Science.gov

Sample records for flood control infrastructure

  1. Modeling flood induced interdependencies among hydroelectricity generating infrastructures.

    PubMed

    Sultana, S; Chen, Z

    2009-08-01

    This paper presents a new kind of integrated modeling method for simulating the vulnerability of a critical infrastructure for a hazard and the subsequent interdependencies among the interconnected infrastructures. The developed method has been applied to a case study of a network of hydroelectricity generating infrastructures, e.g., water storage concrete gravity dam, penstock, power plant and transformer substation. The modeling approach is based on the fragility curves development with Monte Carlo simulation based structural-hydraulic modeling, flood frequency analysis, stochastic Petri net (SPN) modeling, and Markov Chain analysis. A certain flood level probability can be predicted from flood frequency analysis, and the most probable damage condition for this hazard can be simulated from the developed fragility curves of the dam. Consequently, the resulting interactions among the adjacent infrastructures can be quantified with SPN analysis; corresponding Markov Chain analysis simulates the long term probability matrix of infrastructure failures. The obtained results are quite convincing to prove the novel contribution of this research to the field of infrastructure interdependency analysis which might serve as a decision making tool for flood related emergency response and management.

  2. Floods, flood control, and bottomland vegetation

    USGS Publications Warehouse

    Friedman, Jonathan M.; Auble, Gregor T.

    2000-01-01

    Bottomland plant communities are typically dominated by the effects of floods. Floods create the surfaces on which plants become established, transport seeds and nutrients, and remove establish plants. Floods provide a moisture subsidy that allows development of bottomland forests in arid regions and produce anoxic soils, which can control bottomland plant distribution in humid regions. Repeated flooding produces a mosaic of patches of different age, sediment texture, and inundation duration; this mosaic fosters high species richness.

  3. Flooding Risk for Coastal Infrastructure: a Stakeholder-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Plater, A. J.; Prime, T.; Brown, J. M.; Knight, P. J.; Morrissey, K.

    2015-12-01

    A flood risk assessment for coastal energy infrastructure in the UK with respect to long-term sea-level rise and extreme water levels has been conducted using a combination of numerical modelling approaches (LISFLOOD-FP, SWAB, XBeach-G, POLCOMS). Model outputs have been incorporated into a decision-support tool that enables users from a wide spectrum of coastal stakeholders (e.g. nuclear energy, utility providers, local government, environmental regulators, communities) to explore the potential impacts of flooding on both operational (events to 10 years) and strategic (10 to 50 years) timescales. Examples illustrate the physical and economic impacts of flooding from combined extreme water levels, wave overtopping and high river flow for Fleetwood, NW England; changes in the extent of likely flooding arising from an extreme event due to sea-level rise for Oldbury, SW England; and the relative vulnerability to overtopping and breaching of sea defences for Dungeness, SE England. The impacts of a potential large-scale beach recharge scheme to mitigate coastal erosion and flood risk along the southern shoreline of Dungeness are also examined using a combination of coastal evolution and particle-tracking modelling. The research goal is to provide an evidence base for resource allocation, investment in interventions, and communication and dialogue in relation to sea-level rise to 2500 AD.

  4. Characterizing the impacts of water resources infrastructure, humans, and hydrologic nonstationarity on changes in flood risk across the Himalaya region

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.

    2014-12-01

    As flood control infrastructure reaches its design life, and climate change, population growth, and urban migration increase flood risk, the historical paradigm of store-then-release floodwaters behind rigid infrastructure is of decreasing physical and socioeconomic value. Instead, a new paradigm of sustainable flood management is emerging, which can be framed in the context of three elements that can contribute to and/or mitigate flood risk: 1) water resources infrastructure, 2) policies and socioeconomics, and 3) changing climates and land use. In this presentation, I present the results of analysis on the role of these three elements in contributing to flood risk of the Sutlej River (India) and the Koshi River (Nepal) basins for six historical flood events. The Himalaya region was selected based on the a) increasing intensity of monsoonal rains, b) increasing prevalence of glacial lake outburst floods, c) water resources management that achieves short-term development goals but lacks long-term sustainability, and d) other socio-economic, environmental, and geopolitical factors. I develop and apply a flood risk management framework that is based on metrics for characterizing the losses associated with the three elements contributing to major floods in the Himalaya region. Derived from a variety of data sources, results highlight how, across different hydrogeologic settings and various flood magnitudes, the largest influences on high flood losses are associated with inflexible water resources infrastructure and inappropriate development and flood management policies. Particularly for the most destructive events, which are generally associated with landslides and other natural hazards in this region, the effectiveness of some types of traditional and inflexible flood management infrastructure, including large dams and levees, is limited. As opposed to the probability of a particular flood event, findings illustrate the importance of the damages side of the flood

  5. Effectiveness of Water Infrastructure for River Flood Management: Part 2 - Flood Risk Assessment and Its Changes in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Gusyev, M.; Arifuzzaman, B.; Khairul, I.; Iwami, Y.; Takeuchi, K.

    2015-06-01

    A case study of Bangladesh presents a methodological possibility based on a global approach for assessing river flood risk and its changes considering flood hazard, exposure, basic vulnerability and coping capacity. This study consists of two parts in the issue of flood change: hazard assessment (Part 1) and risk assessment (Part 2). In Part 1, a hazard modeling technology was introduced and applied to the Ganges, Brahmaputra and Meghna (GBM) basin to quantify the change of 50- and 100-year flood hazards in Bangladesh under the present (1979-2003) and future (2075-2099) climates. Part 2 focuses on estimating nationwide flood risk in terms of affected people and rice crop damage due to a 50-year flood hazard identified in Part 1, and quantifying flood risk changes between the presence and absence of existing water infrastructure (i.e., embankments). To assess flood risk in terms of rice crop damage, rice paddy fields were extracted and flood stage-damage curves were created for maximum risk scenarios as a demonstration of risk change in the present and future climates. The preliminary results in Bangladesh show that a tendency of flood risk change strongly depends on the temporal and spatial dynamics of exposure and vulnerability such as distributed population and effectiveness of water infrastructure, which suggests that the proposed methodology is applicable anywhere in the world.

  6. Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)

    NASA Astrophysics Data System (ADS)

    Kellermann, Patric; Schönberger, Christine; Thieken, Annegret H.

    2016-11-01

    Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.

  7. Flood control problems

    USGS Publications Warehouse

    Leopold, Luna Bergere; Maddock, Thomas

    1955-01-01

    Throughout the world, alluvial soils are among the most fertile and easiest cultivated. Alluvial valleys are routes for transportation either by water or by road and railroad. Rivers are sources of water, a necessity of life. But these river valleys and alluvial deposits, which have so many desirable characteristics and which have increased so greatly in population, are periodically occupied by the river in performing its task of removing the excess of precipitation from the land area and carrying away the products of erosion.How a river behaves and how the river flood plain appears depend on the relationships between water and sediment combined with the existing topography. Thus rivers and their alluvial deposits provide an endless variety of forms which are shaped, to a large extent, by the river flow during periods of rapid removal of debris and of excessive rainfall. The mechanics of river formation are such, however, that the highest discharges are not contained within a limited channel. How much water a channel will carry depends upon the frequency of occurrence of a flow. Low flows, which occur very frequently, are not important in channel formation. Neither are the infrequent discharges of very great magnitude which, although powerful, do not occur often enough to shape the channel. Channel characteristics, are dependent on those discharges of moderate size which combine power with frequency of occurrence to modify the channel from. In the highest discharges of a stream, water rises above the confines of its banks and flows over the flood plain.It must be considered, therefore, that floods are natural phenomena which are characteristic of all rivers. They perform a vital function in the maintenance of river forms and out of bank flow may be expected with a reasonable degree of regularity.

  8. Safety in the Chemical Laboratory: Flood Control.

    ERIC Educational Resources Information Center

    Pollard, Bruce D.

    1983-01-01

    Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…

  9. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data

  10. A Cloud-Based Global Flood Disaster Community Cyber-Infrastructure: Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Wan, Zhanming; Hong, Yang; Khan, Sadiq; Gourley, Jonathan; Flamig, Zachary; Kirschbaum, Dalia; Tang, Guoqiang

    2014-01-01

    Flood disasters have significant impacts on the development of communities globally. This study describes a public cloud-based flood cyber-infrastructure (CyberFlood) that collects, organizes, visualizes, and manages several global flood databases for authorities and the public in real-time, providing location-based eventful visualization as well as statistical analysis and graphing capabilities. In order to expand and update the existing flood inventory, a crowdsourcing data collection methodology is employed for the public with smartphones or Internet to report new flood events, which is also intended to engage citizen-scientists so that they may become motivated and educated about the latest developments in satellite remote sensing and hydrologic modeling technologies. Our shared vision is to better serve the global water community with comprehensive flood information, aided by the state-of-the- art cloud computing and crowdsourcing technology. The CyberFlood presents an opportunity to eventually modernize the existing paradigm used to collect, manage, analyze, and visualize water-related disasters.

  11. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  12. A systemic method for evaluating the potential impacts of floods on network infrastructures

    NASA Astrophysics Data System (ADS)

    Eleutério, J.; Hattemer, C.; Rozan, A.

    2013-04-01

    Understanding network infrastructures and their operation under exceptional circumstances is fundamental for dealing with flood risks and improving the resilience of a territory. This work presents a method for evaluating potential network infrastructure dysfunctions and damage in cases of flooding. In contrast to existing approaches, this method analyses network infrastructures on an elementary scale, by considering networks as a group of elements with specific functions and individual vulnerabilities. Our analysis places assets at the centre of the evaluation process, resulting in the construction of damage-dysfunction matrices based on expert interviews. These matrices permit summarising the different vulnerabilities of network infrastructures, describing how the different components are linked to each other and how they can disrupt the operation of the network. They also identify the actions and resources needed to restore the system to operational status following damage and dysfunctions, an essential point when dealing with the question of resilience. The method promotes multi-network analyses and is illustrated by a French case study. Sixty network experts were interviewed during the analysis of the following networks: drinking water supply, waste water, public lighting, gas distribution and electricity supply.

  13. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas

    PubMed Central

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-01-01

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202

  14. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas.

    PubMed

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-08-05

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation.

  15. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  16. Biological implications of the 1996 controlled flood

    NASA Astrophysics Data System (ADS)

    Valdez, Richard A.; Shannon, Joseph P.; Blinn, Dean W.

    The 1996 controlled flood provided evidence that elevated releases from Glen Canyon Dam can enhance short-term primary and secondary production of aquatic resources of the Colorado River in Grand Canyon National Park. The flood scoured substantial proportions of benthic algae and macroinvertebrates and removed fine sediments from the channel, which ultimately stimulated primary productivity and consumer biomass. Channel margin sand deposits buried riparian vegetation and leaf litter, entraining nutrients for later incorporation into the upper trophic levels. The flood restructured high-stage sand bars and associated eddy return channels (i.e., backwaters used as nurseries by native and non-native fish), but many were short-lived because reattachment bars were eroded shortly after the flood. The flood was of insufficient magnitude to permanently suppress non-native fish populations, even though there was significant population depletion at some collecting sites. Pre-spawning aggregations, spawning ascents of tributaries, and habitat use by native fishes were unaffected by the flood. Adult rainbow trout (Oncorhynchus mykiss) in the Lees Ferry tailwater fishery were also unaffected, but the proportion of juveniles <152 mm total length decreased by 10% a strong year class following the flood indicated replacement through successful reproduction.

  17. Grid infrastructure for automatic processing of SAR data for flood applications

    NASA Astrophysics Data System (ADS)

    Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii

    2010-05-01

    More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be

  18. Effectiveness of water infrastructure for river flood management - Part 1: Flood hazard assessment using hydrological models in Bangladesh

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Kwak, Y.; Khairul, M. I.; Arifuzzaman, M. B.; Magome, J.; Sawano, H.; Takeuchi, K.

    2015-06-01

    This study introduces a flood hazard assessment part of the global flood risk assessment (Part 2) conducted with a distributed hydrological Block-wise TOP (BTOP) model and a GIS-based Flood Inundation Depth (FID) model. In this study, the 20 km grid BTOP model was developed with globally available data on and applied for the Ganges, Brahmaputra and Meghna (GBM) river basin. The BTOP model was calibrated with observed river discharges in Bangladesh and was applied for climate change impact assessment to produce flood discharges at each BTOP cell under present and future climates. For Bangladesh, the cumulative flood inundation maps were produced using the FID model with the BTOP simulated flood discharges and allowed us to consider levee effectiveness for reduction of flood inundation. For the climate change impacts, the flood hazard increased both in flood discharge and inundation area for the 50- and 100-year floods. From these preliminary results, the proposed methodology can partly overcome the limitation of the data unavailability and produces flood~maps that can be used for the nationwide flood risk assessment, which is presented in Part 2 of this study.

  19. CP corrosion control of municipal infrastructure

    SciTech Connect

    Gummow, R.A.

    2000-02-01

    Since its introduction in 1824, cathodic protection (CP) technology has developed to become a fundamental tool for preventing corrosion on municipal infrastructure. Potable water storage tanks and piping, prestressed concrete cylinder pipe, reinforced concrete structures, bridges, parking structures, underground fuel tanks, and effluent treatment clarifiers now benefit from this technology.

  20. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  1. The Urban Drainage Network and its Control on Flood Response

    NASA Astrophysics Data System (ADS)

    Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.

    2006-05-01

    The hydrologic and hydraulic processes that control urban flooding are examined through analyses of flood response in the Baltimore Metropolitan area. These analyses focus on warm season thunderstorm systems and their impact on Dead Run, a 14.3 km2 tributary of the Gwynns Falls watershed, which is the principal study region of the Baltimore Ecosystem Study. Field observations of rainfall from a network of 18 rain gage stations and discharge from a network of 6 stream gaging stations have been collected during "warm season" observing periods in 2003, 2004, and 2005. Field observations are used in conjunction with the Stormwater Management Model (SWMM) to examine the spatially and temporally varying hydrological response of Dead Run. Model implementation incorporates a complete representation of the storm drain network (digitized from engineering drawings) and the network of stormwater detention basins. Analyses highlight the role of differences in density and distribution of impervious surfaces and in the urban drainage infrastructure (the storm pipe network and stormwater management facilities) for spatial heterogeneities of flood response.

  2. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  3. Arid Green Infrastructure for Water Control and Conservation ...

    EPA Pesticide Factsheets

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  4. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    USGS Publications Warehouse

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while

  6. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  7. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  8. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  9. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  10. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under...

  11. What are the hydro-meteorological controls on flood characteristics?

    NASA Astrophysics Data System (ADS)

    Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno

    2017-02-01

    Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.

  12. Large flood on a mountain river subjected to restoration: effects on aquatic habitats, channel morphology and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-04-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  13. Fusion of Remote Sensing and Non-Authoritative Data for Flood Disaster and Transportation Infrastructure Assessment

    ERIC Educational Resources Information Center

    Schnebele, Emily K.

    2013-01-01

    Flooding is the most frequently occurring natural hazard on Earth; with catastrophic, large scale floods causing immense damage to people, property, and the environment. Over the past 20 years, remote sensing has become the standard technique for flood identification because of its ability to offer synoptic coverage. Unfortunately, remote sensing…

  14. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  15. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  16. Applications of ASFCM(Assessment System of Flood Control Measurement) in Typhoon Committee Members

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2013-12-01

    Due to extreme weather environment such as global warming and greenhouse effect, the risks of having flood damage has been increased with larger scale of flood damages. Therefore, it became necessary to consider modifying climate change, flood damage and its scale to the previous dimension measurement evaluation system. In this regard, it is needed to establish a comprehensive and integrated system to evaluate the most optimized measures for flood control through eliminating uncertainties of socio-economic impacts. Assessment System of Structural Flood Control Measures (ASFCM) was developed for determining investment priorities of the flood control measures and establishing the social infrastructure projects. ASFCM consists of three modules: 1) the initial setup and inputs module, 2) the flood and damage estimation module, and 3) the socio-economic analysis module. First, we have to construct the D/B for flood damage estimation, which is the initial and input data about the estimation unit, property, historical flood damages, and applied area's topographic & hydrological data. After that, it is important to classify local characteristic for constructing flood damage data. Five local characteristics (big city, medium size city, small city, farming area, and mountain area) are classified by criterion of application (population density). Next step is the floodplain simulation with HEC-RAS which is selected to simulate inundation. Through inputting the D/B and damage estimation, it is able to estimate the total damage (only direct damage) that is the amount of cost to recover the socio-economic activities back to the safe level before flood did occur. The last module suggests the economic analysis index (B/C ratio) with Multidimensional Flood Damage Analysis. Consequently, ASFCM suggests the reference index in constructing flood control measures and planning non-structural systems to reduce water-related damage. It is possible to encourage flood control planners and

  17. Optimal control of diarrhea transmission in a flood evacuation zone

    NASA Astrophysics Data System (ADS)

    Erwina, N.; Aldila, D.; Soewono, E.

    2014-03-01

    Evacuation of residents and diarrhea disease outbreak in evacuation zone have become serious problem that frequently happened during flood periods. Limited clean water supply and infrastructure in evacuation zone contribute to a critical spread of diarrhea. Transmission of diarrhea disease can be reduced by controlling clean water supply and treating diarrhea patients properly. These treatments require significant amount of budget, which may not be fulfilled in the fields. In his paper, transmission of diarrhea disease in evacuation zone using SIRS model is presented as control optimum problem with clean water supply and rate of treated patients as input controls. Existence and stability of equilibrium points and sensitivity analysis are investigated analytically for constant input controls. Optimum clean water supply and rate of treatment are found using optimum control technique. Optimal results for transmission of diarrhea and the corresponding controls during the period of observation are simulated numerically. The optimum result shows that transmission of diarrhea disease can be controlled with proper combination of water supply and rate of treatment within allowable budget.

  18. Flooding

    MedlinePlus

    ... flooding Prepare for flooding For communities, companies, or water and wastewater facilities: Suggested activities to help facilities ... con monóxido de carbono. Limit contact with flood water. Flood water may have high levels of raw ...

  19. Comprehensive flood control involving citizens in a Japanese watershed.

    PubMed

    Yamashita, Sampei; Shimatani, Yukihiro; Watanabe, Ryoichi; Moriyama, Toshiyuki; Minagawa, Tomoko; Kakudo, Kumiko; Yamashita, Terukazu

    2013-01-01

    In July 2009, the city of Fukuoka, Japan experienced a flood disaster along the Hii River, which runs through densely populated, concrete-covered areas of the city. The drainage system was overwhelmed and the river overflowed due to heavy rainfall and rapid runoff. The event led citizens in its watershed to plan and implement comprehensive flood control. The plan aims not only to mitigate floods but also to revitalize the river environment and populated communities in urban areas. This study reports the activities led by the citizens. They organized and carried out civic forums, workshops, and fieldwork to share views as to how the flood disaster was caused, how floods in the watershed should be controlled, and how the river environment should be rehabilitated. This study illuminates how people, including the flood victims and municipal engineers, can change drastically and communicate effectively in the course of discussing and implementing the comprehensive flood control measures.

  20. Sustainable Drainage, Green Infrastructure or Natural Flood Management - which should you choose?

    NASA Astrophysics Data System (ADS)

    Wingfield, Thea; Potter, Karen; Jones, Gareth; Spees, Jack; Macdonald, Neil

    2016-04-01

    River catchments as management units are more effective than administrative boundaries to integrate and coordinate efforts of organisations that utilise and manage water, soil and habitat quality. The UK government announced a pilot integrated water management initiative called, 'The Catchment Based Approach', on World Water Day 2011. After successful trials the scheme was extended to all river catchments in England during the summer of 2013. This policy has been designed to improve the collaboration, partnership and coordination of organisations involved in water and land management through locally led partnership groups. The lead organisations are all charitable bodies with significantly varying levels of experience of stormwater management; a key component of integrated water management and of great concern to communities at risk. These partnerships have implemented a number of Nature Based Solutions, but these have been presented in different ways by the different groups. In the UK there are three terms commonly used to describe Nature Based Solutions for managing the drainage of stormwater: Sustainable Drainage (SuDS), Green Infrastructure (GI) and Natural Flood Management (NFM). The definitions of each refers to the replication of natural hydrological processes in order to slow the flow of water through the landscape. But, there has been some concerns as to which of these nature based terms should be applied and why they appear to be used interchangeably. This study demonstrates that, despite the definitions of these three terms being almost identical, in practice they are not the same and should not be used interchangeably. The terms were developed by different professional groups in response to their own objectives and histories. The hydrological processes used to manage storm-water may be the same and the suggested interventions may show a degree of convergence. Yet, they operate at different scales, both geographically and organisationally. The different

  1. Cyber Security: Critical Infrastructure Controls Assessment Framework

    DTIC Science & Technology

    2011-05-01

    Industry SANS ‐ CAG OASIS Private   ISA ‐99 <more…> SOX <more…> OWASP <more…> And Growing Day by Day……………….. CIP Security Controls Assessment...NERC-CIP NIST-Cyber Grid Chemical Cyber Physical System Security Standards PCI OASIS OWASP Nuclear Transportation ISA -99 CIP Security Controls...Institute of Electrical and Electronics Engineers.  –           14. ISA  – Industrial Society for Automation 15. ISO – International Standards Organization

  2. Monitoring, control and diagnostics using RFID infrastructure.

    PubMed

    Pleteršek, Anton; Sok, Miha; Trontelj, Janez

    2012-12-01

    This work demonstrates the developed application for disinfection control by the sensing of chemical agents. The objective was to develop an Automatic Disinfectant Tracker (ADT) that would verify the disinfection of the hands of nurses, doctors, staff, patients, and visitors in hospitals within a required time frame. We have successfully investigated the development of hand disinfection control mechanisms and demonstrated two approaches, both based on the wireless Ultra-High-Frequency-based Radio-Frequency Identification (UHF-RFID) technology. The 100 % efficacy of detecting propanol and ethanol concentration was achieved by using the static disinfectant control (SDC-ADT) method. The time domain response provides an accurate determination of their performance in practice simply by measuring the applied disinfectant concentration and the duration of application. The present paper resulted from the measurements of a capacitive chemical sensor fabricated in the Laboratory for Microelectronics, (LMFE) and on measurements, based on a commercially available resistive type of sensor. A graphic user interface (IDS-GUI) is designed to successfully set the logger parameters and display the results.

  3. Quality control of the RMS US flood model

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal

    2016-04-01

    The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.

  4. Model Study on Potential Contributions of the Proposed Huangpu Gate to Flood Control in Taihu Lake Basin

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H.; Ye, J.

    2015-12-01

    The Taihu Lake basin, one of the most developed and dynamic regions, is located in the hinterland of the Yangtze River Delta, Eastern China. The largest flood in history is the 1999 flood event with a return period of 1 in 200 years, which is above the current capacity of flooding defense in the basin with a return period of 1 in 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system is dependent on the flood defense infrastructure and the peripheral tidal conditions. The Huangpu River, connecting the Taihu Lake and the Yangtze River, is one of the major drains, which is strongly influenced by high tide conditions in the coastal waters of the Yangtze River. Hence, constructing an estuary gate is considered one of the effective solutions to the flooding problem in the basin. This paper aims to quantitatively analyze the potential contributions of the proposed Huangpu gate to flood control capacity of the basin under various flooding scenarios. It is concluded that the Huangpu gate is an effective mean to evacuate the floodwaters, by reducing peak levels in the upper part of the tide-affected river. It's beneficiaries include the Taihu Lake, the related surrounding areas along the Taipu Canal and the Huangpu River basin. Keywords: Flood control, Estuary gate, Taihu Lake Basin, Scenario analysis, Tide intrusion

  5. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  6. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  7. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  8. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  9. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  10. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.220 Flood control regulations. (a) Local protection.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local...

  11. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications.

    PubMed

    Kalantari, Zahra; Cavalli, Marco; Cantone, Carolina; Crema, Stefano; Destouni, Georgia

    2017-03-01

    Climate-driven increase in the frequency of extreme hydrological events is expected to impose greater strain on the built environment and major transport infrastructure, such as roads and railways. This study develops a data-driven spatial-statistical approach to quantifying and mapping the probability of flooding at critical road-stream intersection locations, where water flow and sediment transport may accumulate and cause serious road damage. The approach is based on novel integration of key watershed and road characteristics, including also measures of sediment connectivity. The approach is concretely applied to and quantified for two specific study case examples in southwest Sweden, with documented road flooding effects of recorded extreme rainfall. The novel contributions of this study in combining a sediment connectivity account with that of soil type, land use, spatial precipitation-runoff variability and road drainage in catchments, and in extending the connectivity measure use for different types of catchments, improve the accuracy of model results for road flood probability.

