Sm3Ge1.33In0.67. The crystal chemistry in Nd3Ge1.18In0.82 is discussed from a geometrical point of view and in terms of LMTO band structure calculations.
The response of pile-guided floats subjected to dynamic loading : volume I final report.
DOT National Transportation Integrated Search
2014-08-01
Pile : - : Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis fo...
The response of pile-guided floats subjected to dynamic loading : volume II annex.
DOT National Transportation Integrated Search
2014-08-01
Pile-Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis for esti...
Importance of uniaxial compression for the appearance of superconductivity in NdO1-xFxBiS2
NASA Astrophysics Data System (ADS)
A, Omachi; T, Hiroi; J, Kajitani; O, Miura; Y, Mizuguchi
2014-05-01
We have investigated the crystal structure and superconducting properties of the new layered superconductor NdO1-xFxBiS2. Bulk superconductivity with a Tc above 4.5 K was observed. It was found that the Tc depended on both F concentration and crystal structure. Uniaxial compression along the c axis upon F substitution seemed to be linked with the appearance of bulk superconductivity. Furthermore, we considered that a higher Tc can be achieved when the c/a parameter was optimized in the NdO1-xFxBiS2 system.
Harpenslager, Sarah F.; Smolders, Alfons J. P.; Kieskamp, Ariët A. M.; Roelofs, Jan G. M.; Lamers, Leon P. M.
2015-01-01
Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3 - use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504
High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.
2015-03-01
Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less
Di-μ-but-2-enoato-bis[diaquabis(but-2-enoato)neodymium(III)] 2,6-diaminopurine disolvate
Atria, Ana María; Astete, Alan; Garland, Maria Teresa; Baggio, Ricardo
2011-01-01
The title Nd complex [Nd2(C4H5O2)6(H2O)4]·2C5H6N6 is isotypic with two previously reported Dy and Ho isologues. It is composed of [Nd(crot)3(H2O)2]2 dimers [crot(onate) = but-2-enoate = C4H5O2], built up around symmetry centres and completed by 2,6-diaminepurine molecules acting as solvates. The neodymium cations are coordinated by three chelating crotonato units and two water molecules. One of the chelating carboxylates acts also in a bridging mode, sharing one oxygen with both cations, and the final result is a pair of NdO9 tricapped prismatic polyhedra linked to each other through a central (Nd—O)2 loop. A most attractive aspect of the structures resides in the existence of a complex intermolecular hydrogen-bonding interaction scheme involving two sets of tightly interlinked, non-intersecting one-dimensional structures, one of them formed by the [Nd(crot)3(H2O)2]2 dimers running along [100] and the second by the solvate molecules evolving along [010]. PMID:22058842
Magnetic and structural instabilities in CePd 2Al 2 and LaPd 2Al 2
NASA Astrophysics Data System (ADS)
Chapon, L. C.; Goremychkin, E. A.; Osborn, R.; Rainford, B. D.; Short, S.
2006-05-01
We have investigated the crystal and magnetic structure of the RPd 2Al 2 compounds (R=La, Ce) by neutron powder diffraction (ND) and inelastic neutron scattering (INS). The ND study shows that both compounds undergo a structural phase transition from tetragonal to orthorhombic symmetry at 91.5 K (La) and 13.5 K (Ce). In the case of CePd 2Al 2 the crystal field excitation spectrum, which has an extra peak that cannot be explained by a standard crystal field model, indicates the presence of strong magneto-elastic coupling.
Characterization of CdGeAs 2 grown by the float zone technique under microgravity
NASA Astrophysics Data System (ADS)
Labrie, D.; George, A. E.; Simpson, A. M.; Paton, B. E.; Ginovker, A.; Saghir, M. Z.
2000-01-01
One polycrystalline and one single-crystal CdGeAs 2 feed rods with 9 mm diameter were processed by the float-zone technique under microgravity on SPACEHAB-SH04 during the STS-77 Space Shuttle Endeavour mission. An eutectic salt of LiCl and KCl was used as an encapsulant to suppress Cd and As evaporation from the melt. Post-flight chemical, structural, electronic, and optical characterization of the two samples is presented. Single-crystal growth was achieved using a seed crystal.
NASA Astrophysics Data System (ADS)
Cobb, Charles M.; Spencer, Paulette; McCollum, Mark H.
1995-05-01
Specimens consisted of 18 extracted single rooted teeth unaffected by periodontal disease. After debriding roots, specimens were randomly divided into 4 treatment groups and subjected to a single pass, at varying energy densities, of a CO2, Nd:YAG, and Nd:YAG with air/water surface cooling (Nd:YAG-C). The rate of exposure was controlled at 4 mm/sec. Approximate energy densities were: CO2, 138, 206, 275, and 344 J/cm2; Nd:YAG, 114, 171, 229, and 286 J/cm2; Nd:YAG-C, 286, 343, 514, and 571 J/cm2. The CO2 laser was used both in continuous and pulsed beam modes (20 Hz, 0.01 sec pulse length and 0.8 mm dia spot size) whereas the Nd:YAG and Nd:YAG-C were preset at 50 Hz, 0.08 sec pulse length and 0.6 mm dia spot size. Specimen examination by SEM revealed, for all lasers, a direct correlation between increasing energy densities and depth of tissue ablation and width of tissue damage. However, to achieve the same relative dept of tissue ablation, the Nd:YAG-C required higher energy densities than either the CO2 or Nd:YAG lasers. The Nd:YAG-C generated a cavitation with sharply defined margins. Furthermore, regardless of energy density, and in contrast with other laser types, areas treated with the Nd:YAG-C did not exhibit collateral zones of heat damaged surface tissue.
30 CFR 250.912 - What plans must I submit under the Platform Verification Program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating structures, all the primary load-bearing members included in the space-frame analysis; and (3) A summary...
Textured Nd2Fe14B flakes with enhanced coercivity
NASA Astrophysics Data System (ADS)
Cui, B. Z.; Zheng, L. Y.; Marinescu, M.; Liu, J. F.; Hadjipanayis, G. C.
2012-04-01
Morphology, structure, and magnetic properties of the [001] textured Nd2Fe14B nanocrystalline flakes prepared by surfactant-assisted high energy ball milling (HEBM) and subsequent annealing were studied. These flakes have a thickness of 80-200 nm, a length of 0.5-10 μm, and an average grain size of 10-14 nm. The addition of some amount of Dy, Nd70Cu30 alloy, and an appropriate post annealing increased the coercivity iHc of the Nd2Fe14B flakes. iHc was 3.7, 4.3, and 5.7 kOe for the Nd15.5Fe78.5B6, Nd14Dy1.5Fe78.5B6 and 83.3 wt.% Nd14Dy1.5Fe78.5B6 + 16.7 wt.% Nd70Cu30 flakes prepared by HEBM for 5 h in heptane with 20 wt.% oleylamine, respectively. After annealing at 450 °C for 0.5 h, their iHc increased to 5.1, 6.2, and 7.0 kOe, respectively. Anisotropic magnetic behavior was found in all of the as-milled and annealed flakes. Both, the thickening of Nd-rich phase at grain boundaries via diffusion of Nd70Cu30 and the surface modification of the Nd2Fe14B flake could be the main reasons for the coercivity enhancement in the as-milled and annealed Nd70Cu30-added Nd2Fe14B flakes.
Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Vitreous Rare Earth Sodium Phosphates
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Shibata, Tomohiro
2015-03-01
The local structure around rare-earth ions (RE3+) in rare-earth ultraphosphate (REUP) glasses has been studied using RE LIII edge (RE = Nd, Er, Dy, and Eu) and K edge (RE = Nd, Pr, Dy, and Eu) extended X-ray absorption fine structure (EXAFS) spectroscopy. (RE2O3)x (Na2O)y(P2O5) 1 - x - y glasses in the compositional range 0 <= x <= 0.14 and x + y = 0.3 and 0.4 were studied. RE-oxygen (RE-O) coordination number decreases from ~ 10 to ~ 7.5 with increasing RE-content for Nd, Pr, Eu, and Dy. For Er, RE-O coordination number increases from ~ 8.7 to ~ 10 with increasing RE-content. For the first oxygen shell, the RE-O distance ranges between 2.41-2.43 Å, 2.44-2.46 Å, 2.24-2.26 Å, 2.28-2.32 Å, and 2.32-2.36 Å for Nd, Pr, Er, Dy, and EU glasses, respectively. Second shell around RE ions consists of phosphorus atoms, with RE-P distance about 3.0-3.5 Å and coordination number ranging from 1 to 3. The third shell primarily contains oxygen and is at a distance about 4.0-4.1 Å from RE ions.
14 CFR 25.529 - Hull and main float landing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float landing conditions. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.529 Hull and main.... (b) Unsymmetrical landing for hull and single float seaplanes. Unsymmetrical step, bow, and stern...
Structural and optical properties of nano-sized K3Nd(PO4)2:Yb3+ orthophosphate.
Mizer, D; Macalik, L; Tomaszewski, P E; Lisiecki, R; Godlewska, P; Matraszek, A; Szczygieł, I; Zawadzki, M; Hanuza, J
2009-09-01
Nanocrystals of tripotassium neodymium bis-phosphate(V) doped with ytterbium ions, K3Nd(PO4)2: Yb3+, were synthesized by Pechini method. The obtained grains, having an average size of about 40 nm, were characterised by X-ray, electron microscopic, electron absorption, luminescence and IR studies. Moreover, fluorescence decay studies were carried out at room temperature. The energy transfer from the Nd3+ to Yb3+ was described and discussed. The results were compared to those of the K3Nd(PO4)2 bulk crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarema, Maksym; Swiss Federal Laboratories for Materials Science and Technology; Zaremba, Oksana
The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formationmore » of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. Black-Right-Pointing-Pointer The structure of R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms. Black-Right-Pointing-Pointer In the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets.« less
Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound
Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian
2015-01-01
In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time. PMID:26471964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.
The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less
Magnetic correlations in the intermetallic antiferromagnet Nd3Co4Sn13
NASA Astrophysics Data System (ADS)
Wang, C. W.; Lin, J. W.; Lue, C. S.; Liu, H. F.; Kuo, C. N.; Mole, R. A.; Gardner, J. S.
2017-11-01
Specific heat, magnetic susceptibility, and neutron scattering have been used to investigate the nature of the spin system in the antiferromagnet Nd3Co4Sn13. At room temperature Nd3Co4Sn13 has a cubic, Pm-3n structure similar to Yb3Rh4Sn13. Antiferromagnetic interactions between, Nd3+ ions dominate the magnetic character of this sample and at 2.4 K the Nd spins enter a long range order state with a magnetic propagation vector q = (0 0 0) with an ordered moment of 1.78(2) µ B at 1.5 K. The magnetic Bragg intensity grows very slowly below 1 K, reaching ~2.4 µ B at 350 mK. The average magnetic Nd3+ configuration corresponds to the 3D irreducible representation Γ7. This magnetic structure can be viewed as three sublattices of antiferromagnetic spin chains coupled with each other in the 120°-configuration. A well-defined magnetic excitation was measured around the 1 1 1 zone centre and the resulting dispersion curve is appropriate for an antiferromagnet with a gap of 0.20(1) meV.
Royanian, E; Bauer, E; Kaldarar, H; Galatanu, A; Khan, R T; Hilscher, G; Michor, H; Reissner, M; Rogl, P; Sologub, O; Giester, G; Gonçalves, A P
2009-07-29
Novel ternary compounds, M(2)Pd(14+x)B(5-y) (M = La, Ce, Pr, Nd, Sm, Eu, Gd, Lu, Th; x∼0.9, y∼0.1), have been synthesized by arc melting. The crystal structures of Nd(2)Pd(14+x)B(5-y) and Th(2)Pd(14+x)B(5-y) were determined from x-ray single-crystal data and both are closely related to the structure type of Sc(4)Ni(29)B(10). All compounds were characterized by Rietveld analyses and found to be isotypic with the Nd(2)Pd(14+x)B(5-y) type. Measurements of the temperature dependent susceptibility and specific heat as well as the temperature and field dependent resistivity were employed to derive basic information on bulk properties of these compounds. The electrical resistivity of M(2)Pd(14+x)B(5-y), in general, is characterized by small RRR (residual resistance ratio) values originating from defects inherent to the crystal structure. Whereas the compounds based on Ce, Nd, Sm and Gd exhibit magnetic order, those based on Pr and Eu seem to be non-magnetic, at least down to 400 mK. While the non-magnetic ground state of the Pr based compound is a consequence of crystalline electric field effects in the context of the non-Kramers ion Pr, the lack of magnetic order in the case of the Eu based compound results from an intermediate valence state of the Eu ion.
Second-order cosmological perturbations. I. Produced by scalar-scalar coupling in synchronous gauge
NASA Astrophysics Data System (ADS)
Wang, Bo; Zhang, Yang
2017-11-01
We present a systematic study of the 2nd-order scalar, vector, and tensor metric perturbations in the Einstein-de Sitter Universe in synchronous coordinates. For the scalar-scalar coupling between 1st-order perturbations, we decompose the 2nd-order perturbed Einstein equation into the respective field equations of 2nd-order scalar, vector, and tensor perturbations, and obtain their solutions with general initial conditions. In particular, the decaying modes of solution are included, the 2nd-order vector is generated even if the 1st-order vector is absent, and the solution of the 2nd-order tensor corrects that in literature. We perform general synchronous-to-synchronous gauge transformations up to 2nd order generated by a 1st-order vector field ξ(1 )μ and a 2nd-order ξ(2 )μ . All the residual gauge modes of 2nd-order metric perturbations and density contrast are found, and their number is substantially reduced when the transformed 3-velocity of dust is set to zero. Moreover, we show that only ξ(2 )μ is effective in carrying out 2nd-order transformations that we consider, because ξ(1 )μ has been used in obtaining the 1st-order perturbations. Holding the 1st-order perturbations fixed, the transformations by ξ(2 )μ on the 2nd-order perturbations have the same structure as those by ξ(1 )μ on the 1st-order perturbations.
NASA Astrophysics Data System (ADS)
Fang, Yuanyuan; Zuo, Yanyan; Xia, Zhaowang
2018-03-01
The noise level is getting higher with the development of high-power marine power plant. Mechanical noise is one of the most obvious noise sources which not only affect equipment reliability, riding comfort and working environment, but also enlarge underwater noise. The periodic truss type device which is commonly applied in fields of aerospace and architectural is introduced to floating raft construction in ship. Four different raft frame structure are designed in the paper. The vibration transmissibility is taken as an evaluation index to measure vibration isolation effect. A design scheme with the best vibration isolation effect is found by numerical method. Plate type and the optimized periodic truss type raft frame structure are processed to experimental verify vibration isolation effect of the structure of the periodic raft. The experimental results demonstrate that the same quality of the periodic truss floating raft has better isolation effect than that of the plate type floating raft.
The Impact Induced Demagnetization Mechanism in NdFeB Permanent Magnets
NASA Astrophysics Data System (ADS)
Li, Yan-Feng; Zhu, Ming-Gang; Li, Wei; Zhou, Dong; Lu, Feng; Chen, Lang; Wu, Jun-Ying; Qi, Yan; Du, An
2013-09-01
Compression of unmagnetized Nd2Fe14B permanent magnets is executed by using shock waves with different pressures in a one-stage light gas gun system. The microstructure, crystal structure, and magnetic properties of the magnets are examined with scanning electronic microscopy, x-ray diffraction, hysteresis loop instruments, and a vibrating sample magnetometer, respectively. The NdFeB magnets display a demagnetization phenomenon after shock wave compression. The coercivity dropped from about 21.4 kOe to 3.2 kOe. The critical pressure of irreversible demagnetization of NdFeB magnets should be less than 4.92 GPa. The coercivity of the NdFeB magnets compressed by shock waves could be recovered after annealing at 900°C and 520°C for 2 h, sequentially. The chaotic orientation of Nd2Fe14B grains in the compressed magnets is the source of demagnetization.
Novel hydrogen decrepitation behaviors of (La, Ce)-Fe-B strips
NASA Astrophysics Data System (ADS)
Jin, Jiaying; Bai, Guohua; Zhang, Yujing; Peng, Baixing; Liu, Yongsheng; Ma, Tianyu; Yan, Mi
2018-05-01
La and Ce substitution for Nd in the 2:14:1-type sintered magnet is of commercial interest to reduce the material cost and to balance the utilization of rare earth (RE) sources. As hydrogen decrepitation (HD) is widely utilized to prepare the magnetic powders during magnets fabrication, incorporating La and Ce into the Nd-Fe-B permanent magnets, however, may exert complex influences on the decrepitation behavior. In the present work, through a comparative study of the HD behaviors between the (La, Ce)-Fe-B strips and the conventional Nd-Fe-B ones, we find that similar to the Nd-Fe-B system, increasing hydrogen pressures from 2.5 to 5.5 MPa do not break the 2:14:1 tetragonal structure of (La, Ce)-Fe-B strips. The enhanced hydrogen absorption behaviors are observed with increasing pressure, which are still inferior to that of the Nd-Fe-B strips. This should be ascribed to the higher oxygen affinity of La and Ce than that of Nd, leading to the decreased amount of active RE-rich phase and limited hydrogen diffusion channel. As a result, the hydrogen absorption of 2:14:1 matrix phase is significantly suppressed, dramatically weakening the exothermic effect. This finding suggests that La and Ce with stable 2:14:1 tetragonal structure upon HD process are promising alternatives for Nd, despite that more precise oxygen control is necessary for the microstructure modification and magnetic performance enhancement of (La, Ce)-Fe-B sintered magnets.
NASA Astrophysics Data System (ADS)
Ahmed, Kasim F.; Ibrahim, Saeed O.; Sahar, Md. R.; Mawlud, Saman Q.; Khizir, Hersh A.
2017-09-01
The Nd3+/Er3+ ions co-doped in the system of zinc-tellurite with the composition of (70-2x)TeO2-30ZnCl2-xNd2O3-xEr2O3 concentration from 1.0 to 3.0 mol% (x=1, 2 and 3) glasses were prepared by using conventional melt-quenching technique. The amorphous nature of the glass been confirmed by using X-RAY Diffraction Spectroscopy. Thermal characteristic were determined using a DTA. The obtained results discussed in terms of the glass structure. The glass structure studied by means of FTIR. Seven significant vibrational peaks around 471, 687, 742, 768, 1632, 2833 and 3378 cm-1 which correspond to the structural bonding of the glass are observed in a range of 400-4000cm-1. The peaks observed are consistent with the stretching and bending vibrations of the Te-O, TeO4 trigonal bipyramids, TeO3 trigonal pyramids, Te-O-Te and OH linkages respectively.
Low temperature magnetic properties of Nd2Ru2O7
NASA Astrophysics Data System (ADS)
Ku, S. T.; Kumar, D.; Lees, M. R.; Lee, W.-T.; Aldus, R.; Studer, A.; Imperia, P.; Asai, S.; Masuda, T.; Chen, S. W.; Chen, J. M.; Chang, L. J.
2018-04-01
We present magnetic susceptibility, heat capacity, and neutron diffraction measurements of polycrystalline Nd2Ru2O7 down to 0.4 K. Three anomalies in the magnetic susceptibility measurements at 146, 21 and 1.8 K are associated with an antiferromagnetic ordering of the Ru4+ moments, a weak ferromagnetic signal attributed to a canting of the Ru4+ and Nd3+ moments, and a long-range-ordering of the Nd3+ moments, respectively. The long-range order of the Nd3+ moments was observed in all the measurements, indicating that the ground state of the compound is not a spin glass. The magnetic entropy of Rln2 accumulated up to 5 K, suggests the Nd3+ has a doublet ground state. Lattice distortions accompany the transitions, as revealed by neutron diffraction measurements, and in agreement with earlier synchrotron x-ray studies. The magnetic moment of the Nd3+ ion at 0.4 K is estimated to be 1.54(2)µ B and the magnetic structure is all-in all-out as determined by our neutron diffraction measurements.
14 CFR 25.531 - Hull and main float takeoff condition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float takeoff condition. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.531 Hull and main float takeoff condition. For the wing and its attachment to the hull or main float— (a) The aerodynamic...
In-situ nitrogen removal from the eutrophic water by microbial-plant integrated system*
Chang, Hui-qing; Yang, Xiao-e; Fang, Yun-ying; Pu, Pei-min; Li, Zheng-kui; Rengel, Zed
2006-01-01
Objective: This study was to assess the influence of interaction of combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophytes on nitrogen removal from the eutrophic waterbody, and to get insight into different mechanisms involved in nitrogen removal. Methods: The aquatic macrophytes used include Eichhornia crassipes (summer-autumn floating macrophyte), Elodea nuttallii (winter-growing submerged macrophyte), and nitrogen cycling bacteria including ammonifying, nitrosating, nitrifying and denitrifying bacteria isolated from Taihu Lake. The immobilization carriers materials were made from hydrophilic monomers 2-hydroxyethyl acrylate (HEA) and hydrophobic 2-hydroxyethyl methylacrylate (HEMA). Two experiments were conducted to evaluate the roles of macrophytes combined with INCB on nitrogen removal from eutrophic water during different seasons. Results: Eichhornia crassipes and Elodea nuttallii had different potentials in purification of eutrophic water. Floating macrophyte+bacteria (INCB) performed best in improving water quality (during the first experiment) and decreased total nitrogen (TN) by 70.2%, nitrite and ammonium by 92.2% and 50.9%, respectively, during the experimental period, when water transparency increased from 0.5 m to 1.8 m. When INCB was inoculated into the floating macrophyte system, the populations of nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments, but ammonifying bacteria showed no obvious difference between different treatments. Lower values of chlorophyll a, CODMn, and pH were found in the microbial-plant integrated system, as compared to the control. Highest reduction in N was noted during the treatment with submerged macrophyte+INCB, being 26.1% for TN, 85.2% for nitrite, and 85.2% for ammonium at the end of 2nd experiment. And in the treatment, the populations of ammonifying, nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 3 orders of magnitude, as compared to the un-inoculated treatments. Similar to the first experiment, higher water transparency and lower values of chlorophyll a, CODMn and pH were observed in the plant+INCB integrated system, as compared to other treatments. These results indicated that plant-microbe interaction showed beneficial effects on N removal from the eutrophic waterbody. PMID:16773725
Optical and structural properties of Nd:MgO:LiNbO3 crystal irradiated by 2.8-MeV He ions
NASA Astrophysics Data System (ADS)
Jia, Chuan-Lei; Li, Song; Song, Xiao-Xiao
2017-07-01
We report the optical and structural properties of helium-implanted optical waveguides in Nd:MgO:LiNbO3 laser crystals. The prism-coupling method is used to investigate the dark-mode properties at the wavelength of 632.8 nm. The spontaneous generation of ultraviolet, blue, red, and near-infrared fluorescence emissions is demonstrated under excitation with an 808-nm laser diode. The effects of ion irradiation on the structural properties are characterized using the high-resolution X-ray diffraction technique. The results show that the initial luminescence properties of Nd:MgO:LiNbO3 crystals are slightly modified by irradiation with 2.8 MeV He ions at fluences of 1.5 × 1016 ions/cm2 at room temperature.
Korytowski, Agatha; Abuillan, Wasim; Makky, Ali; Konovalov, Oleg; Tanaka, Motomu
2015-07-30
The influence of phospholipid oxidization of floating monolayers on the structure perpendicular to the global plane and on the density profiles of ions near the lipid monolayer has been investigated by a combination of grazing incidence X-ray fluorescence (GIXF) and specular X-ray reflectivity (XRR). Systematic variation of the composition of the floating monolayers unravels changes in the thickness, roughness and electron density of the lipid monolayers as a function of molar fraction of oxidized phospholipids. Simultaneous GIXF measurements enable one to qualitatively determine the element-specific density profiles of monovalent (K(+) or Cs(+)) and divalent ions (Ca(2+)) in the vicinity of the interface in the presence and absence of two types of oxidized phospholipids (PazePC and PoxnoPC) with high spatial accuracy (±5 Å). We found the condensation of Ca(2+) near carboxylated PazePC was more pronounced compared to PoxnoPC with an aldehyde group. In contrast, the condensation of monovalent ions could hardly be detected even for pure oxidized phospholipid monolayers. Moreover, pure phospholipid monolayers exhibited almost no ion specific condensation near the interface. The quantitative studies with well-defined floating monolayers revealed how the elevation of lipid oxidization level alters the structures and functions of cell membranes.
Textured Nd2Fe14B flakes with enhanced coercivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, BZ; Zheng, LY; Marinescu, M
2012-04-01
Morphology, structure, and magnetic properties of the [001] textured Nd2Fe14B nanocrystalline flakes prepared by surfactant-assisted high energy ball milling (HEBM) and subsequent annealing were studied. These flakes have a thickness of 80-200 nm, a length of 0.5-10 mu m, and an average grain size of 10-14nm. The addition of some amount of Dy, Nd70Cu30 alloy, and an appropriate post annealing increased the coercivity H-i(c) of the Nd2Fe14B flakes. iHc was 3.7, 4.3, and 5.7 kOe for the Nd15.5Fe78.5B6, Nd14Dy1.5Fe78.5B6 and 83.3wt.% Nd14Dy1.5Fe78.5B6+16.7 wt.% Nd70Cu30 flakes prepared by HEBM for 5 h in heptane with 20 wt.% oleylamine, respectively. After annealingmore » at 450 degrees C for 0.5h, their iHc increased to 5.1, 6.2, and 7.0 kOe, respectively. Anisotropic magnetic behavior was found in all of the as-milled and annealed flakes. Both, the thickening of Nd-rich phase at grain boundaries via diffusion of Nd70Cu30 and the surface modification of the Nd2Fe14B flake could be the main reasons for the coercivity enhancement in the as-milled and annealed Nd70Cu30-added Nd2Fe14B flakes. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3679425]« less
Building Technology Forecast and Evaluation (BTFE). Volume 2. Evaluation of Two Structural Systems
1990-11-01
insulative foam ( expanded polystyrene ) strips between each truss. The assembly is held together with 14-gauge wires welded to the trusses on 2-in. centers...structural load bearing qualities expanded polystyrene . No taping and mudding. Ar. ~J~ .wplrtpd( at each irllnfrnPllo Tile I hin- set or float over
Red Sea Outflow Experiment (REDSOX): DLD2 RAFOS Float Data Report February 2001 - March 2003
2005-01-01
1 2. Description of the DLD2 Float and Dual-Release System ................................................................... 2 3. Sound Sources...processing are described in detail. 2. Description of the DLD2 Float and Dual-Release System The DLD2 is a second-generation RAFOS (Ranging And Fixing Of...Sound) float with several improvements over the traditional RAFOS float (see Rossby et al., 1986, for a complete description of the RAFOS system ). A
NASA Astrophysics Data System (ADS)
Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang
2017-10-01
As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.
Early-lanthanide(III) acetonitrile–solvento adducts with iodide and noncoordinating anions
Brown, Jessie L.; Davis, Benjamin L.; Scott, Brian L.; ...
2015-12-25
Dissolution of LnI 3 (Ln = La, Ce) in acetonitrile (MeCN) results in the highly soluble solvates LnI 3(MeCN) 5 [Ln = La (1), Ce (2)] in good yield. The ionic complex [La(MeCN) 9][LaI 6] (4), containing a rare homoleptic La 3+ cation and anion, was also isolated as a minor product. Extending this chemistry to NdI 3 results in the consistent formation of the complex ionic structure [Nd(MeCN) 9] 2[NdI 5(MeCN)][NdI 6][I] (3), which contains an unprecedented pentaiodide lanthanoid anion. Also described is the synthesis, isolation, and structural characterization of several homoleptic early-lanthanide MeCN solvates with noncoordinating anions, namely,more » [Ln(MeCN) 9][AlCl 4] 3 [Ln = La (5), Ce (6), Nd (7)]. Notably, complex 6 is the first homoleptic cerium MeCN solvate reported to date. All reported complexes were structurally characterized by X-ray crystallography, as well as by IR spectroscopy and CHN elemental analysis. Furthermore, complexes 1–3 were also characterized by thermogravimetric analysis coupled with mass spectrometry to further elucidate their bulk composition in the solid-state.« less
Fieser, Megan E.; Palumbo, Chad T.; La Pierre, Henry S.; Halter, Dominik P.; Voora, Vamsee K.; Ziller, Joseph W.
2017-01-01
A new series of Ln3+ and Ln2+ complexes has been synthesized using the tris(aryloxide)arene ligand system, ((Ad,MeArO)3mes)3–, recently used to isolate a complex of U2+. The triphenol precursor, (Ad,MeArOH)3mes, reacts with the Ln3+ amides, Ln(NR2)3 (R = SiMe3), to form a series of [((Ad,MeArO)3mes)Ln] complexes, 1-Ln. Crystallographic characterization was achieved for Ln = Nd, Gd, Dy, and Er. The complexes 1-Ln can be reduced with potassium graphite in the presence of 2.2.2-cryptand (crypt) to form highly absorbing solutions with properties consistent with Ln2+ complexes, [K(crypt)][((Ad,MeArO)3mes)Ln], 2-Ln. The synthesis of the Nd2+ complex [K(crypt)][((Ad,MeArO)3mes)Nd], 2-Nd, was unambiguously confirmed by X-ray crystallography. In the case of the other lanthanides, crystals were found to contain mixtures of 2-Ln co-crystallized with either a Ln3+ hydride complex, [K(crypt)][((Ad,MeArO)3mes)LnH], 3-Ln, for Ln = Gd, Dy, and Er, or a hydroxide complex, [K(crypt)][((Ad,MeArO)3mes)Ln(OH)], 4-Ln, for Ln = Dy. A Dy2+ complex with 18-crown-6 as the potassium chelator, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)Dy], 5-Dy, was isolated as a co-crystallized mixture with the Dy3+ hydride complex, [K(18-crown-6)(THF)2][((Ad,MeArO)3mes)DyH], 6-Dy. Structural comparisons of 1-Ln and 2-Ln are presented with respect to their uranium analogs and correlated with density functional theory calculations on their electronic structures. PMID:29163894
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyushin, G. D., E-mail: ilyushin@nc.cryst.ras.ru; Dem'yanets, L. N.
2007-07-15
A combinatorial-topological analysis of the orthogermanates LiNdGeO{sub 4} (space group Pbcn) and CeGeO{sub 4} (space group I 4{sub 1}/a, the scheelite structure type), which have MT frameworks composed of polyhedral structural units in the form of M dodecahedra (NdO{sub 8} and CeO{sub 8}) and T tetrahedra (GeO{sub 4}), is performed using the method of coordination sequences with the TOPOS program package. It is established that the structures of both orthogermanates are characterized by equivalent crystal-forming nets 4444. The cluster precursors of the M{sub 2}T{sub 2} cyclic type are identified by the method of two-color decomposition. The local symmetry of four-polyhedralmore » clusters corresponds to the point group 2. In the precursor of the LiNdGeO{sub 4} orthogermanate, the Li atom is located above the M{sub 2}T{sub 2} ring. The number of Li-O bonds in this precursor is 4. The cluster precursors M{sub 2}T{sub 2} and LiM{sub 2}T{sub 2} are responsible for the formation of crystal-forming clusters of a higher level according to the mechanism of matrix self-assembly. The coordination numbers of the cluster precursors in two-dimensional nets for these structures are found to be equal to 4. The equivalent bilayer TR,Ge stacks that consist of eight cluster precursors are revealed in the structures under investigation. It is demonstrated that there exist three types of translational interlayer arrangements of cluster precursors upon the formation of macrostructures of the orthogermanates.« less
30 CFR 250.912 - What plans must I submit under the Platform Verification Program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...
30 CFR 250.912 - What plans must I submit under the Platform Verification Program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...
30 CFR 250.912 - What plans must I submit under the Platform Verification Program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...
Micromechanisms with floating pivot
Garcia, Ernest J.
2001-03-06
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.
Phase equilibria and crystal chemistry of the CaO-1/2 >Nd2O3-CoOz system at 885 °C in air
NASA Astrophysics Data System (ADS)
Wong-Ng, W.; Laws, W.; Talley, K. R.; Huang, Q.; Yan, Y.; Martin, J.; Kaduk, J. A.
2014-07-01
The phase diagram of the CaO-1/2 >Nd2O3-CoOz system at 885 °C in air has been determined. The system consists of two calcium cobaltate compounds that have promising thermoelectric properties, namely, the 2D thermoelectric oxide solid solution, (Ca3-xNdx)Co4O9-z (0≤x≤0.5), which has a misfit layered structure, and Ca3Co2O6 which consists of 1D chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound without the substitution of Nd on the Ca site. The reported Nd2CoO4 phase was not observed at 885 °C. A ternary (Ca1-xNd1+x)CoO4-z (x=0) phase, or (CaNdCo)O4-z, was found to be stable at this temperature. A solid solution region of distorted perovskite (Nd1-xCax)CoO3-z (0≤x≤0.25, space group Pnma) was established. In the peripheral binary systems, while a solid solution region was identified for (Nd1-xCax)2O3-z (0≤x≤0.2), Nd was not found to substitute in the Ca site of CaO. Six solid solution tie-line regions and six three-phase regions were determined in the CaO-Nd2O3-CoOz system in air.
Impact of Solar Array Position on ISS Vehicle Charging
NASA Technical Reports Server (NTRS)
Alred, John; Mikatarian, Ronald; Koontz, Steve
2006-01-01
The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA. Arcing from the EMU is classified as a catastrophic hazard, which requires two-failure tolerant controls, i.e., three hazard controls. Each PCU is capable of maintaining the ISS floating potential below the requirement during EVA. The two PCUs provide a single failure tolerant control of ISS floating potential. In the event of the failure of one or two PCUs, a combination of solar array shunting and turning the solar arrays into their own wakes will be used to supply control of the plasma hazard (Reference 3). The purpose of this paper is to present on-orbit information that shows that ISS solar array placement with respect to the ISS velocity vector can control solar array plasma charging, and hence, provide an operational control for the plasma hazard. Also, this paper will present on-orbit information that shows that shunting of the ISS solar arrays can control solar array plasma charging, and hence, provide an additional operational control for the plasma hazard.
Induced emission cross section of a possible laser line in Nd:Y2O3 ceramics at 1.095 μm
NASA Astrophysics Data System (ADS)
Fukabori, Akihiro; Sekita, Masami; Ikegami, Takayasu; Iyi, Nobuo; Komatsu, Toshiki; Kawamura, Masayuki; Suzuki, Makoto
2007-02-01
In this study, we measured the change of the optical transmittance for calcination temperatures, in steps of 10°, at two different sintering temperatures. It was found that the optical transmittance is highly dependent on the calcination temperature. The highest optical transmittance obtained was 70% for the transparent Y2O3 (yttria) ceramics produced without the use of additives and high injection presure in this study, higher than the highest reported value of 65%. Optical absorption and emission spectra of Nd :Y2O3 obtained from a low temperature synthesis process were measured. The energy level structure of Nd3+ in the Y2O3 ceramics was determined for a 1mol% Nd concentration. The induced emission cross section was calculated to be in the range of 3.2×10-19-1.1×10-17cm2 for the 1mol% Nd-doped Y2O3 ceramics. Furthermore, a laser line possibly has been identified in this study, in the Nd :Y2O3 ceramic at 1.095μm.
DISTRIBUTION OF THE TEMPERATURE IN THE ASH-GAS FLOW DURING KORYAKSKY VOLCANO ERUPTION IN 2009
NASA Astrophysics Data System (ADS)
Gordeev, E.; Droznin, V.
2009-12-01
The observations of the ash-gas plumes during the Koryaksky eruption in March 2009 by the high resolution thermovision camera allowed obtaining thermal distributions inside the ash-gas flows. The plume structure is formed by single emissions. They rise at the rate of 5.5-7 m/s. The plume structure in general is represented as 3 zones: 1. a zone of high heat exchange; 2. a zone of floating up; 3. a zone of lateral movement. The plume temperature within the zone of lateral movement exceeds the atmospheric temperature by 3-5 oC, within the zone of floating up it exceeds by 20 oC. Its rate within the zone of floating up comprises 5-7 m/s. At the boundary between the zones of high heat exchange and floating up where we know the plume section, from heat balance equation we can estimate steam rate and heat power of the fluid thermal flow. Power of the overheated steam was estimated as Q=35 kg/s. It forms the ash-gas plume from the eruption and has temperature equal to 450 oC. The total volume of water steam produced during 100 days of eruption was estimated 3*105 t, its energy - 109 MJ.
Physical properties of nanoparticles Nd added Bi1.7Pb0.3Sr2Ca2Cu3Oy superconductors
NASA Astrophysics Data System (ADS)
Abbas, Muna; Abdulridha, Ali; Jassim, Amal; Hashim, Fouad
2018-05-01
Bi1.7Pb0.3Sr2Ca2Cu3Oy bulks were synthesized, with the addition of Nd2O3 nanoparticles, by the solid state reaction method. The concentrations of Nd were varied from 0.1 to 0.6. The superconducting properties of the samples were investigated and studied to determine the influence of Nd2O3 addition on superconducting properties and microstructural development. The structural characteristics of the synthesized superconductor samples were carried out through X-ray diffractions. DC Four point probe method was used to study the electrical resistivity behavior and to evaluate the transition temperature (TC) for all samples. It was found that: 0.2 weight percentage of Nd2O3 yield the highest TC 123 K for highest volume fraction of 2223-phase, while excessive addition decreased both of them. The results point to compelling indications of correlations between charge carriers and superconductivity. Energy-dispersive X-ray spectroscopy (EDX) analysis for Bi1.7Pb0.3Nd0.2Sr2Ca2Cu3Oy superconductor shows that Nd may be substituted at Ca sites creating point defects, which act as flux pinning centers. Scanning electron microscopy (SEM) was employed to examine the microstructure of some samples. Their results showed precipitation of Nd nanoparticles on the surface as plate-like grains.
Floating zone growth of α-Na 0.90MnO 2 single crystals
Dally, Rebecca; Clement, Raphaele J.; Chisnell, Robin; ...
2016-12-03
Here, single crystal growth of α-Na xMnO 2 (x=0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmospheres. Chemical and structural characterizations of the resulting α-Na 0.90MnO 2 crystals are performed using ICP-AES NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, α-Na xMnO 2 is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed.