  12. Assessing sedimentation issues within aging of flood-control reservoirs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flood control reservoirs designed and built by federal agencies have been extremely effective in reducing the ravages of floods nationwide. Yet some structures are being removed for a variety of reasons, while other structures are aging rapidly and require either rehabilitation or decommissioning. ...

  13. Intelligent Real-Time Reservoir Operation for Flood Control

    NASA Astrophysics Data System (ADS)

    Chang, L.; Hsu, H.

    2008-12-01

    Real-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. It is a continuous and instant decision-making process based on relevant operating rules, policy and water laws, in addition the immediate rainfall and the hydrology information; however, it is difficult to learn the intelligent experience from the elder operators. The main purpose of this study is to establish the automatic reservoir flood control model to achieve the goal of a reservoir operation during flood periods. In this study, we propose an intelligent reservoir operating methodology for real-time flood control. First, the genetic algorithm is used to search the optimal solutions, which can be considered as extracting the knowledge of reservoir operation strategies. Then, the adaptive network-based fuzzy inference system (ANFIS), which uses a hybrid learning procedure for extracting knowledge in the form of fuzzy if-then rules, is used to learn the input-output patterns and then to estimate the optimal flood operation. The Shihmen reservoir in Northern Taiwan was used as a case study, where its 26 typhoon events are investigated by the proposed method. The results demonstrate that the proposed control model can perform much better than the original reservoir operator in 26 flood events and effectively achieve decreasing peak flood stage downstream and storing floodwaters for future usage.

  14. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  15. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  16. Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  17. Multi Infrastructure Control and Optimization Toolkit, Resilient Design Module (MICOT-RDT), version 2.X

    SciTech Connect

    Bent, Russell; Nagarajan, Harsha; Yamangil, Emre; Coffrin, Carleton

    2016-06-24

    MICOT is a tool for optimizing and controlling infrastructure systems. In includes modules for optimizing the operations of an infrastructure structure (for example optimal dispatch), designing infrastructure systems, restoring infrastructures systems, resiliency, preparing for natural disasters, interdicting networks, state estimation, sensor placement, and simulation of infrastructure systems. It implements algorithms developed at LANL that have been published in the academic community. This is a release of the of resilient design module of the MICOT.

  18. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    DTIC Science & Technology

    1982-07-01

    AD-A132 464 COLORADO RIVER BASIN HOVER DAM - REVIEW OF FLOOD1f CONTROL REGULATION(U) ARMY ENGINEER DISTRICT LOS ANGELES CALIF JUL- 82 UNCLAIFIEDF/G3...Lower Colorado River Regional Office of the Bureau of Reclamation and the Los Angeles District, Corps of Engineers . The detailed investigations... Engineers , Regarding Flood Control Operation of Hoover Dam and Lake Mead, Colorado River , Nevada- Arizona; and, in addition, agency views and responses

  19. Environment-friendly reduction of flood risk and infrastructure damage in a mountain river: Case study of the Czarny Dunajec

    NASA Astrophysics Data System (ADS)

    Mikuś, Paweł; Wyżga, Bartłomiej; Radecki-Pawlik, Artur; Zawiejska, Joanna; Amirowicz, Antoni; Oglęcki, Paweł

    2016-11-01

    Migration of a mountain river channel may cause erosional risk to infrastructure or settlements on the valley floor. Following a flood of 2010, a cutbank in one of the bends of the main channel of the Czarny Dunajec, Polish Carpathians, approached a local road by 50 m. To arrest the erosion of the laterally migrating channel, water authorities planned construction of a ditch cutting the forested neck of the bend, reinforcement of the ditch banks, and damming the main channel with a boulder groyne. In order to avoid channelization of the highly valued, multithread river reach that would deteriorate its ecological status and cause increased flood risk to downstream reaches, an alternative approach to prevent bank erosion was proposed. The new scheme, applied in 2011, included opening of the inlets to inactive side braids located by the neck of the bend of the main channel. This solution reestablished the flow in the steeper low-flow channels, allowing us to expect a cutoff and abandonment of the main channel during subsequent floods. Gravelly deflectors were constructed directly below the inlets to the reactivated side channels to divert the flow into the channels and prevent the water from entering the main channel. Hydraulic measurements performed before and after the implementation of the scheme confirmed that it enabled shifting the main water current, with the highest average velocity and bed shear stress, from the braid closest to the road to the most distant braid. Similar surveys of fish and benthic macroinvertebrate communities indicated that flow reactivation in the side channels was beneficial for these groups of river biota, increasing their abundance and taxonomic richness in the reach. Not only was the implemented solution significantly less expensive, but it also enhanced ecological functions of the multithread channel and the variability of physical habitat conditions and maintained the role of the reach as a wood debris trap. However, avulsion of the

  20. Hospital infection prevention and control issues relevant to extensive floods.

    PubMed

    Apisarnthanarak, Anucha; Mundy, Linda M; Khawcharoenporn, Thana; Glen Mayhall, C

    2013-02-01

    The devastating clinical and economic implications of floods exemplify the need for effective global infection prevention and control (IPC) strategies for natural disasters. Reopening of hospitals after excessive flooding requires a balance between meeting the medical needs of the surrounding communities and restoration of a safe hospital environment. Postflood hospital preparedness plans are a key issue for infection control epidemiologists, healthcare providers, patients, and hospital administrators. We provide recent IPC experiences related to reopening of a hospital after extensive black-water floods necessitated hospital closures in Thailand and the United States. These experiences provide a foundation for the future design, execution, and analysis of black-water flood preparedness plans by IPC stakeholders.

  1. Flood Control, Mississippi River, La Crosse, Wisconsin.

    DTIC Science & Technology

    1975-10-01

    Features 2 2. ENVIROMENTAL SLTfTING WITHOUT THE PROJECT 5 Authority 5 Introduction 5 Climate 6 Topography and Geology 8 Groundwater and Water Supply 9...Fundametals of Ecology ( 3d Edition) W. B. Sanders, Philadelphia. (2) Kuchler, A. W., 1964. Potential Natural Vegetation of the Conterminous United...affected, however compensating benefits are derived by the reduction of flood damages to their property. Evacuation of about 40 permanent and seasonal

  2. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rehabilitation of flood control works. 203.50 Section 203.50 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... of flood control works. (a) Authority. Under Public Law 84-99, the Chief of Engineers is...

  3. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rehabilitation of flood control works. 203.50 Section 203.50 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... of flood control works. (a) Authority. Under Public Law 84-99, the Chief of Engineers is...

  4. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  5. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  6. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  7. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  8. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Separation of flood control works... COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered channels are likely to be considered in boundary areas demarking urban drainage and flood...

  9. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rehabilitation of flood control works. 203.50 Section 203.50 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... of flood control works. (a) Authority. Under Public Law 84-99, the Chief of Engineers is...

  10. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rehabilitation of flood control works. 203.50 Section 203.50 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... of flood control works. (a) Authority. Under Public Law 84-99, the Chief of Engineers is...

  11. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rehabilitation of flood control works. 203.50 Section 203.50 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... of flood control works. (a) Authority. Under Public Law 84-99, the Chief of Engineers is...

  12. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  13. Response of benthos and organic drift to a controlled flood

    NASA Astrophysics Data System (ADS)

    Blinn, Dean W.; Shannon, Joseph P.; Wilson, Kevin P.; O'Brien, Chris; Benenati, Peggy L.

    The controlled flood in the Colorado River below Glen Canyon Dam, Arizona, provided valuable information on short-term responses for both the riverine system and the biotic community, but the long-term effects of the flood on the aquatic food base were more difficult to assess. The 1274 m3/s discharge flushed the silt/clay fraction from the channel bottom throughout the river corridor. There were no significant differences in dissolved oxygen, specific conductance, and pH before and after the flood compared to during the flood. However, water clarity was dramatically reduced during the first 2 days of the flood event, but cleared after 7 days. Over 90% of the phytobenthos and ≥50% of the benthic invertebrates were scoured from the Lees Ferry reach, with biota associated with unstable fine sediment most vulnerable. Most of the dissolved organic carbon (DOC) and particulate organic carbon (POC) that passed through the river corridor was entrained in the initial hydrostatic wave; values for DOC and POC were significantly lower throughout the remainder of the flood. Stable isotope analyses indicated that riparian and upland vegetation made up most of the stream drift during the experimental flood, whereas phytobenthos was the dominant drift constituent during normal dam operations. Recovery rates to preflood levels were fast for phytobenthos (1 mon) and invertebrates (2 mon). We propose that the rapid recover rates and current high standing stock of aquatic benthos in the river corridor is more a function of higher water clarity, due to higher relatively constant dam releases, rather than solely related to the controlled flood. Our data indicate that consistent high discharges (≥400 m3/s) from Glen Canyon Dam mitigate the influence of suspended sediments delivered from tributaries on water clarity. Therefore, optimum conditions for management of the present exotic food base below Glen Canyon Dam may be achieved by steady discharges (˜450 m3/s) with minimal

  14. 33 CFR 203.43 - Inspection of Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Inspection of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.43 Inspection of Federal flood control works. (a)...

  15. 33 CFR 203.43 - Inspection of Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Inspection of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.43 Inspection of Federal flood control works. (a)...

  16. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Inspection of non-Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.42 Inspection of non-Federal flood control works. (a)...

  17. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flood control works. 203.44 Section 203.44 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.44 Rehabilitation of non-Federal flood...

  18. 33 CFR 203.45 - Rehabilitation of Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Rehabilitation of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.45 Rehabilitation of Federal flood control works. Rehabilitation...

  19. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flood control works. 203.47 Section 203.47 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.47 Modifications to non-Federal flood...

  20. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flood control works. 203.44 Section 203.44 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.44 Rehabilitation of non-Federal flood...

  1. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flood control works. 203.47 Section 203.47 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.47 Modifications to non-Federal flood...

  2. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flood control works. 203.44 Section 203.44 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.44 Rehabilitation of non-Federal flood...

  3. 33 CFR 203.43 - Inspection of Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Inspection of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.43 Inspection of Federal flood control works. (a)...

  4. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flood control works. 203.47 Section 203.47 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.47 Modifications to non-Federal flood...

  5. 33 CFR 203.45 - Rehabilitation of Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Rehabilitation of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.45 Rehabilitation of Federal flood control works. Rehabilitation...

  6. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Inspection of non-Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.42 Inspection of non-Federal flood control works. (a)...

  7. 33 CFR 203.43 - Inspection of Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Inspection of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.43 Inspection of Federal flood control works. (a)...

  8. 33 CFR 203.45 - Rehabilitation of Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Rehabilitation of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.45 Rehabilitation of Federal flood control works. Rehabilitation...

  9. 33 CFR 203.45 - Rehabilitation of Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Rehabilitation of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.45 Rehabilitation of Federal flood control works. Rehabilitation...

  10. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flood control works. 203.44 Section 203.44 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.44 Rehabilitation of non-Federal flood...

  11. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flood control works. 203.47 Section 203.47 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.47 Modifications to non-Federal flood...

  12. 33 CFR 203.45 - Rehabilitation of Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rehabilitation of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.45 Rehabilitation of Federal flood control works. Rehabilitation...

  13. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Inspection of non-Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.42 Inspection of non-Federal flood control works. (a)...

  14. 33 CFR 203.43 - Inspection of Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Inspection of Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.43 Inspection of Federal flood control works. (a)...

  15. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Inspection of non-Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.42 Inspection of non-Federal flood control works. (a)...

  16. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flood control works. 203.47 Section 203.47 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.47 Modifications to non-Federal flood...

  17. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Inspection of non-Federal flood... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.42 Inspection of non-Federal flood control works. (a)...

  18. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flood control works. 203.44 Section 203.44 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.44 Rehabilitation of non-Federal flood...

  19. Application of hydrological models for flood forecasting and flood control in India and Bangladesh

    NASA Astrophysics Data System (ADS)

    Refsgaard, J. C.; Havnø, K.; Ammentorp, H. C.; Verwey, A.

    A general mathematical modelling system for real-time flood forecasting and flood control planning is described. The system comprises a lumped conceptual rainfall-runoff model, a hydrodynamic model for river routing, reservoir and flood plain simulation, an updating procedure for real-time operation and a comprehensive data management system. The system is presently applied for real-time forecasting of the two 20 000 km 2 (Yamuna and Damodar) catchments in India as well as for flood control modelling at the same two catchments in India. In another project the system is being established for the entire Bangladesh with a coarse discretization and for the South East Region of Bangladesh with a fine model discretization. The objectives of the modelling application in Bangladesh are to enable predictions of the effects of alternative river regulation structures in terms of changes in water levels, inundations, siltration and salinity. The modelling system has been transferred to the Central Water Commission of India and the Master Plan Organization of Bangladesh in connection with comprehensive training programmes. The models are presently being operated by Indian and Bangladeshi engineers in the two countries.

  20. HISTORIC PHOTOGRAPH SHOWING DREDGING OF THE FLOOD CONTROL CANAL. Report ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC PHOTOGRAPH SHOWING DREDGING OF THE FLOOD CONTROL CANAL. Report to the Governor, Territory of Hawaii, by the Superintendent of Public Works, Year ending June 30, 1938. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI

  1. BIOAVAILABILITY OF MERCURY IN SEDIMENTS FROM A FLOOD CONTROL RESERVOIR TO HYALELLA AZTECA

    EPA Science Inventory

    In the last three years, mercury contamination in North Mississippi flood control reservoirs has become a growing concern. Previous data indicate that three flood control reservoirs have similar total mercury sediment concentrations and that fish collected from one reservoir cont...

  2. Floods

    MedlinePlus

    ... quickly, often have a dangerous wall of roaring water. The wall carries rocks, mud, and rubble and can sweep away most things in its path. Be aware of flood hazards no matter where you live, but especially if you live in a low-lying area, near water or downstream from a dam. Although there are ...

  3. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... flood control storage zones of TVA reservoirs. 1304.407 Section 1304.407 Conservation of Power and Water... OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.407 Development within flood control storage zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone...

  4. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Small flood control project..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.23 Small flood control project authority (Section 205). (a) Legislative authority. Section 205 of the...

  5. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Small flood control project..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.23 Small flood control project authority (Section 205). (a) Legislative authority. Section 205 of the...

  6. 33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a)...

  7. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... flood control storage zones of TVA reservoirs. 1304.407 Section 1304.407 Conservation of Power and Water... OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.407 Development within flood control storage zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone...

  8. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... flood control storage zones of TVA reservoirs. 1304.407 Section 1304.407 Conservation of Power and Water... OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.407 Development within flood control storage zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone...

  9. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Small flood control project..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.23 Small flood control project authority (Section 205). (a) Legislative authority. Section 205 of the...

  10. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Small flood control project..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.23 Small flood control project authority (Section 205). (a) Legislative authority. Section 205 of the...

  11. 33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a)...

  12. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Small flood control project..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.23 Small flood control project authority (Section 205). (a) Legislative authority. Section 205 of the...

  13. 33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a)...

  14. 33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a)...

  15. 33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Flood Control Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a)...

  16. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... flood control storage zones of TVA reservoirs. 1304.407 Section 1304.407 Conservation of Power and Water... OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.407 Development within flood control storage zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone...

  17. Was all that Los Angeles River flood control concrete necessary?

    NASA Astrophysics Data System (ADS)

    Patzert, W. C.; Regalado, S. S.; LaDochy, S.; Ramirez, P. C.; Willis, J. K.

    2014-12-01

    In 1938, heavy rains over the Los Angeles Basin resulted in widespread and costly flooding of the Los Angeles River floodplain. In response to the resultant damage, 51 miles of the River was concreted from the San Fernando Valley to the Pacific Ocean. Today proposals to modify the river to capture more water and to restore it to a more natural state have been approved. Through comparison of rainfall data, we test whether channelization can adequately handle the extreme flooding events occurring since 1938. Between February 27th to March 3rd 1938, two major storms resulted in 14.1 inches of rain in Pasadena, CA leading to the flooding of the Los Angeles River, 115 fatalities, the destruction of 5,601 buildings, and to $627 million (2011 dollars) in damages. Downtown Los Angeles averages 15 inches of precipitation a year, while the San Gabriel Mountains, where most of the Los Angeles River watershed rainfall is collected, typically receive more than 40 inches of rain annually. Eight record storms, each with rainfall totals over 11 inches, since the 1938 flood could have created devastating deluges were it not for channelization. Presently, at full stage the channelized Los Angeles River can accommodate a discharge of 129,000 cfs. During the 1938 flood event the discharge peaked at 68,000 cfs above Arroyo Seco and 79,000 cfs below Firestone Blvd. A similar storm event today would have led to increased discharge due to urbanization. Since 1938, the greatest discharge recorded at the same stations was 52,200 and 74,400 cfs during the February 16th 1980 storm. Although damage was substantial during this storm, river channelization prevented fatalities and much damage. To date, the channelization of the Los Angeles River has been successful in flood control. However, our research shows that southern California precipitation is becoming more intense which may result in increased flooding. Any future modifications to the river must be prepared to handle the extreme flooding

  18. The tele-connections of long duration floods and their implications for dynamically updating the Flood Control Pool

    NASA Astrophysics Data System (ADS)

    Devineni, Naresh; Najibi, Nasser; Lall, Upmanu

    2016-04-01

    Traditional approaches to flood risk assessment are typically indexed to an instantaneous peak flow event at a specific recording gage on a river, and then extrapolated through hydraulic modeling of that peak flow to the potential area that is likely to be inundated. However, property losses tend to be determined as much by the duration and volume of flooding as by the depth and velocity of inundation. We argue that the existing notion of a flood risk assessment and consequent reservoir flood control operations needs to be revisited, especially for floods due to persistent rainfall (>30 day duration). Our interest lies in explicitly understanding the dependence of the likelihood or frequency and intensity of extreme regional floods on a causal chain of ocean-atmosphere processes whose slow variation and regime-like changes translate into significant and persistent changes in the probability of major floods in the large river basins. An understanding and mapping of these factors into a dynamic risk framework is important for establishing a process by which flood risk for large basins could be systematically updated reflecting changing climate conditions, whether due to human influence, or as part of the natural cycles of climate variation. In this study, we developed an inference system for climate informed flood risk assessment using an integrated statistical modeling approach. We first develop multivariate flood attributes and classify their characteristic spatial variability using the hierarchical clustering approach. Depending on the flood event type, different rainfall inducing mechanisms (e.g. tropical storm, local convection, frontal system, recurrent tropical waves) may be involved with characteristic spatial scales and statistical properties. Hence, we identify the antecedent rainfall conditions for the flood types and map their corresponding specific atmospheric circulation patterns using compositing of the NCEP/NCAR reanalysis data and the storm tracks

  19. Effects of flood controls proposed for West Branch Brandywine Creek, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.

    1988-01-01

    Twenty-four-hour rainfall, distributed over time according to the U.S. Soil Conservation Service type II rainfall distribution, was used as input to calibrated rainfall-runoff models of three subbasins in the West Branch Brandywine Creek watershed. The effects of four proposed flood controls were evaluated by using these rainfalls to simulate discharge hydrographs with and without the flood controls and comparing the simulated peak discharges. In the Honey Brook subbasin, 2-, 10-, and 100-year flood-discharge hydrographs were generated for station West Branch Brandywine Creek at Coatesville. For the 2- and 10-year floods, proposed flood controls would reduce the peak discharge from 1 to 8 percent. The combination of all three flood controls proposed for the Coatesville subbasin would reduce the 100-year peak discharge 44 percent. In the Modena subbasin, 2-, 10-, and 100-year flood-discharge hydrographs were generated for station West Branch Brandywine Creek at Modena. A flood control proposed for Sucker Run, a tributary, would reduce the peak discharge of Sucker Run at State Route 82 by 22, 25, and 27 percent and the peak discharge of West Branch Brandywine Creek at Modena by 10, 6, and less than 1 percent for the 2-, 10-, and 100-year floods, respectively. For the 2- and 10- year floods, flood control proposed for the Coatesville subbasin would have little effect on the peak discharge of West Branch Brandywine Creek at Modena. For the 100-year flood, the combination of all three flood controls proposed for the Coatesville subbasin would reduce the peak discharge at Modena 25 percent. When flood control in the Modena subbasin was combined with flood control in the Coatesville subbasin, the 10-percent reduction in the 2-year flood peak of West Branch Brandywine Creek at Modena was due almost entirely to flood control in the Modena subbasin. For the 10-year flood, flood control in the Modena subbasin would reduce the peak discharge 6 percent, and any single flood

  20. 18 CFR 1304.407 - Development within flood control storage zones of TVA reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Development within flood... OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.407 Development within flood control storage zones of TVA reservoirs. (a) Activities involving development within the flood control storage zone...

  1. 33 CFR 203.85 - Rehabilitation of Federal flood control projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rehabilitation of Federal flood... PROCEDURES Local Interests/Cooperation Agreements § 203.85 Rehabilitation of Federal flood control projects. Some sponsors of Federal flood control projects are not required to furnish written assurances of...

  2. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Federal flood control works. 203.48 Section 203.48 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.48 Inspection guidelines for non-Federal...

  3. 33 CFR 203.85 - Rehabilitation of Federal flood control projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Rehabilitation of Federal flood... PROCEDURES Local Interests/Cooperation Agreements § 203.85 Rehabilitation of Federal flood control projects. Some sponsors of Federal flood control projects are not required to furnish written assurances of...

  4. 33 CFR 203.85 - Rehabilitation of Federal flood control projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Rehabilitation of Federal flood... PROCEDURES Local Interests/Cooperation Agreements § 203.85 Rehabilitation of Federal flood control projects. Some sponsors of Federal flood control projects are not required to furnish written assurances of...

  5. 33 CFR 203.85 - Rehabilitation of Federal flood control projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Rehabilitation of Federal flood... PROCEDURES Local Interests/Cooperation Agreements § 203.85 Rehabilitation of Federal flood control projects. Some sponsors of Federal flood control projects are not required to furnish written assurances of...

  6. 33 CFR 203.85 - Rehabilitation of Federal flood control projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Rehabilitation of Federal flood... PROCEDURES Local Interests/Cooperation Agreements § 203.85 Rehabilitation of Federal flood control projects. Some sponsors of Federal flood control projects are not required to furnish written assurances of...

  7. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Federal flood control works. 203.48 Section 203.48 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.48 Inspection guidelines for non-Federal...

  8. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., construction, and maintenance of non-Federal flood control works. The guidelines are not intended to establish... provided by the flood control work, to include the level of maintenance being performed on the flood... cross-section at these points. (3) Maintenance. Project maintenance analysis will evaluate...

  9. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., construction, and maintenance of non-Federal flood control works. The guidelines are not intended to establish... provided by the flood control work, to include the level of maintenance being performed on the flood... cross-section at these points. (3) Maintenance. Project maintenance analysis will evaluate...

  10. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., construction, and maintenance of non-Federal flood control works. The guidelines are not intended to establish... provided by the flood control work, to include the level of maintenance being performed on the flood... cross-section at these points. (3) Maintenance. Project maintenance analysis will evaluate...

  11. Evaluating Green/Gray Infrastructure for CSO/Stormwater Control

    EPA Science Inventory

    The NRMRL is conducting this project to evaluate the water quality and quantity benefits of a large-scale application of green infrastructure (low-impact development/best management practices) retrofits in an entire subcatchment. It will document ORD's effort to demonstrate the e...

  12. Nonstructural Flood Control Measures: A Sociological Study of Innovation.

    DTIC Science & Technology

    1983-01-01

    The literature commonly identifies "riverine" and "coastal" flooding; flash floods and those of slower onset, and flood probability. These and other...undating any given place. On the other hand, flash floods occur with such rapidity that there is little opportunity to anticipate them or to warn the popu...observers. A study of their role in the Thompson Canyon flash flood of July 31-August 1, 1976 is indicative of the great dependence of communities upon

  13. Climate, orography and scale controls on flood frequency in Triveneto (Italy)

    NASA Astrophysics Data System (ADS)

    Persiano, Simone; Castellarin, Attilio; Salinas, Jose Luis; Domeneghetti, Alessio; Brath, Armando

    2016-05-01

    The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed reference procedures for design-flood estimation, such as national flood frequency models. Our study focuses on Triveneto, a broad geographical region in North-eastern Italy. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which considered Triveneto as a single homogeneous region and developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 1980s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for 76 catchments located in Triveneto. All 76 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The objective of our study is threefold: (1) to inspect climatic and scale controls on flood frequency regime; (2) to verify the possible presence of changes in flood frequency regime by looking at changes in time of regional L-moments of annual maximum floods; (3) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI). Our study leads to the following conclusions: (1) climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) a single year characterized by extreme floods can have a remarkable influence on regional flood frequency models and analyses for detecting possible changes in flood frequency regime; (3) no significant change was detected in the flood frequency regime, yet an update of the existing reference procedure for design flood estimation is highly recommended and we propose the RoI approach for properly representing climate and scale controls on flood frequency in Triveneto, which cannot be regarded as a single

  14. Flood control and loss estimation for paddy field at midstream of Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Cham, T. C.; Mitani, Y.

    2015-09-01

    2011 Thailand flood has brought serious impact to downstream of Chao Phraya River Basin. The flood peak period started from August, 2011 to the end of October, 2011. This research focuses on midstream of Chao Phraya River Basin, which is Nakhon Sawan area includes confluence of Nan River and Yom River, also confluence of Ping River and Nan River. The main purpose of this research is to understand the flood generation, estimate the flood volume and loss of paddy field, also recommends applicable flood counter measurement to ease the flood condition at downstream of Chao Phraya River Basin. In order to understand the flood condition, post-analysis is conducted at Nakhon Sawan. The post-analysis consists of field survey to measure the flood marks remained and interview with residents to understand living condition during flood. The 2011 Thailand flood generation at midstream is simulated using coupling of 1D and 2D hydrodynamic model to understand the flood generation during flood peak period. It is calibrated and validated using flood marks measured and streamflow data received from Royal Irrigation Department (RID). Validation of results shows good agreement between simulated result and actual condition. Subsequently, 3 scenarios of flood control are simulated and Geographic Information System (GIS) is used to assess the spatial distribution of flood extent and reduction of loss estimation at paddy field. In addition, loss estimation for paddy field at midstream is evaluated using GIS with the calculated inundation depth. Results show the proposed flood control at midstream able to minimize 5% of the loss of paddy field in 26 provinces.

  15. Assessing Sedimentation Issues Within Aging Flood Control Reservoirs in Oklahoma

    NASA Astrophysics Data System (ADS)

    Bennet, Sean J.; Cooper, Charles M.; Ritchie, Jerry C.; Dunbar, John A.; Allen, Peter M.; Caldwell, Larry W.; McGee, Thomas M.

    2002-10-01

    Since 1948, the USDA-NRCS has constructed nearly 11,000 flood control dams across the United States, and many of the reservoirs are rapidly filling with sediment. To rehabilitate these structures, the impounded sediment must be assessed to determine the volume of accumulated sediment and the potential hazard this sediment may pose if reintroduced to the environment. An assessment of sedimentation issues within two reservoirs, Sugar Creek No. 12, Hinton, Oklahoma, and Sergeant Major No. 4, Cheyenne, Oklahoma, is presented. Sediment cores obtained using a vibracoring system were composed of alternating layers of gravel, sand, silt, and clay. Stratigraphic analysis coupled with 137Cs dating techniques enabled the discrimination of pre-construction sediment from post-construction deposition. An acoustic profiling system was unencumbered by the relatively shallow water depth at Sugar Creek No. 12 and the seismic horizons agreed well with the sediment core data. Total sediment volume determined from the acoustic survey and the sediment core data for comparable areas differed by only 1.4 percent. The seismic profiling system worked well in the relatively deeper lake of Sergeant Major No. 4 and showed good correspondence to the collected core data. Detailed chemical analyses showed that overall sediment quality was good at both locations and that chemical composition was spatially invariant. Implementation of these techniques will aid action agencies such as the USDA-NRCS in their assessment and effective management of aging flood control reservoirs.

  16. Climatic and geomorphic controls on flash flood response in Europe

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Borga, Marco; Preciso, Emanuele; Gaume, Eric

    2010-05-01

    High-resolution data enabling identification and analysis of the hydrometeorological causative processes of flash floods have been collected and analysed for 25 extreme flash floods (60 drainage basins) across Europe. Criteria for flood selection were high intensity of triggering rainfall and flood response and availability of reliable high-resolution data. Hydrometeorological data collected for each event were checked by using a hydrological model. The derivation and analysis of summarising variables has made it possible to outline some characteristics of flash floods in various morphoclimatic regions of Europe. Peak discharge data for more than 50% of the studied watersheds derive from post-flood surveys in ungauged streams. This stresses both the significance of post-flood surveys in building and extending flash flood databases, and the need to develop new methods for flash-flood hazard assessment able to take into account data from post-event analysis. Catchments do not need to be particularly steep to favour flash flooding. However, relief is important since it may affect flash flood occurrence in specific catchments by combination of two main mechanisms: orographic effects augmenting precipitation and anchoring convection, and topographic relief promoting rapid concentration of streamflow. Examination of data shows a peculiar seasonality effect on flash flood occurrence, with events in the Mediterranean and Alpine-Mediterranean regions mostly occurring in autumn, whereas events in the inland Continental region commonly occur in summer, revealing different climatic forcing. Consistently with this seasonality effect, spatial extent and duration of the events is generally smaller for the Continental events with respect to those occurring in the Mediterranean region. Furthermore, the flash flood regime is usually more intense in the Mediterranean Region than in the Continental areas. The runoff coefficients of the studied flash floods are usually rather low (mean

  17. Credibility theory based dynamic control bound optimization for reservoir flood limited water level

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong

    2015-10-01

    The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.

  18. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  19. Redwood River at Marshall, Minnesota; Feasibility Report for Flood Control.

    DTIC Science & Technology

    1979-06-01

    would be converted to open- space recreational and other pub- lic use areas. The displacement of existing development in addition to being totally...State policy that permanently habitable space below the regulatory flood elevation should not be flood proofed. Similarly, evacuation and flood- proofing...Recreation and open space Added recreational Additional recrea- opportunities with tional opportunities trail system and with trail system other

  20. Developing an Intelligent Reservoir Flood Control Decision Support System through Integrating Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Kao, I. F.; Tsai, F. H.; Hsu, H. C.; Yang, S. N.; Shen, H. Y.; Chang, F. J.

    2015-12-01

    Typhoons and storms hit Taiwan several times every year and cause serious flood disasters. Because the mountainous terrain and steep landform rapidly accelerate the speed of flood flow, rivers cannot be a stable source of water supply. Reservoirs become one of the most important and effective floodwater storage facilities. However, real-time operation for reservoir flood control is a continuous and instant decision-making process based on rules, laws, meteorological nowcast, in addition to the immediate rainfall and hydrological data. The achievement of reservoir flood control can effectively mitigate flood disasters and store floodwaters for future uses. In this study, we construct an intelligent decision support system for reservoir flood control through integrating different types of neural networks and the above information to solve this problem. This intelligent reservoir flood control decision support system includes three parts: typhoon track classification, flood forecast and adaptive water release models. This study used the self-organizing map (SOM) for typhoon track clustering, nonlinear autoregressive with exogenous inputs (NARX) for multi-step-ahead reservoir inflow prediction, and adaptive neuro-fuzzy inference system (ANFIS) for reservoir flood control. Before typhoons landfall, we can estimate the entire flood hydrogragh of reservoir inflow by using SOM and make a pre-release strategy and real-time reservoir flood operating by using ANFIS. In the meanwhile, NARX can be constantly used real-time five-hour-ahead inflow prediction for providing the newest flood information. The system has been successfully implemented Typhoons Trami (2013), Fitow (2013) and Matmo (2014) in Shihmen Reservoir.

  1. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  2. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Data Archiving and Quality Control

    NASA Astrophysics Data System (ADS)

    He, B.; Cui, C.; Fan, D.; Li, C.; Xiao, J.; Yu, C.; Wang, C.; Cao, Z.; Chen, J.; Yi, W.; Li, S.; Mi, L.; Yang, S.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences)1(Cui et al. 2014). To archive the astronomical data in China, we present the implementation of the astronomical data archiving system (ADAS). Data archiving and quality control are the infrastructure for the AstroCloud. Throughout the data of the entire life cycle, data archiving system standardized data, transferring data, logging observational data, archiving ambient data, And storing these data and metadata in database. Quality control covers the whole process and all aspects of data archiving.

  3. Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara P.; Katopodes, Nikolaos D.

    2015-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. Additionally, a physical prototype is built to test the real-time feasibility of this computational flow control model. The prototype is a blower wind-tunnel with an elongated test section with the capability of sensing (via digital camera) an injected `contaminant' (propylene glycol smoke), and then mitigating that contaminant using actuators (compressed air operated vacuum nozzles) which are operated by a set of pressure regulators and a programmable controller. Finally, an agent-based model is developed to simulate ``agents'' (i.e. building occupants) as they evacuate a public space, and is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. NSF-CMMI #0856438.

  4. THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM APPLICATIONS

    SciTech Connect

    Shishlo, Andrei P; Allen, Christopher K; Chu, Paul; Galambos, John D; Pelaia II, Tom

    2009-01-01

    XAL is a Java programming framework for building high-level control applications related to accelerator physics. The structure, details of implementation, and interaction between components, auxiliary XAL packages, and the latest modifications are discussed. A general overview of XAL applications created for the SNS project is presented.

  5. Green Infrastructure for CSO Control in Kansas City, Missouri

    EPA Science Inventory

    Kansas City Water Services Department (WSD) conducted extensive modeling and economic studies of its combined sewer system over the last 5 years, for submittal of its long term control plan to EPA. These studies and recent funding opportunities have provided the impetus for sele...

  6. When and how long to flood for insect control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flooding in late spring (late May or early July) can remove tremendous numbers of arthropods from cranberry beds. For over 100 years, the Wisconsin cranberry industry has used flooding as a way to suppress arthropod populations. One critical element of this strategy is the trade-off between lethalit...

  7. Shades of Green: Flood control study focused on Duluth, Minnesota

    EPA Science Inventory

    In the aftermath of the economically and environmentally painful flood of 2012, the city of Duluth and the CSC examined ecologically based options to reduce runoff velocities and flood volume in the watershed with assistance and input of Minnesota Duluth's Natural Resources Resea...

  8. Early-season flooding for insect pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Wisconsin, there is much interest in the spring flood as a means to not only reduce pest populations, but also to facilitate marsh sanitation and provide frost protection. A large-scale field study was undertaken in 2011 to examine how a 30-40 hour spring flood (late May) would affect key insect ...

  9. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  10. Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination

    EPA Science Inventory

    This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...

  11. Demonstration of Green/Gray Infrastructure for Combined Sewer Overflow Control

    EPA Science Inventory

    This project is a major national demonstration of the integration of green and gray infrastructure for combined sewer overflow (CSO) control in a cost-effective and environmentally friendly manner. It will use Kansas City, MO, as a case example. The project will have a major in...

  12. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of

  13. Snagging and Clearing for Flood Control, Snake River, Minnesota.

    DTIC Science & Technology

    1979-07-01

    range from a high of 1080F to a low of -490F. Frost-free days, as observed at the University of Minnesota Experiment Station at Crookston, Minnesota...American plum, and black willow (Salix nigra). Further away from the river a shrub layer is present consisting of chokecherry, raspberry (Rubus strigosus...flood-prone areas or erection of emergency * flood protection. 6.04 The National Weather Service currently provides area officials and local news

  14. Control of the Public Health IT Physical Infrastructure: Findings From the 2015 Informatics Capacity and Needs Assessment Survey

    PubMed Central

    Massoudi, Barbara L.; Shah, Gulzar H.

    2016-01-01

    Background: Despite improvements in information technology (IT) infrastructure in public health, there is still much that can be done to improve the adoption of IT in state and local health departments, by better understanding the impact of governance and control structures of physical infrastructure. Objective: To report out the current status of the physical infrastructure control of local health departments (LHDs) and to determine whether there is a significant association between an LHD's governance status and control of the physical infrastructure components. Design: Data came from the 2015 Informatics Capacity and Needs Assessment Survey, conducted by Georgia Southern University in collaboration with the National Association of County and City Health Officials. Participants: A total of 324 LHDs from all 50 states completed the survey (response rate: 50%). Main Outcome Measure(s): Outcome measures included control of LHD physical infrastructure components. Predictors of interest included LHD governance category. Results: The majority of the control of the physical infrastructure components in LHDs resides in external entities. The type of governance structure of the LHD is significantly associated with the control of infrastructure. Conclusions: Additional research is needed to determine best practices in IT governance and control of physical infrastructure for public health. PMID:27684612

  15. Critical Infrastructure Modeling: An Approach to Characterizing Interdependencies of Complex Networks & Control Systems

    SciTech Connect

    Stuart Walsh; Shane Cherry; Lyle Roybal

    2009-05-01

    Critical infrastructure control systems face many challenges entering the 21st century, including natural disasters, cyber attacks, and terrorist attacks. Revolutionary change is required to solve many existing issues, including gaining greater situational awareness and resiliency through embedding modeling and advanced control algorithms in smart sensors and control devices instead of in a central controller. To support design, testing, and component analysis, a flexible simulation and modeling capability is needed. Researchers at Idaho National Laboratory are developing and evaluating such a capability through their CIPRsim modeling and simulation framework.

  16. General Reevaluation Supporting Documentation for Flood Control and Related Purposes.

    DTIC Science & Technology

    1984-11-01

    taxes are less than MITI- committee five years ago , and flood, the earth must be stable, fight the floods when they nesota taxes, be said If uproot...Floods at East Grand Forks Since 1882 Rank Stage Year Peak Discharge (cfs) 1 50.2 1897 85,000 2 48.81 1979 82,000 3 48.0 1882 75,000 4 45.73 1978...8217 Water Flow Plotting Water F0ow . Rank Year - in cfs Position Rank Year n 3fa P-’ir 1 1826 135,00 .0065 51 1� 15,230 .514 2 1852 95,000 .0129 52 1932

  17. Probable maximum flood control; Yucca Mountain Site Characterization Project

    SciTech Connect

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

  18. Using field data and HSR imagery to downscale vulnerability assessment of buildings and local infrastructure facing hazards from floods and hyperconcentrated flows

    NASA Astrophysics Data System (ADS)

    Ettinger, Susanne; Manrique Llerena, Nélida Victoria; Thouret, Jean-Claude

    2014-05-01

    The focus of this study is the analysis of post-flood conditions along the Venezuela channel in the large city of Arequipa, south Peru, in order to identify the parameters determining vulnerability of buildings and infrastructure. Two tributaries draining a c. 11.9 km2 large catchment feed the Venezuela channel. Before joining the main Rio Chili valley to the West, it crosses the city from NE to SW. Over a total length of 5.2 km, channel depth ranges from 1.3 to 6.3 m and c. 40% of the channel sections do not exceed 5 m in width. On 8 February 2013, 123 mm of rainfall within 3 hours (monthly mean: 29.3 mm) triggered a flashflood inundating at least 0.4 km2 of urban settlements along the channel. The flood damaged 14 buildings, 23 among 53 bridges, and led to the partial collapse of main road sections paralyzing central parts of the city for at least one week. This research relies on (1) analyzing post-flood conditions and assessing damage types caused by the 8 February 2013 flood; (2) mapping of the channel characteristics (slope, wetted section, sinuosity, type of river banks, bed roughness, etc.) and buildings, bridges, and contention walls potentially exposed to inundation. Data collection and analysis have been based on high spatial resolution (HSR) images (SPOT5 2007, Google Earth Pro and BINGMAP 2012, PLEIADES 2012-2013). Field measurements (GPS, laser and geomorphologic mapping) were used to ground truth channel width, depth, as well as building outlines, contention walls and bridge characteristics (construction material, opening size, etc.). An inventory of 25 city blocks (1500 to 20000 m2; 6 to 157 houses per block) has been created in a GIS database in order to estimate their physical vulnerability. As many as 717 buildings have been surveyed along the affected drainage and classified according to four building types based on their structural characteristics. Output vulnerability maps show that the varying channel characteristics, i.e. bank type, bed

  19. Dominant geomorphic controls on channel capacity and flood risk in a hydrologically variable fluvial system

    NASA Astrophysics Data System (ADS)

    Daley, James; Croke, Jacky; Thompson, Chris; Cohen, Tim

    2016-04-01

    Traditionally, particular emphasis has been placed on the hydrological characteristics of rivers to understand the role of channel morphology in flood risk. However, in regions of high hydrological variability, the relationship between channel characteristics and flood conveyance is often highly complex. Consequently in these settings, the applicability of stream discharge or steady-state form-process relationships, may be of less use to understanding flood conveyance. In the subtropical region of southeast Queensland, Australia, rivers are characterized by highly variable flows and entrenched channel morphologies. The latter are such dramatic features, they are termed 'macrochannels'. Following the extreme flood of 2011 in the Lockyer Creek in this region, longitudinal variations in the macrochannel form were found to be a significant factor in flood conveyance. Nine reaches were identified on a basis of flood inundation extent, with significant non-linear changes in channel capacity and discharge, alternating between flood expansion and contraction zones with associated increases and decreases in flood risk. Detailed geomorphic and chronostratigraphic analyses presented here indicate that macrochannel capacity is being strongly influenced by the antecedent bedrock topography, resistant valley-fill and abrupt downstream changes in sediment delivery. A large proportion of the valley fill represents a major Late Pleistocene aggradation phase of fine-grained alluvium that overlies older Pleistocene basal sediments. Subsequent channel incision at 10 ka reoccupied a pre-existing bedrock valley and resistant Pleistocene alluvium imposed substantial controls on the capacity for lateral adjustment. Abrupt changes in sediment supply associated with the location of tributaries provide further evidence for geomorphic controls on macrochannel form and capacity. Identification of the dominant geomorphic factors influencing the overall macrochannel form highlights the relative

  20. Improving riparian wetland conditions based on infiltration and drainage behavior during and after controlled flooding

    NASA Astrophysics Data System (ADS)

    Russo, Tess A.; Fisher, Andrew T.; Roche, James W.

    2012-04-01

    SummaryWe present results of an observational and modeling study of the hydrologic response of a riparian wetland to controlled flooding. The study site is located in Poopenaut Valley, Yosemite National Park (USA), adjacent to the Tuolumne River. This area is flooded periodically by releases from the Hetch Hetchy Reservoir, and was monitored during one flood sequence to assess the relative importance of inundation versus groundwater rise in establishing and maintaining riparian wetland conditions, defined on the basis of a minimum depth and duration of soil saturation, and to determine how restoration benefits might be achieved while reducing total flood discharge. Soil moisture data show how shallow soils were wetted by both inundation and a rising water table as the river hydrograph rose repeatedly during the controlled flood. The shallow groundwater aquifer under wetland areas responded quickly to conditions in the adjacent river, demonstrating a good connection between surface and subsurface regimes. The observed soil drainage response helped to calibrate a numerical model that was used to test scenarios for controlled flood releases. Modeling of this groundwater-wetland system suggests that inundation of surface soils is the most effective mechanism for developing wetland conditions, although an elevated water table helps to extend the duration of soil saturation. Achievement of wetland conditions can be achieved with a smaller total flood release, provided that repeated cycling of higher and lower river elevations is timed to benefit from the characteristic drainage behavior of wetland soils. These results are robust to modest variations in the initial water table elevation, as might result from wetter or dryer conditions prior to a flood. However, larger changes to initial water table elevation, as could be associated with long term climate change or drought conditions, would have a significant influence on wetland development. An ongoing controlled flooding

  1. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  2. Daily Time Step Refinement of Optimized Flood Control Rule Curves for a Global Warming Scenario

    NASA Astrophysics Data System (ADS)

    Lee, S.; Fitzgerald, C.; Hamlet, A. F.; Burges, S. J.

    2009-12-01

    Pacific Northwest temperatures have warmed by 0.8 °C since 1920 and are predicted to further increase in the 21st century. Simulated streamflow timing shifts associated with climate change have been found in past research to degrade water resources system performance in the Columbia River Basin when using existing system operating policies. To adapt to these hydrologic changes, optimized flood control operating rule curves were developed in a previous study using a hybrid optimization-simulation approach which rebalanced flood control and reservoir refill at a monthly time step. For the climate change scenario, use of the optimized flood control curves restored reservoir refill capability without increasing flood risk. Here we extend the earlier studies using a detailed daily time step simulation model applied over a somewhat smaller portion of the domain (encompassing Libby, Duncan, and Corra Linn dams, and Kootenai Lake) to evaluate and refine the optimized flood control curves derived from monthly time step analysis. Moving from a monthly to daily analysis, we found that the timing of flood control evacuation needed adjustment to avoid unintended outcomes affecting Kootenai Lake. We refined the flood rule curves derived from monthly analysis by creating a more gradual evacuation schedule, but kept the timing and magnitude of maximum evacuation the same as in the monthly analysis. After these refinements, the performance at monthly time scales reported in our previous study proved robust at daily time scales. Due to a decrease in July storage deficits, additional benefits such as more revenue from hydropower generation and more July and August outflow for fish augmentation were observed when the optimized flood control curves were used for the climate change scenario.

  3. Regional flood frequency analysis in Triveneto (Italy): climate and scale controls

    NASA Astrophysics Data System (ADS)

    Persiano, Simone; Castellarin, Attilio; Domeneghetti, Alessio; Brath, Armando

    2016-04-01

    The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed procedures for design-flood estimation, such as national regionalization approaches. Our study focuses on the Triveneto region, a broad geographical area in North-eastern Italy consisting of the administrative regions of Trentino-Alto Adige, Veneto and Friuli-Venezia Giulia. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 80s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for ~80 catchments located in Triveneto. Our dataset includes the historical data mentioned above, together with more recent data obtained from Regional Services and annual maximum peak streamflows extracted from inflow series to artificial reservoirs and provided by dam managers. All ~80 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The main objectives of our study are: (1) to check whether climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) to verify the possible presence of trends as well as abrupt changes in the intensity and frequency of flood extremes by looking at changes in time of regional L-moments of annual maximum floods; (3) to assess the reliability and representativeness of the reference procedure for design flood estimation relative to flood data that were not included in the VA.PI. dataset (i.e. more recent data collected after the 80s and historical data provided by dam managers); (4) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI).

  4. Abiotic & biotic responses of the Colorado River to controlled floods at Glen Canyon Dam, Arizona, USA

    USGS Publications Warehouse

    Korman, Josh; Melis, Ted; Kennedy, Theodore A.

    2012-01-01

    Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.

  5. Spatio-temporal clustering of cholera: the impact of flood control in Matlab, Bangladesh, 1983-2003.

    PubMed

    Carrel, Margaret; Emch, Michael; Streatfield, Peter K; Yunus, Mohammad

    2009-09-01

    Introducing flood control to an area of endemic waterborne diseases could have significant impacts on spatio-temporal occurrence of cholera. Using 21-year data from Bangladesh, we conducted cluster analysis to explore changes in spatial and temporal distribution of cholera incidence since the construction of flood control structures. Striking changes in temporal cluster patterns emerged, including a shift from dry-season to rainy-season clusters following flood protection and delayed clustering inside the protected areas. Spatial differences in pre-flood protection and post-protection cholera clusters are weaker. Changes in spatio-temporal cholera clustering, associated with implementation of flood protection strategies, could affect local cholera prevention efforts.

  6. Flood Control Project Lac Qui Parle, Emergency Plan

    DTIC Science & Technology

    1988-10-01

    ncn operations Center .. Provides a 24-hour telephone contact with the District Office. Responsible for keeping the Dam Safety Officer, the Commander...situations. Also contact for matters involving national security, disasters, mobilization or NwS flood forecasts. Center wilt contact Dam Safety Officer, the...Commaander/District Engineer and NCD. District Emergency Operations Center (612)220-0208 Contact Hastings David Christenson, Chief, Emergency

  7. Devils Lake Flood Control Project. Section 205. Detailed Project Report.

    DTIC Science & Technology

    1983-10-01

    an alternitive after the initial survey work was completed. Since plan C is not considered feasible, further cultural resources work is unnecessary... pesticides and other pollutants into the bay. Pesticides and other toxic substances would affect fish resources directly. High nutrient loads would...flood plain of the former lakebed at the head of Creel Bay. Such a restriction would prevent the release of nutrients, pesticides and other pollutants

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2006 Progress Update

    SciTech Connect

    Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

    2006-10-01

    The U.S. Department of Energy (DOE) initiated the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project through a competitive solicitation process in 2003. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. Four industry teams have signed cooperative agreements with DOE and are supporting plans for more than 130 fuel cell vehicles and 20 hydrogen refueling stations over the 5-year project duration. This paper provides a status update covering the progress accomplished by the demonstration and validation project over the last six months; the first composite data products from the project were published in March 2006. The composite data products aggregate individual performance into a range that protects the intellectual property of the companies involved, while publicizing the progress the hydrogen and fuel cell industry is making as a whole relative to the program objectives and timeline. Updates to previously published composite data products, such as on-road fuel economy and vehicle/infrastructure safety, will be presented along with new composite data products, such as fuel cell stack efficiency and refueling behavior.