Dunham, C Michael; McClain, Jesse V; Burger, Amanda
2017-11-29
To determine whether Bispectral Index™ values obtained during flotation-restricted environment stimulation technique have a similar profile in a single observation compared to literature-derived results found during sleep and other relaxation-induction interventions. Bispectral Index™ values were as follows: awake-state, 96.6; float session-1, 84.3; float session-2, 82.3; relaxation-induction, 82.8; stage I sleep, 86.0; stage II sleep, 66.2; and stages III-IV sleep, 45.1. Awake-state values differed from float session-1 (%difference 12.7%; Cohen's d = 3.6) and float session-2 (%difference 14.8%; Cohen's d = 4.6). Relaxation-induction values were similar to float session-1 (%difference 1.8%; Cohen's d = 0.3) and float session-2 (%difference 0.5%; Cohen's d = 0.1). Stage I sleep values were similar to float session-1 (%difference 1.9%; Cohen's d = 0.4) and float session-2 (%difference 4.3%; Cohen's d = 1.0). Stage II sleep values differed from float session-1 (%difference 21.5%; Cohen's d = 4.3) and float session-2 (%difference 19.6%; Cohen's d = 4.0). Stages III-IV sleep values differed from float session-1 (%difference 46.5%; Cohen's d = 5.6) and float session-2 (%difference 45.2%; Cohen's d = 5.4). Bispectral Index™ values during flotation were comparable to those found in stage I sleep and nadir values described with other relaxation-induction techniques.
Jerbi, Hasna; Hidouri, Mourad; Mongi, Ben Amara
2012-06-01
Investigations of the quasi-ternary system Na(3)PO(4)-Mg(3)(PO(4))(2)-NdPO(4) allowed us to obtain the new phosphate hepta-sodium trideca-magnesium neodymium dodeca-kis-phosphate, Na(7)Mg(13)Nd(PO(4))(12), by applying a flux method. The crystal structure is isotypic with that of the previously reported Na(7)Mg(13)Ln(PO(4))(12) (Ln = Eu, La) compounds. It consists of a complex three-dimensional framework built up from an NdO(8) polyhedron (m symmetry), an MO(6) octa-hedron statistically occupied by M = Mg and Na, and eight MgO(x) (x = 5, 6) polyhedra (four with site symmetry m), linked either directely by sharing corners, edges and faces, or by one of the eight unique PO(4) tetra-hedra through common corners. Two of the PO(4) tetra-hedra are statisticaly disordered over a mirror plane. The whole structure can be described as resutling from an assembly of two types of structural units, viz [Mg(4)MP(4)O(22)](∞) (2) layers extending parallel to (100) and stacked along [100], and [Mg(4)NdP(4)O(36)](∞) (1) undulating chains running along the [010] direction. The six different Na(+) cations (five with site symmetry m and one with 0.5 occupancy) are situated in six distinct cavities delimited by the framework. The structure was refined from data of a racemic twin.
Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung
2009-05-15
For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.
Magnetic order of Nd 5 Pb 3 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jiaqiang; Ochi, Masayuki; Cao, Huibo B.
We report millimeter-sized Nd 5Pb 3 single crystals grown out of a Nd–Co flux. We experimentally study the magnetic order of Nd 5Pb 3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector $k=(0.5, 0, 0)$ . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupledmore » antiferromagnetically along the a-axis for the $k=(0.5, 0, 0)$ magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd 5Pb 3 has the same electronic structure as does Y 5Si 3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb 3 (R = rare earth) can be a materials playground for the study of magnetic electrides. To conclude, this deserves further study after experimental confirmation of the presence of anionic electrons.« less
Magnetic order of Nd 5 Pb 3 single crystals
Yan, Jiaqiang; Ochi, Masayuki; Cao, Huibo B.; ...
2018-03-02
We report millimeter-sized Nd 5Pb 3 single crystals grown out of a Nd–Co flux. We experimentally study the magnetic order of Nd 5Pb 3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector $k=(0.5, 0, 0)$ . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupledmore » antiferromagnetically along the a-axis for the $k=(0.5, 0, 0)$ magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd 5Pb 3 has the same electronic structure as does Y 5Si 3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb 3 (R = rare earth) can be a materials playground for the study of magnetic electrides. To conclude, this deserves further study after experimental confirmation of the presence of anionic electrons.« less
Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers.
Jaksic, V; Wright, C S; Murphy, J; Afeef, C; Ali, S F; Mandic, D P; Pakrashi, V
2015-02-28
In this paper, we experimentally study and compare the effects of three combinations of multiple tuned liquid column dampers (MTLCDs) on the dynamic performance of a model floating tension-leg platform (TLP) structure in a wave basin. The structural stability and safety of the floating structure during operation and maintenance is of concern for the performance of a renewable energy device that it might be supporting. The dynamic responses of the structure should thus be limited for these renewable energy devices to perform as intended. This issue is particularly important during the operation of a TLP in extreme weather conditions. Tuned liquid column dampers (TLCDs) can use the power of sloshing water to reduce surge motions of a floating TLP exposed to wind and waves. This paper demonstrates the potential of MTLCDs in reducing dynamic responses of a scaled TLP model through an experimental study. The potential of using output-only statistical markers for monitoring changes in structural conditions is also investigated through the application of a delay vector variance (DVV) marker for different conditions of control for the experiments. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Damage identification of a TLP floating wind turbine by meta-heuristic algorithms
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.
2015-12-01
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
Structural, magnetic and Mössbauer studies of Nd-doped Mg-Mn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Somnath; Sharma, Indu; Kotnala, R. K.; Singh, M.; Kumar, Arun; Dhiman, Pooja; Singh, Virender Pratap; Verma, Kartikey; Kumar, Gagan
2017-12-01
The present work is focused on the replacement of Fe3+ ions by rare-earth Nd3+ ions and their influence on the cations distribution, structural, magnetic and Mössbauer properties of Mg-Mn nanoferrites. Nanosized Nd-doped Mg-Mn nanoferrites, Mg0.9Mn0.1NdxFe2-xO4, where x = 0.1, 0.2 & 0.3, were successfully synthesized for the first time through solution combustion technique. X-ray diffraction studies confirmed the formation of single phase nature of the synthesized nanoferrites. Williamsons-Hall plots were used to obtain the particle size and strain while the lattice parameter was obtained from Nelson-Riley plots. The particle size was observed to decrease (19.2-13.5 nm) while lattice parameter was observed to increase (8.373-8.391 Å) with the incorporation of Nd3+ ions. Cation distribution between the tetrahedral (A-site) and octahedral (B-site) was estimated by using the X-ray diffraction method & magnetization technique. The estimated cation distribution was used to investigate the detailed structural parameters. Room temperature M-H study revealed a decrease of saturation magnetization (10.15-1.83 emu/g) and an increase in coercivity (22.86-27.19 Oe) with the increasing substitution of Nd3+ ions. Magnetic results obtained in the present study indicated that the synthesized nanoferrites can be a useful candidate for electromagnet applications.
Magnetic structures and magnetocaloric effect in R VO4 (R =Gd , Nd )
NASA Astrophysics Data System (ADS)
Palacios, E.; Evangelisti, M.; Sáez-Puche, R.; Dos Santos-García, A. J.; Fernández-Martínez, F.; Cascales, C.; Castro, M.; Burriel, R.; Fabelo, O.; Rodríguez-Velamazán, J. A.
2018-06-01
We report the magnetic properties and magnetic structure of the zircon-type compound GdVO4, together with the magnetic structure of the isostructural NdVO4. At T ≃2.5 K, GdVO4 undergoes a phase transition to antiferromagnetic Gz, driven mainly by the exchange interactions, while the magnetic anisotropy and dipolar interactions are minor contributions. Near the liquid-helium boiling temperature, the magnetocaloric effect of GdVO4 is nearly as large as that of the structurally closely related GdPO4. It is noteworthy that GdVO4 has been recently proposed as a good passive regenerator in Gifford-McMahon cryocoolers, since adding a magnetization-demagnetization stage to the cryocooler refrigeration cycle would increase its efficiency for liquefying helium. NdVO4 is a canted Gz-type antiferromagnet and shows enhancement of the magnetic reflections in neutron diffraction below ca. 500 mK, due to the polarization of the Nd nuclei by the hyperfine field.
Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes
NASA Astrophysics Data System (ADS)
Lee, Su Youn; Lee, J. H.; Lee, Young Jun
2018-05-01
The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.
NASA Astrophysics Data System (ADS)
Han, Su-Ting; Zhou, Ye; Chen, Bo; Zhou, Li; Yan, Yan; Zhang, Hua; Roy, V. A. L.
2015-10-01
Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure.Semiconducting two-dimensional materials appear to be excellent candidates for non-volatile memory applications. However, the limited controllability of charge trapping behaviors and the lack of multi-bit storage studies in two-dimensional based memory devices require further improvement for realistic applications. Here, we report a flash memory consisting of metal NPs-molybdenum disulphide (MoS2) as a floating gate by introducing a metal nanoparticle (NP) (Ag, Au, Pt) monolayer underneath the MoS2 nanosheets. Controlled charge trapping and long data retention have been achieved in a metal (Ag, Au, Pt) NPs-MoS2 floating gate flash memory. This controlled charge trapping is hypothesized to be attributed to band bending and a built-in electric field ξbi between the interface of the metal NPs and MoS2. The metal NPs-MoS2 floating gate flash memories were further proven to be multi-bit memory storage devices possessing a 3-bit storage capability and a good retention capability up to 104 s. We anticipate that these findings would provide scientific insight for the development of novel memory devices utilizing an atomically thin two-dimensional lattice structure. Electronic supplementary information (ESI) available: Energy-dispersive X-ray spectroscopy (EDS) spectra of the metal NPs, SEM image of MoS2 on Au NPs, erasing operations of the metal NPs-MoS2 memory device, transfer characteristics of the standard FET devices and Ag NP devices under programming operation, tapping-mode AFM height image of the fabricated MoS2 film for pristine MoS2 flash memory, gate signals used for programming the Au NPs-MoS2 and Pt NPs-MoS2 flash memories, and data levels recorded for 100 sequential cycles. See DOI: 10.1039/c5nr05054e
Multiple competing interactions and reentrant ferrimagnetism in Tb 0.8Nd 0.2Mn 6Ge 6
NASA Astrophysics Data System (ADS)
Schobinger-Papamantellos, P.; André, G.; Rodríguez-Carvajal, J.; Duong, N. P.; Buschow, K. H. J.
2001-06-01
The magnetic ordering of the hexagonal compound Tb 0.8Nd 0.2Mn 6Ge 6 has been studied by neutron diffraction and magnetic measurements in the temperature range 1.5-800 K. This compound was found to undergo consecutive magnetic transitions with temperature. The magnetic phase diagram comprises four distinct regions and requires the wave vectors: q1=(0, 0, qz) and q2=0 for its description. The low temperature range (LT): 1.5 K< T< T1=85 K, is characterised by a triple ferrimagnetic conical (spiral) structure with qz=0.128 r.l.u and a net moment along the c direction ( q2=0). The intermediate temperature range displays two transitions: At T1=85 K the conical structure transforms to a simple triple (flat) spiral persisting in range (ITa) 85 K< T< T2≈340 K, with a small thermal variation of the wave vector. Above T2 in range (ITb) T2< T< TS≈390 K the destabilised spiral transforms to a FAN-like structure with a fast decrease of the wave vector length towards zero while a ferrimagnetic planar structure ( q2=0) develops at the cost of the spiral. The planar ferrimagnetic magnetic structure ( q2=0) dominates the high temperature range (HT) 390 K< T< Tc=450 K. The onset of re-entrant ferrimagnetism reflects the interplay of multiple competing inter- and intra- sublattice interactions of the three types of magnetic ions with different crystal field anisotropies. The Nd and Tb sublattices are coupled antiferromagnetically while the Tb-Mn and Nd-Mn interactions are negative and positive, respectively.
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu
2018-04-01
The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.
Loss of structural water and carbonate of Nd:YAG laser-irradiated human enamel.
Corrêa-Afonso, Alessandra Marques; Bachmann, Luciano; de Almeida, Cíntia Guimarães; Dibb, Regina Guenka Palma; Borsatto, Maria Cristina
2015-05-01
The objective of this study was to use Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) to assess whether Nd:YAG laser irradiation associated with a dye or not alters the chemical constitution of the enamel. Fourteen enamel sections were randomly divided into two groups: (1) Nd:YAG and (2) dye + Nd:YAG. First, the untreated enamel surfaces were analyzed by FTIR to acquire the control absorption spectrum. Next, Group 2 received a layer of inactivated coal diluted in deionized water before laser treatment. Enamel samples belonging to groups 1 and 2 were then irradiated with a 1,064-nm Nd:YAG laser (80 mJ, 10 Hz) in the contact mode; the carbonate absorption band and the water absorption band were measured in each sample after irradiation. The water band was measured again 24 h, 48 h, and 7 days after irradiation. Group 1 had statistically similar water and carbonate contents before and after irradiation. Group 2 displayed significantly lower (p < 0.05) water content after irradiation, which remained constant along time at 24 and 48 h. After 7 days, the water content increased slightly, being statistically higher than in the other experimental periods, except for the control. The carbonate/phosphate ratio was measured only at the beginning, and after irradiation, it decreased only in Group 2 indicating carbonate loss (p < 0.05). Irradiation with 1,064-nm Nd:YAG laser associated with a dye reduces the carbonate and structural water content in the enamel.
Lattice thermal expansion and solubility limits of neodymium-doped ceria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinhua, E-mail: jhzhang1212@126.com; State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074; Ke, Changming
2016-11-15
Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are highermore » than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.« less
29 CFR 1919.2 - Definition of terms.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transportation on water, including special-purpose floating structures not primarily designed for or used as a... gear, a mechanical device for lifting, including a boom which is suspended at its head by a topping lift from a mast, king post, or similar structure, controlled in the horizontal plane by vangs, and...
29 CFR 1919.2 - Definition of terms.
Code of Federal Regulations, 2013 CFR
2013-07-01
... transportation on water, including special-purpose floating structures not primarily designed for or used as a... gear, a mechanical device for lifting, including a boom which is suspended at its head by a topping lift from a mast, king post, or similar structure, controlled in the horizontal plane by vangs, and...
29 CFR 1919.2 - Definition of terms.
Code of Federal Regulations, 2012 CFR
2012-07-01
... transportation on water, including special-purpose floating structures not primarily designed for or used as a... gear, a mechanical device for lifting, including a boom which is suspended at its head by a topping lift from a mast, king post, or similar structure, controlled in the horizontal plane by vangs, and...
Phase-pure eutectic CoFe2O4-Ba1-xSrxTiO3 composites prepared by floating zone melting
NASA Astrophysics Data System (ADS)
Breitenbach, Martin; Ebbinghaus, Stefan G.
2018-02-01
Composites consisting of ferrimagnetic CoFe2O4 and ferroelectric Ba1-xSrxTiO3 were grown by the floating zone technique. The influence of Sr substitution, growth rate and atmosphere during the floating zone process were investigated. The formation of the non-ferroelectric, hexagonal modification of BaTiO3 was avoided by a slight Sr substitution of 3 mol% and the formation of BaFe12O19 was suppressed using pure nitrogen as atmosphere during the floating zone melting. These synthesis parameters led to phase-pure, but electrically conductive CoFe2O4-Ba1-xSrxTiO3 composites. A thermal treatment at 973 K in air resulted in a strong increase of the electric resistivity accompanied by a decrease of the unit-cell parameters of both components indicating the healing of oxygen defects. SEM investigations revealed a variety of different geometric structures and crack-free interfaces between both phases. The low porosities observed in the micrographs correspond with densities above 90%. Magnetoelectric (ME) measurements confirmed a coupling between the ferroic orders of both phases with a hysteresis and maximum αME of 1.3 mV Oe-1 cm-1.
NASA Astrophysics Data System (ADS)
Nandi, Chiranjit; Grover, V.; Kulriya, P. K.; Poswal, A. K.; Prakash, Amrit; Khan, K. B.; Avasthi, D. K.; Tyagi, A. K.
2018-02-01
Inert matrix fuel concept for minor actinide transmutation proposes stabilized zirconia as the major component for inert matrix. The present study explores Nd-stabilized zirconia (Zr0.8Nd0.2O1.9; Nd as surrogate for Am) and its composites for radiation tolerance against fission fragments. The introduction of MgO in the composite with stabilised zirconia is performed from the point of view to enhance the thermal conductivity. The radiation damage is also compared with Nd-stabilized zirconia co-doped with Y3+ (Zr0.8Nd0.1Y0.1O1.9) in order to mimic doping of minor actinides in Y3+ containing stabilized zirconia (Nd as surrogate for Am). The compositions were synthesized by gel combustion followed by high temperature sintering and characterised by XRD, SEM and EDS. Irradiation was carried out by 120 MeV Au ions at various fluences and irradiation induced structural changes were probed by in-situ X-ray diffraction (XRD). XRD demonstrated the retention of crystallinity for all the three samples but the extent of the damage was found to be highly dependent on the nominal composition. It was observed that introduction of Y3+ along with Nd3+ to stabilize cubic zirconia imparted poorer radiation stability. On the other hand, formation of a CERCER composite of MgO with Nd-stabilised zirconia enhanced its behaviour against swift heavy ion irradiation. Investigating these compositions by XANES spectroscopy post irradiation did not show any change in local electronic structure of constituent ions.
CMOS Active-Pixel Image Sensor With Simple Floating Gates
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.
1996-01-01
Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.
Lopez, Pascal; Jacob, Robert J.; Roizman, Bernard
2002-01-01
A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the Mr 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection. (iii) Disaggregation of ND10 structures is not an obligatory event essential for viral replication. PMID:12186918
Ab initio molecular dynamics simulations of ion-solid interactions in zirconate pyrochlores
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; ...
2015-01-31
In this paper, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A 2Zr 2O 7, A = La, Nd and Sm). It shows that both cations and anions in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 are generally more likely to be displaced than those in La 2Zr 2O 7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 are lower than those in La 2Zr 2O 7. These results suggest thatmore » the order–disorder structural transition more easily occurs in Nd 2Zr 2O 7 and Sm 2Zr 2O 7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present findings may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Sinkov, Sergey I.; Krause, Jeanette A.
2016-01-27
The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO– anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di-(2-ethylhexyl)phosphoric acid (HA) is saturated withmore » Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.« less
Lumetta, Gregg J; Sinkov, Sergey I; Krause, Jeanette A; Sweet, Lucas E
2016-02-15
The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions.
Magnetic order of Nd5Pb3 single crystals
NASA Astrophysics Data System (ADS)
Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.
2018-04-01
We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R = rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.
Magnetic order of Nd5Pb3 single crystals.
Yan, J-Q; Ochi, M; Cao, H B; Saparov, B; Cheng, J-G; Uwatoko, Y; Arita, R; Sales, B C; Mandrus, D G
2018-04-04
We report millimeter-sized Nd 5 Pb 3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd 5 Pb 3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector [Formula: see text]. Cooling below T N1 , Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the [Formula: see text] magnetic domain. Cooling below T N2 , Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2 , no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd 5 Pb 3 has the same electronic structure as does Y 5 Si 3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5 Pb 3 (R = rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.
NASA Astrophysics Data System (ADS)
Wang, Na; Zhang, Wei-bing; Tang, Bi-yu; Gao, Hai-Tao; He, En-jie; Wang, Lei
2018-07-01
The crystal structure, elastic and magnetic properties of important ternary Mg-based alloys NdMgT4 (T = Co, Ni, Cu) have been studied using reliable ab initio calculations. Both cohesive energy and charge density difference suggest that three alloys have good structural stability with the order: NdMgCo4 > NdMgNi4 > NdMgCu4. It shows that NdMgCo4 alloy has magnetic moments with the Co atoms being the main contribution, which is also in agreement with the calculated electronic structures. We find that NdMgT4 (T = Co, Ni, Cu) alloys are all ductile materials with bulk-to-shear modulus (B/G) values higher than 1.75. The trends of calculated values for the shear moduli Cs and C44 are consistent with that of shear modulus G and young's modulus E, proving that NdMgT4 (T = Co, Ni, Cu) alloys exhibit good plasticity with the trend: NdMgNi4 > NdMgCu4 > NdMgCo4. These calculated results give the basis guidance for the design of rare earth-magnesium-transition metal (R-Mg-T) alloys with improved mechanical properties.
Evaluation of Nd-Loaded SnO2:F Films Coated via Spray Pyrolysis
NASA Astrophysics Data System (ADS)
Turgut, G.
2018-05-01
Thin layers of single (F)- and double (F/Nd)-incorporated tin oxide have been coated on glass substrate via spray pyrolysis. The structural, morphological, electrical, and optical features of F-incorporated samples were evaluated depending on the Nd loading. X-ray diffraction analysis revealed that samples had tetragonal tin oxide structure with (211) and (200) preferential directions. The crystallite size and strain values varied from 37.98 nm and 1.21 × 10-3 to 52.12 nm and 1.88 × 10-3. Scanning electron microscopy analysis showed that the samples consisted of pyramidal, polyhedral, and needle-shaped granules. The lowest sheet resistance value of 1.22 Ω was found for 1.8 at.% Nd + 25 at.% F-coloaded SnO2. However, the widest optical bandgap of 4.01 eV was observed for the single 25 at.% F-loaded sample. The Urbach tail and figure of merit also changed in the ranges of 664 meV to 1296 meV and 6.4 × 10-2 Ω-1 to 2.3 × 10-3 Ω-1, respectively. The results presented herein indicate that the character of F-doped tin oxide films can be controlled by Nd loading and that these films could be useful for technological applications.
Evaluation of Nd-Loaded SnO2:F Films Coated via Spray Pyrolysis
NASA Astrophysics Data System (ADS)
Turgut, G.
2018-07-01
Thin layers of single (F)- and double (F/Nd)-incorporated tin oxide have been coated on glass substrate via spray pyrolysis. The structural, morphological, electrical, and optical features of F-incorporated samples were evaluated depending on the Nd loading. X-ray diffraction analysis revealed that samples had tetragonal tin oxide structure with (211) and (200) preferential directions. The crystallite size and strain values varied from 37.98 nm and 1.21 × 10-3 to 52.12 nm and 1.88 × 10-3. Scanning electron microscopy analysis showed that the samples consisted of pyramidal, polyhedral, and needle-shaped granules. The lowest sheet resistance value of 1.22 Ω was found for 1.8 at.% Nd + 25 at.% F-coloaded SnO2. However, the widest optical bandgap of 4.01 eV was observed for the single 25 at.% F-loaded sample. The Urbach tail and figure of merit also changed in the ranges of 664 meV to 1296 meV and 6.4 × 10-2 Ω-1 to 2.3 × 10-3 Ω-1, respectively. The results presented herein indicate that the character of F-doped tin oxide films can be controlled by Nd loading and that these films could be useful for technological applications.
NASA Astrophysics Data System (ADS)
Rafhay, Quentin; Beug, M. Florian; Duane, Russell
2007-04-01
This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.
Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang
2015-03-15
Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K, respectively.« less
Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry
2012-09-17
Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.
Magnetic levitation and its application for education devices based on YBCO bulk superconductors
NASA Astrophysics Data System (ADS)
Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.
2013-10-01
A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.
An animal model for Norrie disease (ND): gene targeting of the mouse ND gene.
Berger, W; van de Pol, D; Bächner, D; Oerlemans, F; Winkens, H; Hameister, H; Wieringa, B; Hendriks, W; Ropers, H H
1996-01-01
In order to elucidate the cellular and molecular processes which are involved in Norrie disease (ND), we have used gene targeting technology to generate ND mutant mice. The murine homologue of the ND gene was cloned and shown to encode a polypeptide that shares 94% of the amino acid sequence with its human counterpart. RNA in situ hybridization revealed expression in retina, brain and the olfactory bulb and epithelium of 2 week old mice. Hemizygous mice carrying a replacement mutation in exon 2 of the ND gene developed retrolental structures in the vitreous body and showed an overall disorganization of the retinal ganglion cell layer. The outer plexiform layer disappears occasionally, resulting in a juxtaposed inner and outer nuclear layer. At the same regions, the outer segments of the photoreceptor cell layer are no longer present. These ocular findings are consistent with observations in ND patients and the generated mouse line provides a faithful model for study of early pathogenic events in this severe X-linked recessive neurological disorder.
NASA Astrophysics Data System (ADS)
Nakada, Ryoichi; Tanimizu, Masaharu; Takahashi, Yoshio
2013-11-01
Many elements have become targets for studies of stable isotopic fractionation with the development of various analytical techniques. Although several chemical factors that control the isotopic fractionation of heavy elements have been proposed, it remains controversial which properties are most important for the isotopic fractionation of elements. In this study, the stable isotopic fractionation of neodymium (Nd) and samarium (Sm) during adsorption on ferrihydrite and δ-MnO2 was examined. This examination was combined with speciation analyses of these ions adsorbed on the solid phases by extended X-ray absorption fine structure (EXAFS) spectroscopy. Neodymium isotope ratios for Nd on ferrihydrite and δ-MnO2 systems were, on average, 0.166‰ and 0.410‰ heavier than those of the liquid phase, which correspond to mean isotopic fractionation factors between the liquid and solid phases (αLq-So) of Nd on ferrihydrite and δ-MnO2 of 0.999834 (2σ = ±0.000048) and 0.999590 (2σ = ±0.000106), respectively. Similarly, averaged Sm isotope ratios on ferrihydrite and δ-MnO2 were 0.206‰ and 0.424‰ heavier than those of the liquid phase and the corresponding αLq-So values were 0.999794 (±0.000041) and 0.999576 (±0.000134), respectively. These results indicate that the directions of isotopic fractionation in the Nd and Sm systems are in contrast with that recently found for Ce(III) systems despite the similar chemical characteristics of rare earth elements. EXAFS analyses suggest that the bond length of the first coordination sphere (REE-O bond) of Nd and Sm adsorbed on δ-MnO2 is shorter than that of their aqua ions, although this was not clear for the ferrihydrite systems. The shorter bond length relative to the aqua ion is indicative of a stronger bond, suggesting that the equilibrium isotopic fractionation for the Nd and Sm systems can be governed by bond strength as has often been discussed for isotopic fractionation in solid-water adsorption systems. Meanwhile, EXAFS analyses of the Ce/ferrihydrite system showed a distorted structure for the first coordination sphere that was not observed for Ce3+ aqua ions. Such distortion was also observed for La adsorption on ferrihydrite and δ-MnO2. In addition, previous studies have suggested a high stability of the hydrated state for La and Ce in terms of Gibbs free energy change. Thus, we suggest here that the difference in the stable isotopic fractionation for Ce (and predicted for La) vs. Nd and Sm can be explained by (i) the shorter bond lengths of adsorbed relative to dissolved species for Nd and Sm and (ii) the distorted structure of adsorbed Ce (and La) species and high stability of the aqua Ce ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Bud?ko, Sergey L.
Previously synthesized only as powders, single crystals of the RE 2Ru 3Ge 5 (RE = La, Ce, Nd, Gd, Tb) series of compounds have been now been obtained from molten In. We report that these materials crystallize with the U 2Co 3Si 5-type structure in orthorhombic space group Ibam with lattice parameters a ~ 10.00-9.77 Å (La-Tb), b ~ 12.51-12.35 Å, and c ~ 5.92-5.72 Å. The structure is a three-dimensional framework consisting of RuGe 5 and RuGe 6 units, as well as Ge-Ge zigzag chains. This structure type, along with the other five (Sc 2Fe 3Si 5, Lu 2Comore » 3Si 5, Y 2Rh 3Sn 5, Yb 2Ir 3Ge 5, and Yb 2Pt 3Sn 5) to compose the RE 2T 3X 5 phase space, are discussed in depth. For the three compounds with RE = Nd, Gd, and Tb, multiple magnetic transitions and metamagnetic behavior are observed. Lastly, electronic band structure calculations performed on La 2Ru 3Ge 5 indicate that these materials have a negative band gap and are semimetallic in nature.« less
Bugaris, Daniel E.; Malliakas, Christos D.; Bud?ko, Sergey L.; ...
2017-11-21
Previously synthesized only as powders, single crystals of the RE 2Ru 3Ge 5 (RE = La, Ce, Nd, Gd, Tb) series of compounds have been now been obtained from molten In. We report that these materials crystallize with the U 2Co 3Si 5-type structure in orthorhombic space group Ibam with lattice parameters a ~ 10.00-9.77 Å (La-Tb), b ~ 12.51-12.35 Å, and c ~ 5.92-5.72 Å. The structure is a three-dimensional framework consisting of RuGe 5 and RuGe 6 units, as well as Ge-Ge zigzag chains. This structure type, along with the other five (Sc 2Fe 3Si 5, Lu 2Comore » 3Si 5, Y 2Rh 3Sn 5, Yb 2Ir 3Ge 5, and Yb 2Pt 3Sn 5) to compose the RE 2T 3X 5 phase space, are discussed in depth. For the three compounds with RE = Nd, Gd, and Tb, multiple magnetic transitions and metamagnetic behavior are observed. Lastly, electronic band structure calculations performed on La 2Ru 3Ge 5 indicate that these materials have a negative band gap and are semimetallic in nature.« less
NASA Astrophysics Data System (ADS)
Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Bolotina, N. B.
2018-01-01
Characteristic features of defect structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) nonstoichiometric phases of different compositions are determined from X-ray diffraction data. Interest in subtle details of their structure is determined by the possibility of ion transport over fluorine vacancies and by a strong compositional dependence of the ionic conductivity. The La0.95Sr0.05F2.95, La0.95Ba0.05F2.95, and Nd0.95Ca0.05F2.95 phases, as well as the La0.9Ba0.1F2.9 phase, crystallize as β-LaF3 (sp. gr. P3̅c1, Z = 6). The La0.9Sr0.1F2.9 and Nd0.9Ca0.1F2.9 phases lose their superstructure and are described by a cell whose volume is three times smaller (sp. gr. P63/ mmc, Z = 2). Defects of crystal structure R1 - y M y F3 - y are not exhausted by vacancies in fluorine positions. All crystals with a "large" cell are twinned according to the merohedral twin law. The majority of atomic positions in models with a "small" cell are split by group symmetry elements and are occupied statistically.
NASA Astrophysics Data System (ADS)
Rodriguez, Steven; Jaworski, Justin
2017-11-01
The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.
Effect Of Neodymium Substitution In Structural Characteristics Of Magnesium Ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thankachan, Smitha; Binu, P. J.; Xavier, Sheena
2011-10-20
The effect of Nd{sup 3+} substitution on the structural properties of Magnesium ferrite was studied in the series MgNd{sub x}Fe{sub 2-x}O{sub 4}, where x = 0 to 0.3 in steps of 0.05. The series was prepared by sol-gel technique which is one of the novel technique to prepare nanosized samples. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. XRD analysis reveals the prepared samples are single phasic till x = 0.2. From x0 = .25, a secondary phase of iron neodymium oxide appears along with the spinel phase. Particle size calculation shows the prepared samples aremore » in the 9nm to 11 nm regime. Lattice parameter was found to increase with concentration of Nd. XRD and FTIR analysis confirmed spinel structure of the prepared samples. XRF result shows the expected composition of prepared samples. The frequency dependence of the dielectric constant in the range 100 Hz--120MHz was also studied« less
Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM
NASA Astrophysics Data System (ADS)
Tripathi, A.; Pandey, M.; Nagamatsu, S.; Pandey, S. S.; Hayase, S.; Takashima, W.
2017-11-01
We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.
Xing, Zipeng; Zhou, Wei; Du, Fan; Qu, Yang; Tian, Guohui; Pan, Kai; Tian, Chungui; Fu, Honggang
2014-01-14
A macro/mesoporous anatase TiO2 ceramic floating photocatalyst has been successfully synthesized using highly thermally stable mesoporous TiO2 powder as a precursor, followed by a camphene-based freeze-casting process and high-temperature calcinations. The ceramics are characterized in detail by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption isotherms. The results indicate that the TiO2 ceramics present hierarchical macro/mesoporous structures, which maintain high porosity and high compressive strength at the optimal sintering temperature of 800 °C. The ordered mesoporous TiO2 network still possesses high thermal stability and inhibits the anatase-to-rutile phase transformation during calcinations. The obtained ceramics exhibit good adsorptive and photocatalytic activity for the degradation of octane and rhodamine B, and the total organic carbon removal ratio is up to 98.8% and 98.6% after photodegradation for 3 h, respectively. The roles of active species in the photocatalytic process are compared using different types of active species scavengers, and the degradation mechanism is also proposed. Furthermore, the ceramics are recyclable, and no clear changes are observed after ten cycles. In addition, the ceramics are also active in the photodegradation of phenol, thiobencarb, and atrazine. Therefore, these novel floating photocatalysts will have wide applications, including the removal of floating organic pollutants from the wastewater surfaces or the removal of soluble organic pollutants from wastewater.
Catamaran or semi-submersible for floating platform - selection of a better design
NASA Astrophysics Data System (ADS)
Qasim, Idrees; Gao, Liangtian; Peng, Duojin; Liu, Bo
2018-02-01
With nonstop advancement in marine engineering, more and more new structures are being designed and explored for tidal current energy. There are three different kinds of support structures for tidal current power station mostly in use, which are sea-bed mounted/gravity based system, pile mounted system and floating moored platform. Comparing all of them, the floating mooring system is most suitable for deep water systems and the application of this arrangement is widely usable. In this paper, a semi-submersible and a catamaran as floating platforms for tidal current power stations are studied are compared on the basis of its economics, efficiency of turbine and stability of the station. Based on basic ship theory and using software MAXSURF, the stability of Catamaran tidal current power station is also calculated. It is found that the catamaran design is optimal choice.
Ferreira, Timothy; Smith, Mark D; Zur Loye, Hans-Conrad
2018-06-21
The compositions of the general formula Ln 11- x Sr x Ir 4 O 24 (Ln = La, Pr, Nd, Sm; 1.37 ≥ x ≥ 2) belonging to a family of A-site cation-deficient double-perovskite-related oxide iridates were grown as highly faceted single crystals from a molten strontium chloride flux. Their structures were determined by single-crystal X-ray diffraction. On the basis of the single-crystal results, additional compositions, Ln 9 Sr 2 Ir 4 O 24 (Ln = La, Pr, Nd, Sm), were prepared as polycrystalline powders via solid-state reactions and structurally characterized by Rietveld refinement. The compositions Ln 9 Sr 2 Ir 4 O 24 (Ln = La, Pr, Nd, Sm) contain Ir(V) and Ir(IV) in a 1:3 ratio with an average iridium oxidation state of 4.25. The single-crystal compositions La 9.15 Sr 1.85 Ir 4 O 24 and Pr 9.63 Sr 1.37 Ir 4 O 24 contain relatively less Ir(V), with the average iridium oxidation states being 4.21 and 4.09, respectively. The magnetic properties of Ln 9 Sr 2 Ir 4 O 24 (Ln = La, Pr, Nd, Sm) were measured, and complex magnetic behavior was observed in all cases at temperatures below 30 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaowei; Chai, Ping; Chen, Banghao
2015-09-15
Single crystals of Mg-substituted CeFe{sub 2}Al{sub 8} type intermetallics RFe{sub 2}Mg{sub x}Al{sub 8–x} (R=La–Nd and Sm; x≤1) were grown by reacting iron and rare earth metals in 1:1 Mg/Al mixed flux. The structure features mono-capped and bi-capped trigonal prismatic FeAl{sub 6} units. Electronic structure calculations indicate that magnesium substitution reduces the valence electron count, shifting the Fermi level away from a pseudo-gap. This changes the electronic nature of the cerium analog; the previously reported ternary CeFe{sub 2}Al{sub 8} shows strong hybridization between the cerium states and the conduction electrons, resulting in no magnetic moment on Ce atoms. On the othermore » hand, magnetic susceptibility measurements on CeFe{sub 2}Mg{sub x}Al{sub 8–x} indicates a localized moment on cerium. The newly synthesized Pr, Nd and Sm analogs exhibit antiferromagnetic ordering at 2.8 K, 7.8 K and 12 K respectively. Solid state {sup 27}Al NMR of LaFe{sub 2}Mg{sub x}Al{sub 8–x} exhibits a broad Knight shift at ~1200 ppm, consistent with the metallic behavior shown by electrical resistivity data. - Graphical abstract: Mg substitution into CeFe{sub 2}Al{sub 8} modifies cerium valence due to changing valence electron count. - Highlights: • RFe{sub 2}Mg{sub x}Al{sub 8−x} (R=La–Nd, Sm) grow as large crystals from reactions in Mg/Al flux. • Products are magnesium-substituted variants of CeFe{sub 2}Al{sub 8}, with CaCo{sub 2}Al{sub 8} structure. • Ce magnetic moment in CeFe{sub 2}Mg{sub x}Al{sub 8−x} varies from that in CeFe{sub 2}Al{sub 8} due to VEC change. • Antiferromagnetic ordering observed for Pr, Nd, Sm analogs of RFe{sub 2}Mg{sub x}Al{sub 8−x}.« less
NASA Technical Reports Server (NTRS)
Gosney, W. M.
1977-01-01
Electrically alterable read-only memories (EAROM's) or reprogrammable read-only memories (RPROM's) can be fabricated using a single-level metal-gate p-channel MOS technology with all conventional processing steps. Given the acronym DIFMOS for dual-injector floating-gate MOS, this technology utilizes the floating-gate technique for nonvolatile storage of data. Avalanche injection of hot electrons through gate oxide from a special injector diode in each bit is used to charge the floating gates. A second injector structure included in each bit permits discharge of the floating gate by avalanche injection of holes through gate oxide. The overall design of the DIFMOS bit is dictated by the physical considerations required for each of the avalanche injector types. The end result is a circuit technology which can provide fully decoded bit-erasable EAROM-type circuits using conventional manufacturing techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F.X., E-mail: zhangfx@umich.ed; Wang, J.W.; Lang, M.
The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (axbx2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedra remain during the formationmore » of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations. - Graphical abstract: At high pressures, La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5} transform from the orthorhombic phase to an axbx2c superlattice of the orthorhombic structure and then to a hexagonal high-pressure phase. Display Omitted« less
Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system
NASA Astrophysics Data System (ADS)
Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.
2018-05-01
Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.
Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira
2015-01-01
Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678
Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha
2017-01-01
Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures. PMID:28788081
Ong, Wern Hann; Chiu, Wing Kong; Kuen, Thomas; Kodikara, Jayantha
2017-07-28
Floating covers used in waste water treatment plants are one of the many structures formed with membrane materials. These structures are usually large and can spread over an area measuring 470 m × 170 m. The aim of this paper is to describe recent work to develop an innovative and effective approach for structural health monitoring (SHM) of such large membrane-like infrastructure. This paper will propose a potentially cost-effective non-contact approach for full-field strain and stress mapping using an unmanned aerial vehicle (UAV) mounted with a digital camera and a global positioning system (GPS) tracker. The aim is to use the images acquired by the UAV to define the geometry of the floating cover using photogrammetry. In this manner, any changes in the geometry of the floating cover due to forces acting beneath resulting from its deployment and usage can be determined. The time-scale for these changes is in terms of weeks and months. The change in the geometry can be implemented as input conditions to a finite element model (FEM) for stress prediction. This will facilitate the determination of the state of distress of the floating cover. This paper investigates the possibility of using data recorded from a UAV to predict the strain level and assess the health of such structures. An investigation was first conducted on a laboratory sized membrane structure instrumented with strain gauges for comparison against strains, which were computed from 3D scans of the membrane geometry. Upon validating the technique in the laboratory, it was applied to a more realistic scenario: an outdoor test membrane structure and capable UAV were constructed to see if the shape of the membrane could be computed. The membrane displacements were then used to calculate the membrane stress and strain, state demonstrating a new way to perform structural health monitoring on membrane structures.
Strübing, Sandra; Abboud, Tâmara; Contri, Renata Vidor; Metz, Hendrik; Mäder, Karsten
2008-06-01
The purpose of this study was to investigate the mechanism of floating and drug release behaviour of poly(vinyl acetate)-based floating tablets with membrane controlled drug delivery. Propranolol HCl containing tablets with Kollidon SR as an excipient for direct compression and different Kollicoat SR 30 D/Kollicoat IR coats varying from 10 to 20mg polymer/cm2 were investigated regarding drug release in 0.1N HCl. Furthermore, the onset of floating, the floating duration and the floating strength of the device were determined. In addition, benchtop MRI studies of selected samples were performed. Coated tablets with 10mg polymer/cm2 SR/IR, 8.5:1.5 coat exhibited the shortest lag times prior to drug release and floating onset, the fastest increase in and highest maximum values of floating strength. The drug release was delayed efficiently within a time interval of 24 h by showing linear drug release characteristics. Poly(vinyl acetate) proved to be an appropriate excipient to ensure safe and reliable drug release. Floating strength measurements offered the possibility to quantify the floating ability of the developed systems and thus to compare different formulations more efficiently. Benchtop MRI studies allowed a deeper insight into drug release and floating mechanisms noninvasively and continuously.
Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian
2017-04-01
The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.
Structure and magnetic properties of RE{sub 2}CuIn{sub 3} (RE=Ce, Pr, Nd, Sm and Gd)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyvanchuk, Yuriy B.; Szytula, Andrzej; Zarzycki, Arkadiusz
2008-12-15
The ternary copper indides RE{sub 2}CuIn{sub 3}{identical_to}RECu{sub 0.5}In{sub 1.5} (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn{sub 2}-type structure, space group P6{sub 3}/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECu{sub x}In{sub 2-x}. Single crystal structure refinements were performed for five crystals: CeCu{sub 0.66}In{sub 1.34} (a=479.90(7) pm, c=768.12(15) pm), PrCu{sub 0.52}In{sub 1.48} (a=480.23(7) pm, c=759.23(15) pm), NdCu{sub 0.53}In{sub 1.47} (a=477.51(7) pm, c=756.37(15) pm), SmCu{sub 0.46}In{sub 1.54} (a=475.31(7) pm, c=744.77(15) pm), and GdCu{sub 0.33}In{sub 1.67}more » (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at T{sub N}=4.7 K for Pr{sub 2}CuIn{sub 3} and Nd{sub 2}CuIn{sub 3} and 15 K for Sm{sub 2}CuIn{sub 3}. Fitting of the susceptibility data of the samarium compound revealed an energy gap {delta}E=39.7(7) K between the ground and the first excited levels. - Graphical abstract: The CaIn{sub 2}-type structure of Sm{sub 2}CuIn{sub 3}.« less
Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process
NASA Astrophysics Data System (ADS)
Levy, Galit Katarivas; Aghion, Eli
Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.
Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua
2016-12-01
We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.
Garvin, Michael R.; Bielawski, Joseph P.; Gharrett, Anthony J.
2011-01-01
The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm. PMID:21969854
Garvin, Michael R; Bielawski, Joseph P; Gharrett, Anthony J
2011-01-01
The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm.
Static high pressure studies on Nd and Sc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Xu, J.; Smith, G.S.
1985-06-24
We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.
2Flux growth and characterization of Ce-substituted Nd 2 Fe 14 B single crystals
Susner, Michael A.; Conner, Benjamin S.; Saparov, Bayrammurad I.; ...
2016-10-27
Single crystals of (Nd 1-xCe x) 2Fe 14B are grown out of Fe-(Nd,Ce) flux. Chemical and structural analysis of the crystals indicate that (Nd 1-xCe x) 2Fe 14B forms a solid solution until at least x = 0.38 with a Vegard-like variation of the lattice constants with x. Refinements of single crystal neutron diffraction data indicate that Ce has a slight site preference (7:3) for the 4g rare earth site over the 4f site. Magnetization measurements at 300 K show only small decreases with increasing Ce content in saturation magnetization (M s) and anisotropy field (H A), and Curie temperaturemore » (T C). First principles calculations are carried out to understand the effect of Ce substitution on the electronic and magnetic properties. For a multitude of applications, it is expected that the advantage of incorporating lower-cost and more abundant Ce will outweigh the small adverse effects on magnetic properties. In conclusion, Ce-substituted Nd 2Fe 14B is therefore a potential high-performance permanent magnet material with substantially reduced Nd content.« less
Compound floating pivot micromechanisms
Garcia, Ernest J.
2001-04-24
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.
Neutron diffraction, specific heat and magnetization studies on Nd{sub 2}CuTiO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayaprol, S., E-mail: sudhindra@csr.res.in; Kaushik, S. D.; Kumar, Naresh
2016-05-23
Structural and physical properties of a double-perovskite compound, Nd{sub 2}CuTiO{sub 6} have been studied using neutron diffraction, magnetization and specific heat measurements. The compound crystallizes in an orthorhombic structure in space group Pnma. The interesting observation we make here is that, though no long range magnetic order is observed between 2 and 300 K, the low temperature specific heat and magnetic susceptibility behavior exhibits non-Fermi liquid like behavior in this insulating compound. The magnetization and specific heat data are presented and discussed in light of these observations.
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
33 CFR 144.01-1 - Life floats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Life floats. 144.01-1 Section 144... CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-1 Life floats. Each manned platform shall be provided with at least two approved life floats. The life floats shall have sufficient...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Sixuan; Latturner, Susan E., E-mail: latturner@chem.fsu.edu
The intermetallic compounds RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were synthesized from the reaction of germanium and aluminum in RE/Co eutectic flux. These phases crystallize with the Nd{sub 6}Co{sub 5}Ge{sub 2.2} structure type in hexagonal space group P-6m2 (a=9.203(2)Å, c=4.202(1) Å, R{sub 1}=0.0109 for Pr{sub 6}Co{sub 5}Ge{sub 1.80}Al{sub 2.20}; and a=9.170(3) Å, c=4.195(1) Å, R{sub 1}=0.0129 for Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26}). The structure features chains of face-sharing Ge@RE{sub 9} clusters intersecting hexagonal cobalt nets linked by aluminum atoms. Magnetic susceptibility measurements indicate that both phases exhibit ferromagnetic ordering of the cobalt layers with T{sub C} in themore » range of 130–140 K. The magnetic moments of the rare earth ions order at lower temperature (30–40 K). Magnetic measurements on oriented crystals of Nd{sub 6}Co{sub 5}Ge{sub 1.74}Al{sub 2.26} show a strong preference of the moments to order along the c-axis. - Graphical abstract: RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) were grown as large crystals from reactions of Ge and Al in RE/Co eutectic melts. Magnetic measurements indicate ordering of the 2-D cobalt nets at 130–140 K, and ordering of the rare earth moments at 30–40 K. Display Omitted - Highlights: • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} (RE=Pr{sub ,} Nd) grown as large crystals from RE/Co eutectic flux. • RE{sub 6}Co{sub 5}Ge{sub 1+x}Al{sub 3−x} structure features hexagonal cobalt nets stacked along c-axis. • Cobalt layers order ferromagnetically with T{sub c}=130–140 K. • Rare earth magnetic moments order at low temperature (30–40 K).« less
NASA Astrophysics Data System (ADS)
Hadorn, Jason Paul; Hirayama, Yusuke; Ohkubo, Tadakatsu
2018-01-01
Thin films with compositions of NdFe12 and NdFe11Ti1 were fabricated on W-buffered MgO(001) substrates of varying roughness. In this study, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the films microstructurally, chemically, and crystallographically. This study revealed successful heteroepitaxial synthesis of the tetragonal NdFe12 and NdFe12- x Ti x phases in the Ti-free and Ti-containing films, respectively, both with surface-normal c-axis orientation. It also revealed the presence of other phases within the magnetic layer. The NdFe12 films contained many α-Fe particles, which preferentially precipitated at locally rough regions of the W-buffer interface. The NdFe11Ti1 film showed the ubiquitous presence of an Fe2Ti phase, which covered most of the buffer thereby preventing the formation of α-Fe. This phase was determined to have a novel Cu2Mg-type cubic Laves ( C15) crystal structure with fourfold interfacial symmetry, good coherency, and a low mismatch with the W-buffer, thus rendering itself as being an ideal interface for the heteroepitaxial synthesis of NdFe12- x Ti x crystals. It is proposed that successful application of a cubic Fe2Ti underlayer on W can contribute to the development of a fabrication strategy for NdFe12 thin films without the presence of soft magnetic α-Fe.
Chen, Rencai; Guo, Xiaomin; Liu, Xuecong; Cui, Haiming; Wang, Rui; Han, Jing
2018-03-01
The aim of the present work was to develop gastric floating capsules containing oil-entrapped beads loading procyanidins. The floating beads were prepared by ionotropic gelation method using sodium alginate, CaCl 2 and chitosan. The effect of three independent parameters (concentration of sodium alginate, CaCl 2 and chitosan) on entrapment efficiency were analyzed by Box-Behnken design. The floating beads were evaluated for surface morphology, particle size, density, entrapment efficiency, buoyancy, release behavior in vitro and floating ability in vivo. The prepared beads were grossly spherical in shape and the mean size was approximately 1.54±0.17mm. The density was 0.97g/cm 3 . And the optimal conditions were as follows: concentration of sodium alginate, CaCl 2 and chitosan were 33.75mg/mL, 9.84mg/mL and 9.05mg/mL, respectively. The optimized formulation showed entrapment efficiency of 88.84±1.04% within small error-value (0.65). The release mechanism of floating capsules followed Korsmeyer-Peppas model (r 2 =0.9902) with non-Fickian release. The gastric floating capsules exhibited 100% floating percentage in vitro and they could float on the top of gastric juice for 5h in vivo. Therefore, the floating capsules are able to prolong the gastroretentive delivery of procyanidins. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Tian, Changyong; Bo, Shuhui; Liu, Xinhou; Zhen, Zhen
2015-10-01
Oleic acid (OA)-modified LaF3:Nd, NaYF4:Nd and CaF2:Nd nanocrystals (NCs) with the different Nd3+ ion concentration (2% and 5%) have been prepared. The structure and morphology of NCs were identified by XRD, TEM, FT-IR and TGA. The size of OA-modified NC is a mean diameter of 5-10 nm and can be dispersed in common organic solvents to form a transparent solution. The optical loss of NCs in organic solvent is the first time to discuss in this work. The luminescence properties of NCs were also characterized and studied by fluorescence spectrometer. The nanoparticles in solid and in the solution all exhibited the strong emission at the 1060 nm when the materials were excited around 800 nm. Compared with the LaF3 and CaF2 matrix, NaYF4 as the host can protect the Nd3+ ions more efficiently away from the nonradiative transitions. The longest luminescent lifetime of the solid NaYF4:2%Nd NCs was up to 136 μs, and the little difference of the fluorescence lifetime existed between the NCs in solid state and in solution. The low optical loss in organic solvent indicated that the Nd3+ ions-doped fluoride NCs are promising materials for optical amplification fields.
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2009-01-01
X-ray absorption spectroscopy (XAS) measurements were made at the Nd L3-edge on neodymium(III) aqua and chloroaqua complexes in low pH aqueous solutions from 25 to 500????C and up to 520??MPa. Analysis of the extended X-ray absorption fine structure of the XAS spectra measured from a 0.07??m Nd/0.16??m HNO3 aqueous solution reveals a contraction of the Nd-O distance of the Nd3+ aqua ion at a uniform rate of ~ 0.013????/100????C and a uniform reduction of the number of coordinated H2O molecules from 10.0 ?? 0.9 to 7.4 ?? 0.9 over the range from 25 to 500????C and up to 370??MPa. The rate of reduction of the first-shell water molecules with temperature for Nd3+ (26%) is intermediate between the rate for the Gd3+ aqua ion (22% from 25 to 500????C) and the rates for the Eu3+ (29% from 25 to 400????C) and the Yb3+ aqua ions (42% from 25 to 500????C) indicating an intermediate stability of the Nd3+ aqua ion consistent with the tetrad effect. Nd L3-edge XAS measurements of 0.05??m NdCl3 aqueous solution at 25 to 500????C and up to 520??MPa show that stepwise inner-sphere complexes most likely of the type Nd(H2O)?? - nCln+3 - n occur in the solution at elevated temperatures, where ?? ??? 9 at 150????C decreasing to ~ 6 at 500????C and the number of chloride ions (n) of the chloroaqua complexes increases uniformly with temperature from 1.2 ?? 0.2 to 2.0 ?? 0.2 in the solution upon increase of temperature from 150 to 500????C. Conversely, the number of H2O ligands of Nd(H2O)?? - nCln+3 - n complexes is uniformly reduced with temperature from 7.5 ?? 0.8 to 3.7 ?? 0.3 in the aqueous solution, in the same temperature range. These data show greater stability of neodymium(III) than gadolinium(III) and ytterbium(III) chloride complexes in low pH aqueous solutions at elevated temperatures. Our data suggest a greater stability of aqueous light REE than that of heavy REE chloride complexes in low pH fluids at elevated temperatures consistent with REE analysis of fluids from deep-sea hydrothermal vents. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Widanarto, W.; Ardenti, E.; Ghoshal, S. K.; Kurniawan, C.; Effendi, M.; Cahyanto, W. T.
2018-06-01
To minimize the signal degradation, many electronic devices require efficient microwave absorbers with very low reflection-losses within the X-band. We prepared a series of trivalent neodymium-ion (Nd3+) substituted barium-natural ferrite using a modified solid-state reaction method. The effect of the Nd3+-ion content on the structure, surface morphology, magnetic properties, and microwave reflection loss was studied. The composites were characterized using X-ray diffraction, a vibrating sample magnetometer, scanning electron microscopy, and a vector network analyzer. The XRD patterns of the sample without Nd3+ reveal the presence of BaFe12O19 (hexagonal) and BaFe2O4 (rhombohedral) phases. Furthermore, a new hexagonal crystal phase of Ba6Nd2Fe4O15 appeared after substituting Nd3+. The average size of the prepared barium-natural ferrite particles was estimated to be between 0.4 and 0.8 μm. Both saturation magnetization and microwave reflection losses of these barium-ferrites were significantly reduced by increasing the Nd3+ content.
Homogeneous Nanodiamonds Are Different in Reality
NASA Astrophysics Data System (ADS)
Wu, Chi-Chin; Gottfried, Jennifer; Pesce-Rodriguez, Rose; Advanced Energetic Materials Team
Commercial detonation nanodiamonds (ND) have been investigated for many applications. They consist of carbon nanoparticles with diamond cores surrounded by onion-like graphitic shells. Unfortunately, variations in the purity and carbon structure between commercial ND samples due to variations in synthesis and purification conditions is an ongoing issue, since these differences can affect the resulting application-dependent ND behavior. Via characterization with transmission electron microscopy, this work investigates the structural and chemical differences among nominally homologous commercial detonation ND sold by a single vendor under the same item number. Significant discrepancies in the carbon structure and crystallinity between different batches with similar sizes and shapes were identified. The ND containing more non-carbon entities as impurities and oxygen-containing surface functional groups were found to possess thicker graphitic shells surrounding an unstable diamond core which quickly transforms to graphite under electron beam irradiation. However, the structure of ND with higher purities and thin onion shells remain unchanged over extended exposure to electron beams. This study demonstrates the structural and chemical differences between nominally identical commercial detonation ND samples and reveals their influence on the decomposition behavior of the particles.
Epitaxial Ce and the magnetism of single-crystal Ce/Nd superlattices
NASA Astrophysics Data System (ADS)
Clegg, P. S.; Goff, J. P.; McIntyre, G. J.; Ward, R. C.; Wells, M. R.
2003-05-01
The chemical structure of epitaxial γ cerium and the chemical and magnetic structures of cerium/neodymium superlattices have been studied using x-ray and neutron diffraction techniques. The samples were grown using molecular-beam epitaxy, optimized to yield the desired Ce allotropes. The x-ray measurements show that, in the superlattices, both constituents adopt the dhcp structure and that the stacking sequence remains intact down to T˜2 K; these are the first measurements of magnetic ordering in single-crystal dhcp Ce. The magnetic structure of the superlattices with thicker Nd layers exhibit incommensurate order and ferromagnetism on separate sublattices in a similar manner to Nd under applied pressure. The sample with thickest Ce layers has a magnetic structure similar to bulk β Ce, which has commensurate transverse modulation with a propagation wave vector [1/2 0 0] and moments along the hexagonal a direction. These two types of magnetic order appear to be mutually exclusive. γ Ce is the high-temperature fcc phase of Ce, our single-phase epitaxial sample is observed to go through a new, but partial, structural transition not previously seen in the bulk material.
Daut, Elizabeth F.; Lahodny, Glenn; Peterson, Markus J.; Ivanek, Renata
2016-01-01
Illegal wildlife-pet trade can threaten wildlife populations directly from overharvest, but also indirectly as a pathway for introduction of infectious diseases. This study evaluated consequences of a hypothetical introduction of Newcastle disease (ND) into a wild population of Peru’s most trafficked psittacine, the white-winged parakeet (Brotogeris versicolurus), through release of infected confiscated individuals. We developed two mathematical models that describe ND transmission and the influence of illegal harvest in a homogeneous (model 1) and age-structured population of parakeets (model 2). Infection transmission dynamics and harvest were consistent for all individuals in model 1, which rendered it mathematically more tractable compared to the more complex, age-structured model 2 that separated the host population into juveniles and adults. We evaluated the interaction of ND transmission and harvest through changes in the basic reproduction number (R0) and short-term host population dynamics. Our findings demonstrated that ND introduction would likely provoke considerable disease-related mortality, up to 24% population decline in two years, but high harvest rates would dampen the magnitude of the outbreak. Model 2 produced moderate differences in disease dynamics compared to model 1 (R0 = 3.63 and 2.66, respectively), but highlighted the importance of adult disease dynamics in diminishing the epidemic potential. Therefore, we suggest that future studies should use a more realistic, age-structured model. Finally, for the presumptive risk that illegal trade of white-winged parakeets could introduce ND into wild populations, our results suggest that while high harvest rates may have a protective effect on the population by reducing virus transmission, the combined effects of high harvest and disease-induced mortality may threaten population survival. These results capture the complexity and consequences of the interaction between ND transmission and harvest in a wild parrot population and highlight the importance of preventing illegal trade. PMID:26816214
Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina
2010-09-27
Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residuesmore » 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length ECD. Quite unexpectedly, ND1 forms a dimer mediated through the exchange of its last {beta}-strand (strand G). {beta}-strand swapping, which is a subset of 3D domain swapping, has been found to mediate cell-cell adhesion by cadherins. 3D domain swapping has been proposed to be a mechanism of protein oligomerization, aggregation, evolution of oligomeric proteins from single domains and amyloidogenesis. In domain swapped proteins, the same structural elements are involved in the final 3D structure, and so there is little overall energetic difference between the monomer and the swapped oligomers. However, there is often a high energy barrier for the conversion as it often goes through an unfolded state. It is also possible that strand-swapping occurs during folding of nascent polypeptide chains. Frequently, the exchange hinges contain proline-rich motifs which are often in high strain conformations. Domain swapping appears to be a strategy to resolve such local structural strain. The exchange hinge of ND1 contains a Pro-Glu-Pro tripeptide motif. Both of the proline residues adopt extended trans conformations, when compared with cis in the full-length ECD structure. Proline cis-trans isomerization may be the driving force for this exchange. Strand-exchanged dimerization may be a mechanism for the oligomerization of EMMPRIN ECD and its cis-dependent homophilic interactions in cell-cell adhesion.« less
Azough, Feridoon; Cernik, Robert Joseph; Schaffer, Bernhard; Kepaptsoglou, Demie; Ramasse, Quentin Mathieu; Bigatti, Marco; Ali, Amir; MacLaren, Ian; Barthel, Juri; Molinari, Marco; Baran, Jakub Dominik; Parker, Stephen Charles; Freer, Robert
2016-04-04
We investigated the structure of the tungsten bronze barium neodymium titanates Ba(6-3n)Nd(8+2n)Ti(18)O(54), which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba(6-3n)Nd(8+2n)Ti(18)O(54) (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba(6-3n)Nd(8+2n)Ti(18)O(54) "perovskite" superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity.
33 CFR 144.01-10 - Equipment for life floats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic electric...
33 CFR 144.01-10 - Equipment for life floats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic electric...
33 CFR 144.01-10 - Equipment for life floats.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic electric...
33 CFR 144.01-10 - Equipment for life floats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic electric...
33 CFR 144.01-10 - Equipment for life floats.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Equipment for life floats. 144.01... for life floats. (a) Each lifefloat shall be provided with a painter. This painter shall be a manila... 1/2 inch in diameter. (b) Each life float must have a water light of an approved automatic electric...
Glider Observations of Upper Ocean Structure in the Bay of Bengal
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Glider Observations of Upper Ocean Structure in the Bay...using gliders and floats • Improve glider technology to overcome fresh, buoyant surface layers • Establish a new technology to observe turbulence...with profiling floats APPROACH We use two approaches to observe the upper ocean in the BoB. First, we deploy Spray underwater gliders to resolve
Charge Fluctuations in the NdO1-xFxBiS2 Superconductors
NASA Astrophysics Data System (ADS)
Athauda, Anushika; Mizuguchi, Yoshikazu; Nagao, Masanori; Neuefeind, Joerg; Louca, Despina
2017-12-01
The local atomic structure of superconducting NdO1-xFxBiS2 (x = 0.2 and 0.4) is investigated using neutron diffraction and the pair density function analysis technique. In the non-superconducting x = 0.2 composition, ferrodistortive displacements of the pyramidal sulfur ions break the tetragonal symmetry and a superlattice structure emerges with peaks appearing at h + k odd reflections superimposed on the even reflections of the P4/nmm symmetry. In the superconducting x = 0.4 composition, similar ferrodistortive displacements are observed but with different magnitudes coupled with in-plane Bi distortions which are indicative of charge fluctuations.
NASA Astrophysics Data System (ADS)
Williams, N. L.; Juranek, L. W.; Feely, R. A.; Johnson, K. S.; Sarmiento, J. L.; Talley, L. D.; Dickson, A. G.; Gray, A. R.; Wanninkhof, R.; Russell, J. L.; Riser, S. C.; Takeshita, Y.
2017-03-01
More than 74 biogeochemical profiling floats that measure water column pH, oxygen, nitrate, fluorescence, and backscattering at 10 day intervals have been deployed throughout the Southern Ocean. Calculating the surface ocean partial pressure of carbon dioxide (pCO2sw) from float pH has uncertainty contributions from the pH sensor, the alkalinity estimate, and carbonate system equilibrium constants, resulting in a relative standard uncertainty in pCO2sw of 2.7% (or 11 µatm at pCO2sw of 400 µatm). The calculated pCO2sw from several floats spanning a range of oceanographic regimes are compared to existing climatologies. In some locations, such as the subantarctic zone, the float data closely match the climatologies, but in the polar Antarctic zone significantly higher pCO2sw are calculated in the wintertime implying a greater air-sea CO2 efflux estimate. Our results based on four representative floats suggest that despite their uncertainty relative to direct measurements, the float data can be used to improve estimates for air-sea carbon flux, as well as to increase knowledge of spatial, seasonal, and interannual variability in this flux.
NASA Astrophysics Data System (ADS)
Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka
2018-06-01
Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.
Swift-heavy ion irradiation response and annealing behavior of A2TiO5 (A = Nd, Gd, and Yb)
NASA Astrophysics Data System (ADS)
Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; Palomares, Raul I.; Park, Changyong; Trautmann, Christina; Lang, Maik; Mao, Wendy L.; Ewing, Rodney C.
2018-02-01
The structural responses of A2BO5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb2TiO5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the high cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd2TiO5 and Gd2TiO5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. These compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.
Effects of B and Mo on the magnetic properties of NdFeTi-nitrides with ThMn[sub 12]-type structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.B.; Kim, H.T.; Kim, C.S.
1993-11-01
The alloys having nearly single phase of ThMn[sub 12]-type structure (1-12 phase) have been successfully synthesized in NdFe[sub 10.7]Ti[sub 1.3[minus]y]M[sub y] (M = B/Mo) alloy systems by substituting B or Mo up to 23% of Ti (y=0.3). After nitrification, the unit cell volume of 1--12 phase has increased by about 2--3% and a-Fe phase of 5--15 wt.% has been formed depending on the substitutional elements. The nitrides, NdFe[sub 10.7]TiB[sub 0.3]N[sub x] and Nd Fe[sub 10.7]TiMo[sub 0.3]N[sub x], were confirmed to have uniaxial anisotropy by X-ray diffractometry. The results of magnetic measurements for the nitrides have shown that B is verymore » effective for the increase of both Curie temperature and magnetization. On the other band, Mo is effective for the increase of anisotropy field, but it decreases the magnetization. The Curie temperature and magnetization of NdFe[sub 10.7]TiB[sub 0.3]N[sub x] are 560 C and 148 Am[sup 2] /kg, respectively, by about 20% and 15% higher than those of NdFe[sub 10.7]Ti[sub 1.3]N[sub x]. The anisotropy field of NdFe[sub 10.7]TiMo[sub 0.3]N[sub x] is about 7960 kA/m (100 kOe) which is about 25% higher than that of NdFe[sub 10.7]Ti[sub 1.3]N[sub x].« less
Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder
NASA Astrophysics Data System (ADS)
Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang
2017-01-01
Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.
Experimental and Numerical Investigations of Floating Breakwater Performance.
USDA-ARS?s Scientific Manuscript database
Floating breakwaters are commonly used to protect small marinas and for shoreline erosion control in coastal areas. They are efficient wave attenuation structures for relatively short waves and shallow water depths. The main objective of the current study is to investigate the hydrodynamic interacti...
Magnetic texturing due to the partial ordering of Fe+3 and Cu+2 in NdBaCuFeO5
NASA Astrophysics Data System (ADS)
Pissas, M.
2017-06-01
The crystal and magnetic structure of the oxygen deficient double perovskite NdBaCuFeO5 was studied, using neutron powder diffraction data. The structure was refined from neutron powder diffraction data using the space groups P 4 / mmm and P 4 mm . For 2K ⩽ T ⩽TN2 = 260K three families of magnetic Bragg peaks exist. These peaks can be indexed with commensurate propagation vectors k1 =[1/2 1/2 1/2], k2 =[1/2 1/2 0] and the incommensurate k3 =[1/2 1/2 0.4]. Above TN2 only magnetic Bragg peaks originated from k1 and k2 propagation, were observed. The incommensurate magnetic structure can be attributed to a circular inclined spiral ordering as in YBaCuFeO5 compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramesh, M. N. V.; Ramesh, K. V., E-mail: kv-ramesh5@yahoo.co.in
2016-05-23
0.8BaTiO{sub 3} – 0.2(Bi{sub 0.5(1-x)}Nd{sub 0.5x}K{sub 0.5})TiO{sub 3} (0.01 ≤ x ≤ 0.06) lead free ceramic materials have been prepared by solid state reaction method and followed by high energy ball milling process. X-ray diffraction studies confirm the tetragonal structure of the materials at room temperature. Lattice parameters and density are decreasing with increase of Nd substitution. Microstructure studies were done by using Scanning electron microscope and it found that grain size is decreasing with increase of Nd substitution. Temperature and frequency dependent dielectric studies reveal relaxor behaviour of the materials. Dielectric constant, dielectric loss and Curie temperature are decreasingmore » with Nd substitution. Maximum Curie temperature of 195°C was observed at 1 MHz for x=0.01 Nd substituted sample. Degree of diffuseness was calculated from the modified Curie-Weiss law and it is increasing with Nd substitution. AC conductivity is increasing with increase of Nd substitution and observed maximum activation energy of 0.52 eV for x=0.02 Nd substituted sample.« less
Effect of Nd doping on structural, dielectric and thermodynamic properties of PZT (65/35) ceramic
NASA Astrophysics Data System (ADS)
Mohiddon, Md Ahamad; Kumar, Abhishek; Yadav, K. L.
2007-05-01
The influence of neodymium (Nd) addition on the phase formation and dielectric properties of Pb(Zr 0.65Ti 0.35)O 3 composition prepared from mixed oxide method was analyzed. Pellets were sintered in air and PbZrO 3 (PZ) atmosphere separately. Non-perovskite ZrO 2 phase was observed in samples which were sintered in air, also grain size was found to decrease with Nd doping in non-PZ environment samples. Decrease in transition temperature by 80 °C with increasing Nd concentration was observed in both set of samples. Maximum dielectric constant and dielectric losses are found to decrease with Nd doping. Complex impedance analysis revealed that grain boundary resistance increases with Nd doping. Thermodynamic parameters such as change in enthalpy, free energy and change in entropy were studied.
Structural analysis and design for the development of floating photovoltaic energy generation system
NASA Astrophysics Data System (ADS)
Yoon, S. J.; Joo, H. J.; Kim, S. H.
2018-06-01
In this paper, we discussed the structural analysis and design for the development of floating photovoltaic energy generation system. Series of research conducted to develop the system from the analysis and design of the structural system to the installation of the system discussed. In the structural system supporting solar panels PFRP materials and SMC FRP materials used. A unit module structure is fabricated and then the unit module structures are connected each other to assemble whole PV energy generation complex. This system connected directly to the power grid system. In addition, extensive monitoring for the efficiency of electricity generation and the soundness of the structural system is in progress for the further system enhancement.
ERIC Educational Resources Information Center
Boyer-Chu, Lynda; Wooley, Susan F.
2008-01-01
Adolescent immunization saves lives--but promoting immunization takes time and thought, and today's nurses and other health advocates are faced with a host of ever-expanding responsibilities in a time of reduced budgets and staff. This toolkit is thus structured as an easy and reliable resource. This 2nd edition contains: (1) a 64-page manual;…
Terminator assembly for a floating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, H.; Hall, J.E.
1987-10-20
A terminator assembly is described for use in mooring a floating surface to the floor of a body of water. The floating structure has has an upper support and a lower support, comprising: a hawsepipe extending downwardly from adjacent the upper support and supported by the lower support, a tension member extending downwardly from adjacent the upper support through the hawsepipe and the lower support. The tension member has a lower end adapted for connection to the floor of the body of water. Locking means connected to an upper portion of the tension member for maintaining the tension member inmore » tension by acting upon an upper portion of the hawsepipe without transferring primary tension load forces to the upper support.« less
NASA Astrophysics Data System (ADS)
Gilani, Zaheer Abbas; Warsi, Muhammad Farooq; Khan, Muhammad Azhar; Shakir, Imran; Shahid, Muhammad; Anjum, Muhammad Naeem
2015-09-01
Soft ferrites are technologically advanced smart materials and their properties can be tailored by controlling the chemical composition and judicial choice of the metal elements. In this article we discussed the effect of rare earth neodymium (Nd3+) on various properties of LiNi0.5NdxFe2-xO4 spinel ferrites. These ferrites have been synthesized by facile micro-emulsion route and characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), a.c. electrical conductivity and thermal analysis. The influence of Nd3+ doping on structural and electrical parameters has been investigated. XRD analysis revealed the formation of single cubic spinel structure for x≤0.07. Few traces of secondary phase (NdFeO3) were found for x≥0.105. The secondary phase induced owing to the solubility limit of Nd3+ cations in these ferrites. The lattice parameter (a) and crystallite size (D) both exhibit non-linear relation. The values of "a" and "D" were found in the range 8.322-8.329 Å and 25-32 nm respectively. These variations were attributed to the larger ionic radius of Nd3+ cations as compared to the host cations and lattice strain produced in these ferrites. The dielectric parameters were studied in the range 1 MHz to 3 GHz and these parameters were damped by Nd3+ incorporation and also by increasing the frequency. The reduced dielectric parameters observed in wide frequency range proposed that these nanocrystalline ferrites are potential candidates for fabricating the devices which are required to operate at GHz frequencies.
Rodrigues, Josilene M; Oliveira, Vinicius P P; P Furlan, Julia; Munhoz, Ana Claudia; S Rempel, Marcelo R; Brito, Marcia N; Brito, Nilton A; Pedrosa, Maria M D; M Costa, Cecília E
2017-05-01
Residual effects after nandrolone decanoate (ND) treatment are not reported. Immediate and residual effects of low-dose ND and treadmill training were investigated. Male rats were trained and/or ND-treated for four weeks and the assessments were made after this period or four weeks later. The groups did not differ in final plasma glucose or AUC of the ivGTT, but hyperinsulinemia was noticed in some trained/treated groups. Training with ND increased muscle mass and ND decreased the reproductive structures. Decreased fat with training was reversed by detraining. The anabolic action of ND on skeletal muscle was enhanced by training. Fat and lipid changes were more linked to training/detraining, but the effects of ND on the reproductive structures persisted after treatment. The effects of training on fat and muscle were not maintained after detraining, but low-dose ND had persistent effects on the reproductive structures.
Hayes, John R; Grosvenor, Andrew P; Saoudi, Mouna
2016-02-01
Inert matrix fuels (IMF) consist of transuranic elements (i.e., Pu, Am, Np, Cm) embedded in a neutron transparent (inert) matrix and can be used to "burn up" (transmute) these elements in current or Generation IV nuclear reactors. Yttria-stabilized zirconia has been extensively studied for IMF applications, but the low thermal conductivity of this material limits its usefulness. Other elements can be used to stabilize the cubic zirconia structure, and the thermal conductivity of the fuel can be increased through the use of a lighter stabilizing element. To this end, a series of Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials has been synthesized via a co-precipitation reaction and characterized by multiple techniques (Nd was used as a surrogate for Am). The long-range and local structures of these materials were studied using powder X-ray diffraction, scanning electron microscopy, and X-ray absorption spectroscopy. Additionally, the stability of these materials over a range of temperatures has been studied by annealing the materials at 1100 and 1400 °C. It was shown that the Nd(x)Sc(y)Zr(1-x-y)O(2-δ) materials maintained a single cubic phase upon annealing at high temperatures only when both Nd and Sc were present with y ≥ 0.10 and x + y > 0.15.
Hardware math for the 6502 microprocessor
NASA Technical Reports Server (NTRS)
Kissel, R.; Currie, J.
1985-01-01
A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds.
NASA Astrophysics Data System (ADS)
Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul
2018-04-01
A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .
Free-floating magnetic microstructures by mask photolithography
NASA Astrophysics Data System (ADS)
Huong Au, Thi; Thien Trinh, Duc; Bich Do, Danh; Phu Nguyen, Dang; Cong Tong, Quang; Diep Lai, Ngoc
2018-03-01
This work explores the fabrication of free-floating magnetic structures on a photocurable nanocomposite consisting of superparamagnetic magnetite nanoparticles (Fe3O4) and a commercial SU-8 negative tone photoresist. The nanocomposite was synthesized by mixing magnetic nanoparticles with different kinds of SU-8 resin. We demonstrated that the dispersion of Fe3O4 nanoparticles in nanocomposite solution strongly depended on the particles concentration, the viscosity of SU-8 polymer, and the mixing time. The influence of these factors was demonstrated by examining the structures fabricated by mask photolithography technique. We obtained the best quality of structures at a low concentration, below 5 wt%, of Fe3O4 nanoparticles in SU-8 2005 photoresist for a mixing time of about 20 days. The manipulation of free-floating magnetic microstructures by an external magnetic field was also demonstrated showing promising applications of this magnetic nanocomposite.
Horizontal mixing in the Southern Ocean from Argo float trajectories
NASA Astrophysics Data System (ADS)
Roach, Christopher J.; Balwada, Dhruv; Speer, Kevin
2016-08-01
We provide the first observational estimate of the circumpolar distribution of cross-stream eddy diffusivity at 1000 m in the Southern Ocean using Argo float trajectories. We show that Argo float trajectories, from the float surfacing positions, can be used to estimate lateral eddy diffusivities in the ocean and that these estimates are comparable to those obtained from RAFOS floats, where they overlap. Using the Southern Ocean State Estimate (SOSE) velocity fields to advect synthetic particles with imposed behavior that is "Argo-like" and "RAFOS-like" diffusivity estimates from both sets of synthetic particles agreed closely at the three dynamically very different test sites, the Kerguelen Island region, the Southeast Pacific Ocean, and the Scotia Sea, and support our approach. Observed cross-stream diffusivities at 1000 m, calculated from Argo float trajectories, ranged between 300 and 2500 m2 s-1, with peaks corresponding to topographic features associated with the Scotia Sea, the Kerguelen Plateau, the Campbell Plateau, and the Southeast Pacific Ridge. These observational estimates agree with previous regional estimates from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) near the Drake Passage, and other estimates from natural tracers (helium), inverse modeling studies, and current meter measurements. These estimates are also compared to the suppressed eddy diffusivity in the presence of mean flows. The comparison suggests that away from regions of strong topographic steering suppression explains both the structure and magnitude of eddy diffusivity but that eddy diffusivities in the regions of topographic steering are greater than what would be theoretically expected and the ACC experiences localized enhanced cross-stream mixing in these regions.