  9. CDP - Adaptive Supervisory Control and Data Acquisition (SCADA) Technology for Infrastructure Protection

    SciTech Connect

    Marco Carvalho; Richard Ford

    2012-05-14

    Supervisory Control and Data Acquisition (SCADA) Systems are a type of Industrial Control System characterized by the centralized (or hierarchical) monitoring and control of geographically dispersed assets. SCADA systems combine acquisition and network components to provide data gathering, transmission, and visualization for centralized monitoring and control. However these integrated capabilities, especially when built over legacy systems and protocols, generally result in vulnerabilities that can be exploited by attackers, with potentially disastrous consequences. Our research project proposal was to investigate new approaches for secure and survivable SCADA systems. In particular, we were interested in the resilience and adaptability of large-scale mission-critical monitoring and control infrastructures. Our research proposal was divided in two main tasks. The first task was centered on the design and investigation of algorithms for survivable SCADA systems and a prototype framework demonstration. The second task was centered on the characterization and demonstration of the proposed approach in illustrative scenarios (simulated or emulated).

  10. Flood Control, Mississippi River at Prairie du Chien, Wisconsin.

    DTIC Science & Technology

    1977-02-01

    cont- ., iNOV 16 1982 3 .i be I blaOk and iAtarch 1977 ,- ........... , - s a le ; i 0 t UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Wften Data...There has been one death directly related to flooding. Other threats to public health and safety are related to traffic congestion, contamination of food ...larger animals, a more diversified subsLstaOc, was L o.cJ bascd on the hunting of smaller mammals and gathering of local pi’int foods on a seasonal basis

  11. Flood trends and river engineering on the Mississippi River system

    USGS Publications Warehouse

    Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.

    2008-01-01

    Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.

  12. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  13. Introduction to the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Wipke, K.; Welch, C.; Gronich, S.; Garbak, J.; Hooker, D.

    2006-05-01

    Early in 2003, the U.S. Department of Energy (DOE) initiated the ''Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project'' solicitation. The purpose of this project is to examine the impact and performance of fuel cell vehicles and the requisite hydrogen infrastructure in real-world applications. The integrated nature of the project enables DOE to work with industry to test, demonstrate, and validate optimal system solutions. Information learned from the vehicles and infrastructure will be fed back into DOE's R&D program to guide and refocus future research as needed, making this project truly a ''learning demonstration''.

  14. Draft Programmatic Environmental Impact Statement, Lake Darling Flood Control Project, Souris River, North Dakota and Draft Feature Environmental Impact Statement Velva Flood Control, Velva, North Dakota.

    DTIC Science & Technology

    1982-10-01

    fishery are eutrophication and related algal blooms, siltation, occasional winterkills, and reservoir drawdown for flood control. 4.14 Fish species which...from ions adsorbed on the sediments, which could aggravate the already eutrophic conditions. 5.04 The reservoir would continue to dilute dissolved salts...future development of lignite, oil , gas, or salt. The raise of Lake Darling would not inundate large land areas around the lake. Because this area is

  15. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: insights on geomorphic controls and post-flood geomorphic response

    USGS Publications Warehouse

    Dean, David J.; Schmidt, John C.

    2013-01-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic

  16. Hydraulic Model Investigation: Walnut Creek Flood-Control Project Contra Costa County, California.

    DTIC Science & Technology

    1987-10-01

    TECHNICAL REPORT HL-87-14 WALNUT CREEK FLOOD-CONTROL PROJECT CONTRA COSTA COUNTY, CALIFORNIA Hydraulic Model Investigation by W. G. Davis O11C tLE...34’ : AA Ii iA e d S O a :::: SCALE IN MILES 5 0 5 10 Figure 1. Vicinity map 4~ 4.. %- . " . " %____ WALNUT CREEK FLOOD-CONTROL PROJECT CONTRA COSTA COUNTY...Pleasant Hi-1, nd Martinez, California, on its way to the Suisin Bay. All of th.e planned imcrovements are located in Contra Costa County, California

  17. Use of Green Infrastructure Integrated with Conventional Gray Infrastructure for Combined Sewer Overflow Control: Kansas City, MO

    EPA Science Inventory

    Advanced design concepts such as Low Impact Development (LID) and Green Solutions (or upland runoff control techniques) are currently being encouraged by the United States Environmental Protection Agency (EPA) as a management practice to contain and control stormwater at the lot ...

  18. Prototyping the E-ELT M1 local control system communication infrastructure

    NASA Astrophysics Data System (ADS)

    Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.

    2016-08-01

    The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.

  19. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  20. 76 FR 39091 - San Luis Obispo Flood Control and Water Conservation District; Notice of Effectiveness of Surrender

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... for a Conduit Hydroelectric Project \\1\\ to the San Luis Obispo Flood Control and Water Conservation District (District) for the Lopez Water Treatment Plant Hydropower Generation Unit Project No. 4804. The... Energy Regulatory Commission San Luis Obispo Flood Control and Water Conservation District; Notice...

  1. 76 FR 19753 - Intent To Prepare a Draft Environmental Impact Statement for the `Īao Stream Flood Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... ` ao Stream Flood Control Project, Wailuku, Maui, HI AGENCY: Department of the Army, U.S. Army Corps of... design deficiency in the existing ` ao Stream Flood Control Project, Wailuku, Maui, HI. This effort is..., Civil and Public Works Branch (CEPOH-PP-C), Building 230, Fort Shafter, HI 96858- 5440....

  2. Real-time contaminant sensing and control in civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2014-11-01

    A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.

  3. Soil and Sediment Properties Affecting the Transport and Accumulations of Mercury in a Flood Control Reservoir

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury accumulations in some fish species from Grenada Lake in north Mississippi exceed the Food and Drug Administration standards for human consumption. This large flood control reservoir serves as a sink for the Skuna and Yalobusha River watersheds whose highly erodible soils contribute to exces...

  4. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014

    PubMed Central

    Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255

  5. Flood control projects in Bangladesh: reasons for failure and recommendations for improvement.

    PubMed

    Hoque, M M; Siddique, M A

    1995-09-01

    Flood control and drainage projects in Bangladesh are intended to give protection from main river floods, flash floods in the east and northeast of the country, and saline intrusion in the lower delta and to improve drainage in order to avoid crop damage. While in some cases such projects have had positive results, in many others their benefits have fallen well below expectations. One of the major reasons for the poor performance of projects is embankment failure, brought about by poor planning, design, construction, operation and maintenance. Recommended measures to improve the efficiency of projects include the involvement of local people in the planning and operation of projects, better training of management staff and the allocation of adequate funds for maintenance.

  6. Flood mitigation through optimal control of a network of multi-purpose reservoirs by using Model Predictive Control

    NASA Astrophysics Data System (ADS)

    MyoLin, Nay; Rutten, Martine; van de Giesen, Nick

    2016-04-01

    Flooding is a common natural disaster in the world. Construction of reservoirs, sluice gates, dikes, embankments and sea walls are implemented to minimize loss of life and property in a flood event. Rather than completely relying on large structural measures, non-structural measures such as real time control of a reservoir system can also improve flood prevention and water supply in a river basin. In this paper, we present the optimal operation of a multi-reservoir system by using Model Predictive Control (MPC) and particular attention is focused on flood mitigation of the Sittaung River Basin, Myanmar. The main challenges are non-linearity in the dynamic behavior of the water system and exponential growth of computational complexity with the state and control dimension. To deal with an issue related to non-linearity, we applied simplified internal model based on linearization scheme with a large grid length. For solving curse of dimensionality, we utilize the reduced model in which the states of the system are reduced by considering outflows from uncontrolled catchments as disturbances in the water system. We also address the computational time for real time control by using large time step scheme. Simulation results indicate that this model is able to use for real time control of a reservoir system addressing trade-offs between the multiple objectives.

  7. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  8. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  9. Bassett Creek Watershed, Hennepin County, Minnesota. Feasibility Report for Flood Control.

    DTIC Science & Technology

    1976-03-01

    adopted by most of the communities in the Bassett Creek watershed. In addition, all of the communities in the watershed are in the process of preparing...control on Bassett Creek. I h. A limited Archaeological Reconnaissance for the Bassett Creek watershed flood control area was conducted in November, 1975...by the St. Paul District Corps of Engineers. Nothing of historical or archaeological significance was found. However, a potential for culturally

  10. Life in the balance: a signaling network controlling survival of flooding.

    PubMed

    Bailey-Serres, Julia; Voesenek, Laurentius A C J

    2010-10-01

    Recent reports on responses to flooding, submergence, and low-oxygen stress have connected components in an essential regulatory network that underlies plasticity in growth and metabolism essential for the survival of distinct flooding regimes. Here, we discuss growth under severe oxygen-limited conditions (anaerobic growth) and less oxygen-deficient underwater conditions (ethylene-driven underwater growth). Low-oxygen stress causes an energy and carbohydrate crisis that must be controlled through regulated consumption of carbohydrates and energy reserves. In rice (Oryza sativa L.), low-oxygen stress, energy homeostasis and growth are connected by a calcineurin B-like interacting binding kinase (CIPK) in seeds germinated under water. In shoots, two opposing adaptive strategies to submergence, elongation (escape) and inhibition of elongation (quiescence), are controlled by related ethylene response factor (ERF) DNA binding proteins that act downstream of ethylene and modulate gibberellin-mediated shoot growth. Increased resolution of the flooding signaling network will require more precise investigation of the interactions between oxygen tension and cellular energy status in regulation of anaerobic metabolism and ethylene-driven growth, both essential to survival in variable flooding environments.

  11. Flood control embankments contribute to the improvement of the health status of children in rural Bangladesh.

    PubMed

    Myaux, J A; Ali, M; Chakraborty, J; de Francisco, A

    1997-01-01

    Every year, Bangladesh experiences major floods that inundate about one-third of the country. Therefore, flood control projects that comprise earthen dikes and irrigation/drainage systems are built along the major rivers to protect the people living in low-lying areas, stabilize the river banks and improve agricultural productivity. However, the adverse effects of these projects are regularly emphasized, such as environmental degradation and reduction of fishing supplies. The Demographic Surveillance System of the International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B) was used to assess the effect of a flood control programme on the mortality of 0-4-year-old children residing in the Matlab study area. Adjusted mortality rates were used in comparing four adjacent child populations residing either inside or outside a flood-control embankment and according to the type of health services provided in this area. Between the periods 1983-86 and 1989-92, the crude child mortality in the total study area decreased by 37%, from 185.9 per 1000 live births to 117.9 per 1000 live births. Following the construction of the embankment, death rates outside were up to 29% higher in 1-4-year-old children and 9% higher for 0-4-year age group compared to the flood-protected area (P < 0.001). Simultaneously, in the same study area, health interventions contributed to a 40% reduction in mortality among children less than 5 years of age in all causes of deaths (P < 0.001). Migration patterns and the effect of distances to the hospital are discussed.

  12. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  13. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    NASA Astrophysics Data System (ADS)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-12-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  14. Linkages between controlled floods, eddy sandbar dynamics, and riparian vegetation along the Colorado River in Marble Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Grams, P. E.; Hazel, J. E., Jr.; Schmeeckle, M. W.

    2015-12-01

    Controlled floods are released from Glen Canyon Dam to build and maintain eddy sandbars along the Colorado River in Grand Canyon National Park. Long-term monitoring shows that the topographic response to controlled floods varies considerably between eddies, likely reflecting different geometric configurations and flow hydraulics. Differences in eddy sandbar response also reflect the degree of vegetation establishment since the 1980s when reservoir spills more than double the magnitude of controlled floods cleared most sandbars of vegetation. Here we explore the geomorphology of sandbar responses in the context of controlled floods, debris fan-eddy geometry, and riparian vegetation establishment. In Marble Canyon, the proportion of eddy area stabilized by vegetation is negatively correlated with water surface slope and the rate of stage change with discharge. Less vegetated sites are more dynamic; they tend to build open sandbars during controlled floods and show greater topographic variability in the eddy compared to the main channel. In contrast, deposition of open sandbars is limited where vegetation establishment has decreased channel width, altering the pattern of eddy recirculation and sediment redistribution. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of vegetated bar surfaces increases with successive floods. Changes in sand storage in the main channel are greater than storage change in the eddy at these lower gradient sites, and controlled floods tend to evacuate sand that has accumulated on the bed. The degree to which vegetation has stabilized sandbar surfaces may thus provide a proxy for different hydraulic conditions and a better canyon-wide assessment of controlled flood response. Our results apply primarily to large eddies in Marble Canyon, and ongoing flow modeling and vegetation composition mapping will allow further assessment of eddy sandbar-riparian vegetation interactions

  15. STUDY ON FLOOD CONTROL PROPERTIES OF PERMEABLE PAVEMENT USING SATURATED-UNSATURATED SEEPAGE ANALYSIS

    NASA Astrophysics Data System (ADS)

    Yano, Takao; Nishiyama, Satoshi; Ohnishi, Yuzo; Nakashima, Shinichiro; Moriishi, Kazushi; Wada, Minoru

    The rainfall storage and infiltration facility of permeable pavement have been attracted attention as a control measure of flood and an environmental improvement measure in urban areas. However, rainfall infiltration of permeable pavement is unsteady flow and strongly dependent on the behavior of unsaturated zones in the pavement. Moreover, the wet condition of subbase course also has a great influence on the rainfall infiltration of the pavement. That's why previous studies have not made clear the precise the facility of permeable pavement as a flood control. In this paper, experimental studies and simulated analyses were performed to measure the overflow from the pavement under various conditions of rainfall intensities and estimate the rainfall infiltration of the pavement using the measurement data and unsaturated infiltration characteristics of porous asphalt materials. It is clear that this study shows the methods to have a quantitative estimation of the rainfall storage and infiltration facility of permeable pavement.

  16. Measurements, patterns, and controls of nitrogen flux in a cranberry bed during the harvest flood

    NASA Astrophysics Data System (ADS)

    Kennedy, C. D.

    2012-12-01

    Nitrogen (N) is an essential nutrient for cranberry production but also a source of freshwater eutrophication in southeastern Massachusetts. Surface application of N fertilizer is pervasive throughout the cranberry industry, accounting for 93% of total annual N export from farms. The agricultural practice of "wet harvesting", involving the flooding of farms with ~1 ft of water, may promote the vertical transport and transformation of nitrogen in cranberry beds. A cranberry bed at the University of Massachusetts Cranberry Station (East Wareham, MA) has been instrumented with a network of hydrological monitoring equipment for quantifying patterns and controls of nitrogen dynamics during the harvest flood. Here, data of (1) hydraulic head gradient between floodwater and groundwater (J), (2) hydraulic conductivity (K), and (3) N concentration in groundwater (C) collected from multiple points on the cranberry bed will be presented, and used to evaluate the patterns and controls N fluxes (f = JKC) in the cranberry bed.

  17. Flood Control, Roseau River, Roseau and Kittson Counties, Minnesota. Final Environmental Impact Statement.

    DTIC Science & Technology

    1976-12-01

    agricultural base of the area by mitigating agricultural losses due to flooding, by encouraging farmers to bring more land under culti- vation and, perhaps, by...Additional mitigative features for habitat losses have been incorporated into the plan and other possible measures are being discussed with the...structures would be constructed to control erosion. Mitigative features have been incorporated into the project to ameliorate habitat losses and damage to

  18. Effects of Flood Control Works Failure in the Missouri River Basin

    DTIC Science & Technology

    2014-06-13

    responsibility for North Dakota , South Dakota , Montana, Wyoming, Colorado, and Utah (Federal Emergency Management Agency 2014a). 3 The United States...Missouri River basin to the north and west, including portions of Missouri, Colorado, Nebraska, Iowa, Minnesota, South Dakota , North Dakota , Montana...USACEFEMA CommunityPartnership.aspx ( accessed 12 February 2014). 5 Flood control works operated and maintained by non-federal sponsors may

  19. Sacramento River Flood Control Project, California Mid-Valley Area, Phase 3. Design Memorandum Volume 1

    DTIC Science & Technology

    1996-06-01

    hydraulic excavator, crane, concrete pumps , loader, transit mixer, water trucks, and miscellaneous equipment. g. For other construction items, drainage...Flood Control Acts of December 1944 and May 1950 and incorporated under Sacramento River and Major and Minor Tributaries. Although construction of the...project was initiated in 1918, many of the levees were originally constructed by local interests prior to that time and subsequently modified and

  20. California's Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife, and agriculture

    USGS Publications Warehouse

    Sommer, T.; Harrell, B.; Nobriga, M.; Brown, R.; Moyle, P.B.; Kimmerer, W.; Schemel, Laurence E.

    2001-01-01

    Unlike conventional flood control systems that frequently isolate rivers from ecologically-essential floodplain habitat, California's Yolo Bypass has been engineered to allow Sacramento Valley floodwaters to inundate a broad floodplain. From a flood control standpoint, the 24,000 ha leveed floodplain has been exceptionally successful based on its ability to convey up to 80% of the flow of the Sacramento River basin during high water events. Agricultural lands and seasonal and permanent wetlands within the bypass provide key habitat for waterfowl migrating through the Pacific Flyway. Our field studies demonstrate that the bypass seasonally supports 42 fish species, 15 of which are native. The floodplain appears to be particularly valuable spawning and rearing habitat for the splittail (Pogonichthys macrolepidotus), a federally-listed cyprinid, and for young chinook salmon (Oncorhynchus tshawytscha), which use the Yolo Bypass as a nursery area. The system may also be an important source to the downstream food web of the San Francisco Estuary as a result of enhanced production of phytoplankton and detrital material. These results suggest that alternative flood control systems can be designed without eliminating floodplain function and processes, key goals of the 1996 Draft AFS Floodplain Management Position Statement.

  1. Anthropogenic impact on flood-risk: a large-scale assessment for planning controlled inundation strategies along the River Po

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Castellarin, Attilio; Brath, Armando

    2013-04-01

    The European Flood Directive (2007/60/EC) has fostered the development of innovative and sustainable approaches and methodologies for flood-risk mitigation and management. Furthermore, concerning flood-risk mitigation, the increasing awareness of how the anthropogenic pressures (e.g. demographic and land-use dynamics, uncontrolled urban and industrial expansion on flood-prone area) could strongly increase potential flood damages and losses has triggered a paradigm shift from "defending the territory against flooding" (e.g. by means of levee system strengthening and heightening) to "living with floods" (e.g. promoting compatible land-uses or adopting controlled flooding strategies of areas located outside the main embankments). The assessment of how socio-economic dynamics may influence flood-risk represents a fundamental skill that should be considered for planning a sustainable industrial and urban development of flood-prone areas, reducing their vulnerability and therefore minimizing socio-economic and ecological losses due to large flood events. These aspects, which are of fundamental importance for Institutions and public bodies in charge of Flood Directive requirements, need to be considered through a holistic approach at river basin scale. This study focuses on the evaluation of large-scale flood-risk mitigation strategies for the middle-lower reach of River Po (~350km), the longest Italian river and the largest in terms of streamflow. Due to the social and economical importance of the Po River floodplain (almost 40% of the total national gross product results from this area), our study aims at investigating the potential of combining simplified vulnerability indices with a quasi-2D model for the definition of sustainable and robust flood-risk mitigation strategies. Referring to past (1954) and recent (2006) land-use data sets (e.g. CORINE) we propose simplified vulnerability indices for assessing potential flood-risk of industrial and urbanized flood prone

  2. Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: Case study in Richmond, Virginia

    NASA Astrophysics Data System (ADS)

    Lucas, William C.; Sample, David J.

    2015-01-01

    Combined sewer overflows (CSOs) are a major problem in many cities. This paper assesses two Low Impact Development (LID) Green Stormwater Infrastructure (GSI) alternatives applied within a 7.05 ha catchment of the Shockoe Creek tributary of the James River in Richmond, Virginia. The LID alternatives were the "Green-Free" (typical free discharge underdrains) and the "Green-Control" (underdrains with flow controlled outlets). These alternatives were compared to two non-LID alternatives: "Existing" (existing conditions) and "Gray" (tunnel storage). A normal year scenario with average rainfall depths and intensities was compared to a scenario with anticipated higher intensity rainfall due to climate change (CC). In the normal year, the Green-Control alternative performed substantially better than both the Green-Free and the Gray alternatives in terms of volume control. However it experienced slightly more CSO events than Grey. The relative performance of both green alternatives improved with the CC climate year, indicating that GSI is more resilient than gray infrastructure. In particular, Green-Control exhibited much better performance. While the gray infrastructure solution reduced CSOs to the fewest number of occurrences, the smallest overflow volumes, lowest peak flows and the most resilient system was obtained by the Green-Control alternative. Since CSO volume is strongly related to the negative ecological impacts from overflows, and CSO occurrences are not, GSI provides a more sustainable solution than gray. These results find that hydraulic control of discharges should be the preferred option when considering GSI in CSO mitigation.

  3. Improving the Resilience of Major Ports and Critical Supply Chains to Extreme Coastal Flooding: a Combined Artificial Neural Network and Hydrodynamic Simulation Approach to Predicting Tidal Surge Inundation of Port Infrastructure and Impact on Operations.

    NASA Astrophysics Data System (ADS)

    French, J.

    2015-12-01

    Ports are vital to the global economy, but assessments of global exposure to flood risk have generally focused on major concentrations of population or asset values. Few studies have examined the impact of extreme inundation events on port operation and critical supply chains. Extreme water levels and recurrence intervals have conventionally been estimated via analysis of historic water level maxima, and these vary widely depending on the statistical assumptions made. This information is supplemented by near-term forecasts from operational surge-tide models, which give continuous water levels but at considerable computational cost. As part of a NERC Infrastructure and Risk project, we have investigated the impact of North Sea tidal surges on the Port of Immingham, eastern, UK. This handles the largest volume of bulk cargo in the UK and flows of coal and biomass that are critically important for national energy security. The port was partly flooded during a major tidal surge in 2013. This event highlighted the need for improved local forecasts of surge timing in relation to high water, with a better indication of flood depth and duration. We address this problem using a combination of data-driven and numerical hydrodynamic models. An Artificial Neural Network (ANN) is first used to predict the surge component of water level from meteorological data. The input vector comprises time-series of local wind (easterly and northerly wind stress) and pressure, as well as regional pressure and pressure gradients from stations between the Shetland Islands and the Humber estuary. The ANN achieves rms errors of around 0.1 m and can generate short-range (~ 3 to 12 hour) forecasts given real-time input data feeds. It can also synthesize water level events for a wider range of tidal and meteorological forcing combinations than contained in the observational records. These are used to force Telemac2D numerical floodplain simulations using a LiDAR digital elevation model of the port

  4. The TDAQ Analytics Dashboard: a real-time web application for the ATLAS TDAQ control infrastructure

    NASA Astrophysics Data System (ADS)

    Lehmann Miotto, Giovanna; Magnoni, Luca; Sloper, John Erik

    2011-12-01

    The ATLAS Trigger and Data Acquisition (TDAQ) infrastructure is responsible for filtering and transferring ATLAS experimental data from detectors to mass storage systems. It relies on a large, distributed computing system composed of thousands of software applications running concurrently. In such a complex environment, information sharing is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking, the streams of messages sent by applications and data published via information services are constantly monitored by experts to verify the correctness of running operations and to understand problematic situations. To simplify and improve system analysis and errors detection tasks, we developed the TDAQ Analytics Dashboard, a web application that aims to collect, correlate and visualize effectively this real time flow of information. The TDAQ Analytics Dashboard is composed of two main entities that reflect the twofold scope of the application. The first is the engine, a Java service that performs aggregation, processing and filtering of real time data stream and computes statistical correlation on sliding windows of time. The results are made available to clients via a simple web interface supporting SQL-like query syntax. The second is the visualization, provided by an Ajax-based web application that runs on client's browser. The dashboard approach allows to present information in a clear and customizable structure. Several types of interactive graphs are proposed as widgets that can be dynamically added and removed from visualization panels. Each widget acts as a client for the engine, querying the web interface to retrieve data with desired criteria. In this paper we present the design, development and evolution of the TDAQ Analytics Dashboard. We also present the statistical analysis computed by the application in this first period of high energy data taking operations for the ATLAS experiment.

  5. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.

    2012-07-01

    SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.

  6. Model-controlled flooding with applications to image reconstruction and segmentation

    PubMed Central

    Wang, Quanli; West, Mike

    2012-01-01

    We discuss improved image reconstruction and segmentation in a framework we term model-controlled flooding (MCF). This extends the watershed transform for segmentation by allowing the integration of a priori information about image objects into flooding simulation processes. Modeling the initial seeding, region growing, and stopping rules of the watershed flooding process allows users to customize the simulation with user-defined or default model functions incorporating prior information. It also extends a more general class of transforms based on connected attribute filters by allowing the modification of connected components of a grayscale image, thus providing more flexibility in image reconstruction. MCF reconstruction defines images with desirable features for further segmentation using existing methods and can lead to substantial improvements. We demonstrate the MCF framework using a size transform that extends grayscale area opening and attribute thickening/thinning, and give examples from several areas: concealed object detection, speckle counting in biological single cell studies, and analyses of benchmark microscopic image data sets. MCF achieves benchmark error rates well below those reported in the recent literature and in comparison with other algorithms, while being easily adapted to new imaging contexts. PMID:23049229

  7. Model-controlled flooding with applications to image reconstruction and segmentation.

    PubMed

    Wang, Quanli; West, Mike

    2012-06-22

    We discuss improved image reconstruction and segmentation in a framework we term model-controlled flooding (MCF). This extends the watershed transform for segmentation by allowing the integration of a priori information about image objects into flooding simulation processes. Modeling the initial seeding, region growing, and stopping rules of the watershed flooding process allows users to customize the simulation with user-defined or default model functions incorporating prior information. It also extends a more general class of transforms based on connected attribute filters by allowing the modification of connected components of a grayscale image, thus providing more flexibility in image reconstruction. MCF reconstruction defines images with desirable features for further segmentation using existing methods and can lead to substantial improvements. We demonstrate the MCF framework using a size transform that extends grayscale area opening and attribute thickening/thinning, and give examples from several areas: concealed object detection, speckle counting in biological single cell studies, and analyses of benchmark microscopic image data sets. MCF achieves benchmark error rates well below those reported in the recent literature and in comparison with other algorithms, while being easily adapted to new imaging contexts.

  8. Flood resilience and uncertainty in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Beven, K.; Leedal, D.; Neal, J.; Bates, P.; Hunter, N.; Lamb, R.; Keef, C.

    2012-04-01

    Flood risk assessments do not normally take account of the uncertainty in assessing flood risk. There is no requirement in the EU Floods Directive to do so. But given the generally short series (and potential non-stationarity) of flood discharges, the extrapolation to smaller exceedance potentials may be highly uncertain. This means that flood risk mapping may also be highly uncertainty, with additional uncertainties introduced by the representation of flood plain and channel geometry, conveyance and infrastructure. This suggests that decisions about flood plain management should be based on exceedance probability of risk rather than the deterministic hazard maps that are common in most EU countries. Some examples are given from 2 case studies in the UK where a framework for good practice in assessing uncertainty in flood risk mapping has been produced as part of the Flood Risk Management Research Consortium and Catchment Change Network Projects. This framework provides a structure for the communication and audit of assumptions about uncertainties.

  9. The Infrastructure Necessary to Support a Sustainable Material Protection, Control and Accounting (MPC&A) Program in Russia

    SciTech Connect

    Bachner, Katherine M.; Mladineo, Stephen V.

    2011-07-20

    The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support the Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.

  10. Channel response to extreme floods: Insights on controlling factors from six mountain rivers in northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Surian, Nicola; Righini, Margherita; Lucía, Ana; Nardi, Laura; Amponsah, William; Benvenuti, Marco; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Marchi, Lorenzo; Rinaldi, Massimo; Viero, Alessia

    2016-11-01

    This work addresses the geomorphic response of mountain rivers to extreme floods, exploring the relationships between morphological changes and controlling factors. The research was conducted on six tributaries of the Magra River (northern Apennines, Italy) whose catchments were affected by an extreme flood (estimated recurrence interval > 100 years in most of the basins) on 25 October 2011. An integrated approach was deployed to study this flood, including (i) analysis of channel width changes by comparing aerial photographs taken before and after the flood, (ii) estimate of peak discharges in ungauged streams, (iii) detailed mapping of landslides and analysis of their connectivity with the channel network. Channel widening occurred in 35 reaches out of 39. In reaches with channel slope < 4% (here defined as nonsteep reaches), average and maximum ratios of post-flood and pre-flood channel width were 5.2 and 19.7 (i.e., channel widened from 4 to 82 m), respectively. In steep reaches (slope ≥ 4%), widening was slightly less intense (i.e., average width ratio = 3.4, maximum width ratio = 9.6). The relationships between the degree of channel widening and seven controlling factors were explored at subreach scale by using multiple regression models. In the steep subreaches characterized by higher confinement, the degree of channel widening (i.e., width ratio) showed relatively strong relationships with cross-sectional stream power, unit stream power (calculated based on pre-flood channel width), and lateral confinement, with coefficients of multiple determination (R2) ranging between 0.43 and 0.67. The models for the nonsteep subreaches provided a lower explanation of widening variability, with R2 ranging from 0.30 to 0.38; in these reaches a significant although weak relation was found between the degree of channel widening and the hillslope area supplying sediment to the channels. Results indicate that hydraulic variables alone are not sufficient to satisfactorily

  11. Green Infrastructure for Stormwater Control: Gauging its Effectiveness with Community Partners, Summary of EPA GI Reports

    EPA Science Inventory

    This document is a summary of the green infrastructure reports, journal articles, and conference proceedings published to date. This summary will be updated as more reports are completed. The Environmental Protection Agency’s Office of Research and Development has an ambitious ...

  12. Is the work flow model a suitable candidate for an observatory supervisory control infrastructure?

    NASA Astrophysics Data System (ADS)

    Daly, Philip N.; Schumacher, Germán.

    2016-08-01

    This paper reports on the early investigation of using the work flow model for observatory infrastructure software. We researched several work ow engines and identified 3 for further detailed, study: Bonita BPM, Activiti and Taverna. We discuss the business process model and how it relates to observatory operations and identify a path finder exercise to further evaluate the applicability of these paradigms.

  13. Improvements to water purification and sanitation infrastructure may reduce the diarrheal burden in a marginalized and flood prone population in remote Nicaragua

    PubMed Central

    2010-01-01

    Background The isolated northern region of Nicaragua has one of the highest rates of diarrheal disease in Central America. Political and environmental hardships faced by inhabitants of this region are contributing factors to this health inequity. The aim of this study was to assess the relationship between water and latrine infrastructure and the prevalence of diarrhea in this region. Methods A population-based, cross-sectional survey of women of reproductive age was conducted in the Sahsa region of northern Nicaragua in July, 2009. Households were selected by two stage cluster sampling methodology. A questionnaire was administered in Spanish and Miskito with assessment of household and socioeconomic conditions, sanitation practices, and health care access. Diarrhea prevalence differences at the household level over a two week reporting period were estimated with a standardized instrument which included assessment of water treatment and latrine use and maintenance. Results There were 189 women enrolled in the current study. The use of water purification methods, such as chlorine and filters, and latrine ownership were not associated with reduced prevalence of household diarrhea in the two week reporting period. Latrine overflow, however, was associated with an increased prevalence of diarrhea during the same two week period [adjusted prevalence difference and 95% CI: 0.19 (0.03, 0.36)]. Conclusions Simple, low cost interventions that improve water and latrine infrastructure may reduce the prevalence of diarrheal disease in the isolated regions of Nicaragua and Central America. PMID:21143865

  14. Longitudinal Floating Ice Control Structures: A New Concept for Reducing Ice Jam Flood Levels

    DTIC Science & Technology

    1990-09-01

    friction factor is taken as 1.25 based on data from several ice jams I % . ( Beltaos 1983), and the ice properties g = 1.2 and S , = 0.92 are held...as much as Beltaos , S . (1983) River ice jams: Theory, case 8 studies, and applications. Journal of the Hydraulics sign. Journal of Waterway, Port...DOTIC S NOV 15 1990O. 0’~’FL P Longitudinal Floating Ice Control Structures A New Concept for Reducing Ice Jam Flood Levels 00NDarryl J. Calkins

  15. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    USGS Publications Warehouse

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  16. Evaluating resilience of DNP3-controlled SCADA systems against event buffer flooding

    SciTech Connect

    Yan, Guanhua; Nicol, David M; Jin, Dong

    2010-12-16

    The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator device receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communication between control center and data aggregator is asynchronous with the DNP3 communication between data aggregator and relays; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a relay is compromised or spoofed and sends overly many (false) events to the data aggregator. This paper investigates how a real-world SCADA device responds to event buffer flooding. A Discrete-Time Markov Chain (DTMC) model is developed for understanding this. The DTMC model is validated by a Moebius simulation model and data collected on real SCADA testbed.

  17. Cultural Resources Investigation: Boscobel Flood Control Project along Sanders Creek, Grant County, Wisconsin.

    DTIC Science & Technology

    1987-01-19

    6 4. Stone-Arch Bridge over Sanders Creek at Bluff Street .... 8 5. Oak Street Footbridge over Sanders Creek and Flood Area (Survey...Unit 1)....................................... 8 6. Oak Street Footbridge over Sanders Creek and Flood Area (Survey Unit 2...9 7. Superior Street Footbridge over Sanders Creek and Flood Area (Survey Unit 3) ............................... 9 8. LaBelle Street

  18. Flow Focusing as a Control on the Width of Canyons Formed by Outburst Floods

    NASA Astrophysics Data System (ADS)

    Lapotre, M. G.; Lamb, M. P.; Halliday, C. K.

    2012-12-01

    Spectacular canyons exist on the surfaces of Earth and Mars that were carved by ancient outburst megafloods. These canyons often have steep headwalls and were eroded into jointed rock. This suggests that canyon formation is driven by upstream retreat of waterfalls through toppling failure. Discharge reconstructions remain difficult, however, because we do not understand quantitatively the links between canyon formation and canyon morphology. Here we propose that the width of canyon headwalls is set by the shear stress distribution around the rim of the canyon, which governs the propensity for toppling failure, and that this distribution is controlled by focusing of flood water into the canyon head. To test this hypothesis, we performed a series of numerical simulations of 2-D, depth-averaged, turbulent flow using the hydraulic numerical modeling suite ANUGA Hydro and mapped the shear stresses along the rim of canyons of various geometries. The numerical simulations were designed to explore three dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width relative to the normal flow depth, and the Froude number. Preliminary results show that flow focusing at the head of a canyon can lead to heightened shear stresses there compared to the sides of the canyon. Flow focusing is most efficient for subcritical flows with large canyon aspect ratios, suggesting that canyons grow in all directions until they reach a critical length which depends on the Froude number only. Canyons longer than this critical length maintain a uniform width during canyon formation. Earth-analog canyons, where flood depths were constrained from previous paleo-hydraulic studies, show good agreement with our numerical predictions, suggesting that flow focusing may set the width of canyons during megafloods. Model results allow a link between process and form that will enable us to constrain better flood discharges on Earth and Mars, where other robust

  19. Mobility control and scaleup for chemical flooding. Annual report, October 1981-September 1982

    SciTech Connect

    Pope, G.A.

    1984-11-01

    The ongoing objectives of this project are: (1) to determine quantitatively the effects of dispersion, relative permeabilities, apparent viscosity and inaccessible pore volume on micellar/polymer flooding, and (2) to develop numerical simulators which incorporate these and other features of the process, so that mobility control design and scaleup of the micellar/polymer flooding process can be better accomplished. Section 2 of this report includes the results for capillary desaturation experiments for low tension fluids in Berea. These results show that some residual brine remains during microemulsion flooding even at the highest capillary number obtained in this experiment. Section 2 also includes more extensive results from the dispersion and relative permeability experiments. This section also includes data which extends the dispersion and relative permeability results from the case of two-phase flow to include initial results of three-phase flow at steady state. Section 3 is a complete description of our updated simulator. Section 4 describes and gives the results of an oil recovery experiment. Section 5 compares the results of this oil recovery experiment with our simulator. The agreement is the best obtained so far. Section 6 compares our simulator with a Sloss experiment reported by Gupta. Again, the agreement is good and demonstrates the capability of the improved simulator to account for the separation of alcohol and surfactant. Section 7 contains the results of several 2-D areal simulations involving new features of the 2-D simulator reported last year. Section 8 is a list of some of the major conclusions of this simulation research. Section 9 is an SPE paper combining the results of Senol with Walsh, a Ph.D. student of Lake and Schechter. Her polymer experiments were interpreted using Walsh's geochemical simulator. 133 references, 118 figures, 21 tables.

  20. Mobility control and scaleup for chemical flooding. Final report, October 1983-September 1984

    SciTech Connect

    Pope, G.A.

    1986-02-01

    The objectives of this project were: (1) to determine quantitatively the effects of dispersion, relative permeabilities, apparent viscosity and inaccessible pore volume on micellar/polymer flooding, and (2) to develop numerical simulators which incorporate these and other features of the process, so that mobility control design and scaleup of the micellar/polymer flooding process can be better accomplished. This final report is divided into four major parts. Part A contains a rather complete description of our current three-dimensional simulator as well as some of the simulation studies in both one and three dimensions. This report emphasizes the development, testing and use of the three-dimensional version of our chemical flood simulator. Although its development was based on the two-dimensional version of C.H. Hong previously reported, the thre-dimensional version of A. Datta Gupta contains several significant new features in addition to its three dimensional capability as well as a complete incorporation of the latest physical property models used in the current one-dimensional version of T. Satoh. The most significant of these is the improved phase behavior model developed and tested in part by Satoh and in part by Prouvost. Part B of this report contains the theoretical description of this phase behavior model and comparison with our experimental data. Part C contains our most recent three-phase relative permeability data and the tracer data taken during these same experiments along with the theoretical interpretation of these tracer data with a capacitance-dispersion model developed by Mojdeh Delshad. Finally, Part D contains our rheology data on polymer solutions. 141 refs., 150 figs., 23 tabs.

  1. Controls on the breach geometry and flood hydrograph during overtopping of non-cohesive earthen dams

    USGS Publications Warehouse

    Walder, Joseph S.; Iverson, Richard M.; Godt, Jonathan W.; Logan, Matthew; Solovitz, Stephen A.

    2015-01-01

    Overtopping failure of non-cohesive earthen dams was investigated in 13 large-scale experiments with dams built of compacted, damp, fine-grained sand. Breaching was initiated by cutting a notch across the dam crest and allowing water escaping from a finite upstream reservoir to form its own channel. The channel developed a stepped profile, and upstream migration of the steps, which coalesced into a headcut, led to the establishment of hydraulic control (critical flow) at the channel head, or breach crest, an arcuate erosional feature that functions hydraulically as a weir. Novel photogrammetric methods, along with underwater videography, revealed that the retreating headcut maintained a slope near the angle of friction of the sand, while the cross section at the breach crest maintained a geometrically similar shape through time. That cross-sectional shape was nearly unaffected by slope failures, contrary to the assumption in many models of dam breaching. Flood hydrographs were quite reproducible--for sets of dams ranging in height from 0.55 m to 0.98 m--when the time datum was chosen as the time that the migrating headcut intersected the breach crest. Peak discharge increased almost linearly as a function of initial dam height. Early-time variability between flood hydrographs for nominally identical dams is probably a reflection of subtle experiment-to-experiment differences in groundwater hydrology and the interaction between surface water and groundwater.

  2. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

    USGS Publications Warehouse

    Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott

    2011-01-01

    Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not

  3. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon.

    PubMed

    Cross, Wyatt F; Baxter, Colden V; Donner, Kevin C; Rosi-Marshall, Emma J; Kennedy, Theodore A; Hall, Robert O; Kelly, Holly A Wellard; Rogers, R Scott

    2011-09-01

    Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, U.S.A., in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer-resource interactions were not

  4. Mobility Controlled Flooding (MCF) Technology for Enhanced Sweeping and NAPL Remediation in Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Oostrom, M.; Wietsma, T.

    2005-12-01

    Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are bypassed when remedial fluid is injected into heterogeneous systems. The contaminant in the bypassed areas is therefore untouched by the remedial fluid, which can prolong the remediation operations significantly. Methods of forcing fluids into low-permeability flow paths have been developed and widely implemented to solve the heterogeneity-induced bypassing problem encountered during oil recovery in the petroleum industry over the past 40 years. Since the intent of the petroleum reservoir engineers is to control the mobility of the injected fluid in the high-permeable zones so that the fluid can be pushed through the low-permeable zones to contact and mobilize the remaining oil in these zones, this method are referred as mobility controlled flooding (MCF) technology in the petroleum engineering literature. Two methods of mobility control have been developed. One method is to use a water-soluble polymer to increase the viscosity of the injectate so that the in situ pore pressure is raised, and cross-flow between layers with different permeability occurs. The other method is to use surfactant-foam flood to generate foam in high permeable zones in situ; therefore, the injected fluid is forced into the low-permeable areas. A water-soluble polymer, xanthan gum, and surfactant MA-80 was used to formulate MCF remedial fluids to remediate nonaqueous phase liquid (NAPL) contaminated heterogonous systems in two-dimensional (2-D) flow-cell (40 by 50 by 5 cm) experiments. It was demonstrated that the MCF technology is capable of sweeping the low-permeability flow paths. The bypassing of low-permeable zones was significantly reduced. The removal of NAPL trapped in the low-perm zones was remarkable enhanced attributed to more efficient NAPL mobilization. The results also indicate that the MCF technology is able to manage the fluid density effects. The

  5. Predictive Methods for Real-Time Control of Flood Operation of a Multireservoir System: Methodology and Comparative Study

    NASA Astrophysics Data System (ADS)

    Niewiadomska-Szynkiewicz, Ewa; Malinowski, Krzysztof; Karbowski, Andrzej

    1996-04-01

    Predictive methods for real-time flood operation of water systems consisting of reservoirs located in parallel on tributaries to the main river are presented and discussed. The aspect of conflicting individual goals of the local decision units and other objectives important from an overall point of view is taken into account. The particular attention is focused on hierarchical control structure which provides framework for organization of an on-line reservoir management problem. The important factor involved in flood control the uncertainty with respect to future inflows is taken into consideration. A case study of the upper Vistula river basin system in the southern part of Poland is presented. Simulation results based on 11 historical floods are briefly described and discussed.

  6. River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China.

    PubMed

    Cui, Baoshan; Wang, Chongfang; Tao, Wendong; You, Zheyuan

    2009-08-01

    Vulnerability of river channels to urbanization has been lessened by the extensive construction of artificial water control improvements. The challenge, however, is that traditional engineering practices on isolated parts of a river may disturb the hydrologic continuity and interrupt the natural state of ecosystems. Taking the Xiaoqinghe River basin as a whole, we developed a river channel network design to mitigate river risks while sustaining the river in a state as natural as possible. The river channel risk from drought during low-flow periods and flood during high-flow periods as well as the potential for water diversion were articulated in detail. On the basis of the above investigation, a network with "nodes" and "edges" could be designed to relieve drought hazard and flood risk respectively. Subsequently, the shortest path algorithm in the graph theory was applied to optimize the low-flow network by searching for the shortest path. The effectiveness assessment was then performed for the low-flow and high-flow networks, respectively. For the former, the network connectedness was evaluated by calculating the "gamma index of connectivity" and "alpha index of circuitry"; for the latter, the ratio of flood-control capacity to projected flood level was devised and calculated. Results show that the design boosted network connectivity and circuitry during the low-flow periods, indicating a more fluent flow pathway, and reduced the flood risk during the high-flow periods.

  7. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  8. Parcel-scale urban coastal flood mapping: Leveraging the multi-scale CoSMoS model for coastal flood forecasting

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Barnard, P. L.; Sanders, B. F.

    2011-12-01

    California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for

  9. Improving riparian wetland conditions through evaluation of infiltration and drainage behavior during and after a controlled flood event

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Fisher, A. T.; Roche, J. W.

    2009-12-01

    We are conducting an observational and modeling study of a riparian wetland system adjacent to the Tuolumne River, downstream of the Hetch Hetchy Reservoir in Yosemite National Park. The study area is located along the bottom of Poopenaut Valley, a 25 hectare region that contains a diverse mixture of soil, vegetation, and wetland types. The Hetch Hetchy reservoir is part of a water supply system for 2.4 million residents in the San Francisco Bay area. Spring and summer releases of excess water from the reservoir can benefit riparian wetlands within the Poopenaut Valley, but little is known about how shallow wetland soils in the valley respond to rapid inundation and exposure associated with a controlled flood hydrograph. Instruments were deployed within wetlands, along and adjacent to a 300-m stretch of the Tuolumne River in the Poopenaut Valley, to assess soil and shallow wetland response to a controlled flood in Spring 2009. Instruments included stream stage recorders, shallow piezometers, water content sensors, and vertical thermal probe arrays used to assess streambed seepage. Instruments were arranged in vertical clusters along profiles oriented perpendicular and parallel to the river channel. The controlled flood lasted for about four weeks, and increased channel discharge from about 4 cms to a peak near 225 cms, with typical flood discharge of 30 cms. Water content sensors show the influence of soil inundation and penetration of a wetting front within the upper 1 m of soil. Piezometers show a water table response to shallow ground water recharge. Thermal probes show river water seeping into the streambed at the upstream end of the instrumented stretch, and returning to the channel at the downstream end of the stretch, prior to the flood. During the flood event, stream seepage was downward at both locations. We are completing soil grain size analyses in preparation for numerical modeling of unsaturated-saturated conditions to assess controls on the

  10. Advanced Neuropsychological Diagnostics Infrastructure (ANDI): A Normative Database Created from Control Datasets

    PubMed Central

    de Vent, Nathalie R.; Agelink van Rentergem, Joost A.; Schmand, Ben A.; Murre, Jaap M. J.; Huizenga, Hilde M.

    2016-01-01

    In the Advanced Neuropsychological Diagnostics Infrastructure (ANDI), datasets of several research groups are combined into a single database, containing scores on neuropsychological tests from healthy participants. For most popular neuropsychological tests the quantity, and range of these data surpasses that of traditional normative data, thereby enabling more accurate neuropsychological assessment. Because of the unique structure of the database, it facilitates normative comparison methods that were not feasible before, in particular those in which entire profiles of scores are evaluated. In this article, we describe the steps that were necessary to combine the separate datasets into a single database. These steps involve matching variables from multiple datasets, removing outlying values, determining the influence of demographic variables, and finding appropriate transformations to normality. Also, a brief description of the current contents of the ANDI database is given. PMID:27812340

  11. 33 CFR 211.6 - Rights which may be granted by the Secretary of the Army in river and harbor and flood control...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rights which may be granted by the Secretary of the Army in river and harbor and flood control property. 211.6 Section 211.6... and flood control property. (a) Leases. (1) The Secretary of the Army is authorized, whenever he...

  12. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  13. General Design Memorandum. Phase I and Environmental Impact Statement for Flood Control and Related Purposes, Sheyenne River, North Dakota.

    DTIC Science & Technology

    1982-01-01

    not increase down- stream flood problems and that existing drainage projects be reassessed to determine if additional controls are needed. The North...More Land Treatment Use of more land treatment measures throughout the basin could provide water quality and erosion control benefits. Encouragement of...National Grasslands is managed under the multiple-use concept with emphasis on grazing and erosion control . In the future, increased emphasis will be

  14. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  15. Lidar-based mapping of flood control levees in south Louisiana

    USGS Publications Warehouse

    Thatcher, Cindy; Lim, Samsung; Palaseanu-Lovejoy, Monica; Danielson, Jeffrey J.; Kimbrow, Dustin R.

    2016-01-01

    Flood protection in south Louisiana is largely dependent on earthen levees, and in the aftermath of Hurricane Katrina the state’s levee system has received intense scrutiny. Accurate elevation data along the levees are critical to local levee district managers responsible for monitoring and maintaining the extensive system of non-federal levees in coastal Louisiana. In 2012, high resolution airborne lidar data were acquired over levees in Lafourche Parish, Louisiana, and a mobile terrestrial lidar survey was conducted for selected levee segments using a terrestrial lidar scanner mounted on a truck. The mobile terrestrial lidar data were collected to test the feasibility of using this relatively new technology to map flood control levees and to compare the accuracy of the terrestrial and airborne lidar. Metrics assessing levee geometry derived from the two lidar surveys are also presented as an efficient, comprehensive method to quantify levee height and stability. The vertical root mean square error values of the terrestrial lidar and airborne lidar digital-derived digital terrain models were 0.038 m and 0.055 m, respectively. The comparison of levee metrics derived from the airborne and terrestrial lidar-based digital terrain models showed that both types of lidar yielded similar results, indicating that either or both surveying techniques could be used to monitor geomorphic change over time. Because airborne lidar is costly, many parts of the USA and other countries have never been mapped with airborne lidar, and repeat surveys are often not available for change detection studies. Terrestrial lidar provides a practical option for conducting repeat surveys of levees and other terrain features that cover a relatively small area, such as eroding cliffs or stream banks, and dunes.

  16. Controls on the Breach Geometry and Flood Hydrograph During Overtopping of Non-cohesive Earthen Dams

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Iverson, R. M.; Godt, J.; Logan, M.; Solovitz, S.

    2015-12-01

    hence the flood hydrograph, are primarily controlled not by shear stress at the breach crest, but rather by headcut retreat, which is known to depend upon both and tailwater depth. Because slope failures into the breach channel cause temporary tailwater impoundment, the actual mechanism by which slope failures affect the flood hydrograph is thus identified.