Quality Improvement: Creating a Float Pool Specialty Within a New Graduate Residency.
Shinners, Jean; Alejandro, John Aldrich N; Frigillana, Vanessa; Desmond, Juliann; LaVigne, Ronda
2016-01-01
Creating new norms is essential for success as acute care leaders seek to redesign care delivery. Through the structures of the registered nurse (RN) residency and utilizing a quality improvement process, new graduate RNs demonstrated success in creating a centralized float pool resource.
NASA Astrophysics Data System (ADS)
Vespa, M.; Dähn, R.; Wieland, E.
Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill and liner materials) of repositories for radioactive waste. In this study, bulk-X-ray absorption spectroscopy (XAS) was used to investigate the uptake mechanism of Nd on the crystalline C-S-H phase 11 Å tobermorite in the presence of Zn (co-absorbing metal), and vice versa, as potential competitor under strongly alkaline conditions (pH = 12.5-13.3). The Zn and Nd concentration in all samples was 50,000 ppm, whereas the reaction times varied from 1 to 6 months. Extended X-ray absorption fine structure (EXAFS) data of the Nd LIII-edge indicate that the local structural environment of Nd consists of ∼7-8 O atoms at 2.42 Å, ∼7-8 Si at ∼3.67 Å and ∼5-6 Ca at ∼3.8 Å, and that this environment remains unchanged in the presence and absence of Zn. In contrary, Zn K-edge EXAFS data exhibit distinct differences in the presence and absence of Nd as co-absorbing element. Data analysis indicates that Zn is tetrahedrally coordinated (∼4 O at ∼1.96 Å) and the obtained structural data in the simultaneous presence of Nd and Zn are consistent with the formation of mixed Zn surface complexes and Zn bound in the interlayer remaining in these positions also with prolonged reaction times (up to 6 months). However, without the co-absorbing element Nd, strong structural changes in the uptake mechanisms of Zn are observable, e.g., after 3 month reaction time Zn-Zn backscattering pairs can be observed. These findings suggest that Nd has an influence on the incorporation of Zn in the tobermorite structure. In addition, the results of this study indicate that competitive uptake of metal cations with similar sorption behaviour by C-S-H phases can take place, deserving further attention in future assessments of the safe disposal of radioactive wastes in cement-based repositories.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wu, Wenwei; Zhou, Chong; Zhou, Shifang; Li, Miaoyu; Ning, Yu
2018-03-01
M-type hexagonal Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) has been synthesized by ball milling, followed by calcination in air. The calcined products have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra, and vibrating sample magnetometry. XRD and SEM analyses confirm the formation of M-type Sr hexaferrite with platelet-like morphology when Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) precursors are calcined at 950°C in air for 2.5 h. Lattice parameters " a" and " c" values of Sr1- x Co x Nd x Fe12- x O19 reflect a very small variation after doping of Nd3+ and Co2+ ions. Average crystallite size of Sr1- x Co x Nd x Fe12- x O19 sample, calcined at 1150°C, decreased obviously after doping of Co2+ and Nd3+ ions. This is because the bond energy of Nd3+-O2- is much larger than that of Sr2+-O2-. Magnetic characterization indicates that all the samples exhibit good magnetic properties. Substitution of Sr2+ and Fe3+ ions by Nd3+ and Co2+ ions can improve the specific saturation magnetizations and remanence of Sr1- x Co x Nd x Fe12- x O19. Sr0.84Co0.16Nd0.16Fe11.84O19, calcined at 1050°C, has the highest specific saturation magnetization value (74.75 ± 0.60 emu/g), remanence (45.15 ± 0.32 emu/g), and magnetic moment (14.34 ± 0.11 μ B); SrFe12O19, calcined at 1150°C, has the highest coercivity value (4037.01 ± 42.39 Oe). These magnetic parameters make this material a promising candidate for applications such as high-density magnetic recording and microwave absorbing materials.
Two-photon momentum density in La2-xSrxCuO4 and Nd2-xCexCuO4
NASA Astrophysics Data System (ADS)
Blandin, P.; Massidda, S.; Barbiellini, B.; Jarlborg, T.; Lerch, P.; Manuel, A. A.; Hoffmann, L.; Gauthier, M.; Sadowski, W.; Walker, E.; Peter, M.; Yu, Jaejun; Freeman, A. J.
1992-07-01
We present calculations of the electron-positron momentum density for the high-Tc superconductors La2-xSrxCuO4 and Nd2-xCexCuO4, together with experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) for Nd2-xCexCuO4. The calculations are based on first-principles electronic structure obtained using the full-potential linearized augmented-plane-wave and the linear muffin-tin orbital methods. Our results indicate a non-negligible overlap of the positron wave function with the CuO2 plane electrons responsible for the Fermi surfaces in these compounds. Therefore, these compounds may be well suited for investigating Fermi-surface-related effects. After the folding of umklapp terms according to Lock, Crisp, and West, the predicted Fermi-surface breaks are mixed with strong effects induced by the positron wave function in La2-xSrxCuO4, while their resolution is better in Nd2-xCexCuO4. A comparison of our calculations with the most recent experimental results for La2-xSrxCuO4 shows good agreement. For Nd2-xCexCuO4 good agreement is observed between theoretical and experimental 2D-ACAR profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, G.; Lackner, M.; Haid, L.
2013-07-01
With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation lengthmore » on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.« less
Eddy Seeding in the Labrador Sea: a Submerged Autonomous Launching Platform (SALP) Application
NASA Astrophysics Data System (ADS)
Furey, Heather H.; Femke de Jong, M.; Bower, Amy S.
2013-04-01
A simplified Submerged Autonomous Launch Platform (SALP) was used to release profiling floats into warm-core Irminger Rings (IRs) in order to investigate their vertical structure and evolution in the Labrador Sea from September 2007 - September 2009. IRs are thought to play an important role in restratification after convection in the Labrador Sea. The SALP is designed to release surface drifters or subsurface floats serially from a traditional ocean mooring, using real-time ocean measurements as criteria for launch. The original prototype instrument used properties measured at multiple depths, with information relayed to the SALP controller via acoustic modems. In our application, two SALP carousels were attached at 500 meters onto a heavily-instrumented deep water mooring, in the path of recently-shed IRs off the west Greenland shelf. A release algorithm was designed to use temperature and pressure measured at the SALP depth only to release one or two APEX profiling drifters each time an IR passed the mooring, using limited historical observations to set release thresholds. Mechanically and electronically, the SALP worked well: out of eleven releases, there was only one malfunction when a float was caught in the cage after the burn-wire had triggered. However, getting floats trapped in eddies met with limited success due to problems with the release algorithm and float ballasting. Out of seven floats launched from the platform using oceanographic criteria, four were released during warm water events that were not related to passing IRs. Also, after float release, it took on average about 2.6 days for the APEX to adjust from its initial ballast depth, about 600 meters, to its park point of 300 meters, leaving the float below the trapped core of water in the IRs. The other mooring instruments (at depths of 100 to 3000 m), revealed that 12 IRs passed by the mooring in the 2-year monitoring period. With this independent information, we were able to assess and improve the release algorithm, still based on ocean conditions measured only at one depth. We found that much better performance could have been achieved with an algorithm that detected IRs based on a temperature difference from a long-term running mean rather than a fixed temperature threshold. This highlights the challenge of designing an appropriate release strategy with limited a priori information on the amplitude and time scales of the background variability.
Nakashima, Etsuko; Isobe, Atsuhiko; Kako, Shin'ichiro; Itai, Takaaki; Takahashi, Shin; Guo, Xinyu
2016-06-15
The long-distance transport potential of toxic lead (Pb) by plastic marine debris was examined by pure water leaching experiments using plastic fishery floats containing high level of additive-Pb such as 5100±74.3mgkg(-1). The leaching of Pb ended after sequential 480-h leaching experiments, and the total leaching amount is equivalent to approximately 0.1% of total Pb in a float. But it recovered when the float was scratched using sandpaper. We propose that a "low-Pb layer," in which Pb concentration is negligibly small, be generated on the float surface by the initial leaching process. Thickness of the layer is estimated at 2.5±1.2μm, much shallower than flaws on floats scratched by sandpaper and floats littering beaches. The result suggests that the low-Pb layer is broken by physical abrasion when floats are washed ashore, and that Pb inside the floats can thereafter leach into beaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He-Dong, Xiao; Yuan, Dong; Yu, Liu; Shu-Tao, Li; Yong-Ji, Yu; Guang-Yong, Jin
2016-09-01
We adopt a compact intra-cavity pumped structure of Nd:YAG and Nd:YVO4 crystals to develop an efficient dual-wavelength laser that operates at 946 nm and 1064 nm. A 808 nm laser diode is used to pump the Nd:YAG crystal, which emits at 946 nm, and the Nd:YVO4 crystal, which emits at 1064 nm, is intra-cavity pumped at 946 nm. In order to avoid unnecessary pump light passing though the Nd:YAG crystal, reaching the Nd:YVO4 crystal and having an impact on the cavity pump, the two crystals are placed as far from one another as possible in this experiment. The output power at 1064 nm can be adjusted from 1 W-2.9 W by varying the separation between the two crystals. A total output power of 4 W at the dual-wavelengths is achieved at an incident pump power of 30.5 W, where the individual output powers for the 946 nm and 1064 nm emissions are 1.1 W and 2.9 W, respectively.
Growth and optical properties of Co,Nd:LaMgAl11O19
NASA Astrophysics Data System (ADS)
Xu, Peng; Xia, Changtai; Di, Juqing; Xu, Xiaodong; Sai, Qinglin; Wang, Lulu
2012-12-01
Nd,Co:LaMgAl11O19 (abbreviated as Co,Nd:LMA) was grown using the Czochralski method. The structure, polarized absorption spectrum, fluorescence spectrum, and fluorescence decay time were analyzed. The as-grown crystal had very wide absorption bands at 794 nm, which can be pumped by GaAs laser diode without temperature stabilization. Two strong emission bands were present at 1056 nm and 1082 nm with full-width at half-maximum (FWHM) of 6 and 8 nm, respectively. The large FWHM is due to the inhomogeneity of the Nd ion sites. The lifetimes of the 4F3/2 manifold of Co,Nd:LMA at room temperature monitored at 905 nm, 1056 nm, and 1344 nm were 292, 288, and 350 μs, respectively, which was caused by the different contribution of the three different sites with D3h and C2v symmetry. The absorption band of Co is from 1.3 μm to 1.6 μm, and Co,Nd:LMA still has a strong emission around the 1.38 μm, indicating that the Co,Nd:LMA can be applied as a potential self-Q-switched material operating at 1.3 μm.
Autonomous Microstructure EM-APEX Floats
2016-01-01
Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats
Direct ink write fabrication of transparent ceramic gain media
NASA Astrophysics Data System (ADS)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.
2018-01-01
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.
NASA Astrophysics Data System (ADS)
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets
NASA Astrophysics Data System (ADS)
Li, R.; Shang, R. X.; Xiong, J. F.; Liu, D.; Kuang, H.; Zuo, W. L.; Zhao, T. Y.; Sun, J. R.; Shen, B. G.
2017-05-01
The effect of replacing Nd with misch metal (MM) on magnetic properties and thermal stability has been investigated on melt-spun (Nd1-xMMx)13.5Fe79.5B7 ribbons by varying x from 0 to 1. All of the alloys studied crystallize in the tetragonal 2:14:1 structure with single hard magnetic phase. Curie temperature (Tc), coercivity (Hcj), remanence magnetization (Br) and maximum energy product ((BH)max) all decrease with MM content. The melt-spun MM13.5Fe79.5B ribbons with high ratio of La and Ce exhibit high magnetic properties of Hcj = 8.2 kOe and (BH)max= 10.3 MGOe at room temperature. MM substitution also significantly strengthens the temperature stability of coercivity. The coercivities of the samples with x = 0.2 and even 0.4 exhibit large values close to that of Nd13.5Fe79.5B7 ribbons above 400 K.
Swift-heavy ion irradiation response and annealing behavior of A 2TiO 5 (A = Nd, Gd, and Yb)
Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; ...
2017-09-28
The structural responses of A 2BO 5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb 2TiO 5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the highmore » cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd 2TiO 5 and Gd 2TiO 5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at ~ 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. In conclusion, these compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.« less
Swift-heavy ion irradiation response and annealing behavior of A 2TiO 5 (A = Nd, Gd, and Yb)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang
The structural responses of A 2BO 5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb 2TiO 5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the highmore » cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd 2TiO 5 and Gd 2TiO 5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at ~ 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. In conclusion, these compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.« less
Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In
NASA Astrophysics Data System (ADS)
Sala, G.; Mašková, S.; Stone, M. B.
2017-10-01
We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.
Dhindsa, Gurpreet K; Bhowmik, Debsindhu; Goswami, Monojoy; O'Neill, Hugh; Mamontov, Eugene; Sumpter, Bobby G; Hong, Liang; Ganesh, Panchapakesan; Chu, Xiang-Qiang
2016-09-14
Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on ND surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. Our new findings may provide new design principles for safer, improved drug delivery platforms.
40 CFR 265.1086 - Standards: Surface impoundments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... floating membrane cover in accordance with the provisions specified in paragraph (c) of this section; or (2... emissions from a surface impoundment using a floating membrane cover shall meet the requirements specified... with a floating membrane cover designed to meet the following specifications: (i) The floating membrane...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Annu, E-mail: annu.bajaj11@gmail.com; Jain, Sushma
2016-05-06
The present investigation is concerened with the studies on electronic spectral parameters viz. Oscillator strength (P), Judd-Ofelt T{sub λ} (λ=2,4,6), Slater-Condon(F{sub K}),Lande(ζ{sub 4F}),Nephelauxetic ratio(β), Bonding parameter (b{sup 1/2}) and Percent covalency parameter (δ%) for Nd(III) ion complexes with the ligands having Nitrogen,Oxygen Sulphur donor sites.The variation in the values of oscillator strength explicitly shows the relative sensitivities of the 4f-4f transition as well as the specific correlation between ligand structures and nature of Nd(III) ligand interaction.
Nanocrystalline NiNd0.01Fe1.99O4 as a gas sensor
NASA Astrophysics Data System (ADS)
Shinde, Tukaram J.; Gadkari, Ashok B.; Jadhav, Sarjerao R.; Kumar, Surender; Dalawai, Sanjeev P.; Vasambekar, Pramod N.
2015-06-01
Nanocrystalline NiNd0.01Fe1.99O4 has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl2, LPG and C2H5OH. It was observed that NiNd0.01Fe1.99O4 is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah
A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less
Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; ...
2017-05-08
A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less
NASA Astrophysics Data System (ADS)
Dhalenne, G.; Trouilleux, L.; Jegoudez, J.; Revcolevschi, A.; Monod, P.; Kormann, R.; Ganne, J. P.; Motohira, N.; Kitazawa, K.
1991-11-01
Superconducting textured materials were grown from the melt by a floating zone technique in the Nd-Ce-Cu-O and Bi-Sr-Ca-Cu-O systems. The influence of growth conditions and starting compositions on the microstructures and phase composition of the samples were studied by optical microscopy under polarized light, electron microprobe analysis and X-ray diffraction. The superconducting properties of these samples were examined by both electrical resistivity and magnetic measurements. A very strong influence of the microstructure on the superconducting properties as well as a magnetic and electrical anisotropy were shown. In the case of the Bi-Sr-Ca-Cu-O system, critical current densities ranging from 1 600 to 3 000 A.cm^{-2} were measured at 77 K. Des matériaux supraconducteurs texturés ont été élaborés à partir de l'état liquide dans les systèmes Nd-Ce-Cu-O et Bi-Sr-Ca-Cu-O par une technique de fusion de zone. L'influence des conditions de croissance et des compositions initiales sur la microstructure des échantillons a été étudiée par microscopie optique en lumière polarisée, microsonde électronique et diffraction des rayons X. Les propriétés supraconductrices des échantillons ont été examinées par des mesures électriques et magnétiques. Il a été observé une forte influence de la microstructure sur les propriétés supraconductrices ainsi qu'une anisotropie électrique et magnétique. Dans le cas du système Bi-Sr-Ca-Cu-O, les densités de courant critique mesurées à 77 K sont comprises entre 1 600 et 3 000 A.cm^{-2}.
Magnetic behavior of R 2Co 14B hydrides (R = La, Pr, Sm, Gd, Tb and Y)
NASA Astrophysics Data System (ADS)
Zhang, L. Y.; Pourarian, F.; Wallace, W. E.
1988-08-01
The structure and magnetic properties of R 2Co 14B sysstems(R = La, Pr, Nd, Sm, Gd, Tb and Y) and their hydrides were studied by means of bulk magnetometry. All R 2Co 14B hydrides presently studied occur in the tetragonal Nd 2Fe 14B-type crystal structure. The composition-temperature isotherms measured fro selected Gd- and Nd- containing systems exhibit some indication of a platuau pressure at higher hydrogen concentrations. Hydrogenation expands the unit volume, Vc, by 1.5 to 3.0%, depending on the nature of R and the content of hydrogen. It was found that introduction of hydrogen into the lattice decreases Ms of the Co sublittice. This is attributed to the effect of electron charge transfer from Hto Co-3d sublittice. Hydrogennation significantly decreases the anistropy fields, HA, and the spin-reorientation transition temperatur, TSR, for Prand Tb-based intermetallics. The results indicates that the hydrogen makes the compounds magnetically softer, which is attributed to the influence of hydrogen on both the 3d and R sublittices. Two types of spin-reorientation transition for the Nd 2Co 14B system were observed. Hydrogenaration reduces both the low transition temperature, TSR 1, and the high transition temperature, TSR 2, which is explained using the Boltich-Wallace mechanism.
NASA Astrophysics Data System (ADS)
Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao
2017-02-01
Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.
Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao
2017-02-13
Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO 3 ), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO 3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd 3+ in Ba 2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO 3 -based ceramics.
Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao
2017-01-01
Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559
Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F; Rand, Kasper D
2014-12-02
Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.
NASA Astrophysics Data System (ADS)
Petersen, Ø. W.; Øiseth, O.; Nord, T. S.; Lourens, E.
2018-07-01
Numerical predictions of the dynamic response of complex structures are often uncertain due to uncertainties inherited from the assumed load effects. Inverse methods can estimate the true dynamic response of a structure through system inversion, combining measured acceleration data with a system model. This article presents a case study of full-field dynamic response estimation of a long-span floating bridge: the Bergøysund Bridge in Norway. This bridge is instrumented with a network of 14 triaxial accelerometers. The system model consists of 27 vibration modes with natural frequencies below 2 Hz, obtained from a tuned finite element model that takes the fluid-structure interaction with the surrounding water into account. Two methods, a joint input-state estimation algorithm and a dual Kalman filter, are applied to estimate the full-field response of the bridge. The results demonstrate that the displacements and the accelerations can be estimated at unmeasured locations with reasonable accuracy when the wave loads are the dominant source of excitation.
40 CFR 63.1063 - Floating roof requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the point of refloating the floating roof shall be continuous and shall be performed as soon as... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Floating roof requirements. 63.1063...) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1063 Floating roof...
50 CFR 679.94 - Economic data report (EDR) for the Amendment 80 sector.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: NMFS, Alaska Fisheries Science Center, Economic Data Reports, 7600 Sand Point Way NE, F/AKC2, Seattle... Operation Description of code Code NMFS Alaska region ADF&G FCP Catcher/processor Floating catcher processor. FLD Mothership Floating domestic mothership. IFP Stationary Floating Processor Inshore floating...
Paschalidis, Damianos G.; Harrison, William T. A.
2016-01-01
The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) monohydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neodymium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thiocyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thiocyanate ion, a bidentate nitrate ion and a water molecule to generate a distorted NdN5O5 bicapped square antiprism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385
Research on stability of nozzle-floating plate institution
NASA Astrophysics Data System (ADS)
Huang, Bin; Tao, Jiayue; Yi, Jiajing; Chen, Shijing
2016-01-01
In this paper, air hammer instability of nozzle-floating plate institution in gas lubricated force sensor were studied. Through establishment of the theoretical model for the analysis of the nozzle-floating plate institution stability, combined with air hammer stability judgment theorems, we had some simulation research on the radius of the nozzle, the radius of the pressure chamber, pressure chamber depth, orifice radius and the relationship between air supply pressure and bearing capacity, in order to explore the instability mechanism of nozzle-floating plate institution. For conducting experimental observations for the stability of two groups nozzle-floating plate institution, which have typical structural parameters conducted experimental observations. We set up a special experimental device, verify the correctness of the theoretical study and simulation results. This paper shows that in the nozzle-floating plate institution, increasing the nozzle diameter, reduced pressure chamber radius, reducing the depth of the pressure chamber and increase the supply orifice radius, and other measures is conducive to system stability. Results of this study have important implications for research and design of gas lubricated force sensor.
XMCD and TEM studies of as-cast and rapidly quenched Fe50Nd50 alloys
NASA Astrophysics Data System (ADS)
Menushenkov, V. P.; Menushenkov, A. P.; Shchetinin, I. V.; Wilhelm, F.; Ivanov, A. A.; Rudnev, I. A.; Ivanov, V. G.; Rogalev, A.; Savchenko, A. G.; Zhukov, D. G.; Rafalskiy, A. V.; Ketov, S. V.
2017-12-01
We present the XMCD analysis of as-cast and melt spun Fe50Nd50 samples performed at L2,3 -Nd and K-Fe absorption edges at 5 and 50 K in comparison with macroscopic data of XRD, TEM and magnetic properties measurements. In addition, we have measured the magnetic field dependence of XMCD signal for both types of the samples in magnetic fields up/down to 17 T. The obtained results pointed to the strong difference between structure and magnetic properties of the as-cast and melt spun Fe50Nd50 alloys for both macroscopic and local measurements. The element selective XMCD loops for melt spun alloy show almost identical value of the coercive force Hci for L 2-Nd and K-Fe edges and practically do not depend on temperature. XMCD loop at K-Fe edge is a sum of contributions of the Fe-based phases. The main Fe-rich phase has high Hci ≈ 2,4 T as a highly anisotropic phase. The absence of the K-Fe XMCD loop saturation in the field up to 17 T points to presence of the second Nd-rich Nd-Fe phase which is ferromagnetic at temperature lower than 50 K. In accordance to the TEM results these both phases may coexist as the mixture of nanocrystals which was formed as a result of decomposition of the amorphous-like matrix phase. The XMCD loop at L2 -Nd edge with Hci ≈ 1,9 T is the sum of contributions from two Nd-based phases: hard Fe-rich phase (Hci ≈ 2,4 T) and Nd-Fe matrix phase of medium hardness with Hci ≈ 1,3 T. The macroscopic loop showed the higher Hci compared to XMCD loops. Such discrepancy may be caused by the fact that XMCD signal is collected from a 5-10 mcm thick surface layer, which contains many defects that reduce anisotropy and coercivity.
The impact of the night float system on internal medicine residency programs.
Trontell, M C; Carson, J L; Taragin, M I; Duff, A
1991-01-01
To study the design, method of implementation, perceived benefits, and problems associated with a night float system. Self-administered questionnaire completed by program directors, which included both structured and open-ended questions. The answers reflect resident and student opinions as well as those of the program directors, since program directors regularly obtain feedback from these groups. The 442 accredited internal medicine residency programs listed in the 1988-89 Directory of Graduate Medical Education Programs. Of the 442 programs, 79% responded, and 30% had experience with a night float system. The most frequent methods for initiating a night float system included: decreasing elective time (42.3%), hiring more residents (26.9%), creating a non-teaching service (12.5%), and reallocating housestaff time (9.6%). Positive effects cited include decreased fatigue, improved housestaff morale, improved recruiting, and better attitude toward internal medicine training. The quality of medical care was considered the same or better by most programs using it. The most commonly cited problems were decreased continuity of care, inadequate teaching of the night float team, and miscommunication. Residency programs using a night float system usually observe a positive effect on housestaff morale, recruitment, and working hours and no detrimental effect on the quality of patient care. Miscommunication and inadequate learning experience for the night float team are important potential problems. This survey suggests that the night float represents one solution to reducing resident working hours.
NASA Astrophysics Data System (ADS)
Babizhetskyy, Volodymyr; Mattausch, Hansjürgen; Simon, Arndt; Hiebl, Kurt; Ben Yahia, Mouna; Gautier, Régis; Halet, Jean-François
2008-08-01
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6-)3([C3]4-)2(C4-)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.
Misra, Raghvendra; Bhardwaj, Peeyush
2016-01-01
The present investigation is concerned about the development of floating bioadhesive drug delivery system of venlafaxine hydrochloride which after oral administration exhibits a unique combination of floating and bioadhesion to prolong gastric residence time and increase drug bioavailability within the stomach. The floating bioadhesive tablets were prepared by the wet granulation method using different ratios of hydroxypropyl methyl cellulose (HPMC K4MCR) and Carbopol 934PNF as polymers. Sodium bicarbonate (NaHCO3) and citric acid were used as gas (CO2) generating agents. Tablets were characterized for floating properties, in vitro drug release, detachment force, and swelling index. The concentration of hydroxypropyl methyl cellulose and Carbopol 934PNF significantly affects the in vitro drug release, floating properties, detachment force, and swelling properties of the tablets. The optimized formulation showed the floating lag time 72 ± 2.49 seconds and duration of floating 24.50 ± 0.74 hr. The in vitro release studies and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. Different drug release kinetics models were also applied. The in vitro drug release from tablets was sufficiently sustained (more than 18 hr) and the Fickian transports of the drug from the tablets were confirmed. The radiological evidence suggests that the tablets remained buoyant and altered position in the stomach of albino rabbit and mean gastric residence time was prolonged (more than > 6 hr).
Magnetic Phase Transitions in NdCoAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A; Gout, Delphine J; Garlea, Vasile O
2010-01-01
NdCoAsO undergoes three magnetic phase transitions below room temperature. Here we report the results of our experimental investigation of this compound, including determination of the crystal and magnetic structures using powder neutron diffraction, as well as measurements of electrical resistivity, thermal conductivity, Seebeck coefficient, magnetization, and heat capacity. These results show that upon cooling a ferromagnetic state emerges near 69 K with a small saturation moment of -0.2{micro}{sub B}, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (-0.4{micro}{sub B}) on Co and Nd. Near 3.5more » K a third transition is observed, and corresponds to the antiferromagnetic ordering of larger moments on Nd, with the same propagation vector. The ordered moment on Nd reaches 1.39(5){micro}{sub B} at 300 mK. Anomalies in the magnetization, electrical resistivity, and heat capacity are observed at all three magnetic phase transitions.« less
NASA Technical Reports Server (NTRS)
Edmonds, L. D.
2016-01-01
Since advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.
NASA Technical Reports Server (NTRS)
Edmonds, L. D.
2016-01-01
Because advancing technology has been producing smaller structures in electronic circuits, the floating gates in modern flash memories are becoming susceptible to prompt charge loss from ionizing radiation environments found in space. A method for estimating the risk of a charge-loss event is given.
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long
2018-03-01
In this paper, the fatigue lives of a new type of assembled marine floating platform for special purposes were studied. Firstly, by using ANSYS AQWA software, the hydrodynamic model of the platform was established. Secondly, the structural stresses under alternating change loads were calculated under complex water environments, such as wind, wave, current and ice. The minimum fatigue lives were obtained under different working conditions. The analysis results showed that the fatigue life of the platform structure can meet the requirements
NASA Astrophysics Data System (ADS)
Isikawa, Yosikazu; Mizushima, Toshio; Ejiri, Jun-ichi; Kitayama, Shiori; Kumagai, Keigou; Kuwai, Tomohiko; Bordet, Pierre; Lejay, Pascal
2015-07-01
The new cubic quaternary intermetallic compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe) were synthesized by the mixture-metal flux method using Zn and Sn. The crystal structure was investigated by powder X-ray diffraction and with a four-circle X-ray diffractometer using single crystals. The space group of the compounds is Fdbar{3}m (No. 227). The rare-earth atom is at the cubic site which is the center of a cage composed of Zn and Sn atoms. The crystal structure is the same as the CeCr2Al20-type crystal structure except the atoms at the 16c site, i.e., the Zn atoms at the 16c site are completely replaced by Sn atoms, indicating that the compounds are crystallographically new ordered quaternary compounds. The lattice parameter a and the physical properties of the magnetic susceptibility χ, the magnetization M, and the specific heat C of these cubic caged compounds were investigated. LaCo2Sn2Zn18 and LaFe2Sn2Zn18 are enhanced Pauli paramagnets that originate from the Co and Fe itinerant 3d electrons. CeCo2Sn2Zn18 and CeFe2Sn2Zn18 are also enhanced Pauli paramagnets that originate from both the 3d electrons and Ce 4f electrons. PrCo2Sn2Zn18 and PrFe2Sn2Zn18 are nonmagnetic materials with huge values of C divided by temperature, which indicates that the ground state of Pr ions is a non-Kramers' doublet. NdCo2Sn2Zn18 and NdFe2Sn2Zn18 are magnetic materials with the Néel temperatures of 1.0 and 3.8 K, respectively. All eight compounds have large magnetic moments of Co/Fe in the paramagnetic temperature region, and thus their magnetic moments are inferred to be magnetically frustrating owing to the pyrochlore lattice in the low-temperature region.
Enhanced ferromagnetic properties in Nd and Gd co-doped BiFeO3 ceramics
NASA Astrophysics Data System (ADS)
Jena, A. K.; Chelvane, J. Arout; Mohanty, J.
2018-05-01
Structural, optical and magnetic properties of Nd3+ and Gd3+ doped BiFeO3 were studied. X-ray diffraction studies confirmed that all the co-doped Bi1-x-yNdxGdyFeO3 samples are polycrystalline in nature crystallizing in rhombohedral type structure (Space group: R3c). In addition to this presence of residual phases like Bi2Fe4O9, Bi25FeO40 were also observed. Raman spectra confirms the structural distortion in co-doped ceramics. Band gap of samples decrease from 2.08eV to 1.95eV with increase in Gd concentration. Room temperature magnetization measurement indicated enhancement of magnetic properties with increase in Gd concentration.
Chiang, Tzu Hsuan; Chen, Tso-Ming
2017-01-01
The study investigated photocatalytic water splitting for O2 production under visible light irradiation using neodymium vanadium oxide (NdVO4) and vanadium oxide (V2O5) hybrid powders. The results in a sacrificial agent of 0.01 M AgNO3 solution were obtained, and the highest photocatalytic O2 evolution was 2.63 μmol/h, when the hybrid powders were prepared by mixing Nd and V at a volume ratio of 1:3 at a calcination temperature of 350 °C for 1 h. The hybrid powders were synthesized by neodymium nitrate and ammonium metavanadate using the glycothermal method in ethylene glycol at 120 °C for 1 h. The hybrid powders consisted of two shapes, NdVO4 nanoparticles and the cylindrical V2O5 particles, and they possessed the ability for photocatalytic oxygen (O2) evolution during irradiation with visible light. The band gaps and structures of the hybrid powders were analyzed using UV-visible spectroscopy and transmission electron microscopy. PMID:28772692
NASA Astrophysics Data System (ADS)
Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben
2018-02-01
Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
NASA Astrophysics Data System (ADS)
Berdonosov, Peter S.; Charkin, Dmitry O.; Kusainova, Ardak M.; Hervoches, Charles H.; Dolgikh, Valeriy A.; Lightfoot, Philip
2000-09-01
Four new layered oxyhalides related to the Sillen family have been prepared and characterized by Rietveld refinement of powder X-ray and neutron diffraction data. BiTeO 3I and NdTeO 3Br both adopt tetragonal symmetry, space group P4/ nmm (for BiTeO 3I, a=4.10811(8), c=27.988(1) Å; NdTeO 3Br, a=4.06603(7), c=26.922(1) Å, at 25°C). The structures are composed of triple and double fluorite-related mixed metal oxide layers separated by single and double halogen layers, in the sequence MTe 2O 5XXMTe 2O 5XM 2O 2X, which may be represented by the symbol X 13X 13X 22, where the subscript signifies the number of halogen layers and the superscript the number of metal sublayers within the fluorite block, by analogy with Sillen's notation. The double fluorite layers are occupied exclusively by Bi, whereas there is an ordered arrangement of Bi/Te within the triple fluorite layers, with Te exclusively occupying the outer sublayers of the block. NdTeO 3Cl adopts an orthorhombically distorted form of this structure type, space group Pmmn, a=4.08096(8), b=4.03441(8), c=25.7582(7) Å at 25°C. Bi 5TeO 8.5I 2 adopts a distorted, non-centrosymmetric version of the simpler X 13 structure type, space group Cmm2, a=5.6878(3), b=5.7230(3), c=9.7260(6) Å, consisting of single halogen layers sandwiched between triple fluorite layers, in which there is partial ordering of the Bi/Te cations.
33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...
33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...
33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...
33 CFR 147.815 - ExxonMobil Hoover Floating OCS Facility safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false ExxonMobil Hoover Floating OCS... HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.815 ExxonMobil Hoover Floating OCS Facility safety zone. (a) Description. The ExxonMobil Hoover Floating OCS Facility, Alaminos...
33 CFR 144.01-15 - Alternates for life floats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When either...
33 CFR 144.01-5 - Location and launching of life floats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Location and launching of life floats. The life floats shall be distributed in accessible locations and...
33 CFR 144.01-15 - Alternates for life floats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Alternates for life floats. 144... for life floats. (a) Approved lifeboats, approved life rafts or approved inflatable life rafts may be used in lieu of approved life floats for either all or part of the capacity required. When either...
33 CFR 144.01-5 - Location and launching of life floats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Location and launching of life floats. 144.01-5 Section 144.01-5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Location and launching of life floats. The life floats shall be distributed in accessible locations and...
Grodzik, Marta; Sawosz, Filip; Sawosz, Ewa; Hotowy, Anna; Wierzbicki, Mateusz; Kutwin, Marta; Jaworski, Sławomir; Chwalibog, André
2013-11-20
It has been demonstrated that the content of certain amino acids in eggs is not sufficient to fully support embryonic development. One possibility to supply the embryo with extra nutrients and energy is in ovo administration of nutrients. Nanoparticles of diamond are highly biocompatible non-toxic carbonic structures, and we hypothesized that bio-complexes of diamond nanoparticles with L-glutamine may affect molecular responses in breast muscle. The objective of the investigation was to evaluate the effect of diamond nanoparticle (ND) and L-glutamine (Gln) on expression of growth and differentiation factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln/ND up-regulated expression of genes related to muscle cell proliferation (FGF2) and differentiation (MyoD1). Furthermore, the ratio between FGF2 and MyoD1 was highest in the Gln/ND group. At the end of embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle cells and differentiation dominated over proliferation. These preliminary results suggest that the bio-complex of glutamine and diamond nanoparticles may accelerate growth and maturation of muscle cells.
Electrodeposition of amorphous Ni P coatings onto Nd Fe B permanent magnet substrates
NASA Astrophysics Data System (ADS)
Ma, C. B.; Cao, F. H.; Zhang, Z.; Zhang, J. Q.
2006-12-01
Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
2017-08-24
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Matthew; Goupee, Andrew; Jonkman, Jason
Hybrid modeling—combining physical testing and numerical simulation in real time$-$opens new opportunities in floating wind turbine research. Wave basin testing is an important validation step for floating support structure design, but the conventional approaches that use physical wind above the basin are limited by scaling problems in the aerodynamics. Applying wind turbine loads with an actuation system that is controlled by a simulation responding to the basin test in real time offers a way to avoid scaling problems and reduce cost barriers for floating wind turbine design validation in realistic coupled wind and wave conditions. This paper demonstrates the developmentmore » of performance specifications for a system that couples a wave basin experiment with a wind turbine simulation. Two different points for the hybrid coupling are considered: the tower-base interface and the aero-rotor interface (the boundary between aerodynamics and the rotor structure). Analyzing simulations of three floating wind turbine designs across seven load cases reveals the motion and force requirements of the coupling system. By simulating errors in the hybrid coupling system, the sensitivity of the floating wind turbine response to coupling quality can be quantified. The sensitivity results can then be used to determine tolerances for motion tracking errors, force actuation errors, bandwidth limitations, and latency in the hybrid coupling system. These tolerances can guide the design of hybrid coupling systems to achieve desired levels of accuracy. An example demonstrates how the developed methods can be used to generate performance specifications for a system at 1:50 scale. Results show that sensitivities vary significantly between support structure designs and that coupling at the aero-rotor interface has less stringent requirements than those for coupling at the tower base. As a result, the methods and results presented here can inform design of future hybrid coupling systems and enhance understanding of how test results are affected by hybrid coupling quality.« less
Gravitational force and torque on a solar power satellite considering the structural flexibility
NASA Astrophysics Data System (ADS)
Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan
2017-11-01
The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.
Magnetic and electrical properties of Nd7Pt3 studied on single crystals
NASA Astrophysics Data System (ADS)
Tsutaoka, Takanori; Ueda, Koyo; Matsushita, Takuya
2018-07-01
Magnetic and electrical properties of Nd7Pt3 with the Th7Fe3 type hexagonal structure have been studied on single crystals by measuring magnetization, magnetic susceptibility and electrical resistivity. Nd7Pt3 possesses a ferromagnetic state below TC = 38 K; a canted antiferromagnetic state takes place at Tt2 = 34 K. Another magnetic phase transition has also been observed at Tt1 = 25 K. The magnetization curve along the a- and b-axes at 2 K shows anomalous first-order irreversible behavior. The direction of the magnetic moment in the canted state can be tilted from the c-plane. Electrical resistivity measurement results show metallic property; three anomalies were observed at Tt1, Tt2 and TC, respectively.
Hydrogen absorption and its effect on magnetic properties of Nd2Fe14B
NASA Astrophysics Data System (ADS)
Bezdushnyi, R.; Damianova, R.; Tereshina, I. S.; Pankratov, N. Yu.; Nikitin, S. A.
2018-05-01
Magnetic properties of hydrides of the intermetallic compound Nd2Fe14BHx are investigated in the temperature range covering the Curie temperatures (TC) of the compounds (up to 670 K). The temperature dependencies of magnetization are measured under continuous control of hydrogen content in the investigated samples. The dependencies of Curie and spin-reorientation transition (TSR) temperatures on the hydrogen concentration are studied in detail. The dependence of hydrogen concentration on pressure at a constant temperature (near TC) and on the temperature at various pressures are obtained. We attempted to estimate the contributions of the unit cell volume increase upon hydrogenation and the electronic structure change in the variation of TC of the hydrogenated Nd2Fe14 B .
1984-09-11
5 EPA 625 . Endosulfan sulfate wg/L 5 EPA 625 Chlordane pg/L * Toxaphene Pg/L * Acid Extractable Detection Analytical Compound Units Limit Method...ND ND ND ND 4,4’-DDT 5 ND ND ND ND Endosuif an sulfate 5 ND ND ND ND Chlordane* Toxa phene* Detection Acid Extractable Compound Limit M4-2 M4-6 14-9 Ge...Endosulfan sulfate 5 ND ND Chlordane * Toxaphene * Detection Acid Extractable Compound Limit BPM-1 BPM-2 2-Chlorophenol 2 ND ND 2-Nitrophenol 2 ND ND
Zhang, Zhiyu; Suo, Hao; Zhao, Xiaoqi; Sun, Dan; Fan, Li; Guo, Chongfeng
2018-05-02
A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y 2 O 3 :Nd 3+ /Yb 3+ @SiO 2 @Cu 2 S (YRSC), in which the core Y 2 O 3 :Nd 3+ /Yb 3+ and shell Cu 2 S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y 2 O 3 :Yb 3+ /Er 3+ @SiO 2 @Cu 2 S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu 2 S nanoparticles simultaneously absorb NIR light emission from the core Y 2 O 3 :Nd 3+/ Yb 3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.
Floating assembly of diatom Coscinodiscus sp. microshells.
Wang, Yu; Pan, Junfeng; Cai, Jun; Zhang, Deyuan
2012-03-30
Diatoms have silica frustules with transparent and delicate micro/nano scale structures, two dimensional pore arrays, and large surface areas. Although, the diatom cells of Coscinodiscus sp. live underwater, we found that their valves can float on water and assemble together. Experiments show that the convex shape and the 40 nm sieve pores of the valves allow them to float on water, and that the buoyancy and the micro-range attractive forces cause the valves to assemble together at the highest point of water. As measured by AFM calibrated glass needles fixed in manipulator, the buoyancy force on a single floating valve may reach up to 10 μN in water. Turning the valves over, enlarging the sieve pores, reducing the surface tension of water, or vacuum pumping may cause the floating valves to sink. After the water has evaporated, the floating valves remained in their assembled state and formed a monolayer film. The bonded diatom monolayer may be valuable in studies on diatom based optical devices, biosensors, solar cells, and batteries, to better use the optical and adsorption properties of frustules. The floating assembly phenomenon can also be used as a self-assembly method for fabricating monolayer of circular plates. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xing, Linzhuang; Chen, Bin; Li, Dong; Wu, Wenjuan; Wang, Guoxiang
2017-11-01
Neodymium:yttrium aluminum garnet (Nd:YAG) lasers exhibit considerable potential for treating deeply buried port-wine stains. However, the application of Nd:YAG laser is limited by its weak absorption to blood. This in vivo study tested the efficacy and safety of utilizing thiol-terminated methoxypolyethylene glycol-modified gold nanorods (PEG-GNRs) to enhance the absorption of Nd:YAG laser to blood. Mouse mesentery and dorsal skinfold chamber (DSC) model were prepared to analyze the thermal responses of a single venule without anatomic structures, as well as blood vessels in the complex structure of the skin, to laser light. After the injection of 0.44 mg of PEG-GNRs, the required threshold density of laser energy for blood coagulation and complete vasoconstriction decreased from 24 to 18 J/cm2 in the mesentery model and from 36 to 31 J/cm2 in the DSC model. The laser pulse required for blood coagulation and complete vasoconstriction decreased by 67.75% and 62.25% on average in the mesentery model and by 67.55% and 54.45% on average in the DSC model. Histological and histochemical results confirmed that PEG-GNRs are nontoxic in the entire mouse life span. Therefore, combining PEG-GNRs with Nd:YAG laser may be effective and safe for inducing an obvious thermal response of blood vessels under low energy density and minimal pulse conditions.
Neodymium cobalt oxide as a chemical sensor
NASA Astrophysics Data System (ADS)
Abdel-Latif, I. A.; Rahman, Mohammed M.; Khan, Sher Bahadar
2018-03-01
Chemical sensing and electrical transport properties of neodymium coblate, NdCoO3, was investigated in this work. It was prepared by using co-precipitation method. Pure neodymium chloride and cobalt chloride were mixing in the presence of sodium hydroxide and the obtained co-precipitated powder was calcined at 850 and 1000 °C. The synthesized composites, as-grown (NdCoO3-I), calcined at 850 °C (NdCoO3-II), and calcined at 1000 °C (NdCoO3-III) were studied in details in terms of their morphological and structural properties. The X-ray analysis confirmed that the synthesized products are well crystalline possessing single phase orthorhombic crystal system of space group Pbnm(62). The crystallite size of NdCoO3-I, NdCoO3-II, and NdCoO3-III is 22, 111, and 338 nm, respectively which reflect that crystallite size is increasing with increase in firing temperature. The DC resistivity was measured as a function of temperature in the temperature range from room temperature up to 200 °C. All NdCoO3 are semiconductor in this range of temperature but showed different activation energy which strongly depends on the crystallite size of the products. The activation energy decreased with increase in crystallite size, 0.798, 0.414 and 0.371 eV for NdCoO3-I, NdCoO3-II, and NdCoO3-III, respectively. Thus resistivity increases with increase in crystallite size of NdCoO3. All NdCoO3 products were tested as chemical sensor for acetone by electrochemical approaches and showed excellent sensitivity. Among the NdCoO3 samples, NdCoO3-III showed the highest sensitivity (3.4722 μAcm-2 mM-1) compared to other compositions and gradually decreased to 3.2407 μAcm-2 mM-1 with decreasing the crystallite size of NdCoO3-II. It is also observed that the sensitivity drastically decreased to 0.76253 μAcm-2 mM-1 in the case of NdCoO3-I. It is introduced an efficient route for the detection of environmental unsafe chemicals by electrochemical approach for the safety of healthcare and environmental fields in broad scales.
Direct ink write fabrication of transparent ceramic gain media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less
Direct ink write fabrication of transparent ceramic gain media
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; ...
2018-11-06
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less
Validation of a FAST model of the Statoil-Hywind Demo floating wind turbine
Driscoll, Frederick; Jonkman, Jason; Robertson, Amy; ...
2016-10-13
To assess the accuracy of the National Renewable Energy Laboratory's (NREL's) FAST simulation tool for modeling the coupled response of floating offshore wind turbines under realistic open-ocean conditions, NREL developed a FAST model of the Statoil Hywind Demo floating offshore wind turbine, and validated simulation results against field measurements. Field data were provided by Statoil, which conducted a comprehensive test measurement campaign of its demonstration system, a 2.3-MW Siemens turbine mounted on a spar substructure deployed about 10 km off the island of Karmoy in Norway. A top-down approach was used to develop the FAST model, starting with modeling themore » blades and working down to the mooring system. Design data provided by Siemens and Statoil were used to specify the structural, aerodynamic, and dynamic properties. Measured wind speeds and wave spectra were used to develop the wind and wave conditions used in the model. The overall system performance and behavior were validated for eight sets of field measurements that span a wide range of operating conditions. The simulated controller response accurately reproduced the measured blade pitch and power. In conclusion, the structural and blade loads and spectra of platform motion agree well with the measured data.« less
Cao, Huibo B.; Zhao, Zhiying Y.; Lee, Minseong; ...
2015-06-24
High quality single crystals of BaFemore » $$_{12}$$O$$_{19}$$ were grown with the floating zone technique in flowing oxygen atmosphere of 100 atm. BaFe$$_{12}$$O$$_{19}$$ melts incongruently in atmospheric oxygen. High oxygen pressure above 50 atm modifies the melting behavior to be congruent, which allows for the crystal growth with the crucible-free floating zone technique. Single crystal neutron diffraction were measured to determine the nuclear and magnetic structures at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe$$^{3+}$$ ions at the bypyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of specific heat shows no anomaly associated with the long range polar ordering in the temperature range of 1.90-300~K. The inverse dielectric constant along the c-axis shows a $T^2$ temperature dependence below 20 K and then following by a plateau below 10 K, recognized as quantum paraelectric features. Further cooling below 1.4 K, the upturn region was clearly revealed and indicates BaFe$$_{12}$$O$$_{19}$$ is a critical quantum paraelectric system with Fe$$^{3+}$$ ions playing roles for both magnetic and electric dipoles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.; Yao, C. G.; Meng, J. L.
The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less
Impacting load control of floating supported friction plate and its experimental verification
NASA Astrophysics Data System (ADS)
Ning, Keyan; Wang, Yu; Huang, Dingchuan; Yin, Lei
2017-05-01
Friction plates are key components in automobile transmission system. Unfortunately, due to the tough working condition i.e. high impact, high temperature, fracture and plastic deformation are easily observed in friction plates. In order to reduce the impact load and increase the impact resistance and life span of the friction plate. This paper presents a variable damping design method and structure, by punching holes in the key position of the friction plate and filling it with damping materials, the impact load of the floating support friction plate can be controlled. Simulation is applied to study the effect of the position and number of damping holes on tooth root stress. Furthermore, physic test was designed and conducted to validate the correctness and effectiveness of the proposed method. Test result shows that the impact load of the new structure is reduced by 40% and its fatigue life is 4.7 times larger. The new structure provides a new way for floating supported friction plates design.
NASA Astrophysics Data System (ADS)
Tarafder, Anal; Molla, Atiar Rahaman; Karmakar, Basudeb
2010-10-01
Nd 3+-doped precursor glass in the K 2O-SiO 2-Y 2O 3-Al 2O 3 (KSYA) system was prepared by the melt-quench technique. The transparent Y 3Al 5O 12 (YAG) glass-ceramics were derived from this glass by a controlled crystallization process at 750 °C for 5-100 h. The formation of YAG crystal phase, size and morphology with progress of heat-treatment was examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transformed infrared reflectance spectroscopy (FT-IRRS). The crystallite sizes obtained from XRD are found to increase with heat-treatment time and vary in the range 25-40 nm. The measured photoluminescence spectra have exhibited emission transitions of 4F 3/2 → 4I J ( J = 9/2, 11/2 and 13/2) from Nd 3+ ions upon excitation at 829 nm. It is observed that the photoluminescence intensity and excited state lifetime of Nd 3+ ions decrease with increase in heat-treatment time. The present study indicates that the incorporation of Nd 3+ ions into YAG crystal lattice enhance the fluorescence performance of the glass-ceramic nanocomposites.
NASA Astrophysics Data System (ADS)
Chen, Wang; Gao, Ting Ting; Zhu, Xiao Li; Chen, Xiang Ming
2018-03-01
In the present work, the structural, dielectric and relaxor ferroelectric properties were investigated for Ba3Ln3Ti5Nb5O30 (Ln = La, Nd, Sm) ceramics. The filled tungsten bronze phase with space group P4/mbm was confirmed for all compositions, while a small amount of secondary phase was detected in Ba3Nd3Ti5Nb5O30 and Ba3Sm3Ti5Nb5O30. The typical relaxor ferroelectric behaviors were observed: a broad peak of dielectric constant shifting to higher temperatures and decreasing its magnitude with increasing frequency and the frequency dispersion obeying the Vogel-Fulcher relationship. The P-E (polarization-electric field) hysteresis loops were obtained for Ba3Ln3Ti5Nb5O30 (Ln = La, Nd, Sm) ceramics at low temperatures. The nanoscale ferroelectric 180° domains with strip-like shape were observed in the paraelectric matrix at room temperature, where the commensurate structural modulations were determined in the domains and incommensurate ones were determined in the matrix. The significant differences were determined between the present ceramics and Ba4Ln2Ti4Nb6O30 and Ba5LnTi3Nb7O30 because of the different distribution patterns of A1 and A2 cations.
NASA Astrophysics Data System (ADS)
Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.
2012-12-01
This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.
Investigation of the Nd-rich phases in the Nd-Fe-B system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Zhou, S.; Wang, R.
1988-11-15
The crystal structures and the compositions of the Nd-rich phases in the Nd-Fe-B system have been investigated by means of transmission electron microscopy, x-ray diffraction, and Auger spectroscopy techniques. It has been observed that there are two kinds of Nd-rich phases with different structures and compositions. Most of the Nd-rich phases will undergo a phase transformation when the powder is sintered at high temperatures. This phase transformation is accompanied by the introduction of oxygen into the alloy which will change from a ternary system into a quaternary one. Both of the two Nd-rich phases are stable phases in this latermore » system. With the aid of the EDX and the Auger spectroscope, the compositions of the dhcp and the fcc Nd-rich phases have been determined. The Nd contents of the two phases are about 90 and 70 at. %, respectively, with the later phase containing about 15 at. % of oxygen.« less
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon
In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.
30 CFR 250.909 - What is the Platform Verification Program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What is the Platform Verification Program? 250... Platforms and Structures Platform Verification Program § 250.909 What is the Platform Verification Program? The Platform Verification Program is the MMS approval process for ensuring that floating platforms...
PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies
NASA Astrophysics Data System (ADS)
Ručevskis, Sandris
2015-11-01
The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana Bajare, Laura Sele, Liga Radina and Jana Galilejeva for their major contribution to organizing the conference and to the literary editor Tatjana Smirnova and technical editor Daira Erdmane for their hard work on the conference proceedings.
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj
2018-04-01
The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.
Kennedy, Zachary C.; Barrett, Christopher A.; Warner, Marvin G.
2017-03-01
Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here in this paper we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediatedmore » decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g –1) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.« less
Geng, Fengxia; Matsushita, Yoshitaka; Ma, Renzhi; Xin, Hao; Tanaka, Masahiko; Izumi, Fujio; Iyi, Nobuo; Sasaki, Takayoshi
2008-12-03
The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; BW PIONEER Floating... ZONES § 147.847 Safety Zone; BW PIONEER Floating Production, Storage, and Offloading System Safety Zone. (a) Description. The BW PIONEER, a Floating Production, Storage and Offloading (FPSO) system, is in...
Magnetic and structural properties of rapidly quenched Nd-Fe-Co-Ge-B alloys
NASA Astrophysics Data System (ADS)
Beitollahi, A.; Gholamipour, R.; Marghusian, V. K.; Andreev, S. V.; Bogatkin, A. N.; Duragin, S. S.; Kozlov, A. N.; Kudrevatykh, N. V.; Bogdanov, S. G.; Pirogov, A. N.
2006-12-01
We have studied the structure and magnetic properties of some rapidly quenched and subsequently annealed alloys prepared by centrifugal method with a composition (in wt %) Nd(29.5), Co(6), B(1.1), Ge (x), Fe(balance) with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0 (wt %) for Ge. Based on X-ray diffraction (XRD), elastic neutron diffraction, and small-angle neutron scattering (SANS), the formation of partially crystallized main hard magnetic 2:14:1 (Φ) phase in the amorphous matrix was detected for all as-spun samples. The size of the clusters formed for the sample with 1 wt % Ge determined based on SANS profiles was about 10 nm. It was shown that the addition of Ge shifts the maximum crystallization peak of the main 2:14:1 phase to higher temperatures. The variation of the magnitudes of different magnetic parameters such as i H c and M s versus Ge concentration for as-spun samples can be possibly related to the different rate of crystallization of the 2:14:1 phase formed. Further, for the samples doped with 0.8 and 1.0 wt % Ge and annealed at 760°C for 5 min the formation of some extra phases such as Nd5Ge3, NdFe2, NdB4, as well as α-Fe was detected by XRD. The magnetic measurements carried out using a vibrating-sample magnetometer (VSM) for these samples also supported the XRD data obtained. While the highest values of coercivity i H c = 772 kA/m were obtained for the annealed samples without Ge, the highest value of σr = 69 emu/g was also obtained for the samples substituted with 0.8 wt % Ge without an appreciable reduction in i H c.
Motion performance and mooring system of a floating offshore wind turbine
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Liang; Wu, Haitao
2012-09-01
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... before closure of the navigational structures, all floating vessels must depart the RNA except as follows... Harbor Navigation Canal, New Orleans, LA. (a) Location. The following is a regulated navigation area (RNA... West of Harvey Locks (WHL) (b) Definitions. As used in this section: (1) Breakaway means a floating...
Crystallography, Spectroscopic Analysis, and Lasing Properties of Nd(3+) :Y3Sc2Al3O12
1989-12-01
aluminum garnet (GSAG), are formed from more stable constitu- ent oxides than gallium-containing materials, 2. Experimental Results and such as gadolinium ...the which an assessment can be made regarding aluminum -based systems, such as YAG, YSAG, Nd:YSAG as a laser material. or gadolinium scandium...Structure oxidation state variation or oxygen vacancies, and this problem is greatly reduced in alumi- Yttrium scandium aluminum garnet be- nate systems
On the nature of control algorithms for free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, Evangelos; Dubowsky, Steven
1991-01-01
It is suggested that nearly any control algorithm that can be used for fixed-based manipulators also can be employed in the control of free-floating space manipulator systems, with the additional conditions of estimating or measuring a spacecraft's orientation and of avoiding dynamic singularities. This result is based on the structural similarities between the kinematic and dynamic equations for the same manipulator but with a fixed base. Barycenters are used to formulate the kinematic and dynamic equations of free-floating space manipulators. A control algorithm for a space manipulator system is designed to demonstrate the value of the analysis.
Large positive magnetoresistance in intermetallic compound NdCo2Si2
NASA Astrophysics Data System (ADS)
Roy Chowdhury, R.; Dhara, S.; Das, I.; Bandyopadhyay, B.; Rawat, R.
2018-04-01
The magnetic, magneto-transport and magnetocaloric properties of antiferromagnetic intermetallic compound NdCo2Si2 (TN = 32K) have been studied. The compound yields a positive magnetoresistance (MR) of about ∼ 123 % at ∼ 5K in 8 T magnetic field. The MR value is significantly large vis - a - vis earlier reports of large MR in intermetallic compounds, and possibly associated with the changes in magnetic structure of the compound. The large MR value can be explained in terms of field induced pseudo-gaps on Fermi surface.
Wang, Jun; Dou, Wei; Kirillov, Alexander M; Liu, Weisheng; Xu, Cailing; Fang, Ran; Yang, Lizi
2016-11-22
Three novel 2D coordination polymers [Tb 2 (μ 4 -L) 2 (μ-HL)(μ-HCOO)(DEF)] n (Tb-L), [Eu(μ 4 -L)(L)(H 2 O) 2 ] n (Eu-L), and [Nd(μ 4 -L)(L)(H 2 O) 2 ] n (Nd-L) were assembled from the corresponding lanthanide(iii) nitrates and 5 methoxy-(4-benzaldehyde)-1,3-benzenedicarboxylic acid (H 2 L) as a main multifunctional building block bearing carboxylate and aldehyde functional groups, using H 2 O/DEF {DEF = N,N-diethylformamide} as a reaction medium. The obtained coordination polymers were isolated as stable microcrystalline solids and fully characterized by elemental analysis, FT-IR spectroscopy, TGA, BET, PXRD, and single-crystal X-ray diffraction methods. Their structures feature intricate 2D metal-organic networks, which were topologically classified as underlying layers with the 4,6L26 (for Tb-L) or sql (for Eu-L and Nd-L) topologies. Besides, a novel series of mesoporous hybrid materials wherein the Tb-L, Eu-L, or Nd-L coordination polymers are covalently grafted into the amine-functionalized SBA-15-NH 2 or MCM-41-NH 2 matrices (via the formation of Schiff-base groups) was also synthesized and fully characterized. These hybrid materials show high thermal and photoluminescence stability, as well as remarkable chemical resistance to boiling water, and acidic or alkaline medium. Luminescent properties of the parent coordination polymers and derived hybrid materials are investigated in detail, showing that the latter combine the luminescent characteristics (intense green or red emissions and excellent stability) of lanthanide coordination polymers and structural features of ordered mesoporous silica molecular sieves. Moreover, light emitting devices were assembled, by coating the hybrid materials onto the surface of UV-LED bulbs, and showed excellent light emitting properties.
The ratio of the nucleon structure functions F2N for iron and deuterium
NASA Astrophysics Data System (ADS)
Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A. W.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.
1983-03-01
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F2N(Fe)/F2N(D) is presented. The observed x-dependence of this ratio is in disagreement with existing theoretical predictions.
Structures, Energetics and Spectroscopic Fingerprints of Water Clusters n=2-24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Xantheas, Sotiris S.
This chapter discusses the structures, energetics, and vibrational spectra of the first few (n$24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at nD17 and its spectroscopic signature is presented. The various families of minima for nD20 aremore » discussed together with the low energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.« less
Detail of pier structure and wood fenders of Facility No. ...
Detail of pier structure and wood fenders of Facility No. B-1, showing floats in foreground and bollards on pier, view facing east - U.S. Naval Base, Pearl Harbor, South Quay Wall & Repair Wharf, L-shaped portion of quay walls starting at east side of mouth of Dry Dock No. 1, continuing along ocean side of Sixth Street, adjacent to Pier B-2, Pearl City, Honolulu County, HI
Large space structures control algorithm characterization
NASA Technical Reports Server (NTRS)
Fogel, E.
1983-01-01
Feedback control algorithms are developed for sensor/actuator pairs on large space systems. These algorithms have been sized in terms of (1) floating point operation (FLOP) demands; (2) storage for variables; and (3) input/output data flow. FLOP sizing (per control cycle) was done as a function of the number of control states and the number of sensor/actuator pairs. Storage for variables and I/O sizing was done for specific structure examples.
Simos, Nikolaos; Ozaki, S.; Mokhov, N.; ...
2018-02-27
Prompted by the need for radiation-resistant permanent magnets for insertion devices (IDs) of high-brilliance next-generation synchrotrons such as the National Synchrotron Light Source II, the demagnetization of Nd 2Fe 14B and Pr 2Fe 14B was studied after exposure to a mixed irradiating field. Degradation and damage of the permanent magnetic material by components of electromagnetic showers induced in magnets by intense high-energy electron beams will alter the magnetic field structure of the IDs. Plate-like Nd 2Fe 14B magnets were irradiated to 1.8 Grad dose and were evaluated against Pr 2Fe 14B magnets irradiated to a lower dose of 20 Mrad.more » In addition, annular Sm 2Co 17 and Nd 2Fe 14B magnets integrated within a ferrofluidic feedthrough (FFFT) rotary seal were also irradiated to dose levels of 2 Grad for Sm 2Co 17 and 20 Mrad for Nd 2Fe 14B. Post-irradiation measurements of the magnetic intensity revealed that severe demagnetization exceeding 85% occurs in Nd 2Fe 14B magnets after only 50 Mrad dose and over 87% for Pr 2Fe 14B after 10 Mrad dose. The annular-shaped Sm 2Co 17 magnets of the FFFTs were almost insensitive to irradiation up to a dose of 2 Grad. Annular-shaped Nd 2Fe 14B magnets also showed resistance to demagnetization, a direct consequence of the annular shape which is characterized by the removal of the stronger demagnetizing field present at the center of a disk-like magnet. As a result, the sensitivity of boron-based permanent magnets to neutron energy (thermal versus fast) was also assessed via specifically designed experiments and discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, Nikolaos; Ozaki, S.; Mokhov, N.
Prompted by the need for radiation-resistant permanent magnets for insertion devices (IDs) of high-brilliance next-generation synchrotrons such as the National Synchrotron Light Source II, the demagnetization of Nd 2Fe 14B and Pr 2Fe 14B was studied after exposure to a mixed irradiating field. Degradation and damage of the permanent magnetic material by components of electromagnetic showers induced in magnets by intense high-energy electron beams will alter the magnetic field structure of the IDs. Plate-like Nd 2Fe 14B magnets were irradiated to 1.8 Grad dose and were evaluated against Pr 2Fe 14B magnets irradiated to a lower dose of 20 Mrad.more » In addition, annular Sm 2Co 17 and Nd 2Fe 14B magnets integrated within a ferrofluidic feedthrough (FFFT) rotary seal were also irradiated to dose levels of 2 Grad for Sm 2Co 17 and 20 Mrad for Nd 2Fe 14B. Post-irradiation measurements of the magnetic intensity revealed that severe demagnetization exceeding 85% occurs in Nd 2Fe 14B magnets after only 50 Mrad dose and over 87% for Pr 2Fe 14B after 10 Mrad dose. The annular-shaped Sm 2Co 17 magnets of the FFFTs were almost insensitive to irradiation up to a dose of 2 Grad. Annular-shaped Nd 2Fe 14B magnets also showed resistance to demagnetization, a direct consequence of the annular shape which is characterized by the removal of the stronger demagnetizing field present at the center of a disk-like magnet. As a result, the sensitivity of boron-based permanent magnets to neutron energy (thermal versus fast) was also assessed via specifically designed experiments and discussed.« less
WindWaveFloat (WWF): Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alla Weinstein; Roddier, Dominique; Banister, Kevin
2012-03-30
Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided thatmore » the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.« less
Janini, Thomas E; Rakosi, Robert; Durr, Christopher B; Bertke, Jeffrey A; Bunge, Scott D
2009-12-21
The synthesis and structural characterization of six 1,1,3,3-tetramethylguanidine (H-TMG) solvated lanthanide aryloxide complexes are reported. Ln[N{Si(CH3)3}2]3 (Ln = Nd, La) was reacted with two equivalents of both H-TMG and HOAr {HOAr = HOC6H2(CMe3)2-2,6 (H-DBP) or HOC6H2(CMe3)2-2,6-CH3-4 (H-4MeDBP)} and one equivelent of ethanol (HOEt) to yield the corresponding [Nd(H-TMG)2(4MeDBP)2(OEt)] (1) and [La(H-TMG)2(DBP)2(OEt)] (2). Compounds 1 and 2 were further reacted with 4-pentyn-1-ol {HO(CH2)3C[triple bond]CH} to isolate [Nd(H-TMG)2(4MeDBP)2{O(CH2)3C[triple bond]CH}] (3) and [La(H-TMG)2(DBP)2{O(CH2)3C[triple bond]CH}] (4), respectively. Three equivalents of HOAr and one equivalent of H-TMG were additionally reacted with Ln[N{Si(CH3)3}2]3 to generate [Nd(4MeDBP)3(H-TMG)] (5) and [La(DBP)3(H-TMG)] (6). In order to examine the formation of 1-6, the interaction of H-TMG and HOAr was further examined in solution and the hydrogen bonded complexes (H-TMG:HOAr), 7 and 8, were isolated. Upon successful isolation of 1-6, the utility of 1, 2, 4 and 5 as pre-catalysts for the intramolecular hydroalkoxylation of 4-pentyn-1-ol was investigated. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and 1H and 13C NMR investigations.
Yang, X; Yang, L; Lin, J; Zhou, R
2016-01-28
Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.
NASA Astrophysics Data System (ADS)
Khound, Sagarika; Sarma, Ranjit
2018-01-01
We have reported here on the design, processing and dielectric properties of pentacene-based organic thin film transitors (OTFTs) with a bilayer gate dilectrics of crosslinked PVA/Nd2O3 which enables low-voltage organic thin film operations. The dielectric characteristics of PVA/Nd2O3 bilayer films are studied by capacitance-voltage ( C- V) and current-voltage ( I- V) curves in the metal-insulator-metal (MIM) structure. We have analysed the output electrical responses and transfer characteristics of the OTFT devices to determine their performance of OTFT parameters. The mobility of 0.94 cm2/Vs, the threshold voltage of - 2.8 V, the current on-off ratio of 6.2 × 105, the subthreshold slope of 0.61 V/decade are evaluated. Low leakage current of the device is observed from current density-electric field ( J- E) curve. The structure and the morphology of the device are studied using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. The study demonstrates an effective way to realize low-voltage, high-performance OTFTs at low cost.
NASA Astrophysics Data System (ADS)
Ahmad, Bhat Zahoor; Want, Basharat
2016-04-01
We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C4H5O6)(C4H4O6)][3H2O]. X-ray crystal structure analyses reveal that it crystallizes in the P41212 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau- Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.
Deflection of Resilient Materials for Reduction of Floor Impact Sound
Lee, Jung-Yoon; Kim, Jong-Mun
2014-01-01
Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor. PMID:25574491
Deflection of resilient materials for reduction of floor impact sound.
Lee, Jung-Yoon; Kim, Jong-Mun
2014-01-01
Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.
2013-11-01
96-12-8 1,2-Dibromo-3- chloropropane ND 57 ND 5.9 120-82- 1 1,2,4-Trichlorobenzene ND 57 ND 7.7 91-20-3 Naphthalene ND 57 ND 11 87-68-3...0.13 96-12-8 1,2-Dibromo-3- chloropropane ND 0.73 ND 0.076 120-82- 1 1,2,4-Trichlorobenzene ND 0.73 ND 0.098 91-20-3 Naphthalene ND 0.73 ND...9.3 ND 1.5 5989-27-5 d-Limonene ND 46 ND 8.3 96-12-8 1,2-Dibromo-3- chloropropane ND 46 ND 4.8 120-82- 1 1,2,4-Trichlorobenzene ND 46 ND 6.3
Moored offshore structures - evaluation of forces in elastic mooring lines
NASA Astrophysics Data System (ADS)
Crudu, L.; Obreja, D. C.; Marcu, O.
2016-08-01
In most situations, the high frequency motions of the floating structure induce important effects in the mooring lines which affect also the motions of the structure. The experience accumulated during systematic experimental tests and calculations, carried out for different moored floating structures, showed a complex influence of various parameters on the dynamic effects. Therefore, it was considered that a systematic investigation is necessary. Due to the complexity of hydrodynamics aspects of offshore structures behaviour, experimental tests are practically compulsory in order to be able to properly evaluate and then to validate their behaviour in real sea. Moreover the necessity to carry out hydrodynamic tests is often required by customers, classification societies and other regulatory bodies. Consequently, the correct simulation of physical properties of the complex scaled models becomes a very important issue. The paper is investigating such kind of problems identifying the possible simplification, generating different approaches. One of the bases of the evaluation has been found consideringtheresults of systematic experimental tests on the dynamic behaviour of a mooring chain reproduced at five different scales. Dynamic effects as well as the influences of the elasticity simulation for 5 different scales are evaluated together. The paper presents systematic diagrams and practical results for a typical moored floating structure operating as pipe layer based on motion evaluations and accelerations in waves.
Ammoniated alkali fullerides (ND(3))(x)NaA(2)C(60): ammonia specific effects and superconductivity.
Margadonna, Serena; Aslanis, Efstathios; Prassides, Kosmas
2002-08-28
The crystal structure of the superconducting (ND(3))(x)()NaA(2)C(60) (0.7 < or = x < or = 1, A= K, Rb) fullerides (T(c)= 6-15 K) has been studied by synchrotron X-ray and neutron powder diffraction. It is face-centered cubic (fcc) to low temperatures with Na(+)-ND(3) pairs residing in the octahedral interstices. These are disordered over the corners of two "interpenetrating" cubes with the Na(+) ions and the N atoms displaced by approximately 2.0 A and approximately 0.5 A from the center of the site and statically disordered over the corners of the inner and outer cube, respectively. Close contacts between the D atoms of the ND(3) molecules and electron rich 6:6 C-C bonds of neighboring C(60) units provide the signature of weak N-D.pi hydrogen-bonding interactions, which control the intermolecular packing in the crystal and may determine the unusual superconducting properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deserts, L. des
To develop hydrocarbon fields located in deep waters, several alternatives can be contemplated. Among these alternatives, some of them use surface wellheads while others use subsea wells; some alternatives are using bottom founded structures, while others use floating structures or a combination of both. The purpose of this paper is to try to assess when a compliant tower will be the most appropriate solution to consider. To make this assessment, the different types of compliant towers are recalled, as well as the different types of floating structures. Then some criteria are introduced to compare the different alternatives and to determinemore » when a compliant tower is the most appropriate solution.« less
1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.
Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît
2009-01-01
We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.
1990-05-01
Pentachloronitrobenzene ND mg/kg 2.5 S P henaceti n NO mg/kg 2- Picoline ND mg/kgI Pronamideh NO mg/kg 2.5I benzene ND mg/kg 2.5 2, 6-Di chi orophenol ND mg/kg 2.5 I...mg/kg 2.5 Pentachloronitrobenzene NO mg/kg 2.5 Phenaceti n ND mg/kg 2.5 2- Picoline ND mg/kg 2.5 Pronamide ND mg/kg 2.5 1 ,2,4,5-Tetrachloro benzene ND...Phenacetin ND mg/kg 2.5 2- Picoline ND mg/kg 2.5 Pronami de ND mg/kg 2.5 1,2,4,5-Tetrachlorobenzene ND mg/kg 2.5 2, 6-Di chi orophenol ND mg/kg 2.5 2-Methyl
Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging.
Qin, Qing-Song; Zhang, Pei-Zhi; Sun, Ling-Dong; Shi, Shuo; Chen, Nai-Xiu; Dong, Hao; Zheng, Xiao-Yu; Li, Le-Min; Yan, Chun-Hua
2017-04-06
Lanthanide-doped luminescent nanoparticles with both emission and excitation in the near-infrared (NIR-to-NIR) region hold great promise for bioimaging. Herein, core@shell structured LiLuF 4 :Nd@LiLuF 4 (named as Nd@Lu) nanoparticles (NPs) with highly efficient NIR emission were developed for high-performance in vivo bioimaging. Strikingly, the absolute quantum yield of Nd@Lu NPs reached as high as 32%. After coating with polyethylene glycol (PEG), the water-dispersible Nd@Lu NPs showed good bio-compatibility and low toxicity. With efficient NIR emission, the Nd@Lu NPs were clearly detectable in tissues at depths of up to 20 mm. In addition, long-term in vivo biodistribution with a high signal-to-noise ratio of 25.1 was distinctly tracked upon an ultralow-power-density excitation (10 mW cm -2 ) of 732 nm for the first time.
Ekmekçi, Mete Kaan; Erdem, Murat; Başak, Ali Sadi
2015-03-28
Pure Nd(3+)- or Eu(3+)-doped CoNb2O6 powders have been prepared by a molten salt synthesis method using a Li2SO4-Na2SO4 or NaCl-KCl salt mixture as a flux at relatively low temperatures as compared to the solid state reaction method. X-ray diffraction patterns of pure CoNb2O6 samples indicated an orthorhombic single phase. For Eu(3+)-doped CoNb2O6 samples, the luminescence of Eu(3+) was observed at 615 nm as red emission while the Nd(3+) doped sample showed a typical emission at 1064 nm varying with the Eu(3+) or Nd(3+) doping concentrations. These luminescence characteristics of the doped samples may be attributed to the energy transfer between rare earth ions and CoO6 octahedral groups in the columbite structure.
Neutron investigation of Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1)
NASA Astrophysics Data System (ADS)
Gutmann, M.; Allenspach, P.; Fauth, F.; Furrer, A.; Zolliker, M.; Rosenkranz, S.; Eccleston, R. S.
1997-02-01
We present neutron diffraction and crystal field (CF) spectroscopy results obtained for the electron-doped superconductor precursor material Nd 2- x- yCe xLa yCuO 4 (0 ⩽ x ⩽ 0.2; y = 0.5, 1). Samples were prepared via a sol-gel methods. The lattice constants as a function of Ce-doping show the well-known behavior common to this class of compounds, i.e. the a parameter increases while the c parameter decreases with increasing Ce amount. The presence of La expands the unit cell in all directions compared to the mother compound Nd 2CuO 4 while preserving the T‧-structure for the above mentioned range. The CF spectra clearly show the presence of electronic inhomogeneities associated with electron doping from Ce 4+ on one Cu-site in the CuO 2-planes.
Ab initio calculation of electronic structure and magnetic properties of R2Fe14BNx (R = Pr,Nd)
NASA Astrophysics Data System (ADS)
Tian, Guang; Zha, Liang; Yang, Wenyun; Qiao, Guanyi; Wang, Changsheng; Yang, Yingchang; Yang, Jinbo
2018-05-01
The site preference of N atom for R2Fe14BNx (R= Pr, Nd) and the interstitial nitrogen effect on the magnetic properties have been studied by the first-principles method. It was found that the nitrogen is more likely to occupy the 4e site for Pr2Fe14BNx compound, while 4f site for Nd2Fe14BNx. When N atoms entering some specific crystal sites (such as 2a and 4f), the total magnetic moments of these compounds are not reduced, but slightly increased. Although the doping of N may reduce the total magnetic moments of some R2Fe14B compounds in the cases of optimal occupancy, the volumetric effect caused by N doping can still change the electron density distributions of Fe near the Fermi level, improving the magnetic ordering temperature of such compounds.
Float-zone crystal growth of CdGeAs 2 in microgravity: numerical simulation and experiment
NASA Astrophysics Data System (ADS)
Saghir, M. Z.; Labrie, D.; Ginovker, A.; Paton, B. E.; George, A. E.; Olson, K.; Simpson, A. M.
2000-01-01
Two CdGeAs 2 samples have been successfully grown under microgravity on SPACEHAB-SH04 during the STS-77 Space Shuttle Endeavour mission. One polycrystalline and one single crystal CdGeAs 2 feed rods with 9 mm diameter were processed by the float-zone method. An eutectic salt of LiCl and KCl was used as an encapsulant to suppress Cd and As evaporation from the melt. Numerical modeling of the float zone shows that salt encapsulation plays an important role in reducing Marangoni convection. The interface between the salt and CdGeAs 2 was shown not to deform in the float zone due to the weak capillary pressure.