  17. Managing the Arroyo Seco for Flood Prevention, Erosion Control, Waterway and Habitat Restoration

    SciTech Connect

    Sanchez, L; Wang, C; Laurant, J

    2003-02-06

    One of the most important tasks for a site facility manager is to ensure that appropriate channel erosion controls are applied to on-site drainage channels. These erosion controls must minimize risks to the public and structures. Water and sediment loads commonly originate from off-site sources and many of the traditional reactionary measures (installing rip-rap or some other form of bed or bank armor) simply transfer or delay the problem. State and federal agency requirements further complicate the management solution. One case in point is the Arroyo Seco, an intermittent stream that runs along the southwest corner of the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. In 2001, LLNL contracted Questa Engineering Corporation to conduct hydraulic, geomorphic, and biological investigations and to prepare an alternatives and constraints analysis. From these investigations, LLNL has selected a water management plan that encompasses overall flood prevention, erosion control, and waterway and habitat restoration and enhancement elements. The most unique aspect of the Arroyo Seco management plan is its use of non-traditional and biotechnical techniques.

  18. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    NASA Astrophysics Data System (ADS)

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-05-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  19. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    USGS Publications Warehouse

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-01-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    SciTech Connect

    Verma, Puneet; Casey, Dan

    2011-03-29

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion engine shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).

  1. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  2. Quantification of increased flood risk due to global climate change for urban river management planning.

    PubMed

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  3. Beaver dams, hydrological thresholds, and controlled floods as a management tool in a desert riverine ecosystem, Bill Williams River, Arizona

    USGS Publications Warehouse

    Andersen, D.C.; Shafroth, P.B.

    2010-01-01

    Beaver convert lotic stream habitat to lentic through dam construction, and the process is reversed when a flood or other event causes dam failure. We investigated both processes on a regulated Sonoran Desert stream, using the criterion that average current velocity is < 0.2 m s-1 in a lentic reach. We estimated temporal change in the lotic:lentic stream length ratio by relating beaver pond length (determined by the upstream lentic-lotic boundary position) to dam size, and coupling that to the dam-size frequency distribution and repeated censuses of dams along the 58-km river. The ratio fell from 19:1 when no beaver dams were present to < 3:1 after 7 years of flows favourable for beaver. We investigated the dam failure-flood intensity relationship in three independent trials (experimental floods) featuring peak discharge ranging from 37 to 65 m3 s-1. Major damage (breach ??? 3-m wide) occurred at ??? 20% of monitored dams (n = 7-86) and a similar or higher proportion was moderately damaged. We detected neither a relationship between dam size and damage level nor a flood discharge threshold for initiating major damage. Dam constituent materials appeared to control the probability of major damage at low (attenuated) flood magnitude. We conclude that environmental flows prescribed to sustain desert riparian forest will also reduce beaver-created lentic habitat in a non-linear manner determined by both beaver dam and flood attributes. Consideration of both desirable and undesirable consequences of ecological engineering by beaver is important when optimizing environmental flows to meet ecological and socioeconomic goals. ?? 2010 John Wiley & Sons, Ltd.

  4. Software and cyber-infrastructure development to control the Observatorio Astrofísico de Javalambre (OAJ)

    NASA Astrophysics Data System (ADS)

    Yanes-Díaz, A.; Antón, J. L.; Rueda-Teruel, S.; Guillén-Civera, L.; Bello, R.; Jiménez-Mejías, D.; Chueca, S.; Lasso-Cabrera, N. M.; Suárez, O.; Rueda-Teruel, F.; Cenarro, A. J.; Cristobal-Hornillos, D.; Marin-Franch, A.; Luis-Simoes, R.; López-Alegre, G.; Rodríguez-Hernández, M. A. C.; Moles, M.; Ederoclite, A.; Varela, J.; Vazquez Ramió, H.; Díaz-Martín, M. C.; Iglesias-Marzoa, R.; Maicas, N.; Lamadrid, J. L.; Lopez-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2014-07-01

    The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys with two unprecedented telescopes of unusually large fields of view: the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. CEFCA engineering team has been designing the OAJ control system as a global concept to manage, monitor, control and maintain all the observatory systems including not only astronomical subsystems but also infrastructure and other facilities. In order to provide quality, reliability and efficiency, the OAJ control system (OCS) design is based on CIA (Control Integrated Architecture) and OEE (Overall Equipment Effectiveness) as a key to improve day and night operation processes. The OCS goes from low level hardware layer including IOs connected directly to sensors and actuators deployed around the whole observatory systems, including telescopes and astronomical instrumentation, up to the high level software layer as a tool to perform efficiently observatory operations. We will give an overview of the OAJ control system design and implementation from an engineering point of view, giving details of the design criteria, technology, architecture, standards, functional blocks, model structure, development, deployment, goals, report about the actual status and next steps.

  5. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  6. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene

    2011-01-01

    This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.

  7. Epic Flooding in Georgia, 2009

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.

    2010-01-01

    Metropolitan Atlanta-September 2009 Floods The epic floods experienced in the Atlanta area in September 2009 were extremely rare. Eighteen streamgages in the Metropolitan Atlanta area had flood magnitudes much greater than the estimated 0.2-percent (500-year) annual exceedance probability. The Federal Emergency Management Agency (FEMA) reported that 23 counties in Georgia were declared disaster areas due to this flood and that 16,981 homes and 3,482 businesses were affected by floodwaters. Ten lives were lost in the flood. The total estimated damages exceed $193 million (H.E. Longenecker, Federal Emergency Management Agency, written commun., November 2009). On Sweetwater Creek near Austell, Ga., just north of Interstate 20, the peak stage was more than 6 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. Flood magnitudes in Cobb County on Sweetwater, Butler, and Powder Springs Creeks greatly exceeded the estimated 0.2-percent (500-year) floods for these streams. In Douglas County, the Dog River at Ga. Highway 5 near Fairplay had a peak stage nearly 20 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. On the Chattahoochee River, the U.S. Geological Survey (USGS) gage at Vinings reached the highest level recorded in the past 81 years. Gwinnett, De Kalb, Fulton, and Rockdale Counties also had record flooding.South Georgia March and April 2009 FloodsThe March and April 2009 floods in South Georgia were smaller in magnitude than the September floods but still caused significant damage. No lives were lost in this flood. Approximately $60 million in public infrastructure damage occurred to roads, culverts, bridges and a water treatment facility (Joseph T. McKinney, Federal Emergency Management Agency, written commun., July 2009). Flow at the Satilla River near Waycross, exceeded the 0.5-percent (200-year) flood. Flows at seven other stations in South Georgia exceeded the 1-percent (100-year) flood.

  8. Using regression heteroscedasticity to model trends in the mean and variance of floods

    NASA Astrophysics Data System (ADS)

    Hecht, Jory; Vogel, Richard

    2015-04-01

    Changes in the frequency of extreme floods have been observed and anticipated in many hydrological settings in response to numerous drivers of environmental change, including climate, land cover, and infrastructure. To help decision-makers design flood control infrastructure in settings with non-stationary hydrological regimes, a parsimonious approach for detecting and modeling trends in extreme floods is needed. An approach using ordinary least squares (OLS) to fit a heteroscedastic regression model can accommodate nonstationarity in both the mean and variance of flood series while simultaneously offering a means of (i) analytically evaluating type I and type II trend detection errors, (ii) analytically generating expressions of uncertainty, such as confidence and prediction intervals, (iii) providing updated estimates of the frequency of floods exceeding the flood of record, (iv) accommodating a wide range of non-linear functions through ladder of powers transformations, and (v) communicating hydrological changes in a single graphical image. Previous research has shown that the two-parameter lognormal distribution can adequately model the annual maximum flood distribution of both stationary and non-stationary hydrological regimes in many regions of the United States. A simple logarithmic transformation of annual maximum flood series enables an OLS heteroscedastic regression modeling approach to be especially suitable for creating a non-stationary flood frequency distribution with parameters that are conditional upon time or physically meaningful covariates. While heteroscedasticity is often viewed as an impediment, we document how detecting and modeling heteroscedasticity presents an opportunity for characterizing both the conditional mean and variance of annual maximum floods. We introduce an approach through which variance trend models can be analytically derived from the behavior of residuals of the conditional mean flood model. Through case studies of

  9. Controls on Flood Event Frequencies Recorded in Stalagmites from Cave KNI-51, Australian Tropics

    NASA Astrophysics Data System (ADS)

    Denniston, Rhawn; Gonzales, Angelique; Villarini, Gabriele; Polyak, Victor; Asmerom, Yemane; Wanamaker, Alan, Jr.; Lachniet, Matthew; Ummenhofer, Caroline; Cugley, John; Woods, David; Humphreys, William

    2016-04-01

    Extreme rainfall events in the central Australia tropics are largely driven by tropical cyclones and the Australian summer monsoon, both of which are sensitive to external forcing. To better understand baseline variability in extreme rainfall, we produced a record of cave flooding events spanning the last two millennia from a suite of precisely-dated and fast-growing aragonite stalagmites from cave KNI-51 (Denniston et al., 2015, PNAS, 112, 4576). During cave flooding events, sediment deposited on stalagmite surfaces becomes preserved within the stalagmite when floodwaters recede and stalagmite growth resumes. Ages of individual flood events are determined using growth models constructed from linear interpolation of 230Th-dated intervals of stalagmite carbonate (2 s.d. errors of ±1-30 yr in most cases). The robustness of this stalagmite flood record was tested, in part, by comparing accumulations of sediment layers in coeval stalagmites. Absolute values and temporal trends in flood recurrence rates were generally quite similar between stalagmites, arguing that each stalagmite was equally sensitive to flood events. We have now extended this cave flooding record back to 3600 yr BP using three additional stalagmites, each of which contains multi-decadal to centennial variations in flood frequency. The longest duration (1000 yr) and tallest (1.1m) of these stalagmites, KNI-51-7, is marked by a secular trend toward reduced flood occurrence rates, with the 30 yr running mean of floods/yr reaching 0.0, a value lower than in any other of the other nine samples analyzed in this study. However, KNI-51-N, which overlaps with KNI-51-7 for 300 yr, contains nearly identical sub-centennial variations to KNI-51-7 but KNI-51-N does not trend toward lower values. We argue that the decreasing average number of flood events with time in KNI-51-7 is a result of the stalagmite having grown above average flood height, thereby restricting its ability to record more frequent, smaller

  10. An infrastructure with a unified control plane to integrate IP into optical metro networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor

    2012-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.

  11. Development of improved-mobility control agents for surfactant/polymer flooding. Final report

    SciTech Connect

    Martin, F D; Donaruma, L G; Hatch, M J

    1982-02-23

    During the first year, the initial phase of the project included a literature survey of surfactant/polymer flooding, a summary of the current status of DOE-sponsored polymer and surfactant/polymer field projects, and a survey of oil industry personnel regarding difficulties encountered in the use of commercially available polymers. Major problems in the use of partially hydrolyzed polyacrylamides were identified. Purpose of Phase 1 was to delineate the strengths and weaknesses of commercial polymers. Laboratory tests in the second phase then were designed to measure and compare the factors considered to be of greatest importance. During the second year of the project, the Phase 2 baseline screening tests were completed, and Phase 3 work commenced on the synthesis, characterization, and preliminary screening of new or modified polymers. During the final year of the project, the preliminary screening tests were completed and polymers of interest were evaluated in more detail. This final report contains highlights of the significant accomplishments of the project and presents our conclusions regarding the development of improved mobility control agents. The work has shown that moderate changes in the basic structure of acrylamide polymers can produce significant effects on performance in oil recovery applications. Better viscosity retention in brine can be obtained by stiffening the polymer chain of acrylamide-type materials. Enhanced shear stability can be attained by increasing the polymer hydrophilicity.

  12. Effects of a Kentucky flood-control reservoir on macroinvertebrates in the tailwater

    USGS Publications Warehouse

    Novotny, J.F.

    1985-01-01

    The effects of a flood-control reservoir on downstream macroinvertebrates were assessed by comparing the tailwater community with that of a natural stream. Samples were collected 1.6 and 21.1 km below Barren River Lake dam in 1979, 1980, and 1981 and in a reservoir tributary in 1980 and 1981. An indication of environmental stress in the macroinvertebrate community was observed at both tailwater stations, whereas macroinvertebrates in the natural tributary stream had the characteristics commonly associated with a ‘healthy’ community. Densities of macroinvertebrates in tailwaters were highest during periods of low-stable flows and lowest during fluctuating and high-stable flows. Changes in temperature cycles and water quality were also considered factors in reducing macroinvertebrate abundance in the tailwater. Dominant macroinvertebrate taxa in tailwaters were primarily small organisms with a high tolerance for dynamic living conditions. Of these, aquatic Diptera, Oligochaeta, Caenis, Cheumatopsyche, and Planariidae were most common. The effects of reservoir discharge were most evident near the dam, where macroinvertebrate densities were relatively high and taxonomic diversity was low. Downstream, the impact of the reservoir was moderated, but recovery was judged incomplete.

  13. Tonawanda Creek, Genesee County, New York, Regional Flood Control. Final Environmental Impact Statement.

    DTIC Science & Technology

    1981-11-01

    several hours. Turbidity and 3uspended solids concentrations lower than those necessary to cause death or physiological injury may also produce other...water, DC proved to be more effective since the fish were attracted to the anode and could be seen and captured by the netters . One person carried the...intermittent flooding. Teskey and Hinckley (1977)1/ give a good review of both short-term and long-term impacts of flooding on vegetation. Physiological

  14. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    PubMed

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders.

  15. Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    SciTech Connect

    Lehman, Tom; Ghani, Nasir; Boyd, Eric

    2010-08-31

    At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.

  16. Response of ground-water levels of flood control operations in three basins, south-eastern Florida

    USGS Publications Warehouse

    Pitt, William A.J.

    1974-01-01

    Three basins in southeastern Florida were investigated to determine the changes in ground-water levels and canal flows that occurred in response to operation of coastal water-control structures in each canal. All three basins are underlain by the Biscayne aquifer. They are, Snapper Creek Canal basin, where the Biscayne aquifer is of high permeability; the Snake Creek Canal basin, where the aquifer is of moderate permeability; and the Pompano-Cypress Canal basin, where the aquifer is of low permeability. In each basin, drainage is a function of permeability; thus, where the permeability of the aquifer is high, drainage is excellent. The coastal water-conrol structures are intended to afford flood protection in the three basins. In general the control operation criteria for flood control in newly developing areas in southeastern Florida do not provide adequate protection from flooding because of the time required for the aquifer to respond to changes in the controls. Adequate protection would require increasing the density of secondary drainage canals, but this could achieved only by reducing the quantity of water available for recharging those segments of the Biscayne aquifer adjacent to the canals. (Woodrad-USGS)

  17. Flow Control of Hazardous Contaminants to Protect Evacuees in Civil Infrastructure Emergency Scenarios

    NASA Astrophysics Data System (ADS)

    Rimer, Sara

    2016-11-01

    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research develops a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. A computational fluid dynamics model is developed of a simplified public space characterized by a long conduit (e.g. airport terminal) with unidirectional ambient flow that is capable of detecting and mitigating the hazardous contaminant (via boundary ports) over several time horizons using model predictive control optimization. An agent-based model is developed to simulate 'agents' (i.e. building occupants) as they evacuate a public space. The agent-based evacuation model is coupled with the computational flow control model such that agents must interact with a dynamic, threatening environment. Results demonstrate how flow control can be achieved via feedback sensing of location of occupants with desire to minimize contaminant exposure.

  18. Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    SciTech Connect

    Summerhill, Richard

    2009-08-14

    There were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, o Heterogeneous DataPlane Testing, o Simulation, o Project Publications, Reports, and Presentations.

  19. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  20. A grassed waterway and earthen dams to control muddy floods from a cultivated catchment of the Belgian loess belt

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Vandaele, Karel; van Wesemael, Bas; Bielders, Charles L.

    2008-08-01

    Muddy floods, i.e. runoff from cultivated areas carrying large quantities of soil, are frequent and widespread in the European loess belt. They are mainly generated in dry zero-order valleys and are nowadays considered as the most likely process transferring material eroded from cultivated hillslopes during the Holocene to the flood plain. The huge costs of muddy flood damages justify the urgent installation of control measures. In the framework of the 'Soil Erosion Decree' of the Belgian Flemish region, a 12 ha-grassed waterway and three earthen dams have been installed between 2002-2004 in the thalweg of a 300-ha cultivated dry valley in the Belgian loess belt. The measures served their purpose by preventing any muddy flood in the downstream village, despite the occurrence of several extreme rainfall events (with a maximum return period of 150 years). The catchment has been intensively monitored from 2005-2007 and 39 runoff events were recorded in that period. Peak discharge (per ha) was reduced by 69% between the upstream and the downstream extremities of the grassed waterway (GWW). Furthermore, runoff was buffered for 5-12 h behind the dams, and the lag time at the outlet of the catchment was thereby increased by 75%. Reinfiltration was also observed within the waterway, runoff coefficients decreasing by a mean of 50% between both extremities of the GWW. Sediment discharge was also reduced by 93% between the GWW's inflow and the outlet. Before the installation of the control measures, specific sediment yield (SSY) of the catchment reached 3.5 t ha - 1 yr - 1 and an ephemeral gully was observed nearly each year in the catchment. Since the control measures have been installed, no (ephemeral) gully has developed and the SSY of the catchment dropped to a mean of 0.5 t ha - 1 yr - 1 . Hence, sediment transfer from the cultivated dry valley to the alluvial plain should dramatically decrease. Total cost of the control measures that are built for a 20 year-period is

  1. Defense Infrastructure: DOD Should Improve Reporting and Communication on Its Corrosion Prevention and Control Activities

    DTIC Science & Technology

    2013-05-01

    profit corporation, using a method approved by the Corrosion Office’s Corrosion Prevention and Control Integrated Product Team. We did not, however...private, not-for- profit corporation that provides management consulting, research, and analysis to governments and other nonprofit organizations. In...Utilizing IR Drop Free Sensors and In-Situ Data Acquisition for Cross Country Pipelines 13.3 11.4 18 FNV04 Modeling of Advanced Waterfront Metallic

  2. Geomorphic response to an extreme flood in two mountain rivers (northeastern Sardinia, Italy): the role of geomorphic and hydraulic controlling factors

    NASA Astrophysics Data System (ADS)

    Righini, Margherita; Surian, Nicola; Wohl, Ellen; Amponsah, William; Marchi, Lorenzo; Borga, Marco

    2016-04-01

    Geomorphic response to an extreme flood in two mountain rivers (northeastern Sardinia, Italy): the role of geomorphic and hydraulic controlling factors Margherita Righini (1), Nicola Surian (1), Ellen Wohl (2), William Amponsah (3, 4), Lorenzo Marchi (3), Marco Borga (4) (1) Department of Geosciences, University of Padova, Italy, (2) Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA, (3) CNR IRPI, Padova, Italy, (4) Department of Land, Environment, Agriculture and Forestry, University of Padova, Italy. The investigation of geomorphic effectiveness of extreme floods is crucial to improve tools for assessing channel dynamics and our capability of forecasting geomorphological hazard. This work deals with geomorphic response of two mountain rivers in the Posada catchment (northeastern Sardinia, Italy), considering a range of morphological (i.e., lateral channel confinement, channel gradient, channel sinuosity, sediment sources, and vegetation) and hydraulic variables (i.e., cross-sectional stream power, unit stream power, flow duration and total energy expenditure) as possible controlling factors. On November 18th 2013, northeastern Sardinia was affected by an extreme meteorological event with hourly rainfall intensities up to 100 mm/h and a peak in rain accumulation up to 450 mm in 24 hours, with 18 casualties and damages to infrastructure and buildings. In the Posada and Mannu di Bitti Rivers, the geomorphic response (i.e., bank erosion, channel aggradation and incision, vegetation and wood dynamics, hillslope failure) was analyzed at different spatial scales. The observed dominant geomorphic change was channel widening. Therefore, channel width changes have been analyzed in detail by remote sensing and GIS tools integrated by field surveys. The study focuses on reaches (i.e., 22.5 km in the Posada River, upstream of Maccheronis dam; 18.2 km in the Mannu di Bitti River) affected by evident and significant geomorphic responses in terms

  3. Flood control project selection using an interval type-2 entropy weight with interval type-2 fuzzy TOPSIS

    NASA Astrophysics Data System (ADS)

    Zamri, Nurnadiah; Abdullah, Lazim

    2014-06-01

    Flood control project is a complex issue which takes economic, social, environment and technical attributes into account. Selection of the best flood control project requires the consideration of conflicting quantitative and qualitative evaluation criteria. When decision-makers' judgment are under uncertainty, it is relatively difficult for them to provide exact numerical values. The interval type-2 fuzzy set (IT2FS) is a strong tool which can deal with the uncertainty case of subjective, incomplete, and vague information. Besides, it helps to solve for some situations where the information about criteria weights for alternatives is completely unknown. Therefore, this paper is adopted the information interval type-2 entropy concept into the weighting process of interval type-2 fuzzy TOPSIS. This entropy weight is believed can effectively balance the influence of uncertainty factors in evaluating attribute. Then, a modified ranking value is proposed in line with the interval type-2 entropy weight. Quantitative and qualitative factors that normally linked with flood control project are considered for ranking. Data in form of interval type-2 linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. Study is considered for the whole of Malaysia. From the analysis, it shows that diversion scheme yielded the highest closeness coefficient at 0.4807. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the diversion scheme recorded the first rank among five causes.

  4. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferre, T. P. A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  5. Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection.

    PubMed

    Máthé, Koppány; Buşoniu, Lucian

    2015-06-25

    Unmanned aerial vehicles (UAVs) have gained significant attention in recent years. Low-cost platforms using inexpensive sensor payloads have been shown to provide satisfactory flight and navigation capabilities. In this report, we survey vision and control methods that can be applied to low-cost UAVs, and we list some popular inexpensive platforms and application fields where they are useful. We also highlight the sensor suites used where this information is available. We overview, among others, feature detection and tracking, optical flow and visual servoing, low-level stabilization and high-level planning methods. We then list popular low-cost UAVs, selecting mainly quadrotors. We discuss applications, restricting our focus to the field of infrastructure inspection. Finally, as an example, we formulate two use-cases for railway inspection, a less explored application field, and illustrate the usage of the vision and control techniques reviewed by selecting appropriate ones to tackle these use-cases. To select vision methods, we run a thorough set of experimental evaluations.

  6. The Landscape Evolution Observatory: A large-scale controllable infrastructure to study coupled Earth-surface processes

    NASA Astrophysics Data System (ADS)

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferre, T. P. A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-09-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  7. Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection

    PubMed Central

    Máthé, Koppány; Buşoniu, Lucian

    2015-01-01

    Unmanned aerial vehicles (UAVs) have gained significant attention in recent years. Low-cost platforms using inexpensive sensor payloads have been shown to provide satisfactory flight and navigation capabilities. In this report, we survey vision and control methods that can be applied to low-cost UAVs, and we list some popular inexpensive platforms and application fields where they are useful. We also highlight the sensor suites used where this information is available. We overview, among others, feature detection and tracking, optical flow and visual servoing, low-level stabilization and high-level planning methods. We then list popular low-cost UAVs, selecting mainly quadrotors. We discuss applications, restricting our focus to the field of infrastructure inspection. Finally, as an example, we formulate two use-cases for railway inspection, a less explored application field, and illustrate the usage of the vision and control techniques reviewed by selecting appropriate ones to tackle these use-cases. To select vision methods, we run a thorough set of experimental evaluations. PMID:26121608

  8. Crash tests for forward-looking flood control in the city of Zürich (Switzerland)

    NASA Astrophysics Data System (ADS)

    Zappa, M.; Andres, N.; Kienzler, P.; Näf-Huber, D.; Marti, C.; Oplatka, M.

    2015-06-01

    Floods in the city of Zürich (Switzerland) were already reported in the 13th century. The most severe threat are floods from the Sihl river (336 km2, including also an hydropower reservoir) with peaks exceeding 350 m3 s-1. An assessment using a rainfall-runoff model has been completed to evaluate extreme flood situations by combining 18 precipitation scenarios with different initial conditions. These scenarios identified deficits for the safety of Zürich. For the improvement of flood management several measures are possible. Crash-tests with 41 472 combinations of measures and scenarios have been evaluated. According to the results, the spillway channel option in the downstream reach of the Sihl is a promising structural measure to ensure flood relief for Zürich. Lowering the artificial reservoir lake before the event consistently increases safety also in the upstream part, but causes financial losses in terms of hydroelectricity. The combination of measures can lead to an optimal safety also in case of unfavourable initial conditions. Pending questions concern the costs, political decisions and the environmental sustainability.

  9. Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure

    PubMed Central

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956

  10. Master-slave control scheme in electric vehicle smart charging infrastructure.

    PubMed

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging.

  11. Long-term flood controls on semi-arid river form: evidence from the Sabie and Olifants rivers, eastern South Africa

    NASA Astrophysics Data System (ADS)

    Heritage, G.; Tooth, S.; Entwistle, N.; Milan, D.