Grodzik, Marta; Sawosz, Filip; Sawosz, Ewa; Hotowy, Anna; Wierzbicki, Mateusz; Kutwin, Marta; Jaworski, Sławomir; Chwalibog, André
2013-01-01
It has been demonstrated that the content of certain amino acids in eggs is not sufficient to fully support embryonic development. One possibility to supply the embryo with extra nutrients and energy is in ovo administration of nutrients. Nanoparticles of diamond are highly biocompatible non-toxic carbonic structures, and we hypothesized that bio-complexes of diamond nanoparticles with l-glutamine may affect molecular responses in breast muscle. The objective of the investigation was to evaluate the effect of diamond nanoparticle (ND) and l-glutamine (Gln) on expression of growth and differentiation factors of chicken embryo pectoral muscles. ND, Gln, and Gln/ND solutions (50 mg/L) were injected into fertilized broiler chicken eggs at the beginning of embryogenesis. Muscle tissue was dissected at day 20 of incubation and analysed for gene expression of FGF2, VEGF-A, and MyoD1. ND and especially Gln/ND up-regulated expression of genes related to muscle cell proliferation (FGF2) and differentiation (MyoD1). Furthermore, the ratio between FGF2 and MyoD1 was highest in the Gln/ND group. At the end of embryogenesis, Gln/ND enhanced both proliferation and differentiation of pectoral muscle cells and differentiation dominated over proliferation. These preliminary results suggest that the bio-complex of glutamine and diamond nanoparticles may accelerate growth and maturation of muscle cells. PMID:24264045
NASA Astrophysics Data System (ADS)
Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra
2018-04-01
Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.
Clark, Lawrence; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Mountford, Philip; Townley, Josh P
2010-08-07
New trivalent lanthanoid aryloxide complexes have been prepared by redox transmetallation/protolysis (rtp) reactions using 2,4-di-tert-butylphenol (dbpH). Mononuclear octahedral complexes from tetrahydrofuran (thf) were of the type [Ln(dbp)(3)(thf)(3)] (Ln = La (1), Pr (2), Nd (3), Gd (4), Er (5)). The lanthanoid contraction results in the rather subtle change in stereochemistry from meridional (La, Pr, Nd, Gd) to facial (Er). An analogous reaction with neodymium in dimethoxyethane (dme), resulted in the isolation of the seven coordinate [Nd(dbp)(3)(dme)(2)] (6), and this is comparable with the thf complexes in terms of steric crowding. Dinuclear complexes of the type [Ln(2)(dbp)(6)(thf)(2)], (Ln = Nd (7), Er (8)) were obtained when 1 and 5 were recrystallised from toluene. These dimeric complexes contain two bridging and four terminal phenolates, as well as a single coordinated molecule of thf at each metal. A similar structural motif was observed for the products when the reaction was performed in diethyl ether, and in the absence of a solvent, yielding [Nd(2)(dbp)(6)(Et(2)O)(2)] (9) and [Nd(2)(dbp)(6)(dbpH)(2)] (10) respectively. Complexes 3 and 4 alone were efficient but poorly-controlled initiators for the ROP of rac-lactide, but with an excess of BnOH as a co-initiator they showed features consistent with immortal polymerisation. Use of BnNH(2) led to well-controlled, amine-initiated immortal ROP of rac-lactide, only the second report of this type of process for a group 3 or lanthanoid system.
Dhindsa, Gurpreet K.; Bhowmik, Debsindhu; Goswami, Monojoy; ...
2016-09-01
Nontoxic, biocompatible nanodiamonds (ND) have recently been implemented in rational, systematic design of optimal therapeutic use in nanomedicines. However, hydrophilicity of the ND surface strongly influences structure and dynamics of biomolecules that restrict in situ applications of ND. Therefore, fundamental understanding of the impact of hydrophilic ND surface on biomolecules at the molecular level is essential. For tRNA, we observe an enhancement of dynamical behavior in the presence of ND contrary to generally observed slow motion at strongly interacting interfaces. We took advantage of neutron scattering experiments and computer simulations to demonstrate this atypical faster dynamics of tRNA on NDmore » surface. The strong attractive interactions between ND, tRNA, and water give rise to unlike dynamical behavior and structural changes of tRNA in front of ND compared to without ND. As a result, our new findings may provide new design principles for safer, improved drug delivery platforms.« less
Vadivelu, Raja K.; Ooi, Chin H.; Yao, Rebecca-Qing; Tello Velasquez, Johana; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Nguyen, Nam-Trung; St John, James A.
2015-01-01
We describe a novel protocol for three-dimensional culturing of olfactory ensheathing cells (OECs), which can be used to understand how OECs interact with other cells in three dimensions. Transplantation of OECs is being trialled for repair of the paralysed spinal cord, with promising but variable results and thus the therapy needs improving. To date, studies of OEC behaviour in a multicellular environment have been hampered by the lack of suitable three-dimensional cell culture models. Here, we exploit the floating liquid marble, a liquid droplet coated with hydrophobic powder and placed on a liquid bath. The presence of the liquid bath increases the humidity and minimises the effect of evaporation. Floating liquid marbles allow the OECs to freely associate and interact to produce OEC spheroids with uniform shapes and sizes. In contrast, a sessile liquid marble on a solid surface suffers from evaporation and the cells aggregate with irregular shapes. We used floating liquid marbles to co-culture OECs with Schwann cells and astrocytes which formed natural structures without the confines of gels or bounding layers. This protocol can be used to determine how OECs and other cell types associate and interact while forming complex cell structures. PMID:26462469
NASA Astrophysics Data System (ADS)
Vadivelu, Raja K.; Ooi, Chin H.; Yao, Rebecca-Qing; Tello Velasquez, Johana; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Nguyen, Nam-Trung; St John, James A.
2015-10-01
We describe a novel protocol for three-dimensional culturing of olfactory ensheathing cells (OECs), which can be used to understand how OECs interact with other cells in three dimensions. Transplantation of OECs is being trialled for repair of the paralysed spinal cord, with promising but variable results and thus the therapy needs improving. To date, studies of OEC behaviour in a multicellular environment have been hampered by the lack of suitable three-dimensional cell culture models. Here, we exploit the floating liquid marble, a liquid droplet coated with hydrophobic powder and placed on a liquid bath. The presence of the liquid bath increases the humidity and minimises the effect of evaporation. Floating liquid marbles allow the OECs to freely associate and interact to produce OEC spheroids with uniform shapes and sizes. In contrast, a sessile liquid marble on a solid surface suffers from evaporation and the cells aggregate with irregular shapes. We used floating liquid marbles to co-culture OECs with Schwann cells and astrocytes which formed natural structures without the confines of gels or bounding layers. This protocol can be used to determine how OECs and other cell types associate and interact while forming complex cell structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Evan G.; Xu, Jide; Dodani, Sheel
2009-11-10
The synthesis, X-ray structure, solution stability, and photophysical properties of several trivalent lanthanide complexes of Yb(III) and Nd(III) using both tetradentate and octadentate ligand design strategies and incorporating the 1-methyl-3-hydroxy-pyridin-2-one (Me-3,2-HOPO) chelate group are reported. Both the Yb(III) and Nd(III) complexes have emission bands in the Near Infra-Red (NIR) region, and this luminescence is retained in aqueous solution ({Phi}{sub tot}{sup Yb} {approx} 0.09-0.22%). Furthermore, the complexes demonstrate very high stability (pYb {approx} 18.8-21.9) in aqueous solution, making them good candidates for further development as probes for NIR imaging. Analysis of the low temperature (77 K) photophysical measurements for a modelmore » Gd(III) complex were used to gain an insight into the electronic structure, and were found to agree well with corresponding TD-DFT calculations at the B3LYP/6-311G{sup ++}(d,p) level of theory for a simplified model monovalent sodium complex.« less
Structure and mechanical characterization of Mg-Nd-Zn alloys prepared by different processes
NASA Astrophysics Data System (ADS)
Dvorský, D.; Kubásek, J.; Vojtěch, D.; Voňavková, I.; Veselý, M.; Čavojský, M.
2017-02-01
Magnesium alloys containing about 3 wt. % of Nd and 0.5 wt. % of Zn are considered as promising materials for application in transport and medical industry. Properly treated materials can reach ultimate tensile strength (UTS) higher than 300 MPa. Also the corrosion resistance of these alloys is superior to many other magnesium-based materials. Present work is focused on the preparation of Mg-3Nd-0.5Zn magnesium alloy by classical casting and subsequent thermal treatment. As-cast material was extruded at 400 °C, with extrusion ratio equal to 16 and velocity of 0.2 mm/s. The effect of thermal treatment and also strong plastic deformation during extrusion on final structure conditions and mechanical properties is specified. Present results confirm significant improvement of tensile yield strength (TYS) and UTS after extrusion process as a consequence of fine-grained structure combined with precipitation strengthening. Beside, texture strengthening in the direction parallel to the extrusion has been observed too.
MacCann, Carolyn; Joseph, Dana L; Newman, Daniel A; Roberts, Richard D
2014-04-01
This article examines the status of emotional intelligence (EI) within the structure of human cognitive abilities. To evaluate whether EI is a 2nd-stratum factor of intelligence, data were fit to a series of structural models involving 3 indicators each for fluid intelligence, crystallized intelligence, quantitative reasoning, visual processing, and broad retrieval ability, as well as 2 indicators each for emotion perception, emotion understanding, and emotion management. Unidimensional, multidimensional, hierarchical, and bifactor solutions were estimated in a sample of 688 college and community college students. Results suggest adequate fit for 2 models: (a) an oblique 8-factor model (with 5 traditional cognitive ability factors and 3 EI factors) and (b) a hierarchical solution (with cognitive g at the highest level and EI representing a 2nd-stratum factor that loads onto g at λ = .80). The acceptable relative fit of the hierarchical model confirms the notion that EI is a group factor of cognitive ability, marking the expression of intelligence in the emotion domain. The discussion proposes a possible expansion of Cattell-Horn-Carroll theory to include EI as a 2nd-stratum factor of similar standing to factors such as fluid intelligence and visual processing.
Momentum density and Fermi surface of Nd2-xCexCuO4-δ
NASA Astrophysics Data System (ADS)
Shukla, A.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Sadowski, W.; Walker, E.; Peter, M.
1996-02-01
High-temperature positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurements have recently been succesfully applied to map parts of the Fermi surface of YBa2Cu3O7-δ. Using the same principle, we have been able to observe with a bulk sensitive method, the Fermi surface of Nd2-xCexCuO4-δ. Although positron trapping by defects and correlation effects are strong, positron 2D-ACAR measurements provide a signal from the Fermi surface which agrees with band-structure calculations, confirming earlier surface sensitive photoemission experiments.
Circumpolar Estimates of Isopycnal Mixing in the ACC from Argo Floats
NASA Astrophysics Data System (ADS)
Roach, C. J.; Balwada, D.; Speer, K. G.
2015-12-01
There are few direct observations of cross-stream isopycnal mixing in the interior of the Southern Ocean, yet such measurements are needed to determine the role of eddies transporting properties across the ACC, and key to progress toward testing theories of meridional overturning. In light of this we examine if it is possible to obtain estimates of mixing from Argo float trajectories. We divided the Southern Ocean into overlapping 15ο longitude bins before estimating mixing. Resulting diffusivities ranged from 300 to 3000 m2s-1, with peaks corresponding to the Scotia Sea; Kerguelen and Campbell Plateaus. Comparison of our diffusivities with previous regional studies demonstrated good agreement. Tests of the methodology in the DIMES region found that mixing from Argo floats agreed closely with mixing from RAFOS floats. To further test the method we used the Southern Ocean State Estimate velocity fields to advect particles with Argo and RAFOS float like behaviours. Stirring estimates from the particles agreed well with each other in the Kerguelen Island region, South Pacific and Scotia Sea, despite the differences in the imposed behaviour. Finally, these estimates were compared to mixing length suppression theory presented in Ferrari and Nikurashin 2010. This mixing length suppression theory quantifies horizontal diffusivity similar to Prandtl (1925), but the mixing length is suppressed in the presence of mean flows and eddy phase speeds. Our results suggest that the theory can explain both the structure and magnitude of mixing using mean flow data. An exception is near the Kerguelen and Campbell Plateaus where theory under-estimates mixing relative to our results.
NASA Astrophysics Data System (ADS)
Jia, Zeru; Zhang, Lu; Zhao, Yumeng; Cao, Juan; Li, Yuan; Dong, Zhentao; Wang, Wenfeng; Han, Shumin
2017-12-01
To decrease the self-discharge rate of the nickel metal hydride batteries, the self-discharge characteristic and mechanism of single-phase PuNi3-, Gd2Co7-, and Pr5Co19-type Nd-Mg-Ni-based alloys are studied from the perspective of structure in this work. It is found that the self-discharge rate of the alloy electrodes gradually increases with a rising [NdNi5]/[NdMgNi4] subunit ratio. The factors resulting in reversible and irreversible self-discharge are analyzed by electrochemical pressure-composition isotherms, Tafel and SEM measurements. Electrochemical P-C isotherms show that with the increasing [NdNi5]/[NdMgNi4] subunit ratio, the hydrogen desorption plateau pressure sharply elevates, leading to less stability of the corresponding hydride and more reversible self-discharge of the alloys; whereas, corrosion current density of the three alloy electrodes gradually decreases and SEM shows that the amount of hydroxide accumulating on the alloy surface diminishes, indicating the oxidation/corrosion degree alleviates and less irreversible self-discharge with the higher [NdNi5]/[NdMgNi4] ratio. By calculating the proportion of reversible and irreversible self-discharge in total capacity loss, we find that the reversible self-discharge is nearly more than 90% for the three single-phase alloys, while irreversible self-discharge is less than 10%, which illustrates that reversible self-discharge is the dominate factor in self-discharge of Nd-Mg-Ni-based alloys in this study.
14 CFR 25.533 - Hull and main float bottom pressures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.533 Hull and main... figure 2 of appendix B; V S 1=seaplane stalling speed (Knots) at the design water takeoff weight with... design water takeoff weight with flaps extended in the appropriate takeoff position; and β=angle of dead...
14 CFR 25.533 - Hull and main float bottom pressures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.533 Hull and main... figure 2 of appendix B; V S 1=seaplane stalling speed (Knots) at the design water takeoff weight with... design water takeoff weight with flaps extended in the appropriate takeoff position; and β=angle of dead...
Rare earth niobate coordination polymers
NASA Astrophysics Data System (ADS)
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May
2018-03-01
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.
Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} as a gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, Tukaram J., E-mail: pshindetj@yahoo.co.in; Gadkari, Ashok B.; Jadhav, Sarjerao R.
2015-06-24
Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl{sub 2}, LPG and C{sub 2}H{sub 5}OH. It was observed that NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.
Pei, Li-jun; Zhu, Lin; Guo, Chao; Liu, Hong-yan
2013-07-01
To find the association between factors related to contraception, reproductive health and the risk of induced abortion among floating married women of childbearing age, so as to provide basis for improving the access to health services for floating women of childbearing age. Using data from the reproductive health survey on floating population from five cities in 2005, factors as demographic characteristics, contraceptive choice, settings and access to health services, induced abortion among the floating married women of childbearing age were described. Multivariate logistic regression was used to investigate the association the factors relative to contraception, reproductive health and the risk of induced abortion between 543 cases and 1796 controls. The risks of induced abortion among those under 30-years-old floating married women of childbearing age were 2.08-fold (95%CI:1.26-3.42) of the group at the age of 40 years old. The risk of abortion among floating married women at childbearing age who were taking short-acting contraceptive methods, was 2.56-fold (95%CI:1.84-3.56) of those using the long-acting methods of contraception. The induced abortion risk of floating women at childbearing age who paid the contraceptive implement out of their own pockets, was 1.72-fold (95% CI:1.32-2.24) of those who got it free of charge. The risks of abortion among women who received the contraceptive devices through maternal and child health centers, general hospitals or street residential committees were 2.69-fold (95%CI:1.71-4.22), 2.49-fold (95%CI:1.68-3.68)and 1.81-fold (95%CI:1.20-2.72) of those who received them from urban or rural family planning stations, respectively. The induced abortion risk for women who were ignorant of emergency contraception, was 1.41-fold (95% CI: 1.12-1.78) of those who had the knowledge. The abortion risks of floating women at childbearing age who get the contraceptive knowledge from the colleagues, relatives or friends were 1.85 times (95% CI:1.28-2.67) of those from family planning workers. Factors, including age, short-acting contraceptive methods, paid access to contraceptive implement, ignorance of emergency contraception might largely contribute to the increased risk of induced abortion among floating married women of childbearing age, which called for future attention.
Xing, Linzhuang; Chen, Bin; Li, Dong; Wu, Wenjuan; Wang, Guoxiang
2017-11-01
Neodymium:yttrium aluminum garnet (Nd:YAG) lasers exhibit considerable potential for treating deeply buried port-wine stains. However, the application of Nd:YAG laser is limited by its weak absorption to blood. This in vivo study tested the efficacy and safety of utilizing thiol-terminated methoxypolyethylene glycol-modified gold nanorods (PEG-GNRs) to enhance the absorption of Nd:YAG laser to blood. Mouse mesentery and dorsal skinfold chamber (DSC) model were prepared to analyze the thermal responses of a single venule without anatomic structures, as well as blood vessels in the complex structure of the skin, to laser light. After the injection of 0.44 mg of PEG-GNRs, the required threshold density of laser energy for blood coagulation and complete vasoconstriction decreased from 24 to 18 J/cm2 in the mesentery model and from 36 to 31 J/cm2 in the DSC model. The laser pulse required for blood coagulation and complete vasoconstriction decreased by 67.75% and 62.25% on average in the mesentery model and by 67.55% and 54.45% on average in the DSC model. Histological and histochemical results confirmed that PEG-GNRs are nontoxic in the entire mouse life span. Therefore, combining PEG-GNRs with Nd:YAG laser may be effective and safe for inducing an obvious thermal response of blood vessels under low energy density and minimal pulse conditions. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics
NASA Astrophysics Data System (ADS)
Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.
2015-08-01
This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, A.K.; Eriksson, S.-G.; Khan, Abdullah
2006-05-15
Polycrystalline Sr{sub 2-x}Nd{sub x}FeMoO{sub 6} (x=0.0, 0.1, 0.2, 0.4) materials have been synthesized by a citrate co-precipitation method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature-dependent NPD data shows that the compounds (x=0.0, 0.1, 0.2) crystallize in the tetragonal symmetry in the range 10-400K and converts to cubic symmetry above 450K. The unit cell volume increases with increasing Nd{sup 3+} concentration, which is an electronic effect in order to change the valence state of the B-site cations. Antisite defects at the Fe-Mo sublattice increases with the Nd{sup 3+} doping. The Curie temperature wasmore » increased from 430K for x=0 to 443K for x=0.4. The magnetic moment of the Fe-site decreases while the Mo-site moment increases with electron doping. The antiferromagnetic arrangement causes the system to show a net ferrimagnetic moment.« less
NASA Astrophysics Data System (ADS)
Mohan, A.; Singh, S.; Partzsch, S.; Zwiebler, M.; Geck, J.; Wurmehl, S.; Büchner, B.; Hess, C.
2016-08-01
Large single crystals of La8Cu7O19 have been grown using the travelling-solvent floating zone method. A rather high oxygen pressure of 9 bar in the growth chamber and a slow growth speed of 0.5 mm/h were among the most important parameters in stabilizing the growth of this incongruently melting compound. Interestingly, a novel growth scenario has been witnessed. The crystal structure of the grown La8Cu7O19 crystal has been analyzed using single crystal diffractometry to extract important structural parameters of this compound. We find that La8Cu7O19 crystallizes in a monoclinic structure with space group C 2 / c and has the lattice parameters a ≈ 13.83 Å, b ≈ 3.75 Å, c ≈ 34.59 Å, and β ≈ 99.33 °, in good agreement with the data obtained on polycrystalline samples in the literature. The magnetization shows a highly anisotropic behavior, and an anomaly at T ≈103 K.
NASA Astrophysics Data System (ADS)
Abeysinghe, Dileka; Smith, Mark D.; Morrison, Gregory; Yeon, Jeongho; zur Loye, Hans-Conrad
2018-04-01
A series of lanthanide containing mixed-valent vanadium (III/IV) silicates of the type CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm-Lu, Y) was synthesized as high quality single crystals from a molten chloride eutectic flux, BaCl2/NaCl. Utilizing Ca metal as the reducing agent, an in-situ reduction of V5+ to V3+/4+ as well as of Ce4+ to Ce3+ was achieved. The structures of 14 reported isostructural compounds were determined by single crystal X-ray diffraction. They crystallize in the tilasite (CaMgAsO4F) structure type in the monoclinic space group C2/c. The extended structure contains 1D chains of VO6 octahedra that are connected to each other via SiO4 groups and (Ca/Ln)O7 polyhedra. The magnetic susceptibility and the field dependent magnetization data were measured for CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm, Gd-Lu, Y), and support the existence of antiferromagnetic behavior at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aparnadevi, N.; Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025; Saravana Kumar, K.
Phase pure NdFeO{sub 3} has been achieved using high energy ball milling of oxide precursors with subsequent sintering. It is established that structural arrangement of NdFeO{sub 3} regulates the multifunctional feature of the material. Rietveld refinement of the room temperature X-ray diffraction pattern shows that the Fe-O-Fe bond angle significantly favors the super exchange interaction, which is predominantly antiferromagnetic in nature. Magnetization measurement illustrates antiferromagnetic behaviour with a weak ferromagnetic component caused by the canted nature of the Fe{sup 3+} spins at room temperature. Absorption bands in the visible ambit, apparent from the UV-Vis diffuse reflectance studies, is found duemore » to the crystal ligand field of octahedral oxygen environment of Fe{sup 3+} ions. The direct band gap is estimated to be 2.39 eV from the diffuse reflectance spectrum. The lossy natured ferroelectric loop having a maximum polarization of 0.23 μC/cm{sup 2} at room temperature is found to be driven by the non-collinear magnetic structure with reverse Dzyaloshinskii–Moriya effect. Magnetic field has influence on the dielectric constant as evident from the impedance spectroscopy, indicating the strong coupling between ferroelectric and the magnetic structure of NdFeO{sub 3}.« less
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-05-01
In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.
Probabilistic structural analysis methods for space transportation propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.
1991-01-01
Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .
Pharmacokinetics and analgesic effect of ketorolac floating delivery system.
Radwan, Mahasen A; Abou El Ela, Amal El Sayeh F; Hassan, Maha A; El-Maraghy, Dalia A
2015-05-01
The efficacy of ketorolac tromethamine (KT) floating alginate beads as a drug delivery system for better control of KT release was investigated. The formulation with the highest drug loading, entrapment efficiency, swelling, buoyancy, and in vitro release would be selected for further in vivo analgesic effect in the mice and pharmacokinetics study in rats compared to the tablet dosage form. KT floating alginate beads were prepared by extrusion congealing technique. KT in plasma samples was analyzed using a UPLC MS/MS assay. The percentage yield, drug loading and encapsulation efficiency were increased proportionally with the hydroxypropylmethyl cellulose (HPMC) polymer amount in the KT floating beads. A reverse relationship was observed between HPMC amount in the beads and the KT in vitro release rate. F3-floating beads were selected, due to its better in vitro results (continued floating for >8 h) than others. A longer analgesic effect was observed for F3 in fed mice as compared to the tablets. After F3 administration to rats, the Cmax (2.2 ± 0.3 µg/ml) was achieved at ∼2 h and the decline in KT concentration was slower. F3 showed a significant increase in the AUC (1.89 fold) in rats as compared to the tablets. KT was successfully formulated as floating beads with prolonged in vitro release extended to a better in vivo characteristic with higher bioavailability in rats. KT in floating beads shows a superior analgesic effect over tablets, especially in fed mice.
Synthesis, magnetic and electrical properties of R3AlCx (R = Ce, Pr and Nd)
NASA Astrophysics Data System (ADS)
Ghule, S. S.; Garde, C. S.; Ramakrishnan, S.; Singh, S.; Rajarajan, A. K.; Laad, Meena; Karmakar, Koushik
2017-09-01
R3AlCx (R = Ce, Pr and Nd; x = 0-1) series has been synthesized by arc melting. Rietveld analysis of x-ray powder diffraction reveals cubic (Pm-3m) structure. A Kondo temperature TK 1 K is estimated for Ce3AlC0.65 from the susceptibility and resistivity data. Magnetic susceptibility measurements indicate antiferromagnetic (AFM) order for R = Pr (x = 0.8 and 1) and Nd (x = 0.6, 0.8 and 1) and ferromagnetic (FM) for Nd3Al. Metamagnetic behaviour in the magnetization curve indicates complex magnetic structure. Band structure calculations indicate growth of a pseudo-gap in the density of states (DOS) from Ce3AlC to Pr3AlC to Nd3AlC. The DOS calculations predict a metallic behaviour which is consistent with the resistivity measurements.
NASA Astrophysics Data System (ADS)
Aughterson, Robert D.; Lumpkin, Gregory R.; Ionescu, Mihail; Reyes, Massey de los; Gault, Baptiste; Whittle, Karl R.; Smith, Katherine L.; Cairney, Julie M.
2015-12-01
The response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here.
NASA Astrophysics Data System (ADS)
Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.
2015-12-01
The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ1 and τ2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.
Pressure-induced Structural Transformations in LanthanideTitanates: La2TiO5 and Nd2TiO5
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Zhang; J Wang; M Lang
The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a x b x 2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedramore » remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.« less
Konnerup, Dennis; Pedersen, Ole
2017-10-17
Floating sweet-grass ( Glyceria fluitans ) can form aerial as well as floating leaves, and these both possess superhydrophobic cuticles, so that gas films are retained when submerged. However, only the adaxial side of the floating leaves is superhydrophobic, so the abaxial side is directly in contact with the water. The aim of this study was to assess the effect of these different gas films on underwater net photosynthesis ( P N ) and dark respiration ( R D ). Evolution of O 2 was used to measure underwater P N in relation to dissolved CO 2 on leaf segments with or without gas films, and O 2 microelectrodes were used to assess cuticle resistance of floating leaves to O 2 uptake in the dark. The adaxial side of aerial leaves was more hydrophobic than the abaxial side and also initially retained a thicker gas film when submerged. Underwater P N vs. dissolved CO 2 of aerial leaf segments with gas films had a K m of 172 mmol CO 2 m -3 and a P max of 7·1 μmol O 2 m -2 s -1 , and the leaf gas films reduced the apparent resistance to CO 2 uptake 12-fold. Underwater P N of floating leaves measured at 700 mmol CO 2 m -3 was 1·5-fold higher than P N of aerial leaves. The floating leaves had significantly lower cuticle resistance to dark O 2 uptake on the wettable abaxial side compared with the superhydrophobic adaxial side. Glyceria fluitans showed high rates of underwater P N and these were obtained at environmentally relevant CO 2 concentrations. It appears that the floating leaves possess both aquatic and terrestrial properties and thus have 'the best of both worlds' so that floating leaves are particularly adapted to situations where the plant is partially submerged and occasionally experiences complete submergence. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Dadashi, S.; Poursalehi, R.; Delavari, H.
2018-06-01
Colloidal Bi/Bi2O3 and single phase Bi nanoparticles were synthesized by pulsed Nd:YAG laser ablation of metallic bismuth target in different organic liquids. In this research, the structural characteristic, optical properties, and colloidal stability of Bi and Bi/Bi2O3 nanoparticles have been studied. Furthermore, the mechanism of nanoparticles formation in liquid media by laser ablation of Bi-based nanoparticles was proposed in different liquid environments based on their chemical nature. X-ray diffraction, scanning electron microscopy and optical extinction spectroscopy indicate the formation of pure Bi and Bi/Bi2O3 nanoparticles with mean size of 32, 43 and 54 nm in methanol, ethanol, and EMK, respectively, which indicate a mixture of different phases including rhombohedra crystal structure of Bi, monoclinic α-Bi2O3, and tetragonal β-Bi2O3. Finally, this research demonstrates the effect of the surrounding environment on characteristic properties of nanoparticles and clarifies the size, structural characteristics, and optical properties of the synthesized nanoparticles.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Shen, Jianxing; Zhu, Zhiwen; Wang, Zhihao; Cao, Yanxin; Guan, Xiaoli; Wang, Yueyue; Wei, Zhaoling; Chen, Meina
2018-05-01
Yttrium-doped BaCeO3 is one of the most promising electrolyte candidates for solid oxide fuel cells because of its high ionic conductivity. Nd and Y co-doped BaCeO3 strategy is adopted for the further optimization of Y-doped BaCeO3 electrolyte properties. X-ray diffraction results indicate that the structure of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) with orthorhombic perovskite phase becomes more symmetric with increasing Nd concentration. The scanning electron microscope observation demonstrates that the densification and grain size of the sintered pellets significantly enhance with the increase of Nd doping level. Whether in dry and humid hydrogen or air, the increase of Nd dopant firstly increases the conductivities of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) and then decrease them after reaching the peak value at x = 0.05. Electrochemical impedance spectra at 350 °C can distinguish clearly the contribution of grain and grain boundary to total conductivity and the highest conductivity of BaCe0.8Y0.15Nd0.05O3-δ ascribes to the decrease in bulk and grain boundary resistances due to the synergistic effect of Nd and Y doping. The anode-supported single cell with BaCe0.8Y0.15Nd0.05O3-δ electrolyte shows an encouraging peak power density of 660 mW cm-2 at 700 °C, suggesting that BaCe0.8Y0.15Nd0.05O3-δ is a potential electrolyte material for the highly-efficient proton-conducting solid oxide fuel cell.
Rapolu, Kishore; Sanka, Krishna; Vemula, Praveen Kumar; Aatipamula, Vinaydas; Mohd, Abdul Bari; Diwan, Prakash V
2013-12-01
One among many strategies to prolong gastric residence time and improve local effect of the metronidazole in stomach to eradicate Helicobacter pylori in the treatment of peptic ulcer was floating drug delivery system particularly effervescent gastroretentive tablets. The objective of this study was to prepare and evaluate, effervescent floating drug delivery system of a model drug, metronidazole. Effervescent floating drug delivery tablets were prepared by wet granulation method. A three-factor, three levels Box-Behnken design was adopted for the optimization. The selected independent variables were amount of hydroxypropyl methylcellulose K 15M (X1), sodium carboxy methylcellulose (X2) and NaHCO3 (X3). The dependent variables were floating lag time (YFLT), cumulative percentage of metronidazole released at 6th h (Y6) and cumulative percentage of metronidazole released at 12th h (Y12). Physical properties, drug content, in vitro floating lag time, total floating time and drug release behavior were assessed. YFLT range was found to be from 1.02 to 12.07 min. The ranges of other responses, Y6 and Y12 were 25.72 ± 2.85 to 77.14 ± 3.42 % and 65.47 ± 1.25 to 99.65 ± 2.28 %, respectively. Stability studies revealed that no significant change in in vitro floating lag time, total floating time and drug release behavior before and after storage. It can be concluded that a combination of hydroxypropyl methylcellulose K 15M, sodium carboxy methylcellulose and NaHCO3 can be used to increase the gastric residence time of the dosage form to improve local effect of metronidazole.
Research on the influence of helical strakes on dynamic response of floating wind turbine platform
NASA Astrophysics Data System (ADS)
Ding, Qin-wei; Li, Chun
2017-04-01
The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15% D ( D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.
1990-07-01
trobenzen. 660’ ug/KG Phenacet in 6600 ug/KG 2- Picoline 660’ ug/KG Pronamide 10000 ug/KG 1,2,4, 5-Tetrachlorobenzene 660’ ug/KO 0 Denotes instrument...Phenacetin ND 2- Picoline ND Pronamide ND 1,26,4,5-Tetrachlorobenzene -*ND *EPA has not yet determined detection limits for these compounds E-158 I Pr...ND N-Nitrosopiperidine - ND Pentachlorobenzene ND Pentachloromitrobenzene -*ND Phenacetin ND 2- Picoline ND Pronamide - *ND 1,2,4,5
NASA Astrophysics Data System (ADS)
Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino
2013-11-01
This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.
Plasma sheath structure surrounding a large powered spacecraft
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Jongeward, G. A.; Katz, I.
1984-01-01
Various factors determining the floating potential of a highly biased (about 4-kV) spacecraft in low earth orbit are discussed. While the common rule of thumb (90 percent negative; 10 percent positive) is usually a good guide, different biasing and grounding patterns can lead to high positive potentials. The NASCAP/LEO code can be used to predict spacecraft floating potential for complex three-dimensional spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthik, Chinnathambi, E-mail: Karthikchinnathambi@boisestate.edu; Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83415; Anderson, Thomas J.
2012-10-15
A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which becamemore » weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.« less
Study of structural and optical properties of YAG and Nd:YAG single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.
2015-03-15
Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less
Method of manufacturing large dish reflectors for a solar concentrator apparatus
Angel, Roger P [Tucson, AZ; Olbert, Blain H [Tucson, AZ
2011-12-27
A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.
Gullekson, Brian J.; Breshears, Andrew T.; Brown, M. Alex; ...
2016-11-29
Complexes of the trivalent lanthanides and Am with di-2-ethylhexylphosphoric acid (HDEHP) dissolved in an aliphatic diluent were probed with UV–vis, X-ray absorption fine structure, and time-resolved fluorescence spectroscopy while the water concentration was determined by Karl Fischer titrations. In particular, our work focuses on the Nd-hypersensitive UV–vis absorbance region to identify the cause of changing absorbance values at 570 and 583 nm in relation to the pseudooctahedral Nd environment when coordinated with three HDEHP dimers. In contrast to recently reported interpretations, we establish that while impurities have an effect on this electronic transition band, a high water content can causemore » distortion of the pseudooctahedral symmetry of the six-coordinate Nd, resembling the reported spectra of the seven-coordinate Nd compounds. Extended X-ray absorption fine structure analysis of the Nd in high-concentration HDEHP solutions also points to an increase in the coordination number from 6 to 7. The spectral behavior of other lanthanides (Pr, Ho, Sm, and Er) and Am III as a function of the HDEHP concentration suggests that water coordination with the metal likely depends on the metal’s effective charge. Fluorescence data using lifetime studies and excitation and emission spectra support the inclusion of water in the Eu coordination sphere. Further, the role of the effective charge was confirmed by a comparison of the Gibbs free energies of six- and seven-coordinate La-HDEHP–H 2O and Lu-HDEHP–H 2O complexes using density functional theory. In contrast, HEH[EHP], the phosphonic acid analogue of HDEHP, exhibits a smaller capacity for water, and the electronic absorption spectra of Nd or Am appear to be unchanged, although the Pr spectra show a noticeable change in intensity as a function of the water content. As a result, electronic absorption extinction coefficients of Am III, Nd III, Pr III, Sm III, Er III, and Ho III as a function of the HDEHP concentration are reported for the first time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gullekson, Brian J.; Breshears, Andrew T.; Brown, M. Alex
Complexes of the trivalent lanthanides and Am with di-2-ethylhexylphosphoric acid (HDEHP) dissolved in an aliphatic diluent were probed with UV–vis, X-ray absorption fine structure, and time-resolved fluorescence spectroscopy while the water concentration was determined by Karl Fischer titrations. In particular, our work focuses on the Nd-hypersensitive UV–vis absorbance region to identify the cause of changing absorbance values at 570 and 583 nm in relation to the pseudooctahedral Nd environment when coordinated with three HDEHP dimers. In contrast to recently reported interpretations, we establish that while impurities have an effect on this electronic transition band, a high water content can causemore » distortion of the pseudooctahedral symmetry of the six-coordinate Nd, resembling the reported spectra of the seven-coordinate Nd compounds. Extended X-ray absorption fine structure analysis of the Nd in high-concentration HDEHP solutions also points to an increase in the coordination number from 6 to 7. The spectral behavior of other lanthanides (Pr, Ho, Sm, and Er) and Am III as a function of the HDEHP concentration suggests that water coordination with the metal likely depends on the metal’s effective charge. Fluorescence data using lifetime studies and excitation and emission spectra support the inclusion of water in the Eu coordination sphere. Further, the role of the effective charge was confirmed by a comparison of the Gibbs free energies of six- and seven-coordinate La-HDEHP–H 2O and Lu-HDEHP–H 2O complexes using density functional theory. In contrast, HEH[EHP], the phosphonic acid analogue of HDEHP, exhibits a smaller capacity for water, and the electronic absorption spectra of Nd or Am appear to be unchanged, although the Pr spectra show a noticeable change in intensity as a function of the water content. As a result, electronic absorption extinction coefficients of Am III, Nd III, Pr III, Sm III, Er III, and Ho III as a function of the HDEHP concentration are reported for the first time.« less
Floating Offshore Wind in Oregon: Potential for Jobs and Economic Impacts from Two Future Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Tony; Keyser, David; Tegen, Suzanne
Construction of the first offshore wind power plant in the United States began in 2015, off the coast of Rhode Island, using fixed platform structures that are appropriate for shallow seafloors, like those located off of the East Coast and mid-Atlantic. However, floating platforms, which have yet to be deployed commercially, will likely need to anchor to the deeper seafloor if deployed off of the West Coast. To analyze the employment and economic potential for floating offshore wind along the West Coast, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to analyze two hypothetical,more » large-scale deployment scenarios for Oregon: 5,500 megawatts (MW) of offshore wind deployment in Oregon by 2050 (Scenario A), and 2,900 MW of offshore wind by 2050 (Scenario B). These levels of deployment could power approximately 1,600,000 homes (Scenario A) or 870,000 homes (Scenario B). Offshore wind would contribute to economic development in Oregon in the near future, and more substantially in the long term, especially if equipment and labor are sourced from within the state. According to the analysis, over the 2020-2050 period, Oregon floating offshore wind facilities could support 65,000-97,000 job-years and add $6.8 billion-$9.9 billion to the state GDP (Scenario A).« less
NASA Astrophysics Data System (ADS)
Zamratul, M. I. M.; Zaidan, A. W.; Khamirul, A. M.; Nurzilla, M.; Halim, S. A.
New glass system of neodymium - doped zinc soda lime silica glass has been synthesized for the first time by melt-quenching of glass waste soda lime silica (SLS) with zinc oxide (ZnO) as precursor glass and Nd2O3 as dopant. In order to examine the effect of Nd3+ on the structural and optical properties, the prepared sample of structure [(ZnO)0.5(SLS)0.5](Nd2O3)x (x = 0, 1, 2, 3, 4 and 5 wt%) was characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy (UV-Vis) and the photoluminescence (PL). XRD pattern justifies the amorphous nature of synthesized glasses. FTIR spectroscopy has been used to observe the structural evolution of ZnO4 and SiO4 groups. The UV-Vis-NIR absorption spectra reveals seven peaks centered at excitation of electron from ground state 4I9/2 to 4D3/2 + 4D5/2 (∼360 nm), 2G9/2 + 2D3/2 + 2P3/2(∼470 nm), 2K13/2 + 4G7/2 + 4G9/2 (∼523 nm), 4G5/2 + 2G7/2 (∼583 nm), 4F9/2 (∼678 nm), 4S3/2 + 4F7/2 (∼748 nm) and 4F5/2 + 2H9/2 (∼801 nm). PL spectra under the excitation of 800 nm display four emission bands centered at 531 nm, 598 nm, 637 nm and 671 nm corresponding to 4G7/2 → 4I9/2, (4G7/2 → 4I11/2, 4G5/2 → 4I9/2), (4G5/2 → 4I11/2) and (4G7/2 → 4I13/2, 4G5/2 → 4I11/2) respectively.
Parallel processor for real-time structural control
NASA Astrophysics Data System (ADS)
Tise, Bert L.
1993-07-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-to-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection to host computer, parallelizing code generator, and look- up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating- point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An OpenWindows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.
NASA Astrophysics Data System (ADS)
Burger, Magdalena; Berger, Sina; Blodau, Christian
2015-04-01
Recent investigations have suggested that small water bodies cover larger areas in northern peatlands than previously assumed. Their role in the carbon cycle and gas exchange rates are poorly constrained so far. To address this issue we measured CO2 and CH4 fluxes on a small water body (ca. 700 m2) and the surrounding floating mat in the Luther Marsh peatland in Ontario, Canada from July to September 2014. To this end we used closed chambers combined with a portable Los Gatos high-resolution trace gas analyzer at different water depths and distances from the shore on the pond and with different dominating plant types on the floating mat surrounding the pond. In addition, CO2 concentrations were recorded in high temporal resolution using an infrared sensor system during selected periods. Air and water temperature, humidity and temperature of the floating mat, wind speed and direction, photosynthetically active radiation, air pressure and relative humidity were also recorded as auxiliary data at the study site. The results show that pond and floating mat were sources of methane throughout the whole measuring period. Methane emissions via the ebullition pathway occurred predominantly near the shore and on the floating mat. During the daytime measurements the floating mat acted as a net sink and the pond as a net source of CO2. The dynamics of CO2 exchange was also strongly time dependent, as CO2 emissions from the pond strongly increased after mid-August. This suggests that photosynthesis was more affected by seasonal decline than respiration process in the pond and that the allochthonous component of the CO2 flux increased in relative importance towards fall.
Quantum origins of moment fragmentation in Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Benton, Owen
2016-09-01
Spin-liquid states are often described as the antithesis of magnetic order. Recently, however, it has been proposed that in certain frustrated magnets the magnetic degrees of freedom may "fragment" in such a way as to give rise to a coexistence of spin liquid and ordered phases. Recent neutron-scattering results [S. Petit, E. Lhotel, B. Canals, M. Ciomaga Hatnean, J. Ollivier, H. Muttka, E. Ressouche, A. R. Wildes, M. R. Lees, and G. Balakrishnan, Nat. Phys. 12, 746 (2016), 10.1038/nphys3710] suggest that this scenario may be realized in the pyrochlore magnet Nd2Zr2O7 . These observations show the characteristic pinch-point features of a Coulombic spin liquid occurring alongside the Bragg peaks of an "all-in-all-out" ordered state. Here we explain the quantum origins of this apparent magnetic moment fragmentation, within the framework of a quantum model of nearest-neighbor exchange, appropriate to Nd2Zr2O7 . This model is able to capture both the ground-state order and the pinch points observed at finite energy. The observed fragmentation arises due to the combination of the unusual symmetry properties of the Nd3 + ionic wave functions and the structure of equations of motion of the magnetic degrees of freedom. The results of our analysis suggest that Nd2Zr2O7 is proximate to a U (1 ) spin-liquid phase and is a promising candidate for the observation of a Higgs transition in a magnetic system.
Carbon laminates with RE doped optical fibre sensors
NASA Astrophysics Data System (ADS)
Miluski, Piotr; Kochanowicz, Marcin; Żmojda, Jacek; Silva, AbíLio P.; Reis, Paulo N. B.; Dorosz, Dominik
2016-11-01
A new type of luminescent optical fibre sensor for structural health monitoring of composite laminates (CFRP) is proposed. The Nd3+ doped multi-core doubleclad fibre incorporated in composite structure was used as a distributed temperature sensor. The change of luminescence intensity (Nd3+ ions) at the wavelength of 880 nm (4F3/2 → 4I9/2) and 1060 nm (4F3/2 → 4I11/2) was used for internal temperature monitoring. The special construction of optical fibre was used as it assures an efficient pumping mechanism and, at same time, it increases the measuring sensitivity. The linear response with relative sensitivity 0.015 K-1 was obtained for temperature range from 30 up to 75ºC. The manufacturing process of CFRP with embedded optical fibre sensor is also discussed.
Fey, G; Lewis, J B; Grodzicker, T; Bothwell, A
1979-01-01
The adenovirus type 2-simian virus 40 (SV40) hybrid virus Ad2+ND1 dp2 (E. Lukanidin, manuscript in preparation) specified two proteins (molecular weights, 24,000 and 23,000) that are, in part, products of an insertion of SV40 early DNA sequences. This was demonstrated by translation in vitro from viral mRNA that had been selected by hybridization to SV40 DNA. These two phosphorylated, nonvirion proteins were produced late in infection in amounts similar to adenovirus 2 structural proteins and were closely related to each other in tryptic peptide composition. The portion of SV40 DNA (map units 0.17 to 0.22 on the SV40 genome) coding for these proteins was joined to sequences coding for the amino-terminal part of the adenovirus type 2 structural protein IV (fiber). The Ad2+ND1 dp2 23,000- and 24,000-molecular-weight proteins were hybrid polypeptides, with about two-thirds of their tryptic peptides contributed by the fiber protein and the remainder contributed by SV40 T-antigen. They shared with T-antigen (molecular weight, 96,000) a carboxy-terminal proline-rich tryptic peptide. Together, the tryptic peptide composition of these proteins and the known SV40 DNA sequences suggested the reading frame for the translation of T-antigen. The carboxy terminus for T-anigen would then be located on the SV40 genome map next to the TAA terminator triplet at position 0.175, 910 bases away from the cleavage site of the restriction endonuclease EcoRI. Seven host range mutants from Ad2+ND1 dp2 were isolated that had lost the capacity to propagate on monkey cells. They did not induce detectable levels of the hybrid proteins. Three of these mutants had lost the SV40 DNA insertion that codes in part for these proteins. Thus, in analogy to the Ad2+ND1 30,000-molecular-weight protein, the presence of these proteins correlates with the presence of the helper function for adenovirus replication on monkey cells. Images PMID:225516
Investigation of Tank 241-AW-104 Composite Floating Layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meznarich, H. K.; Bolling, S. D.; Lachut, J. S.
Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lowermore » than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.« less
Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign
NASA Astrophysics Data System (ADS)
Shuckburgh, Emily F.
2012-09-01
Ideas from dynamical systems theory have been used in an observational field campaign in the Southern Ocean to provide information on the mixing structure of the flow. Instantaneous snapshops of data from satellite altimetry provide information concerning surface currents at a scale of 100 km or so. We show that by using time-series of satellite altimetry we are able to deduce reliable information about the structure of the surface flow at scales as small as 10 km or so. This information was used in near-real time to provide an estimate of the location of stable and unstable manifolds in the vicinity of the Antarctic Circumpolar Current. As part of a large U.K./U.S. observational field campaign (DIMES: Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) a number of drifters and floats were then released (at the surface and at a depth of approximately 1 km) close to the estimated hyperbolic point at the intersection of the two manifolds, in several locations with apparently different dynamical characteristics. The subsequent trajectories of the drifters/floats has allowed the unstable manifolds to be tracked, and the relative separation of pairs of floats has allowed an estimation of Lyapunov exponents. The results of these deployments have given insight into the strengths and limitations of the satellite data which does not resolve small scales in the velocity field, and have elucidated the transport and mixing structure of the Southern Ocean at the surface and at depth.
Lin, Xinsong; Tabassum, Danisa; Mar, Arthur
2015-12-14
A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.
40 CFR 264.1084 - Standards: Tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the requirements specified in... operator who controls air pollutant emissions from a tank using a fixed roof with an internal floating roof...
Observation of magnetization and exchange bias reversals in NdFe0.5Cr0.5O3
NASA Astrophysics Data System (ADS)
Sharannia, M. P.; De, Santanu; Singh, Ripandeep; Das, A.; Nirmala, R.; Santhosh, P. N.
2017-05-01
Polycrystalline NdFe0.5Cr0.5O3 has orthorhombic structure with Pnma space group and is magnetically ordered at room temperature as confirmed by neutron diffraction. The magnetic structure involves CxGyFz type ordering of Fe3+/Cr3+ ions. NdFe0.5Cr0.5O3 shows magnetization reversal and sign reversal of exchange bias at 16 K. Nd3+ moments that get induced by the internal field of |Fe+Cr| sublattice couple antiferromagnetically with the ferromagnetic component of |Fe+Cr| sublattice. Nd3+ moments overcome the |Fe+Cr| moments at 16 K below which the material shows negative magnetization and positive exchange bias.
Highly efficient and stable ultraviolet photocathode based on nanodiamond particles
NASA Astrophysics Data System (ADS)
Velardi, L.; Valentini, A.; Cicala, G.
2016-02-01
Nanodiamond (ND) layers on silicon substrate are deposited by the pulsed spray technique starting from nanoparticles of about 250 nm dispersed in 1,2-dichloroethane solvent. The aim of this letter is to investigate the quantum efficiency (QE) of photocathodes based on ND particles in the vacuum ultraviolet spectral range. Various ND layers are examined employing as-received and hydrogenated nanoparticles. As expected, the hydrogen plasma treatment improves strongly the photoemission of the layer giving a QE of 22% at 146 nm. Indeed, this efficiency value is achieved only if the particles are treated in H2 microwave plasma before the growth of the sprayed layer rather than to hydrogenate the already formed one. These QE values are higher than those of photocathodes based on plasma chemical vapor deposition diamond films, but with the advantage of being much stable, too. The highest QE values are explained to be due to the intrinsic chemical and structural features of utilized ND particles.
Resident perceptions of the educational value of night float rotations.
Luks, Andrew M; Smith, C Scott; Robins, Lynne; Wipf, Joyce E
2010-07-01
Night float rotations are being increasingly used in the era of resident physician work-hour regulations, but their impact on resident education is not clear. Our objective was to clarify resident perceptions of the educational aspects of night float rotations. An anonymous survey of internal medicine residents at a university-based residency program was completed. Responses were received from 116 of 163 surveyed residents (71%). Residents attended less residents' report (0.10 +/- .43 vs. 2.70 + 0.93 sessions/week, p< .001) and fewer grand rounds sessions (0.14 +/- 0.25 vs. 0.43 +/- 0.28 sessions/week, p< .001) and spent less time reading, (2.63 +/- 2.0 vs. 3.33 +/- 1.6 hr/week, p< .001) interacting with attending physicians (0.57 +/- 1.1 vs. 2.97 +/- 1.5 hr/week, p< .001) and sleeping at home (6.3 +/- 1.2 vs. 7.10 +/- 0.9 hr/day, p< .001) on night float rotations than on non-night float rotations. Residents had strongly negative opinions about the educational value of night float, sleep cycle adjustment issues, and impact on their personal lives, which correlated with resident evaluations from the regular program evaluation process. In free responses, residents commented that they liked the autonomy and opportunity to improve triage skills on these rotations and confirmed their negative opinions about the sleep-wake cycle and interference with personal lives. Internal medicine residents at a university-based program have negative opinions regarding the educational value of night float rotations. Further work is necessary to determine whether problems exist across programs and specialties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornig, Julia; Choi, K. Yeon; McGregor, Alistair,
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codonsmore » 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.« less
Hornig, Julia; Choi, K. Yeon; McGregor, Alistair
2017-01-01
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection. PMID:28189970
NASA Astrophysics Data System (ADS)
Li, Guangming; Akitsu, Takashiro; Sato, Osamu; Einaga, Yasuaki
2004-12-01
Photoinduced magnetization of the cyano-bridged 3d 4f hetero-bimetallic assembly Nd (DMF)4(H2O)3(μ-CN)Fe(CN)5ṡH2O (1) (DMF=N,N-dimethylformamide) is described in this paper. The χM T values are enhanced by about 45% after UV light illumination in the temperature range of 5 50 K. We propose that UV light illumination induces a structural distortion in 1. This small structural change is propagated by molecular interactions in the inorganic network. Furthermore, the cooperativity resulting from the molecular interaction functions to increase the activation energy of the relaxation processes, which makes observation of the photoexcited state possible. The flexible network structure through the hydrogen bonds in 1 plays an essential role for the photoinduced phenomenon. This finding may open up a new domain for developing molecule-based magnetic materials.
Meurman, J H; Voegel, J C; Rauhamaa-Mäkinen, R; Gasser, P; Thomann, J M; Hemmerle, J; Luomanen, M; Paunio, I; Frank, R M
1992-01-01
The aim of this study was to determine the crystalline structure and chemical alterations of synthetic hydroxyapatite after irradiation with either CO2, Nd:YAG or CO2-Nd:YAG combination lasers at high energy densities of 500-3,230 J.cm2. Further, dissolution kinetics of the lased material were analysed and compared with those of unlased apatite. Electron microscopy showed that the lased material consisted of two kinds of crystals. From the micrographs their diameters varied from 600 to 1,200 A and from 3,000 to 6,000 A, respectively. The larger crystals showed 6.9-Angström periodic lattice fringes in the transmission electron microscope. alpha-Tricalcium phosphate (TCP) was identified by X-ray diffraction. Selective-area electron diffraction identified the large crystals to consist of tricalcium phosphate while the smaller crystals were probably hydroxyapatite. Assays of dissolution kinetics showed that at these high energy densities lased material dissolved more rapidly than unlased synthetic hydroxyapatite due to the higher solubility of TCP.
Ji-Sheng, Wang; Jian-Feng, Liu; Ya-Hong, Liu; Liang-Liang, Song; Guo-Wang, Geng
2016-07-18
To investigate the infection situation of intestinal nematodes and knowledge about the prevention and control of intestinal nematodiasis, so as to explore the effective control measures in Jingjiang City. The towns where more floating people lived were randomly selected and the infection situation of intestinal nematodes was investigated with KatoKatz method, and the residents'awareness of the prevention and control of nematodiasis was surveyed with questionnaires. From 2013 to 2015, totally 4 555 local residents and 2 278 floating people were investigated in Jingjiang City. The infection rate of intestinal nematodes was 0.29% (13 cases) in the local people, while the rate was 0.75% (17 cases) in the floating people, and the difference was significant ( χ 2 = 7.380, P < 0.01). The differences of the intestinal nematode infection rates between sexes in both local residents and floating people were not significant ( χ 2 = 0.010, 0.048, both P > 0.05). The awareness rate of intestinal nematodiasis prevention and control of the local residents was significantly higher than that of the floating people ( χ 2 = 9.649-164.533, all P < 0.01). The floating people is the focus of intestinal nematodiasis control, and the health education of ancylostomiasis control should be strengthened in Jingjiang City.
An Advanced Flash Suppression Network Involving Alkali Salts
1984-12-01
Potassium Tetroxide," J. Chem. -hys. Vol.4, p. 4 5 8 , 1936. A-8. JANAF Thermochemical Tables, 2nd Ed., D. R. Stull and H. Prophet, NSRDS-NBS-73, June 1971. A...34Structure of Potassium Tetroxide," J. Chem. Phys., Vol.4, p. 4 58 , 1936. A-8. JANAF Thlermochemical Tables, 2nd Ed., D. L Stull and H1. Prophet, NSRDS-NBS...A. Dean Washington, DC 20332 N. Chou P.O. Box 45 1Linden, NJ 07036 Kirtland AFB, NM 87117 Dirctor I Ford Aerospace and I N SIC Communications Corp
HgCdTe Surface and Defect Study Program.
1986-03-01
different potential for Hg and Cd and hence be reflected in the electronic structure. The techniques of PES and ARPES available to our research group ...D-A166 795 HOME SURFCE ND DEFECT STUDY PROQRN(U) SATA / BARBRA RESEARCH CENTER GOLETA CALXF J A WILSON ET AL. USI FE MAR 86 SBRC-60411 ND93-63-C...0168 FO2/2 N L6 ILO 1.5 1. 11111 .6 .ICnrnp CHR HgCdTo SURFACE AND DEFECT STUDY PROGRAM J. A. Wilson and V. A. Cotton Santa Barbara Research Center
Diós, Péter; Nagy, Sándor; Pál, Szilárd; Pernecker, Tivadar; Kocsis, Béla; Budán, Ferenc; Horváth, Ildikó; Szigeti, Krisztián; Bölcskei, Kata; Máthé, Domokos; Dévay, Attila
2015-10-01
The aim of this study was to design a local, floating, mucoadhesive drug delivery system containing metronidazole for Helicobacter pylori eradication. Face-centered central composite design (with three factors, in three levels) was used for evaluation and optimization of in vitro floating and dissolution studies. Sodium alginate (X1), low substituted hydroxypropyl cellulose (L-HPC B1, X2) and sodium bicarbonate (X3) concentrations were the independent variables in the development of effervescent floating tablets. All tablets showed acceptable physicochemical properties. Statistical analysis revealed that tablets with 5.00% sodium alginate, 38.63% L-HPC B1 and 8.45% sodium bicarbonate content showed promising in vitro floating and dissolution properties for further examinations. Optimized floating tablets expressed remarkable floating force. Their in vitro dissolution studies were compared with two commercially available non-floating metronidazole products and then microbiologically detected dissolution, ex vivo detachment force, rheological mucoadhesion studies and compatibility studies were carried out. Remarkable similarity (f1, f2) between in vitro spectrophotometrically and microbiologically detected dissolutions was found. Studies revealed significant ex vivo mucoadhesion of optimized tablets, which was considerably increased by L-HPC. In vivo X-ray CT studies of optimized tablets showed 8h gastroretention in rats represented by an animation prepared by special CT technique. Copyright © 2015 Elsevier B.V. All rights reserved.
A comparison of methods for estimating open-water evaporation in small wetlands
Masoner, Jason R.; Stannard, David I.
2010-01-01
We compared evaporation measurements from a floating pan, land pan, chamber, and the Priestley-Taylor (PT) equation. Floating pan, land pan, and meteorological data were collected from June 6 to July 21, 2005, at a small wetland in the Canadian River alluvium in central Oklahoma, USA. Evaporation measured with the floating pan compared favorably to 12 h chamber measurements. Differences between chamber and floating pan rates ranged from −0.2 to 0.3 mm, mean of 0.1 mm. The difference between chamber and land pan rates ranged from 0.8 to 2.0 mm, mean of 1.5 mm. The mean chamber-to-floating pan ratio was 0.97 and the mean chamber-to-land pan ratio was 0.73. The chamber-to-floating pan ratio of 0.97 indicates the use of a floating pan to measure evaporation in small limited-fetch water bodies is an appropriate and accurate method for the site investigated. One-sided Paired t-Tests indicate daily floating pan rates were significantly less than land pan and PT rates. A two-sided Paired t-Test indicated there was no significant difference between land pan and PT values. The PT equation tends to overestimate evaporation during times when the air is of low drying power and tends to underestimate as drying power increases.
High pressure luminescence of Nd3+ in YAlO3 perovskite nanocrystals: A crystal-field analysis
NASA Astrophysics Data System (ADS)
Hernández-Rodríguez, Miguel A.; Muñoz-Santiuste, Juan E.; Lavín, Víctor; Lozano-Gorrín, Antonio D.; Rodríguez-Hernández, Plácida; Muñoz, Alfonso; Venkatramu, Vemula; Martín, Inocencio R.; Rodríguez-Mendoza, Ulises R.
2018-01-01
Pressure-induced energy blue- and red-shifts of the 4F3/2 → 4I9/2,11/2 near-infrared emission lines of Nd3+ ions in YAlO3 perovskite nano-particles have been measured from ambient conditions up to 29 GPa. Different positive and negative linear pressure coefficients have been calibrated for the emission lines and related to pressure-induced changes in the interactions between those Nd3+ ions and their twelve oxygen ligands at the yttrium site. Potentiality of the simple overlap model, combined with ab initio structural calculations, in the description of the effects of these interactions on the energy levels and luminescence properties of the optically active Nd3+ ion is emphasized. Simulations show how the energies of the 4f3 ground configuration and the barycenters of the multiplets increase with pressure, whereas the Coulomb interaction between f-electrons decreases and the crystal-field strength increases. All these effects combined explain the wavelength blue-shifts of some near-infrared emission lines of Nd3+ ions. Large pressure rates of various emission lines suggest that a YAlO3 perovskite nano-crystal can be a potential candidate for near-infrared optical pressure sensors.
The neodymium-gold phase diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saccone, A.; Maccio, D.; Delfino, S.
The Nd-Au phase diagram was studied in the 0 to 100 at. pct Au composition range by differential thermal analysis (DTA), X-ray diffraction (XRD), optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Six intermetallic phases were identified, the crystallographic structures were determined or confirmed, and the melting behavior was determined, as follows: Nd{sub 2}Au, orthorhombic oP12-Co{sub 2}Si type, peritectic decomposition at 810 C; NdAu, R.T. form, orthorhombic oP8-FeB type, H.T. forms, orthorhombic oC8-CrB type and, at a higher temperature, cubic cP2-CsCl type, melting point 1470 C; Nd{sub 3}Au{sub 4}, trigonal hR42-Pu{sub 3}Pd{sub 4} type, peritectic decompositionmore » at 1250 C; Nd{sub 17}Au{sub 36}, tetragonal tP106-Nd{sub 17}Au{sub 36} type, melting point 1170 C; Nd{sub 14}Au{sub 51}, hexagonal hP65-Gd{sub 14}Ag{sub 51} type, melting point 1210 C; and NdAu{sub 6}, monoclinic mC28-PrAu{sub 6} type, peritectic decomposition at 875 C. Four eutectic reactions were found, respectively, at 19.0 at. pct Au and 655 C, at 63.0 at. pct Au and 1080 C, at 72.0 at. pct Au and 1050 C, and, finally, at 91.0 at. pct Au and 795 C. A catatectic decomposition of the ({beta}Nd) phase, at 825 C and {approx}1 at. pct Au, was also found. The results are briefly discussed and compared to those for the other rare earth-gold (R-Au) systems. A short discussion of the general alloying behavior of the coinage metals (Cu, Ag, and Au) with the rare-earth metals is finally presented.« less
2001-04-25
design. The method should be easy to handle and should not be time consuming. In this aspect, Takagi and Kohara [2000] proposed an application of the...of a Very Large Floating Structure, Proc. of 14th Int. WWWFB, Port Huron, 1999, pp. 13 7- 14 0 . TAKAGI, K. and KOHARA , K. :Application of the Ray
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.
Borg, M; Collu, M
2015-02-28
The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A 3-D SPH model for simulating water flooding of a damaged floating structure
NASA Astrophysics Data System (ADS)
Guo, Kai; Sun, Peng-nan; Cao, Xue-yan; Huang, Xiao
2017-10-01
With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.
Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface
NASA Astrophysics Data System (ADS)
Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan
2008-11-01
In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Munehisa; Akai, Hisazumi; Doi, Shotaro
2016-06-07
A classical spin model derived ab initio for rare-earth-based permanent magnet compounds is presented. Our target compound, NdFe{sub 12}N, is a material that goes beyond today's champion magnet compound Nd{sub 2}Fe{sub 14}B in its intrinsic magnetic properties with a simpler crystal structure. Calculated temperature dependence of the magnetization and the anisotropy field agrees with the latest experimental results in the leading order. Having put the realistic observables under our numerical control, we propose that engineering 5d-electron-mediated indirect exchange coupling between 4f-electrons in Nd and 3d-electrons from Fe would most critically help enhance the material's utility over the operation-temperature range.
NASA Astrophysics Data System (ADS)
Amir, Faisal
The atomic-scale structure of a series of (RE2 O3)x ( Na2O)y ( P2O5)1- x-y glasses (RE = Pr, Nd, Er) where has been characterized by high-energy X-ray diffraction technique (HEXRD). In addition, differential thermal analysis (DTA), Fourier transform infrared (FTIR) spectroscopy, and absorption and emission spectroscopy in visible and near IR ranges have been used as supplementary tools to validate structural features obtained from HEXRD techniques.Structural features such as inter-atomic distances and coordination numbers and their dependence on the concentration of RE 2 O3 have been obtained by analyzing pair distribution functions (PDF) extracted from diffraction data. Coordination numbers for P-O, Na-O, O-O, and P-P were found to be independent of the RE 2 O3 concentration. In contrast, the RE-O coordination number varies between ≈ 8 and 7.2 as the RE2 O3 concentration increases from 0.005 to 0.05. The variation of the bond distance between large rare-earth ions (Pr, Nd) and small rare-earth ion (Er) is approximately 0.2 A, which is attributed to lanthanide contraction. The Na-O coordination number in these glasses was observed to ≈ 5.0 as the RE2 O 3 content increases. The overlapping correlation of RE-O, Na-O, and O-O in the same vicinity makes it difficult to calculate these coordination numbers. DTA measurements were used for the investigation of thermal characteristics of glasses. From these measurements, it is evident that the glass transition temperature increases with increasing the RE2 O3 (RE=Pr, Er) content. FTIR was used to inspect the structural changes of the glasses. The doping of RE 2 O3 (RE=Pr, Er) induces depolymerization of the glasses at the Q3 tetrahedral sites. The forming of the ionic linkages between phosphate chains is attributed to the increase in non-bridging oxygen (NBO). The cross-linkages density (CLD) increases with the RE2 O3 (RE=Pr, Er) concentrations. Absorption spectra for x = 0.01 of Er 3+ and 0.005-0.05 for Nd3+ doped glasses have been analyzed using Judd-Ofelt (JO) theory. The JO parameters have been used to predict radiative properties of luminescent levels of Er3+ and Nd3+ ions. Comparatively large photoluminescence lifetime 13.76 msec (x = 0.01) for Er3+ and 476 microsec ( x = 0.005) for Nd3+ for the laser transition was observed. However, the quantum efficiency of the erbium doped glasses is ≈70 %. The influence of RE 3+ (RE = Er, Nd) doping concentration on the emission spectra and lifetimes was investigated wit the model proposed by Auzel's limited diffusion model, in order to study the concentration quenching effect on luminescence. In this model, the fitting of the fluorescence lifetime experimental data gives us a radiative lifetime (tau0) and quenching concentration (N0). For Neodymium glasses, tau0 = 467 microsec and N0 = 5.98 x 1020 ions/cm3 Nd3+ ion, and in erbium glasses, tau0 = 12.4 ms at N0= 1.57 x 1020 ions/cm3 for Er3+ ion. The Inokuti-Hirayama (IH) model has been applied to the non-exponential behavior of the decay profiles to investigate the mechanism involved in the energy transfer between the donors and acceptors. Emission spectra of rare earth phosphate glasses show that their fluorescence efficiency decreases with increasing rare-earth content even at relatively at low concentrations (0.005 < x < 0.05), suggesting that concentration quenching of lasing action may be present even at these concentrations.
Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics
NASA Astrophysics Data System (ADS)
Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo
2018-05-01
Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.
Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate
NASA Astrophysics Data System (ADS)
Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.
2009-11-01
In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.
Babot, Marion; Labarbuta, Paola; Birch, Amanda; Kee, Sara; Fuszard, Matthew; Botting, Catherine H.; Wittig, Ilka; Heide, Heinrich; Galkin, Alexander
2014-01-01
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover. PMID:24560811
Cole, Marcus L; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Konstas, Kristina; Wang, Jun
2007-01-01
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.
29 CFR (non - mandatory) Appendix A to Subpart L of Part 1926-Scaffold Specifications
Code of Federal Regulations, 2014 CFR
2014-07-01
... equivalent in strength to at least 1/2 inch (1.3 cm) diameter improved plow steel wire rope. (s) Float (ship... force. (d) Guardrails shall be as follows: (i) Toprails shall be equivalent in strength to 2 inch by 4 inch lumber; or 11/4 inch × 1/8 inch structural angle iron; or 1 inch × .070 inch wall steel tubing; or...
29 CFR (non - mandatory) Appendix A to Subpart L of Part 1926-Scaffold Specifications
Code of Federal Regulations, 2013 CFR
2013-07-01
... equivalent in strength to at least 1/2 inch (1.3 cm) diameter improved plow steel wire rope. (s) Float (ship... force. (d) Guardrails shall be as follows: (i) Toprails shall be equivalent in strength to 2 inch by 4 inch lumber; or 11/4 inch × 1/8 inch structural angle iron; or 1 inch × .070 inch wall steel tubing; or...
1982-04-01
Fear. Deep Sea Res., 16, 225-231. Salby, M. L., 1981: Rossby normal modes in nonuniform background configurations. Part I: Simple fields. Part II...CUJRRENT METER 1363 m~ 1/4" WIRE So - 1I? GLASS FLOATS IGO I CHAIN 720 m ANCHOR lAIR W1145141 3300 I- Fig. 2. Florida Current test mooring 325
Floating plastic debris in the Central and Western Mediterranean Sea.
Ruiz-Orejón, Luis F; Sardá, Rafael; Ramis-Pujol, Juan
2016-09-01
In two sea voyages throughout the Mediterranean (2011 and 2013) that repeated the historical travels of Archduke Ludwig Salvator of Austria (1847-1915), 71 samples of floating plastic debris were obtained with a Manta trawl. Floating plastic was observed in all the sampled sites, with an average weight concentration of 579.3 g dw km(-2) (maximum value of 9298.2 g dw km(-2)) and an average particle concentration of 147,500 items km(-2) (the maximum concentration was 1,164,403 items km(-2)). The plastic size distribution showed microplastics (<5 mm) in all the samples. The most abundant particles had a surface area of approximately 1 mm(2) (the mesh size was 333 μm). The general estimate obtained was a total value of 1455 tons dw of floating plastic in the entire Mediterranean region, with various potential spatial accumulation areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
The transfer of atmospheric-pressure ionization waves via a metal wire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yang; Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn; School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
2016-01-15
Our study has shown that the atmospheric-pressure He ionization waves (IWs) may be transferred from one dielectric tube (tube 1) to the other one (tube 2) via a floating metal wire. The propagation of IWs along the two tubes is not affected by the diameter of a floating metal wire, however, their propagation is strongly dependent on the length of a floating metal wire. The propagation of one IW along the tube 1 may result in the second IW propagating reversely inside the tube in vicinity of a floating metal wire, which keeps from their further propagation through the tubemore » 1. After they merge together as one conduction channel inside the tube 1, the transferred plasma bullet starts to propagate along the tube 2. The propagation of transferred plasma bullets along the tube 2 is mainly determined by the capacitance and inductance effects, and their velocity and density can be controlled by the length of a floating metal wire.« less
Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi
2017-02-15
We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
A nucleosynthetic origin for the Earth’s anomalous 142Nd composition
Burkhardt, C.; Borg, L.E.; Brennecka, G.A.; Shollenberger, Q.R.; Dauphas, N.; Kleine, T.
2016-01-01
A long-standing paradigm assumes that the chemical and isotopic composition of many elements in the bulk silicate Earth are the same as in chondrites1–4. However, the accessible Earth has a greater 142Nd/144Nd than chondrites. Because 142Nd is the decay product of now-extinct 146Sm (t1/2= 103 million years5), this 142Nd difference seems to require a higher-than-chondritic Sm/Nd of the accessible Earth. This must have been acquired during global silicate differentiation within the first 30 million years of Solar System formation6 and implies the formation of a complementary 142Nd-depleted reservoir that either is hidden in the deep Earth6, or was lost to space by impact erosion3,7. Whether this complementary reservoir existed, and whether or not it has been lost from Earth is a matter of debate3,8,9, but has tremendous implications for determining the bulk composition of Earth, its heat content and structure, and for constraining the modes and timescales of its geodynamical evolution3,7,9,10. Here, we show that compared to chondrites, Earth’s precursor bodies were enriched in Nd produced by the slow neutron capture process (s-process) of nucleosynthesis. This s-process excess leads to higher 142Nd/144Nd, and, after correction for this effect, the 142Nd/144Nd of chondrites and the accessible Earth are indistinguishable within 5 parts per million. The 142Nd offset between the accessible silicate Earth and chondrites, therefore, reflects a higher proportion of s-process Nd in the Earth, and not early differentiation processes. As such, our results obviate the need for hidden reservoir or super-chondritic Earth models, and imply a chondritic Sm/Nd for bulk Earth. Thus, although chondrites formed at greater heliocentric distance and contain a different mix of presolar components than Earth, they nevertheless are suitable proxies for Earth’s bulk chemical composition. PMID:27629643
NASA Astrophysics Data System (ADS)
Sharma, Swati; Yawer, Mohd; Kariem, Mukaddus; Sheikh, Haq Nawaz
2016-08-01
Two new 3D MOFs [Nd2(TDA)3(DEF)2(H2O)]n (1) and [Y4(TDA)6(DEF)4]n (2) [Thiophene-2,5-dicarboxylic acid (H2TDA) and N,N‧-diethylformamide (DEF)] were synthesized by solvothermal method. They were characterized by elemental analyses, infrared spectroscopy and single crystal X-ray diffraction studies. The two MOFs (1) and (2) belong to the monoclinic system with space group P21/n and C 2 respectively. Structural characterizations by single-crystal X-ray crystallography reveal that 1 and 2 adopt three-dimensional frameworks constructed by cross-linking of rod shaped infinite chain secondary building unit (SBU) by thiophene-2,5-dicarboxylates as linker. These frameworks feature rhomboidal channels, inside which coordinated DEF/H2O solvent molecules are located. DEF plays pivotal role in reaction and design of MOFs. Thermogravimetric analysis shows that both MOFs are thermally robust.
Study of structural and magnetic properties of melt spun Nd2Fe13.6Zr0.4B ingot and ribbon
NASA Astrophysics Data System (ADS)
Amin, Muhammad; Siddiqi, Saadat A.; Ashfaq, Ahmad; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Al-Zaghayer, Yousef S.
2015-12-01
Nd2Fe13.6Zr0.4B hard magnetic material were prepared using arc-melting technique on a water-cooled copper hearth kept under argon gas atmosphere. The prepared samples, Nd2Fe13.6Zr0.4B ingot and ribbon are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) for crystal structure determination and morphological studies, respectively. The magnetic properties of the samples have been explored using vibrating sample magnetometer (VSM). The lattice constants slightly increased due to the difference in the ionic radii of Fe and that of Zr. The bulk density decreased due to smaller molar weight and low density of Zr as compared to that of Fe. Ingot sample shows almost single crystalline phase with larger crystallite sizes whereas ribbon sample shows a mixture of amorphous and crystalline phases with smaller crystallite sizes. The crystallinity of the material was highly affected with high thermal treatments. Magnetic measurements show noticeable variation in magnetic behavior with the change in crystallite size. The sample prepared in ingot type shows soft while ribbon shows hard magnetic behavior.
Modelling the transport and accumulation of floating marine debris in the Mediterranean basin.
Mansui, J; Molcard, A; Ourmières, Y
2015-02-15
In the era of plastic and global environmental issues, when large garbage patches have been observed in the main oceanic basins, this work is the first attempt to explore the possibility that similar permanent accumulation structures may exist in the Mediterranean Sea. The questions addressed in this work are: can the general circulation, with its sub-basins scale gyres and mesoscale instabilities, foster the concentration of floating items in some regions? Where are the more likely coastal zones impacted from open ocean sources? Multi-annual simulations of advected surface passive debris depict the Tyrrhenian Sea, the north-western Mediterranean sub-basin and the Gulf of Sirte as possible retention areas. The western Mediterranean coasts present very low coastal impact, while the coastal strip from Tunisia to Syria appears as the favourite destination. No permanent structure able to retain floating items in the long-term were found, as the basin circulation variability brings sufficient anomalies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rare earth niobate coordination polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less
Rare earth niobate coordination polymers
Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; ...
2018-01-03
Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less
Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.
Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O
1987-06-01
The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.
Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; ...
2015-01-15
The London penetration depth, λ(T), was measured in single crystals of Ce 1-xR xCoIn 5, R=La, Nd and Yb down to T min ≈ 50 mK (T c/T min ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ T n, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd and Yb lead to similar monotonic suppressions of T c, however the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expectedmore » for a dirty nodal superconductor, Yb doping leads to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happen in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.« less
Advanced ADA Workshop Held in Biloxi, Mississippi on 24-27 January 1989
1989-01-27
Software Engineering (Break at 2:30j 6:30-8:00 Keesler AFB Reception Officers’ Club WEDNESDAY - 25 JANIJ1APY 9:00-12:00 Bldc 1002 Generics (Break at 10...TextIO.FileType: -- NO! procedure Wrong; -- problem is FileType is limited private Object Parameters A More Useful Example generic Control -Block : in out... control the precision used Float Type Parameters An Example generic type FloatType is digits <>; function Sqrt(X : FloatType) return FloatType
Floating point arithmetic in future supercomputers
NASA Technical Reports Server (NTRS)
Bailey, David H.; Barton, John T.; Simon, Horst D.; Fouts, Martin J.
1989-01-01
Considerations in the floating-point design of a supercomputer are discussed. Particular attention is given to word size, hardware support for extended precision, format, and accuracy characteristics. These issues are discussed from the perspective of the Numerical Aerodynamic Simulation Systems Division at NASA Ames. The features believed to be most important for a future supercomputer floating-point design include: (1) a 64-bit IEEE floating-point format with 11 exponent bits, 52 mantissa bits, and one sign bit and (2) hardware support for reasonably fast double-precision arithmetic.