    2015-03-01

    Rivers in the Kruger National Park, eastern South Africa, are characterised by bedrock-influenced "macrochannels" containing variable alluvial thicknesses and riparian vegetation assemblages. Evidence from the Sabie and Olifants rivers suggests that flows up to moderate floods (<3500 m3 s-1) tend to result in net alluviation, with sediments gradually covering the underlying bedrock. More extreme floods strip alluvium and erode bedrock, effectively exerting the primary control over long-term river morphologic development. On the Olifants River, post-flood aerial LIDAR imagery reveals that the 2012 extreme flood (~14000 m3 s-1) resulted in extensive stripping of stored alluvial sediment, exposing and eroding the underlying weathered bedrock. On the Sabie River, preliminary optically stimulated luminescence ages for remnant alluvium are all less than 1000 years, highlighting typical timescales of sediment storage. Together, these results suggest that while periods of general alluviation occur on these systems, long-term river development results from extreme flood-generated bedrock erosion.

  12. Effect of multiyear drought on upland sediment yield and subsequent impacts on flood control reservoir storage

    NASA Astrophysics Data System (ADS)

    Dunbar, John A.; Allen, Peter M.; Bennett, Sean J.

    2010-05-01

    Since the early 1950s, the U.S. Soil Conservation Service (SCS) and later the U.S. Department of Agriculture Natural Resources Conservation Service has built over 11,000 flood control reservoirs (FCR) in 47 states. FCR built in Texas and Oklahoma in the early 1950s to mid-1950s were impounded during the most severe drought on record in the region. In this study, the sediment trapped in FCR is used to reconstruct the variation in sediment yield through the drought years to the present. New sediment surveys of four FCR in McCulloch County, Texas, are combined with three previous surveys by the SCS. The new surveys are conducted using acoustic profiling to map water depth and sediment thickness in submerged areas of the reservoirs and real-time kinematic GPS in the dry areas. Sediment coring is used to determine sediment dry bulk density. The survey results are used to construct a composite history of the normalized sediment yield for the study area. Normalized sediment yield is the annual sediment yield normalized by the soil erodability factor K and the combined slope length and steepness factor LS of the watershed. The results indicate that sediment yield was lowest during the relatively drought-free period from 1971 to 2007, averaging 4.2 t/ha/yr/unit K/unit LS and over 70 times higher during the early part of the 1950s drought from 1951 to 1953, averaging 300.3 t/ha/yr/unit K/unit LS. These results have important implications for predicting the remaining useful life of FCR in the region and planning for future droughts.

  13. Mobility control in oil recovery by chemical flooding: State-of-the-art review: Topical report. [177 references

    SciTech Connect

    Gao, H.W.

    1987-01-01

    Mobility control in oil recovery by chemical flooding (polymer, micellar-polymer, and alkaline-polymer) can be achieved through the use of low-concentration water-soluble polymers in water or in chemical slugs. Since the late 1950's, water-soluble polymers have been studied extensively in laboratories by many researchers and widely used in many chemical flooding projects to improve sweep efficiency and increase ultimate oil recovery. Effective use of polymers as mobility control agents requires the understanding of the stability of polymers and their rheological behavior in reservoirs. An overview of the scientific literature on the application of water-soluble polymers in enhanced oil recovery (EOR) is presented. The processes, factors, and mechanisms that influence the stability of polymers and those that cause a reduction in water mobility are discussed. Existing knowledge of polymer flow behavior in porous media, and of surfactant-polymer interactions is reviewed. Also discussed are the case histories of 23 chemical flooding field projects. 177 refs., 6 figs., 5 tabs.

  14. Evaluation method to floodwater amount of difficult control and utilization in flood season for hyperconcentration rivers and its application

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The severe soil erosion in the Chinese Loess Plateau has resulted in high sediment concentration in runoff, which can cause tremendous pressure to the development and utilization of regional floodwater resources as well as the regional flood control and disaster mitigation. The floodwater amount of difficult control and utilization in flood season (FADCUFS) is an important part of the available amount of surface water resources. It also has a critical role in the sustainable development of water resources, especially for those hyperconcentration rivers (HRs) in the Loess Plateau. The evaluation of FADCUFS for HRs is an important issue in the field of hydrology and water resources. However, the understandings of its connotation, evaluation method, and nature are limited. Combined engineering measures with non-engineering ones, the evaluation method of FADCUFS for HRs was presented based on the angles of water quantity and quality. The method divides the FADCUFS into two parts in terms of the flood control operation characteristics of reservoir in HR and the relationship between water resources utilization and sediment in runoff, respectively. One is the amount of difficult regulation-control floodwater (DRCF), and the other is the volume of difficult utilization floodwater (DUF). A case study of the Bajiazui Reservoir, located in the typical Jinghe River (the second tributary of the Chinese Yellow River with high sediment concentration) was performed. Three typical years, wet year (1988), average year (1986), and dry years (1995 and 2000), were employed. According to the daily optimal operation model of Bajiazui Reservoir, the DRCF occurs for only the wet year instead of the average and the dry years. There are four times of DRCF with the amount of 26.74 m3/s (July 14), 14.58 m3/s (August 5), 10.27 m3/s (August 9), and 1.23 m3/s (August 12) in 1988, respectively, with a total amount of 4.56 million m3. A certain close relationship exists between the amount of DRCF

  15. REEVALUATION OF THE FLOOD AND THE FLOOD CONTROL PLAN AROUND THE DAIJUU WEIR IN THE YOSHINO RIVER BY USING THE WATER LEVEL DATA AND THE RIVER SURVEY MAP IN THE MEIJI ERA

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuji; Yatunaga, Kazuo; Nakano, Susumu

    The authors analyzed the hydraulic features of the Daijuu Weir and neighboring levee of the Yoshino River in the historical perspective, as the structures are important factors of flood control for the river. Firstly, the authors analyzed the precious data of water level observations around the Weir started by De Rijke, a Dutch engineer in 1883. Then using a river survey map surveyed in 1901, they restored the status of levees of the Yoshino River before modern improvement works. Thirdly they analyzed a relationship between the Yoshino River Levee and the Daijuu Weir based on the newspaper articles of the fifty years of period from 1878 through 1927. As the conclusion they reevaluated the flood and flood control plan of the Yoshino River around the Daijuu Weir.

  16. Classification of different sustainable flood retention basin types.

    PubMed

    Robinson, Michelle; Scholz, Miklas; Bastien, Nicolas; Carfrae, Jennifer

    2010-01-01

    Using a revised version of a previously published expert classification system, a database of potential Sustainable Flood Retention Basins has been developed for Scotland. The research shows that the majority of small and former (often old) drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could significantly reduce the costs of complying with the European Union Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The classification system appears to be robust and has the potential, with minor modifications, to be applied across Europe. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders.

  17. 75 FR 18238 - United States Section; Final Environmental Impact Statement, Flood Control Improvements and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... WATER COMMISSION, UNITED STATES AND MEXICO United States Section; Final Environmental Impact Statement... portions of the Presidio FCP levees. An Environmental Impact Statement (EIS) was prepared to evaluate... USIBWC to minimize potential environmental impacts and fulfill the project goal of flood protection....

  18. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by

  19. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect

    Patrick O'Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  20. Remotely Measuring Trash Fluxes in the Flood Canals of Megacities with Time Lapse Cameras and Computer Vision Algorithms - a Case Study from Jakarta, Indonesia.

    NASA Astrophysics Data System (ADS)

    Sedlar, F.; Turpin, E.; Kerkez, B.

    2014-12-01

    As megacities around the world continue to develop at breakneck speeds, future development, investment, and social wellbeing are threatened by a number of environmental and social factors. Chief among these is frequent, persistent, and unpredictable urban flooding. Jakarta, Indonesia with a population of 28 million, is a prime example of a city plagued by such flooding. Yet although Jakarta has ample hydraulic infrastructure already in place with more being constructed, the increasingly severity of the flooding it experiences is not from a lack of hydraulic infrastructure but rather a failure of existing infrastructure. As was demonstrated during the most recent floods in Jakarta, the infrastructure failure is often the result of excessive amounts of trash in the flood canals. This trash clogs pumps and reduces the overall system capacity. Despite this critical weakness of flood control in Jakarta, no data exists on the overall amount of trash in the flood canals, much less on how it varies temporally and spatially. The recent availability of low cost photography provides a means to obtain such data. Time lapse photography postprocessed with computer vision algorithms yields a low cost, remote, and automatic solution to measuring the trash fluxes. When combined with the measurement of key hydrological parameters, a thorough understanding of the relationship between trash fluxes and the hydrology of massive urban areas becomes possible. This work examines algorithm development, quantifying trash parameters, and hydrological measurements followed by data assimilation into existing hydraulic and hydrological models of Jakarta. The insights afforded from such an approach allows for more efficient operating of hydraulic infrastructure, knowledge of when and where critical levels of trash originate from, and the opportunity for community outreach - which is ultimately needed to reduce the trash in the flood canals of Jakarta and megacities around the world.

  1. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  2. Making green infrastructure healthier infrastructure

    PubMed Central

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  3. Using Minimax Regret Optimization to Search for Multi-Stakeholder Solutions to Deeply Uncertain Flood Hazards under Climate Change

    NASA Astrophysics Data System (ADS)

    Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.

    2015-12-01

    Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.

  4. September 2013 Storm and Flood Assessment Report

    SciTech Connect

    Walterscheid, J. C.

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  5. Feedbacks among Floods, Pioneer Woody Vegetation, and Channel Change in Sand-Bed Rivers: Insights from Field Studies of Controlled Flood Releases and Models

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.; Stella, J. C.; Bywater-Reyes, S.; Kiu, L.; Skorko, K.

    2012-04-01

    To investigate feedbacks between flow, geomorphic processes, and pioneer riparian vegetation in sand-bed rivers, we are combining field, hydraulic modeling, and laboratory simulations. Field studies have examined the response of woody riparian seedlings and channel morphology to prescribed dam-released floods that have been designed in part to maintain a native riparian woodland system on the Bill Williams River, Arizona, USA. Through monitoring of floods over a 7-year period, we have observed temporal and spatial variations in channel response. Floods have produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach with greater sediment supply. We also have observed that as vegetation grows beyond the seedling stage, its stabilizing effect on bars and its drag effect on flow progressively increases, such that floods of similar sizes but at different times may produce markedly different downstream responses as a function of vegetation characteristics. We also observed greater mortality among nonnative Tamarix spp. (tamarisk) seedlings than among native Salix gooddingii (Goodding's willow) seedlings, likely as a result of the greater first-year growth of willow relative to tamarisk. Combining field observations with modeling predictions of local hydraulics for the flood events we have studied is being used to draw linkages between hydraulics, channel change, and plant response at the patch and bar scale. In addition, mechanistic linkages are being examined using a field-scale laboratory stream channel, where seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) were planted and subjected to floods with varying sediment feed rate and plant configurations. The floods conveyed by our model channel were generally insufficient to scour the woody seedlings we planted, but changes in bar size and

  6. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the

  7. Anthropic Modification of The Alluvial Plain and Flood Control In Some Marchean Rivers (central Italy).

    NASA Astrophysics Data System (ADS)

    Farabollini, P.; Materazzi, M.

    The fluvial axis of the marchean rivers display an essentially sinuate character, whereas in its terminal portion, where it runs through a wide valley, it assumes an anastomosed form. In the initial portion, where it runs inside the Umbro-Marchean calcareous ridge, the regime is prevalently stream like, while in the arenaceous and clayey hilly belt, it follows a more regular trend. In the middle-lower portion, and especially in summer, the hydrological regime is significantly influenced by the water drawn off for hydroelectric and irrigation purposes. The particular hydrographic and orographic setting of the study territory and the considerable amount of anthropic activity, both in the past and present, are responsible for the frequent and disastrous flooding and flash flooding phenomena that, during intense rainfall, affected vast areas of the middle-terminal portion of the alluvial plain. An analysis of the flooding events of the last years has in fact led to the observation that flooding and flash flooding phenomena, and the damage deriving from them, are connected especially with mistaken management of the territory and subordinately with abundant rainfalls in a short span of time. This includes the following factors: insufficient, or complete absence of works for maintaining natural levees and river beds; the obstruction of watercourses due to building with no respect for adequate hydraulic criteria; an excessive narrowing or straightening of the main river axis, above all in those portions near the mouth; runoff difficulties in the works connecting the main hydrographic network with the secondary one; insufficient disposal capacity or efficiency of the rain water outlet network; insufficient measures, or a lack of planning of measures and/or works for emergency protection systems; widespread situations of hydrogeological accident and slope instability, accentuated by the progressive abandoning of agriculture and repeated occurrence of forest fires. In

  8. Bassett Creek Watershed, Hennepin County, Minnesota. Feasibility Report for Flood Control. Main Report.

    DTIC Science & Technology

    1982-09-01

    conduit and the flooding that could) result with its failure . In addition, evaucation is unacceptable to the people who would be directly affected...structure has a smaller chance of catastrophic failure than the design presented in D.M. No. 1. The previous structure was designed to have all flow...overtopping, there would be a risk of catastrophic failure . The presently proposed structure should be safer since it is designed to not fail when

  9. Decomposing the rainfall control on flash flood hydrograph shape into spatial, temporal and storm motion components

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Efthymios I.; Zoccatelli, Davide; Anagnostou, Emmanouil

    2013-04-01

    Space-time variability of rainfall, drainage network structure and local runoff generation properties, including land use/cover and geologic characteristics, shape the catchment response to storms. A way to describe the complexity of the interaction between these factors is to quantify their relative contribution on flood hydrograph shape. Quantifying the contribution of each factor is of great importance because this can identify which sources of variability are crucial for understanding and predicting catchment response. In this work we focus our analysis on the role of space-time variability of rainfall and drainage structure on flash flood hydrographs. An extended version of the concept of "spatial moments of catchment rainfall" which accounts for hillslope/channel velocity differentiation forms the basis of the analytical framework used in our analysis. The framework is used to quantify the contribution of each source of variability in flood response for eight extreme flash flood-inducing storms occurred in Europe in the period 2002 to 2008. The storms were selected from the HYDRATE project database, where high resolution radar rainfall data were integrated with post event surveys. The location of the events covers a range of climatic regions (Mediterranean, Alpine, Continental). Comparison between scenarios of uniform and variable (spatially) rainfall, showed that the effect of spatial variability of rainfall on mean runoff time is apparent only for basin scales > 100km2 . The difference in mean runoff time, relative to original rainfall, ranges from -5 to +10%. Corresponding investigation on the effect of rainfall spatial variability on variance of runoff time showed no apparent scale dependence and a relative difference of +/- 20%. Regarding the effect of drainage structure, an interesting result is that event-wise the importance of drainage network follows a well-defined scale dependence. Finally, examination on the relative importance of storm motion

  10. Feasibility Report. Mississippi River at Saint Paul, Minnesota. Reevaluation of Saint Paul Flood Control Project.

    DTIC Science & Technology

    1981-09-01

    four major electric plants and three hydroelectric generating stations in the Twin Cities area. Many municipalities in the area have developed water...the National Weather Service to allow emergency evacuation and limited flood protection measures. Nonstructural Measures The word "nonstructural" has...solutions over the different reaches of the present project. These are presented starting with station 0+00 at the upper end and ending at station 152+00

  11. Scientific developments within the Global Flood Partnership

    NASA Astrophysics Data System (ADS)

    de Groeve, Tom; Alfieri, Lorenzo; Thielen, Jutta

    2015-04-01

    More than 90 scientists, end users, and decision makers in the field of flood forecasting, remote sensing, hazard and risk assessment and emergency management collaborate in the Global Flood Partnership (GFP). The Partnership, launched in 2014, aims at the development of flood observational and modelling infrastructure, leveraging on existing initiatives for better predicting and managing flood disaster impacts and flood risk globally. Scientists collaborate in the GFP in different pillars, respectively focused on (1) development of tools and systems for global flood monitoring (Flood Toolbox), (2) applying the tools for publishing near real-time impact-based flood awareness information (Flood Observatory), and (3) collecting flood maps and impact information in a distributed database (Flood Record). The talk will focus on concrete collaboration results in 2014 and 2015, showing the added value of collaborating under a partnership. These include an overview of 10 services, 5 tools (algorithms or software) and 4 datasets related to global flood forecasting and observation. Through the various results (on interoperability, standards, visualization, integration and system design of integrated systems), it will be shown that a user-centric approach can lead to effective uptake of research results, rapid prototype development and experimental services that fill a gap in global flood response.

  12. A novel multi-objective electromagnetism-like mechanism algorithm with applications in reservoir flood control operation.

    PubMed

    Ouyang, Shuo; Zhou, Jianzhong; Qin, Hui; Liao, Xiang; Wang, Hao

    2014-01-01

    Reservoir flood control operation (RFCO) is a complex problem that involves various constraints and purposes, which include the safety of the dam, watershed flood control and navigation. These objectives often conflict with each other. Thus, traditional methods have difficulty in solving the multi-objective problem efficiently. In this paper, a multi-objective self-adaptive electromagnetism-like mechanism (MOSEM) algorithm is introduced in the local searching operation of the proposed method. To enhance the optimization ability of EM, a self-adaptive parameter is applied in the local search operation of MOSEM for adjusting the values of parameters dynamically. Moreover, MOSEM is tested by several benchmark test problems and compared with some well-known multi-objective evolutionary algorithms. A case study is also used for solving RFCO problems of the Three Georges Reservoir by using the multi-objective cultured differential evolution (MOCDE), non-dominated sorting genetic algorithm-II (NSGA-II) and proposed MOSEM methods. The study results reveal that MOSEM can provide alternative Pareto-optimal solutions (POS) with better convergence properties and diversification.

  13. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab.

    PubMed

    Liu, Lijun; Stegman, Dave R

    2012-02-15

    The origin of the Steens-Columbia River (SCR) flood basalts, which is presumed to be the onset of Yellowstone volcanism, has remained controversial, with the proposed conceptual models involving either a mantle plume or back-arc processes. Recent tomographic inversions based on the USArray data reveal unprecedented detail of upper-mantle structures of the western USA and tightly constrain geodynamic models simulating Farallon subduction, which has been proposed to influence the Yellowstone volcanism. Here we show that the best-fitting geodynamic model depicts an episode of slab tearing about 17 million years ago under eastern Oregon, where an associated sub-slab asthenospheric upwelling thermally erodes the Farallon slab, leading to formation of a slab gap at shallow depth. Driven by a gradient of dynamic pressure, the tear ruptured quickly north and south and within about two million years covering a distance of around 900 kilometres along all of eastern Oregon and northern Nevada. This tear would be consistent with the occurrence of major volcanic dikes during the SCR-Northern Nevada Rift flood basalt event both in space and time. The model predicts a petrogenetic sequence for the flood basalt with sources of melt starting from the base of the slab, at first remelting oceanic lithosphere and then evolving upwards, ending with remelting of oceanic crust. Such a progression helps to reconcile the existing controversies on the interpretation of SCR geochemistry and the involvement of the putative Yellowstone plume. Our study suggests a new mechanism for the formation of large igneous provinces.

  14. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  15. Magnitude and frequency of floods in Nebraska

    USGS Publications Warehouse

    Beckman, Emil W.

    1976-01-01

    Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.

  16. Groundwater flood hazards in lowland karst terrains

    NASA Astrophysics Data System (ADS)

    Naughton, Owen; McCormack, Ted

    2016-04-01

    The spatial and temporal complexity of flooding in karst terrains pose unique flood risk management challenges. Lowland karst landscapes can be particularly susceptible to groundwater flooding due to a combination of limited drainage capacity, shallow depth to groundwater and a high level of groundwater-surface water interactions. Historically the worst groundwater flooding to have occurred in the Rep. of Ireland has been centred on the Gort Lowlands, a karst catchment on the western coast of Ireland. Numerous notable flood events have been recorded throughout the 20th century, but flooding during the winters of 2009 and 2015 were the most severe on record, inundating an area in excess of 20km2 and causing widespread and prolonged disruption and damage to property and infrastructure. Effective flood risk management requires an understanding of the recharge, storage and transport mechanisms during flood conditions, but is often hampered by a lack of adequate data. Using information gathered from the 2009 and 2015 events, the main hydrological and geomorphological factors which influence flooding in this complex lowland karst groundwater system under are elucidated. Observed flood mechanisms included backwater flooding of sinks, overland flow caused by the overtopping of sink depressions, high water levels in turlough basins, and surface ponding in local epikarst watersheds. While targeted small-scale flood measures can locally reduce the flood risk associated with some mechanisms, they also have the potential to exacerbate flooding down-catchment and must be assessed in the context of overall catchment hydrology. This study addresses the need to improve our understanding of groundwater flooding in karst terrains, in order to ensure efficient flood prevention and mitigation in future and thus help achieve the aims of the EU Floods Directive.

  17. The effect of controlled floods on decadal-scale changes in channel morphology and fine sediment storage in a debris-fan affected river canyon

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Grams, P. E.; Schmidt, J. C.

    2013-12-01

    In 2011, a large magnitude flow release from Flaming Gorge Reservoir resulted in the third highest recorded discharge of the Green River downstream from Flaming Gorge Dam subsequent to its closure in 1963. Following this event, we made measurements of channel geometry, tracer gravel displacement, and sandbar sedimentology at four long-term monitoring reaches within the Canyon of Lodore in Dinosaur National Monument, Colorado. Here we integrate these data with nearly two decades of channel monitoring at these sites, encompassing five controlled floods, and providing a coarse resolution, but coherent, picture of channel response and changes in fine sediment storage in a canyon-bound river. We discuss these results in the context of long-term monitoring of controlled flood response along the Colorado River in Marble and Grand Canyons, Arizona. In Canyon of Lodore, moderate, short-duration controlled floods have had little effect on channel morphology or fine sediment storage. Alternatively, higher magnitude floods approaching the pre-dam mean annual flood, such as in 1999 and 2011, tended to be long duration and scoured fine sediment from the channel bed, in some places up to 5 m, while building eddy sandbars to within a meter of flood stage. This resulted in a net export of sediment from the monitored reaches. Between floods, eddy sand bars erode and the pools fill with fine sediment. We have observed only minor erosion or reworking of gravel bars and channel margin deposits stabilized by vegetation encroachment. The Green River in Canyon of Lodore is a scaled-down version of the Colorado River in debris fan-affected Marble and Grand Canyons. Both rivers now exist in varying degrees of sediment deficit due to upstream reservoirs. Coarse sediment from debris fans and hillslopes limits vertical incision and channel migration, focusing the post-dam geomorphic response to sediment imbalance on fine sediment located in eddy sandbars, pools, and channel margin deposits. In

  18. Warm Season Storms, Floods, and Tributary Sand Inputs below Glen Canyon Dam: Investigating Salience to Adaptive Management in the Context of a 10-Year Long Controlled Flooding Experiment in Grand Canyon National Park, AZ, USA

    NASA Astrophysics Data System (ADS)

    Jain, S.; Melis, T. S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J.

    2013-12-01

    The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of downstream tributary sand supply, endangered native fish, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on the warm season floods (at point-to-regional scales) has been identified as lead-information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars in Grand Canyon; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of tributary sand input from the Paria and Little Colorado Rivers (located 26 and 124 km below the dam, respectively) into the Colorado River in Grand Canyon National Park. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in the southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm season floods from this relatively small, but prolific sand producing drainage of the semi-arid Colorado Plateau. The coupled variations of the flood-driven sediment input (magnitude and timing) from these two drainages into the Colorado River are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the Glen Canyon Dam which are aimed at achieving restoration and maintenance of sandbars and instream ecology. The GCDAMP represents one of the most visible and widely recognized

  19. Quantifying flood duration controls on chute cutoff formation in a wandering gravel-bed river

    NASA Astrophysics Data System (ADS)

    Sawyer, A.; Wilcox, A. C.

    2014-12-01

    Chute cutoffs, which occur when a bypass or "chute" channel incises across a point or braid bar, distribute water and sediment, regulate sinuosity, and create off-channel habitat in wandering gravel-bed rivers. Cutoffs have been hypothesized to occur by progressive migration preparing a bend for cutoff, after which overbank flow events provide a trigger to excavate new channels. This trigger may depend on the magnitude and duration of floods and their associated sediment fluxes. Here we investigated how overbank flow duration impacts cutoff formation in a wandering gravel-bed river. To explore this, we applied a two-dimensional hydrodynamic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood event in 2011. Hydrographs exceeding bankfull and with varying durations were simulated to constrain the role of overbank flow duration on erosional work in chute cutoff channels. For each magnitude-frequency-duration combination, cumulative excess shear stress (i.e., above the threshold of sediment mobilization) was quantified for in-channel and overbank areas. Locations of shear stress divergence associated with morphological change were identified along chute pathways. Preliminary results suggest that overbank areas containing concentrated flowpaths such as swales follow cumulative excess shear stress curve patterns similar to in-channel areas. This work describes a dynamic system characteristic of wandering gravel-bed rivers in the Pacific Northwest, and has implications for understanding morphodynamic evolution, river restoration targeting off-channel habitat for fish, and geomorphic flow regime management in regulated rivers.