ERIC Educational Resources Information Center
Tong, Xiuli; McBride, Catherine
2014-01-01
This study examined how Chinese children acquire the untaught positional constraints of stroke patterns that are embedded in left-right structured and top-bottom structured characters. Using an orthographic regularity pattern elicitation paradigm, 536 Hong Kong Chinese children at different levels of reading (kindergarten, 2nd, and 5th grades)…
Significant Improvement of Thermal Stability for CeZrPrNd Oxides Simply by Supercritical CO2 Drying
Fan, Yunzhao; Wang, Zizi; Xin, Ying; Li, Qian; Zhang, Zhaoliang; Wang, Yingxia
2014-01-01
Pr and Nd co-doped Ce-Zr oxide solid solutions (CZPN) were prepared using co-precipitation and microemulsion methods. It is found that only using supercritical CO2 drying can result in a significant improvement of specific surface area and oxygen storage capacity at lower temperatures for CZPN after aging at 1000°C for 12 h in comparison with those using conventional air drying and even supercritical ethanol drying. Furthermore, the cubic structure was obtained in spite of the fact that the atomic ratio of Ce/(Ce+Zr+Pr+Nd) is as low as 29%. The high thermal stability can be attributed to the loosely aggregated morphology and the resultant Ce enrichment on the nanoparticle surface, which are caused by supercritical CO2 drying due to the elimination of surface tension effects on the gas-liquid interface. PMID:24516618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazareth, A.S.; Sood, D.K.; Zmood, R.B.
A focusing grid broad beam Kaufman source, using argon ions on a target of nominal composition Nd{sub 2}Fe{sub 14}B has been employed to sputter deposit magnetic thin films of thicknesses ranging from 800 {angstrom} to 1300 {angstrom} on silicon-(111) substrates at room temperature. These films were characterized for their composition depth profile by Rutherford Backscattering Spectroscopy, while x-ray diffraction was used to study the crystallographic structure. Due to a close match between (111) Si with (220) Nd{sub 2}Fe{sub 14}B lattice spacings, preferred crystallographic texturing was expected, and experimental results showed a greatly enhanced (220) texture. The degradation in magnetic propertiesmore » was attributed to the presence of oxygen in the films as indicated by concentration depth profiles. It is premised that another significant role of oxygen may be to relieve the misfit strain across the interface by its incorporation within the Nd{sub 2}Fe{sub 14}B phase.« less
Magnetic and thermodynamic properties of Nd3NiGe2
NASA Astrophysics Data System (ADS)
Matsumoto, Keisuke T.; Hiraoka, Koichi
2018-05-01
We here report the magnetization, M, and specific heat, C, of Nd3NiGe2 , which crystallizes in the orthorhombic Gd3NiSi2 -type structure. Nd ions occupy three nonequivalent sites in a unit cell. Upon cooling, magnetization divided by magnetic field, M / B , increased sharply at the Curie temperature, TC, of 87 K and below 40 K. The former result indicates that the increase in M / B observed at TC is due to the long-range ferromagnetic order. The increase below 40 K is derived from a short-range correlation because of the absence of clear anomaly in C (T) . At 10 K and 2 K, the values of M undergo metamagnetic transitions. The value of magnetic specific heat divided by temperature shows a shoulder-like anomaly at around 20 K, which is attributed to antiferromagnetic behavior. Furthermore, two peaks in C (T) were observed at 4.5 K and 3.8 K, and these peaks occurred at lower temperatures in the presence of a magnetic field. This behavior is typical of materials with antiferromagnetic order. These observations are attributed to the competition between ferromagnetic and antiferromagnetic interactions, which is a result of the three nonequivalent Nd sites.
Structure of the floating water bridge and water in an electric field
Skinner, Lawrie B.; Benmore, Chris J.; Shyam, Badri; Weber, J. K. R.; Parise, John B.
2012-01-01
The floating water bridge phenomenon is a freestanding rope-shaped connection of pure liquid water, formed under the influence of a high potential difference (approximately 15 kV). Several recent spectroscopic, optical, and neutron scattering studies have suggested that the origin of the bridge is associated with the formation of anisotropic chains of water molecules in the liquid. In this work, high energy X-ray diffraction experiments have been performed on a series of floating water bridges as a function of applied voltage, bridge length, and position within the bridge. The two-dimensional X-ray scattering data showed no direction-dependence, indicating that the bulk water molecules do not exhibit any significant preferred orientation along the electric field. The only structural changes observed were those due to heating, and these effects were found to be the same as for bulk water. These X-ray scattering measurements are supported by molecular dynamics (MD) simulations which were performed under electric fields of 106 V/m and 109 V/m. Directional structure factor calculations were made from these simulations parallel and perpendicular to the E-field. The 106 V/m model showed no significant directional-dependence (anisotropy) in the structure factors. The 109 V/m model however, contained molecules aligned by the E-field, and had significant structural anisotropy. PMID:23010930
Mkaouar-Rebai, Emna; Chamkha, Imen; Kammoun, Fatma; Kammoun, Thouraya; Aloulou, Hajer; Hachicha, Mongia; Triki, Chahnez; Fakhfakh, Faiza
2009-07-01
Leigh syndrome is a progressive neurodegenerative disorder occurring in infancy and childhood characterized in most cases by a psychomotor retardation, optic atrophy, ataxia, dystonia, failure to thrive, seizures and respiratory failure. In this study, we performed a systematic sequence analysis of mitochondrial genes associated with LS in Tunisian patients. We sequenced the encoded complex I units: ND2, ND3, ND4, ND5 and ND6 genes and the mitochondrial ATPase 6, tRNA(Val), tRNA(Leu(UUR)), tRNA(Trp) and tRNA(Lys) genes in 10 unrelated patients with Leigh syndrome. We revealed the presence of 34 reported polymorphisms, nine novel nucleotide variants and two new mutations (T5523G and A5559G) in the tested patients. These two mutations were localized in two conserved regions of the tRNA(Trp) and affect, respectively, the D-stem and the T-stem of the mitochondrial tRNA leading to a disruption of the secondary structure of this tRNA. SSP-PCR analysis showed that the T5523G and A5559G mutations were present with respective heteroplasmic rates of 66% and 43 %. We report here the first mutational screening of mitochondrial mutations in Tunisian patients with Leigh syndrome which described two novel mutations associated with this disorder.
NASA Astrophysics Data System (ADS)
Briggs, Ellen M.; Martz, Todd R.; Talley, Lynne D.; Mazloff, Matthew R.; Johnson, Kenneth S.
2018-02-01
Here we present initial findings from nine profiling floats equipped with pH, O2, NO3-, and other biogeochemical sensors that were deployed in the seasonal ice zone (SIZ) of the Southern Ocean in 2014 and 2015 through the Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) project. A large springtime phytoplankton bloom was observed that coincided with sea ice melt for all nine floats. We argue this bloom results from a shoaling of the mixed layer depth, increased vertical stability, and enhanced nutrient and light availability as the sea ice melts. This interpretation is supported by the absence of a springtime bloom when one of the floats left the SIZ in the second year of observations. During the sea ice covered period, net heterotrophic conditions were observed. The rate of uptake of O2 and release of dissolved inorganic carbon (derived from pH and estimated total alkalinity) and NO3- is reminiscent of biological respiration and is nearly Redfieldian for the nine floats. A simple model of mixed layer physics was developed to separate the physical and biological components of the signal in pH and O2 over one annual cycle for a float in the Ross Sea SIZ. The resulting annual net community production suggests that seasonal respiration during the ice covered period of the year nearly balances the production in the euphotic layer of up to 5 mol C m-2 during the ice free period leading to a net of near zero carbon exported to depth for this one float.
Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta
2017-04-15
Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB 4 showing the successive phase transitions at T 0 = 17.2 K, T N1 = 7.0 K, and T N2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0=(0,0,0), q0 and qs1=(δ,δ,0.4) (δ ~ 0.14), and q 0 and q s2=(0.2,0,0.4) in phase II (T N1 < T < T 0), phase III (T N2 < T < T N1), and phase IV (T < T N2), respectively. The observed patterns in phase IImore » are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic “all-in/all-out”-type (Γ 4) and “vortex”-type (Γ 2) structures, consisting of a Γ 4 main component (77%) with a small amplitude of Γ 2 (23%). Finally, we propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry–Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.« less
Magnetic Structure and Quadrupolar Order Parameter Driven by Geometrical Frustration Effect in NdB4
NASA Astrophysics Data System (ADS)
Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta; Suzuki, Kazuya; Fukazawa, Hiroshi; Chi, Songxue; Fernandez-Baca, Jaime A.
2017-04-01
Neutron diffraction experiments have been carried out to characterize the magnetic structures and order parameters in an intermediate phase of NdB4 showing the successive phase transitions at T0 = 17.2 K, TN1 = 7.0 K, and TN2 = 4.8 K. We have revealed the antiferromagnetic ordering with the propagation vectors q0 = (0,0,0), q0 and qs1 = (δ ,δ ,0.4) (δ ˜ 0.14), and q0 and qs2 = (0.2,0,0.4) in phase II (TN1 < T < T0), phase III (TN2 < T < TN1), and phase IV (T < TN2), respectively. The observed patterns in phase II are successfully explained by postulating a coplanar structure with static magnetic moments in the tetragonal ab-plane. We have found that the magnetic structure in phase II can be uniquely determined to be a linear combination of antiferromagnetic "all-in/all-out"-type (Γ4) and "vortex"-type (Γ2) structures, consisting of a Γ4 main component (77%) with a small amplitude of Γ2 (23%). We propose that the quadrupolar interaction holds the key to stabilizing the noncollinear magnetic structure and quadrupolar order. Here, the frustration in the Shastry-Sutherland lattice would play an essential role in suppressing the dominance of the magnetic interaction.
Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Xiaoyue; Yang, Feifei; Antono, Erin
Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less
Undulated oxo-centered layers in PbLn3O4(VO4) (Ln= La and Nd) and relationship with Nd4O4(GeO4)
NASA Astrophysics Data System (ADS)
Colmont, Marie; Mentré, Olivier; Henry, Natacha; Pautrat, Alain; Leclercq, Bastien; Capet, Frédéric; Djelal, Nora; Roussel, Pascal
2018-04-01
Single crystals of PbLa3O4(VO4) have been synthesized using the flux growth technique and characterized by X-ray diffraction. The crystal structure of the tittle phase was solved by charge flipping and refined to R1 = 0.024 (wR2 = 0.031) for 2777 reflections [I>3σ(I)]. The compound is orthorhombic and crystallized in the space group Cmcm: a = 5.8686(6)Å, b = 17.898(2)Å, c = 7.9190(7)Å, V = 831.8(1)Å3, Z = 4. The structure is built on [PbLa3O4]3+ layers with zig-zag cross-sections, surrounded by isolated (VO4)3- tetrahedra. Its crystal structure shows direct relationship with the isoformular Nd4O4(GeO4) compound which crystallized in the primitive non centrosymmetric Pb21m sub-group. Its stability in temperature and under air was checked as well as optical properties. In a second part, lanthanum was substituted by neodymium giving rise to a paramagnet and f→ f electronic excitations superposed to the broad absorption front below 3.05 eV related to the presence of VO4 groups.
Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet
Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...
2016-09-29
Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd 2Fe 14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd 2Fe 14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less
Nonlinear electron transport mobility in asymmetric wide quantum well structure
NASA Astrophysics Data System (ADS)
Nayak, Rasmita K.; Das, Sudhakar; Panda, Ajit K.; Sahu, Trinath
2018-05-01
The nonlinearity of multisubband electron mobility µ in a GaAs/AlxGa1-xAs wide quantum well structure is studied by varying the well width w and doping concentration Nd b (Nd t ) lying in the bottom (top) barrier. The electrons diffuse into the well and accumulate near the interfaces forming two sheets of coupled two dimensional electron gases equivalent to a double quantum well structure. We show that interchange of doping concentrations N db and N dt lead to the enhancement of µ as a function of w as long as N dt > N db , even though the surface electron density remains unaltered. Further, keeping Nd b unchanged, variation of Nd t leads to nonlinearity in µ near the resonance of subband states at Nd t = Nd b at which the subband energy levels exhibit anticrossing. The variation of µ becomes prominent by increasing the well width and resonant doping concentration. The nonlinearity in µ is mostly because of the change in the interface roughness scattering potential through intersubband effects due to the substantial changes in the distributions of the subband wave functions around resonance. Our results of nonmonotonic variation of µ can be utilized for low temperature coupled quantum well devices.
Analysis of ISS Plasma Interaction
NASA Technical Reports Server (NTRS)
Reddell, Brandon; Alred, John; Kramer, Leonard; Mikatarian, Ron; Minow, Joe; Koontz, Steve
2006-01-01
To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data from several radar locations around the globe were used to assure consistency of the satellite data. PIM predictions for ISS charging made with this data correlated very well with FPP data, indicating that the general physics of spacecraft charging with high voltage solar arrays have been captured. The predictions also provided the probabilities of occurrences for ISS charging. These probabilities give a numerical measure of the number of times when the ISS will approach or exceed the vehicle plasma hazard conditions for each configuration. In this paper we shall present the interaction mechanisms between the ISS and the surrounding plasma and give an overview of the PIM components. PIM predictions are compared with available data followed by a discussion of the variability of plasma parameters and the conductive area on the ISS. The ISS PIM will be further tested and verified as data from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
NASA Astrophysics Data System (ADS)
Lee, Pui Fai
2007-12-01
Nanocrystals (NC) embedded in dielectrics have attracted a great deal of attention recently because they can potentially be applied in nonvolatile, high-speed, high-density and low-power memory devices. This device benefits from a relatively low operating voltage, high endurance, fast write-erase speeds and better immunity to soft errors. The nanocrystal materials suitable for such an application can be either metals or semiconductors. Recent studies have shown that high-k dielectrics, instead of SiO2 , for the tunneling layer in nanocrystal floating gate memory can improve the trade-off between data retention and program efficiency due to the unique band alignment of high-k dielectrics in the programming and retention modes. In this project, HfAlO has been selected as the high- k dielectric for the nanocrystal floating gate memory structure. The trilayer structure (HfAlO/Ge-NC/HfAlO) on Si was fabricated by PLD. Results revealed that relatively low substrate temperature and growth rate are favourable for the formation of smaller-size Ge nanocrystals. Effects of size/density of the Ge nanocrystal, the tunneling and control oxide layer thicknesses and the oxygen partial pressure during their growth on the charge storage and charge retention characteristics have also been studied. The island structure of the Ge nanocrystal suggests that the growth is based on the Volmer-Webber mode. The self-organized Ge nanocrystals so formed were uniform in size (5--20 nm diameter) and distribution with a density approaching 1012--1013cm-2. Flat-band voltage shift (DeltaVFB) of about 3.6 V and good retention property have been achieved. By varying aggregation distance, sputtering gas pressure and ionization power of the nanocluster source, nanoclusters of Ge with different sizes can be formed. The memory effect of the trilayer structure so formed with 10 nm Ge nanoclusters are manifested by the counter-clockwise hysteresis loop in the C-V curves and a maximum flat-band voltage shift of 5.0 V has been achieved. For comparison purposes, metal nanocrystals have also been investigated by utilizing both of the physical deposition methods as mentioned above. Silver (Ag) nanocrystals with size of 10--40 nm have been embedded in HfAlO matrix in the trilayer capacitor structure and a flat-band voltage shift of 2.0 V has been achieved.
Design of crossed-mirror array to form floating 3D LED signs
NASA Astrophysics Data System (ADS)
Yamamoto, Hirotsugu; Bando, Hiroki; Kujime, Ryousuke; Suyama, Shiro
2012-03-01
3D representation of digital signage improves its significance and rapid notification of important points. Our goal is to realize floating 3D LED signs. The problem is there is no sufficient device to form floating 3D images from LEDs. LED lamp size is around 1 cm including wiring and substrates. Such large pitch increases display size and sometimes spoils image quality. The purpose of this paper is to develop optical device to meet the three requirements and to demonstrate floating 3D arrays of LEDs. We analytically investigate image formation by a crossed mirror structure with aerial aperture, called CMA (crossed-mirror array). CMA contains dihedral corner reflectors at each aperture. After double reflection, light rays emitted from an LED will converge into the corresponding image point. We have fabricated CMA for 3D array of LEDs. One CMA unit contains 20 x 20 apertures that are located diagonally. Floating image of LEDs was formed in wide range of incident angle. The image size of focused beam agreed to the apparent aperture size. When LEDs were located three-dimensionally (LEDs in three depths), the focused distances were the same as the distance between the real LED and the CMA.
A float mechanism of retention in reversed-phase chromatography
NASA Astrophysics Data System (ADS)
Deineka, V. I.; Deineka, L. A.; Saenko, I. I.; Chulkov, A. N.
2015-07-01
A float mechanism of retention in reversed-phase HPLC is proposed as an alternative to the known mechanisms of the distribution and hydrophobic expulsion of sorbate to the surface of a sorbent. Experimental data that the sorption of a flavylium structure is poorly sensitive to the position of OH groups, and that the retention of anthocyanins depends on the length of bonded alkyl radicals of reversed phase, form the basis of the proposed hypothesis. It is noted that the retention of anthocyanins depends on the orientation of hydroxyl groups in carbohydrate radicals, due to which the chromatographic behavior of anthocyanins is different for glucosides and galactosides, for arabinosides and xylosides, and so on. In other words, retention is a reliable indicator of the composition of a carbohydrate fragment. It is concluded that carbohydrate radicals serve as unique floats, while flat flavilic ions penetrate into the bonded phase. The existence of floats is the main reason for the lower efficiency (of the number of theoretical plates) of the peaks of anthocyanins. It is shown that if two carbohydrate radicals are present at different sites of aglycone (a two-float sorbate), the peaks of the substance are characterized by substantial additional broadening.
Ijaz, Hira; Qureshi, Junaid; Danish, Zeeshan; Zaman, Muhammad; Abdel-Daim, Mohamed; Hanif, Muhammad; Waheed, Imran; Mohammad, Imran Shair
2015-11-01
The purpose of this study was to introduce the technology for the development of rate-controlled oral drug delivery system to overcome various physiological problems. Several approaches are being used for the purpose of increasing the gastric retentive time, including floating drug delivery system. Gastric floating lisinopril maleate and metoprolol tartrate bilayer tablets were formulated by direct compression method using the sodium starch glycolate, crosscarmellose sodium for IR layer. Eudragit L100, pectin, acacia as sustained release polymers in different ratios for SR metoprolol tartrate layer and sodium bicarbonate, citric acid as gas generating agents for the floating extended release layer. The floating bilayer tablets of lisinopril maleate and metoprolol tartrate were designed to overcome the various problems associated with conventional oral dosage form. Floating tablets were evaluated for floating lag time, drug contents and in-vitro dissolution profile and different kinetic release models were applied. It was clear that the different ratios of polymers affected the drug release and floating time. L2 and M4 showed good drug release profile and floating behavior. The linear regression and model fitting showed that all formulation followed Higuchi model of drug release model except M4 that followed zero order kinetic. From the study it is evident that a promising controlled release by floating bilyer tablets of lisinopril maleate and metoprolol tartrate can be developed successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Matsuda, Masaaki
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f-electron system NdB 4. We confirmed the noncollinear “all-in all-out” structure (Γ 4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c-axis m c showed diagonally antiferromagnetic structure (Γ 10), inconsistent with previously reported “vortex” structure (Γ 2). The microscopic mixture of these two structures with →q 0=(0,0,0) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. Themore » unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ 4 coupled with higher-order secondary order parameter Γ 10. The magnetic moments were estimated to be 1.8 ± 0.2 and 0.2 ± 0.05μ B at T = 7.5K for Γ 4 and Γ 10, respectively. We also found a long-period incommensurate modulation of the →q 1=(0,0,1/2) antiferromagnetic structure of mc with the propagation →q s1=(0.14,0.14,0.1) and →q s2=(0.2,0,0.1) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about m c=1.0 ± 0.2μ B at T=1.5 K. The local (0,0,1/2) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of m c, opposite to the coexisting Γ 10. The mc of Γ 10 is significantly enhanced up to 0.6μ B at T=1.5 K, which is accompanied by the incommensurate modulations. As a result, the Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f-electron state play important roles.« less
Metoki, Naoto; Yamauchi, Hiroki; Matsuda, Masaaki; ...
2018-05-17
Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f-electron system NdB 4. We confirmed the noncollinear “all-in all-out” structure (Γ 4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c-axis m c showed diagonally antiferromagnetic structure (Γ 10), inconsistent with previously reported “vortex” structure (Γ 2). The microscopic mixture of these two structures with →q 0=(0,0,0) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. Themore » unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ 4 coupled with higher-order secondary order parameter Γ 10. The magnetic moments were estimated to be 1.8 ± 0.2 and 0.2 ± 0.05μ B at T = 7.5K for Γ 4 and Γ 10, respectively. We also found a long-period incommensurate modulation of the →q 1=(0,0,1/2) antiferromagnetic structure of mc with the propagation →q s1=(0.14,0.14,0.1) and →q s2=(0.2,0,0.1) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about m c=1.0 ± 0.2μ B at T=1.5 K. The local (0,0,1/2) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of m c, opposite to the coexisting Γ 10. The mc of Γ 10 is significantly enhanced up to 0.6μ B at T=1.5 K, which is accompanied by the incommensurate modulations. As a result, the Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f-electron state play important roles.« less
Suen, Nian-Tzu; Guo, Sheng-Ping; Hoos, James; Bobev, Svilen
2018-05-07
Reported are the syntheses, crystal structures, and electronic structures of six rare-earth metal-lithium stannides with the general formulas RE 3 Li 4- x Sn 4+ x (RE = La-Nd, Sm) and Eu 7 Li 8- x Sn 10+ x . These new ternary compounds have been synthesized by high-temperature reactions of the corresponding elements. Their crystal structures have been established using single-crystal X-ray diffraction methods. The RE 3 Li 4- x Sn 4+ x phases crystallize in the orthorhombic body-centered space group Immm (No. 71) with the Zr 3 Cu 4 Si 4 structure type (Pearson code oI22), and the Eu 7 Li 8- x Sn 10+ x phase crystallizes in the orthorhombic base-centered space group Cmmm (No. 65) with the Ce 7 Li 8 Ge 10 structure type (Pearson code oC50). Both structures can be consdered as part of the [RESn 2 ] n [RELi 2 Sn] m homologous series, wherein the structures are intergrowths of imaginary RESn 2 (AlB 2 -like structure type) and RELi 2 Sn (MgAl 2 Cu-like structure type) fragments. Close examination the structures indicates complex occupational Li-Sn disorder, apparently governed by the drive of the structure to achieve an optimal number of valence electrons. This conclusion based on experimental results is supported by detailed electronic structure calculations, carried out using the tight-binding linear muffin-tin orbital method.
Floating cultivation of marine cyanobacteria using coal fly ash.
Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T
2000-01-01
The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.
Svendsen, Helle; Overgaard, Jacob; Chevallier, Marie A; Collet, Eric; Chen, Yu-Sheng; Jensen, Frank; Iversen, Bo B
2010-06-25
Single-crystal X-ray diffraction measurements have been carried out on [Nd(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (1; dmf=dimethylformamide), [Nd(dmf)(4)(H(2)O)(3)(mu-CN)Co(CN)(5)].H(2)O (2), [La(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (3), [Gd(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (4), and [Y(dmf)(4)(H(2)O)(3)(mu-CN)Fe(CN)(5)].H(2)O (5), at 15(2) K with and without UV illumination of the crystals. Significant changes in unit-cell parameters were observed for all the iron-containing complexes, whereas 2 showed no response to UV illumination. Photoexcited crystal structures have been determined for 1, 3, and 4 based on refinements of two-conformer models, and excited-state occupancies of 78.6(1), 84(6), and 86.6(7)% were reached, respectively. Significant bond-length changes were observed for the Fe-ligand bonds (up to 0.19 A), the cyano bonds (up to 0.09 A), and the lanthanide-ligand bonds (up to 0.10 A). Ab initio theoretical calculations were carried out for the experimental ground-state geometry of 1 to understand the electronic structure changes upon UV illumination. The calculations suggest that UV illumination gives a charge transfer from the cyano groups on the iron atom to the lanthanide ion moiety, {Nd(dmf)(4)(H(2)O)(3)}, with a distance of approximately 6 A from the iron atom. The charge transfer is accompanied by a reorganization of the spin state on the {Fe(CN)(6)} complex, and a change in geometry that produces a metastable charge-transfer state with an increased number of unpaired electrons, thus accounting for the observed photomagnetic effect.
The Controllable Ball Joint Mechanism
NASA Astrophysics Data System (ADS)
Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai
A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.
A novel grounded to floating admittance converter with electronic control
NASA Astrophysics Data System (ADS)
Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank
2018-01-01
This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirgorodsky, Andreie; Colas, Maggy; Smirnov, Mikhael
2012-06-15
Ideas currently dominating the field of structural studies of TeO{sub 2}-based glasses are critically considered. A new physically and chemically consistent approach to the constitution of binary TeO{sub 2}-WO{sub 3} glasses is proposed, in which the reasoning coming from the Raman spectra reexamination are correlated with the basic principles of thermodynamics. Separation into two phases is suggested in such glasses. One phase is TeO{sub 2}, and another is Te(WO{sub 4}){sub 2} consisting of tetrahedral [WO{sub 4}]{sup 2-} anions and of Te{sup 4+} cations. Supplementary M{sub n}O{sub k} oxides added to the glasses are found incorporated in the former phase, thusmore » producing solid solutions (for M=Ti, Nb) or tellurite compounds (for M=Nd). - Graphical abstract: Raman scattering spectra of TeO{sub 2}-based glasses with the following compositions (mol%): (a) pure TeO{sub 2}, (b) 85TeO{sub 2}-15WO{sub 3}, (c) 80TeO{sub 2}-15WO{sub 3}-5TiO{sub 2} ,(d) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nb{sub 2}O{sub 5}, (e) 80TeO{sub 2}-12WO{sub 3}-5TiO{sub 2}-3 Nd{sub 2}O{sub 3}, (f) 80TeO{sub 2}-10WO{sub 3}-5TiO{sub 2}-5Nd{sub 2}O{sub 3}. Highlights: Black-Right-Pointing-Pointer Structural studies of TeO{sub 2}-WO{sub 3} glasses are critically considered. Black-Right-Pointing-Pointer The oxide glass formation is analyzed from Raman spectra and thermodynamic principles. Black-Right-Pointing-Pointer Separation into two phases, TeO{sub 2} and Te(WO{sub 4}){sub 2}, is intrinsic in such glasses. Black-Right-Pointing-Pointer TiO{sub 2} or Nb{sub 2}O{sub 5} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce solid solutions. Black-Right-Pointing-Pointer Nd{sub 2}O{sub 3} addition to TeO{sub 2}-WO{sub 3} glasses leads to produce a tellurite compound.« less
Parallel processor for real-time structural control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tise, B.L.
1992-01-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection tomore » host computer, parallelizing code generator, and look-up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating-point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An Open Windows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.« less
The complete mitochondrial genome structure of snow leopard Panthera uncia.
Wei, Lei; Wu, Xiaobing; Jiang, Zhigang
2009-05-01
The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A-5,357 bp (31.9%); C-4,444 bp (26.5%); G-2,428 bp (14.5%); T-4,544 bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNA(Ser) ((AGY)), which lacked the ''DHU'' arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32 bp) region was found with 2 repeats while one short repetitive segment (9 bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816 bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings.
Thakar, Krishna; Joshi, Garima; Sawant, Krutika K
2013-06-01
The study was aimed to improve bioavailability of baclofen by developing gastroretentive floating drug delivery system (GFDDS). Preliminary optimization was done to select various release retardants to obtain minimum floating lag time, maximum floating duration and sustained release. Optimization by 3(2) factorial design was done using Polyox WSR 303 (X1) and HPMC K4M (X2) as independent variables and cumulative percentage drug released at 6 h (Q6h) as dependent variable. Optimized formulation showed floating lag time of 4-5 s, floated for more than 12 h and released the drug in sustained manner. In vitro release followed zero ordered kinetics and when fitted to Korsemeyer Peppas model, indicated drug release by combination of diffusion as well as chain relaxation. In vivo floatability study confirmed floatation for more than 6 h. In vivo pharmacokinetic studies in rabbits showed Cmax of 189.96 ± 13.04 ng/mL and Tmax of 4 ± 0.35 h for GFDDS. The difference for AUC(0-T) and AUC(0-∞) between the test and reference formulation was statistically significant (p > 0.05). AUC(0-T) and AUC(0-∞) for GFDDS was 2.34 and 2.43 times greater than the marketed formulation respectively. GFDDS provided prolonged gastric residence and showed significant increase in bioavailability of baclofen.
Composite Laser Ceramics by Advanced Bonding Technology
Kamimura, Tomosumi; Honda, Sawao
2018-01-01
Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152
NASA Astrophysics Data System (ADS)
Nakano, M.; Kondo, H.; Yamashita, A.; Yanai, T.; Itakura, M.; Fukunaga, H.
2018-05-01
PLD (Pulsed Laser Deposition) method with high laser energy density (LED) above 10 J/cm2 followed by a flash annealing enabled us to obtain isotropic nano-composite thick-film magnets with (BH)max ≧ 80 kJ/m3 on polycrystalline Ta substrates. We also have demonstrated that a dispersed structure composed of α-Fe together with Nd2Fe14B phases with the average grain diameter of approximately 20 nm could be formed on the Ta substrates. In this study, we tried to enhance the (BH)max value by controlling the microstructure due to the usage of different metal based substrates with each high melting point such as Ti, Nb, and W. Although it was difficult to vary the microstructure and to improve the magnetic properties of the films deposited on the substrates, we confirmed that isotropic thick-film magnets with (BH)max ≧ 80 kJ/m3 based on the nano-dispersed α-Fe and Nd2Fe14B phases could be obtained on various metal substrates with totally different polycrystalline structure. On the other hand, the use of a glass substrate lead to the deterioration of magnetic properties of a film prepared using the same preparation process.
Circulation patterns in the deep Subtropical Northeast Atlantic with ARGO data
NASA Astrophysics Data System (ADS)
Calheiros, Tomas; Bashmachnikov, Igor
2014-05-01
In this work we study the dominant circulation patterns in the Subtropical Northeast Atlantic using ARGO data [25-45o N, 5-35o W]. The data were obtained from the Coriolis operational data center (ftp://ftp.ifremer.fr) for the years 1999-2013. During this period of time in the study there were available area 376 floats with 15062 float-months of total time. The floats were launched in the depths range between 300 and 2000 m, but most of the floats were concentrated at 1000 m (2000 float-months) and 1500 m (3400 float-months). In the upper 400-m layer there were also about 1000 float-months, but their number and distribution did not allow analysis of the mean currents over the study region. For each float position Lagrangian current velocity was computed as the difference between the position when the buoy started sinking to the reference depth and the consequent position of surfacing of the float, divided by the respective time interval. This allowed reducing the noise related with sea-surface drift of the buoys during the data-transmission periods. Mean Eulerian velocity and its error were computed in each of the 2ox2o square. Whenever in a 2ox2o square more than 150 observations of the Lagrangian velocity were available, the square was split into 4 smaller 1ox1o squares, in each of which the mean Eulerian velocities and their errors were estimated. Eulerian currents at 1000 m, as well as at 1500 m depth formed an overall anticyclonic circulation pattern in the study region. The modal velocity of all buoys at 1000 m level was 4 cm/s with an error of the mean of 1.8 cm/s. The modal velocity of all buoys at 1500m was 3 cm/s with an error of the mean of 1.4 cm/s. The southwestward flows near the Madeira Island and further westwards flow along the zonal band of 25-30o N at 1500 m depth well corresponded to the extension of the deep fraction of the Mediterranean Water salt tong.
Highly transparent ceramics with disordered crystal structure
NASA Astrophysics Data System (ADS)
Osipov, V. V.; Khasanov, O. L.; Solomonov, V. I.; Shitov, V. A.; Orlov, A. N.; Platonov, V. V.; Spirina, A. V.; Luk'yashin, K. E.; Dvilis, E. S.
2010-08-01
A highly transparent ceramic has been synthesized from Nd3+:Y2O3 to which 6 mol. % ZrO2 and 25 mol. % Sc2O3 or Lu2O3 were added for disordering the crystal structure. Nanopowders with an average particle size of 10-15 nm served as an initial material. They were compacted by the method of uniaxial static pressing combined with ultrasonic action on nanoparticles. The compacting pressure was 200 MPa; the power of the ultrasonic generator was 1.5 kW. It has been shown that the replacement of Y by isovalent Sc and Lu ions and by heterovalent Zr ions reduces the content of pores and the sizes of crystallites. The transparency of the Nd3+:Y2O3 ceramic with these additives reaches a maximum of 82.2%, and the 40% intensity level spectral band corresponding to the 4F3/2 → 4I11/2 transition widens from 11.4 to 40 nm.
2004-01-01
Date (mm/dd/yy) Time Metolachlor Molinate Napro- pamide Oxyfluorfen Pendi- methalin Piperonyl butoxide Simazine Thiobencarb Trifluralin 01/04/01 0910...Metolachlor Molinate Napro- pamide Oxyfluorfen Pendi- methalin Piperonyl butoxide Simazine Thiobencarb Trifluralin 01/04/01 1015 7.8 14.8 nd nd nd 22.2 nd 8.6...Metolachlor Molinate Napropamide Oxyfluorfen Pendimethalin Piperonyl butoxide Simazine Trifluralin 01/04/01 1200 nd 16.2 nd nd nd nd 43.2 nd 01/09/01
NASA Astrophysics Data System (ADS)
Samson, Scott D.; Patchett, P. Jonathan; McClelland, William C.; Gehrels, George E.
1991-08-01
Nd isotopic data are reported for 52 samples from the crustal region between the Alexander-Wrangellia terrane and the Stikine terrane of the Alaskan and Canadian Cordillera. This region is composed of the Gravina belt, a Jurassic-Cretaceous assemblage of volcanic and clastic sedimentary rocks, the Taku terrane, a terrane of probable Early Permian to Late Triassic age, and four assemblages of metamorphic rocks that occur to the west of and within the Coast Mountains batholith. The Gravina belt has ɛNd(T) values that range from -1.1 to +8.3, similar to values of the underlying Alexander terrane, and consistent with the interpretation that it is a juvenile belt that formed in a back-arc or intra-arc basin within the Alexander terrane. Mid-Cretaceous plutons that were emplaced into the Gravina belt have ɛNd(T) values of +4.4 to +5.7 and were probably produced by mantle-derived melts that incorporated some Alexander terrane crust. The Taku terrane has ɛNd(0) values that range from -5.5 to +3.3, with corresponding depleted-mantle model (TDM) ages of 440 to 1430 Ma. A mid-Cretaceous pluton intruding the Taku terrane has an ɛNd(T) value of +5.1, a value indistinguishable from those determined for Cretaceous plutons intruding the Gravina belt. Metamorphic rocks east of and structurally overlying the Taku terrane are divided into the Tracy Arm assemblage, ɛNd(0)=-26 to 0, TDM=800-2450 Ma; the Endicott Arm assemblage, eNd(0)=-10 to -1.3, TDM=950-1500 Ma; the Port Houghton assemblage, ɛNd(0)=-9.4 to +1.1, TDM = 550-1500 Ma; and the Ruth assemblage, ɛNd(0) = -9.4 to +2.0, TDM=650-1300 Ma. These isotopic signatures indicate that a substantial component of each metamorphic assemblage was derived from Precambrian continental crust. The metamorphic rocks from these assemblages are lithologically very similar to rocks of the Yukon-Tanana (YTT) terrane of eastern Alaska and Yukon Territory and have such similar U-Pb detrital zircon ages and Nd isotopic compositions to YTT rocks that they are considered part of that terrane. Possible tectonic scenarios that can explain the present geometry of the YTT with respect to the Alexander-Wrangellia and Stikine terranes include: (1) The YTT is the upturned stratigraphic basement of the Stikine terrane, (2) part of the YTT was structurally emplaced beside the Stikine terrane in a transpressive tectonic regime, (3) the Stikine terrane and other inboard terranes are huge sheets that were thrust over the margin of the YTT before the final accretion of the Alexander-Wrangellia terrane.
On the dynamic singularities in the control of free-floating space manipulators
NASA Technical Reports Server (NTRS)
Papadopoulos, E.; Dubowsky, S.
1989-01-01
It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.
NASA Astrophysics Data System (ADS)
Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin
2018-04-01
In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.
Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan
High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio andmore » good memory retention.« less
JPRS Report, Science & Technology, Japan
1988-03-03
formation of deoxi- dized products in composite-deoxidized steel ingots M-6 Production of particle-dispersed alloy M-7 Structure and...densities of the OH radicals and C03 2" in the glass as low as possible, while prevent- ing bubble formation . 3. Sound-Wave Floating Furnace The...001 3 March 1988 21 ADVANCED MATERIALS 50. 60 80 ~CaO (mol%) 90 100 unit : ppm nnount oF plitinud dissolved i 2g Dissolution
40 CFR 60.693-2 - Alternative standards for oil-water separators.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-water separators. (a) An owner or operator may elect to construct and operate a floating roof on an oil... requirements of this subpart which meets the following specifications. (1) Each floating roof shall be equipped... the liquid between the wall of the separator and the floating roof. A mechanical shoe seal means a...
D'Vries, Richard F; Gomez, German E; Hodak, José H; Soler-Illia, Galo J A A; Ellena, Javier
2016-01-14
This manuscript addresses the synthesis, structural characterization and optical properties of a 1D coordination polymer (CPs) and 2D and 3D Metal-Organic Frameworks (MOFs) obtained from lanthanide metals, 3-hydroxinaftalene-2,7-disulfonic acid (3-OHNDS) and two different phenanthroline derivates as ancillary ligands. The first is a family of 2D compounds with formula [Ln(3-OHNDS)(H2O)2], where Ln = La(), Pr(), Nd() and Sm(). The addition of 1,10-phenanthroline (phen) in the reaction produces 1D compounds with general formula [Ln(3-OHNDS)(phen)(H2O)]·3H2O, where Ln = La(), Pr(), Nd() and Sm(). Finally, the synthesis with 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-TMPhen) as an ancillary ligand results in the formation of the 3D [La(3-OHNDS)(3,4,7,8-TMphen)(H2O)] () compound. The photoluminescence (PL) properties of 1D and 2D compounds were fully investigated in comparison with the 3-OHNDS ligand. One of the most important results was the obtaining of a white-light single-emitter without adding dopant atoms in the structure. With all these results in mind it was possible to establish structure-property relationships.
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang
2016-03-01
In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.