  20. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: a controlled longitudinal study

    PubMed Central

    Brand, Christian; Goodman, Anna; Ogilvie, David

    2015-01-01

    Walking and cycling is widely assumed to substitute for at least some motorized travel and thereby reduce energy use and carbon dioxide (CO2) emissions. While the evidence suggests that a supportive built environment may be needed to promote walking and cycling, it is unclear whether and how interventions in the built environment that attract walkers and cyclists may reduce transport CO2 emissions. Our aim was therefore to evaluate the effects of providing new infrastructure for walking and cycling on CO2 emissions from motorised travel. A cohort of 1849 adults completed questionnaires at baseline (2010) and one-year follow-up (2011), before and after the construction of new high-quality routes provided as part of the Sustrans Connect2 programme in three UK municipalities. A second cohort of 1510 adults completed questionnaires at baseline and two-year follow-up (2012). The participants reported their past-week travel behaviour and car characteristics from which CO2 emissions by mode and purpose were derived using methods described previously. A set of exposure measures of proximity to and use of the new routes were derived. Overall transport CO2 emissions decreased slightly over the study period, consistent with a secular trend in the case study regions. As found previously the new infrastructure was well used at one- and two-year follow-up, and was associated with population-level increases in walking, cycling and physical activity at two-year follow-up. However, these effects did not translate into sizeable CO2 effects as neither living near the infrastructure nor using it predicted changes in CO2 emissions from motorised travel, either overall or disaggregated by journey purpose. This lack of a discernible effect on travel CO2 emissions are consistent with an interpretation that some of those living nearer the infrastructure may simply have changed where they walked or cycled, while others may have walked or cycled more but few, if any, may have substituted

  1. Evaluating the impacts of new walking and cycling infrastructure on carbon dioxide emissions from motorized travel: a controlled longitudinal study.

    PubMed

    Brand, Christian; Goodman, Anna; Ogilvie, David

    2014-09-01

    Walking and cycling is widely assumed to substitute for at least some motorized travel and thereby reduce energy use and carbon dioxide (CO2) emissions. While the evidence suggests that a supportive built environment may be needed to promote walking and cycling, it is unclear whether and how interventions in the built environment that attract walkers and cyclists may reduce transport CO2 emissions. Our aim was therefore to evaluate the effects of providing new infrastructure for walking and cycling on CO2 emissions from motorised travel. A cohort of 1849 adults completed questionnaires at baseline (2010) and one-year follow-up (2011), before and after the construction of new high-quality routes provided as part of the Sustrans Connect2 programme in three UK municipalities. A second cohort of 1510 adults completed questionnaires at baseline and two-year follow-up (2012). The participants reported their past-week travel behaviour and car characteristics from which CO2 emissions by mode and purpose were derived using methods described previously. A set of exposure measures of proximity to and use of the new routes were derived. Overall transport CO2 emissions decreased slightly over the study period, consistent with a secular trend in the case study regions. As found previously the new infrastructure was well used at one- and two-year follow-up, and was associated with population-level increases in walking, cycling and physical activity at two-year follow-up. However, these effects did not translate into sizeable CO2 effects as neither living near the infrastructure nor using it predicted changes in CO2 emissions from motorised travel, either overall or disaggregated by journey purpose. This lack of a discernible effect on travel CO2 emissions are consistent with an interpretation that some of those living nearer the infrastructure may simply have changed where they walked or cycled, while others may have walked or cycled more but few, if any, may have substituted

  2. Hydrometeorological network for flood monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its

  3. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  4. Structural master plan of flood mitigation measures

    NASA Astrophysics Data System (ADS)

    Heidari, A.

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  5. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  6. The Global Flood Model

    NASA Astrophysics Data System (ADS)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  7. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineers; the International Boundary and Water Commission, United States and Mexico; and those under the... Authority is directed to regulate the release of water from the Tennessee River into the Ohio River in... flood control and navigation as follows: The operation and maintenance of the dams shall be subject...

  8. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineers; the International Boundary and Water Commission, United States and Mexico; and those under the... Authority is directed to regulate the release of water from the Tennessee River into the Ohio River in... flood control and navigation as follows: The operation and maintenance of the dams shall be subject...

  9. Sustainable Improvement of Urban River Network Water Quality and Flood Control Capacity by a Hydrodynamic Control Approach-Case Study of Changshu City

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu

    2017-01-01

    Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.

  10. Living on the Edge of Stagnant Water: An Assessment of Environmental Impacts of Construction-Phase Drainage Congestion Along Dhaka City Flood Control Embankment, Bangladesh

    NASA Astrophysics Data System (ADS)

    Rasid, Harun; Mallsk, Azim U.

    1996-01-01

    Environmental impacts of the construction-phase drainage congestion along the Dhaka City Flood Control Embankment were assessed by a pilot questionnaire survey (in 1991) among the target population adjacent to the embankment. The results of the survey indicated that, despite significant alleviation of river flooding, the majority of the respondents experienced a new type of flood problem in the form of stagnant water inside the embankment, immediately following its construction. Not only had this stagnant water flooded and damaged their property, it had exposed them to a number of other environmental problems, such as accumulation of municipal sewage, foul odors, mosquitoes, and growth of water hyacinth. The study found that the respondents’ assessments of these environmental problems differed significantly according to the magnitude of the impact of stagnant water upon two subgroups within the target population. A postsurvey follow-up in 1994 indicated that this problem of drainage congestion had largely been alleviated by completing the construction of a number of drainage regulators. The study concludes by stressing the importance of synchronizing the construction of drainage structures with that of the embankment systems and by underlining policy implications for flood-vulnerable land use adjacent to embankments.

  11. Glacier outburst floods from Ghulkin Glacier, upper Hunza Valley, Pakistan

    NASA Astrophysics Data System (ADS)

    Richardson, S. D.; Quincey, D. J.

    2009-04-01

    Outburst floods from Ghulkin Glacier in 2008 caused localised damage to properties, land and infrastructure of Ghulkin village and to the Karakoram Highway in the upper Hunza Valley of northern Pakistan. The unexpected nature of the floods highlights a poor understanding of glacial flood potential related to advancing glaciers in the Karakoram. Here we describe the Ghulkin floods and examine the broader glaciological controls on flood generation. Ghulkin Glacier is an active mountain glacier, its steep (up to 12˚ ), debris-covered snout bound by a continuous latero-terminal moraine. Three separate outburst floods during May and June 2008 exited the right lateral moraine close to the glacier terminus, resulting in two separate flood paths; one flowing down the existing outwash fan that resulted in no damage and the other flowing directly through properties and land of Ghulkin village. In 2008, the snout of Ghulkin Glacier was overriding its terminal moraine, and local villagers report an associated increase in debris flows and rock fall since 2005. High surface velocities (of the order of 50 m a-1) near the terminus are associated with the current period of advance, and an increase in the number and size of transient supraglacial lakes during the melt season has been observed. Assessment of the processes and characteristics of the summer 2008 floods provides a conceptual model for local glacier hazards associated with advancing mountain glaciers in the Karakoram. Crevasses and seracs associated with the high flow velocities have steep, debris-free ice cliffs that melt rapidly during the summer ablation season and provide a route for the meltwater to enter the englacial drainage system. Meltwater is stored temporarily in supraglacial, and probably englacial, settings; whilst drainage is facilitated by the formation of new, or re-organisation of existing, conduits under the active ice conditions. The steep glacier surface gradient and active ice results in

  12. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  13. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  14. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Surface Transportation Board SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver Infrastructure Partners LP (SRIP LP), SteelRiver...

  15. The management of urban surface water flood risks: SUDS performance in flood reduction from extreme events.

    PubMed

    Viavattene, C; Ellis, J B

    2013-01-01

    The need to improve the urban drainage network to meet recent urban growth and the redevelopment of old industrial and commercial areas provides an opportunity for managing urban surface water infrastructure in a more sustainable way. The use of sustainable urban drainage systems (SUDS) can reduce urban surface water flooding as well as the pollution impact of urban discharges on receiving waters. However, these techniques are not yet well known by many stakeholders involved in the decision-making process, or at least the evidence of their performance effectiveness may be doubted compared with more traditional engineering solutions often promoted by existing 1D/2D drainage models. The use of geographic information systems (GIS) in facilitating the inter-related risk analysis of sewer surface water overflows and urban flooding as well as in better communication with stakeholders is demonstrated in this paper. An innovative coupled 1D/2D urban sewer/overland flow model has been developed and tested in conjunction with a SUDS selection and location tool (SUDSLOC) to enable a robust management approach to surface water flood risks and to improve the resilience of the urban drainage infrastructure. The paper demonstrates the numerical and modelling basis of the integrated 1D/2D and SUDSLOC approach and the working assumptions and flexibility of the application together with some limitations and uncertainties. The role of the SUDSLOC modelling component in quantifying flow, and surcharge reduction benefits arising from the strategic selection and location of differing SUDS controls are also demonstrated for an extreme storm event scenario.

  16. Mission Bay Harbor, California, Design for Wave and Surge Protection and Flood Control. Hydraulic Model Investigation.

    DTIC Science & Technology

    1983-06-01

    CONTROL I SELECTION LSTCEILETYPWRITE CIRCUTRYWAVE STANDCALIORATION STATUS LIGHTS WAVE ROD AND POTENTIOMETER DATA LINE PAINS FOR EACH WAVE STAND CONTROL...directly into the river mouth. As the shoreline between the south groi and the south jetty continued to build, material began to move past the end of

  17. Rainfall and Flood Frequency Analysis Using High-Resolution Radar Rainfall Fields and Stochastic Storm Transposition

    NASA Astrophysics Data System (ADS)

    Wright, Daniel; Smith, James; Baeck, Mary Lynn

    2013-04-01

    Spatial and temporal variability of rainfall fields, and their interactions with surface, subsurface, and drainage network properties, are important drivers of flood response. 'Design storms,' which are commonly used for flood risk assessment, however, are assumed to be uniform in space and either uniform or highly idealized in time. The impacts of these and other common assumptions on estimates of flood risk are poorly understood. We present an alternative framework for flood risk assessment based on stochastic storm transposition (SST). In this framework, "storm catalogs" are derived from a ten-year high-resolution (15-minute, 1 km2) bias-corrected radar rainfall dataset for the region surrounding Charlotte, North Carolina, USA. SST-based rainfall frequency analyses are developed by resampling from these storm catalogs to synthesize the regional climatology of extreme rainfall. SST-based intensity-frequency-duration (IFD) estimates are driven by the spatial and temporal rainfall variability from weather radar observations, are specifically tailored to the chosen catchment, and do not require simplifying assumptions of storm structure. We are able to use the SST procedure to reproduce IFD estimates from conventional methods for small urban catchments in Charlotte. We further demonstrate that extreme rainfall can vary substantially in time and in space, with important flood risk implications that cannot be assessed using conventional techniques. When coupled with a physics-based distributed hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, SST enables us to examine the full impact of spatial and temporal rainfall variability on flood response and flood frequency. The interactions of extreme rainfall with spatially distributed land use, soil properties, and stormwater management infrastructure are assessed for several nested urban catchments in Charlotte. Results suggest that these interactions, which cannot be fully accounted for

  18. The Design and Implementation of a Real-Time Flood Forecasting System in Durban, South Africa

    NASA Astrophysics Data System (ADS)

    Sinclair, Scott; Pegram, Geoff

    2003-04-01

    In South Africa, five flood events during the period 1994-1996 resulted in the loss of 173 lives, more than 7000 people requiring evacuation and/or emergency shelter and damages to the value of R680 million (White paper on Disaster Management 1998). The South African Disaster management bill provides for "...preventing or reducing the risk of disasters, mitigating the severity of disasters ...". To this end a pilot study funded by the Water Research Commission aims at providing flood forecasts for the Mgeni and Mlazi catchments near the city of Durban in South Africa. The importance and usefulness of flood forecasting is particularly evident in an urban context where the density of population and infrastructure provide great potential for disaster. A reliable flood warning or forecasting system cannot prevent the occurrence of floods, but provides a key tool that can allow decision makers to be proactive rather than reactive in their response to a flooding event. Taking preventative measures before the fact can significantly reduce the social and economic impacts associated with a disaster. The flood forecasting system described here makes use of a "best estimate" spatial rainfield (obtained by combining radar and telemetered rain gauge rainfall estimates) as input to a linear catchment model. The catchment model parameters are dynamically updated in response to measured streamflows using Kalman filtering techniques, allowing improved forecasts of streamflow as the catchment conditions change. Precomputed flood lines and a graphical representation of the spatial rainfield are dynamically displayed on a GIS in the Durban disaster management control center enabling Disaster Managers to be proactive in times of impending floods.

  19. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  20. Flood mapping with multitemporal MODIS data

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  1. Green Infrastructure Modeling Toolkit

    EPA Pesticide Factsheets

    EPA's Green Infrastructure Modeling Toolkit is a toolkit of 5 EPA green infrastructure models and tools, along with communication materials, that can be used as a teaching tool and a quick reference resource when making GI implementation decisions.

  2. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  3. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  4. Sustainable Water Infrastructure

    EPA Pesticide Factsheets

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  5. Climate Action Benefits: Infrastructure

    EPA Pesticide Factsheets

    This page provides background on the relationship between infrastructure and climate change and describes what the CIRA Infrastructure analyses cover. It provides links to the subsectors Bridges, Roads, Urban Drainage, and Coastal Property.

  6. The Role of Sediment Budgets in the Implementation and Evaluation of Controlled Floods to Restore Sandbars along the Colorado River in Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Grams, P. E.; Schmidt, J. C.; Topping, D. J.

    2014-12-01

    The measurement and prediction of the fine sediment budget for the Colorado River in Grand Canyon has been of strong scientific and management interest since erosion of sandbars was first reported in the early 1970s, about 10 years after Glen Canyon Dam began regulating streamflow and eliminated the upstream sediment supply. Efforts to rebuild eroded sandbars have consisted largely of the experimental release of controlled floods, during which sand is redistributed from the bed to eddy sandbars along the channel margin. Flood-aggraded sandbars are, however, inherently unstable and inevitably erode between floods. Thus, sandbars cannot be "preserved," but are dynamic landforms that require periodic rebuilding by recurring floods. Such a strategy, with the goal of achieving a long-term increase in the size and number of sandbars, was recently implemented as a policy initiative of the U.S. Department of the Interior. This High Flow Experiment Protocol is being implemented by a unique collaboration of scientists, engineers, and policy makers and provides a rare example of a case in which management decisions are fully integrated with scientific monitoring. Controlled floods are scheduled based on real-time monitoring of sediment flux, computations of sediment budgets, and use of flow and sediment models. Floods are scheduled to occur within a few weeks of measurement results becoming available, assuming that threshold triggers for sediment accumulation are met. Sandbar building results are evaluated within weeks to months using remotely deployed time-lapse cameras. The protocol has been implemented in fall 2013 and fall 2014. Preliminary results suggest that the program may be resulting in the desired effect of cumulative increases in sandbar size. These results are tentative, because recent years have been relatively favorable, with large fine-sediment inputs and low annual dam-release volumes. Successive years with low fine-sediment supply or above-average dam

  7. Early-season flood enhances native biological control agents in Wisconsin cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control is predicated on the concept that crop plants are protected when predators suppress herbivore populations. However, many factors, including concurrent crop protection strategies, may modify the effectiveness of a predator in a given agroecosystem. In Wisconsin commercial cranberry...

  8. Hierarchical Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nivedita, N.; Durbha, S.

    2014-11-01

    To ensure a resilient Healthcare Critical Infrastructure, understanding the vulnerabilities and analysing the interdependency on other critical infrastructures is important. To model this critical infrastructure and its dependencies, Hierarchal Coloured petri net modelling approach for simulating the vulnerability of Healthcare Critical infrastructure in a disaster situation is studied.. The model enables to analyse and understand various state changes, which occur when there is a disruption or damage to any of the Critical Infrastructure, and its cascading nature. It also enables to explore optimal paths for evacuation during the disaster. The simulation environment can be used to understand and highlight various vulnerabilities of Healthcare Critical Infrastructure during a flood disaster scenario; minimize consequences; and enable timely, efficient response.

  9. Toolkit of Available EPA Green Infrastructure Modeling ...

    EPA Pesticide Factsheets

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watershed or jurisdictionfor cost-effectiveness and environmental and economic sustainability. WMOST allows users to select up to 15stormwater management practices, including traditional grey infrastructure, green infrastructure, and otherlow impact development practices. Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Conventional stormwater infrastructure, or gray infrastructure, is largely designed to move stormwater away from urban areas through pipes and conduit. Runoff from these surfaces can overwhelm sewer systems and end up contaminating local waterways. When stormwater runs off impervious streets, parking lots, sidewalks, and rooftops, it carries pollutants such as motor oil, lawn chemicals, sediments, and pet waste to streams, rivers, and lakes. Runoff flows can also cause erosion and flooding that can damage property, infrastructure, and wildlife habitat. In addition to runoff problems, impervious surfaces also prevent water from penetrating the soil and recharging groundwater supplies. Green infrastructure (e.g., rain gardens, green roofs, porous pavement, cisterns) is becoming an increasingly attractive way to recharge aquifers and reduce the amou

  10. Infrastructure for microsystem production

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Sanchez, Stefan; Elders, Job; Heideman, Rene G.

    1999-03-01

    Manufacturing of micro-systems differs from IC manufacturing because the market requires a diversity of products and lower volumes per product. In addition, a diversity of micro-technologies has been developed, including non-IC compatible processes and potentially IC compatible processes. An infrastructure for the production of micro- system devices is lacking. On one side the technology for MST is available at the universities and small university related companies. On the other side there are several small and medium enterprises and bigger companies wanting to implement MST devices in their products, but unwilling to be dependent on universities. Philips Electronics in the Netherlands and Twente MicroProducts realized this problem and have started a project to fill this gap. At this moment the basic of the infrastructure is available: OnStream BV, Eindhoven, The Netherlands, opened its waferfab and assembly facilities for the production of MST devices. Twente MicroProducts will take care of the design of the products and of the small-scale production. Integration of quality systems for maintenance, yield, statistical process control and production in a Manufacturing Execution System offers direct access for all people involved to all the relevant information. It also ensures quality of the products made. The available capabilities of the infrastructure in the current status are compared to the market needs. In this article, a description of a seamless Micro-System Engineering Foundry is given. A seamless organization is capable of helping the customer from design to production. Several examples are given.

  11. Carnivorous arthropods after spring flood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring flooding is a common practice in Wisconsin cranberries, but flooding as insect control produces variable results among marshes. This project is aimed at figuring out why it works, and why it sometimes doesn’t. We have focused on tracking arthropod populations to explain the observed patterns ...

  12. Elk River Watershed - Flood Study

    NASA Astrophysics Data System (ADS)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  13. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  14. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  15. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-11-01

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified.

  16. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding.

    PubMed

    Jackson, Matthew D; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-11-23

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified.

  17. Extrinsic controls on inter-basaltic plant ecosystems in the Columbia River Flood Basalt Province, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.; Hartley, Adrian J.

    2015-04-01

    The impact Large Igneous Province (LIP) volcanism may have had on paleoclimate, fauna and flora is still controversy. Inter-lava field plant ecosystems have the potential to record in detail the effects LIPs had on the environment in the immediate vicinity of volcanic activity. The Miocene Columbia River Flood Basalt Province (CRBP), Washington State, USA, provides excellent exposure of an entire LIP stratigraphy and offers a detailed record of inter-basaltic plant ecosystems throughout LIP evolution. The CRBP lava field comprise numerous basaltic lava flows that are intercalated with fluvial and lacustrine sediments which formed during phases of volcanic quiescence. The LIP volcanic evolution is characterised by an initial phase of high eruption volumes and eruptions rates, which is followed by waning volcanism associated with longer interbed intervals. Inter-lava field plant ecosystems are expected to correlate with phases of volcanic evolution: short interbed intervals should be dominated by early seral succession, while longer intervals should record more mature seral successions. The palynological record of the sedimentary interbeds however indicates a decline in successional status within the long interbed intervals of CRBP stratigraphy. An integrated analysis of sedimentary facies and geochemistry suggests intense volcanic ash fall derived from the adjacent Yellowstone hot spot as a major trigger for repetitive successional re-setting. This implies that inter-lava field ecosystem maturity was controlled by extrinsic forcing, and argues against environmental changes solely driven by LIPs of similar scale and magnitude to that of the CRBP.

  18. Effects of flood control alternatives on fish and wildlife resources of the Malheur-Harney lakes basin

    USGS Publications Warehouse

    Hamilton, David B.; Auble, Gregor T.; Ellison, Richard A.; Roelle, James E.

    1985-01-01

    Malheur Lake is the largest freshwater marsh in the western contiguous United States and is one of the main management units of the Malheur National Wildlife Refuge in southeastern Oregon. The marsh provides excellent waterfowl production habitat as well as vital migration habitats for birds in the Pacific flyway. Water shortages have typically been a problem in this semiarid area; however, record snowfalls and cool summers have recently caused Malheur Lake to rise to its highest level in recorded history. This has resulted in the loss of approximately 57,000 acres of important wildlife habitat as well as extensive flooding of local ranches, roads, and railroad lines. Because of the importance of the Refuge, any water management plan for the Malheur-Harney Lakes Basin needs to consider the impact of management alternatives on the hydrology of Malheur Lake. The facilitated modeling workshop described in this report was conducted January 14-18, 1985, under the joint sponsorship of the Portland Ecological Services Field Office and the Malheur National Wildlife Refuge, Region 1, U.S. Fish and Wildlife Service (FWS). The Portland Field Office is responsible for FWS reporting requirements on Federal water resource projects while the Refuge staff has management responsibility for much of the land affected by high water levels in the Malheur-Harney Lakes Basin. The primary objective of the workshop was to begin gathering and analyzing information concerning potential fish and wildlife impacts, needs, and opportunities associated with proposed U.S. Army Corps of Engineers (COE) flood control alternatives for Malheur Lake. The workshop was structured around the formulation of a computer model that would simulate the hydrologic effects of the various alternatives and any concommitant changes in vegetation communities and wildlife use patterns. The simulation model is composed of three connected submodels. The Hydrology submodel calculates changes in lake volume, elevation

  19. Robust lung identification in MSCT via controlled flooding and shape constraints: dealing with anatomical and pathological specificity

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Tarando, Sebastian; Brillet, Pierre-Yves; Grenier, Philippe A.

    2016-03-01

    Correct segmentation and labeling of lungs in thorax MSCT is a requirement in pulmonary/respiratory disease analysis as a basis for further processing or direct quantitative measures: lung texture classification, respiratory functional simulations, intrapulmonary vascular remodeling evaluation, detection of pleural effusion or subpleural opacities, are only few clinical applications related to this requirement. Whereas lung segmentation appears trivial for normal anatomo-pathological conditions, the presence of disease may complicate this task for fully-automated algorithms. The challenges come either from regional changes of lung texture opacity or from complex anatomic configurations (e.g., thin septum between lungs making difficult proper lung separation). They make difficult or even impossible the use of classic algorithms based on adaptive thresholding, 3-D connected component analysis and shape regularization. The objective of this work is to provide a robust segmentation approach of the pulmonary field, with individualized labeling of the lungs, able to overcome the mentioned limitations. The proposed approach relies on 3-D mathematical morphology and exploits the concept of controlled relief flooding (to identify contrasted lung areas) together with patient-specific shape properties for peripheral dense tissue detection. Tested on a database of 40 MSCT of pathological lungs, the proposed approach showed correct identification of lung areas with high sensitivity and specificity in locating peripheral dense opacities.

  20. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding

    PubMed Central

    Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-01-01

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified. PMID:27876833

  1. Recreational Appendix Report, Elm Fork Flood Control Project, Dallas and Denton Counties, Texas.

    DTIC Science & Technology

    1973-05-01

    to be expanded both upstream and downstream along the meanders of the River extending from California Crossing Road downstream to the Wildflower ...Plan for Wildflower Meadow ........ ....... 62 11 Small Trail Side Museum and Rest Area . . . . ....... 63 12 Large Trail Side Museum...64 13 Plan - Trail Side Museum Area ..... .............. 65 14 Motorcycle Barrier and Control Gate. . . . ......... 67 15 California Crossing

  2. West Magnesia Canyon Channel, City of Rancho Mirage, Riverside County, California. Detailed Project Report. Rancho Mirage Flood Control. Technical Appendixes.

    DTIC Science & Technology

    1983-12-01

    approximately 35 feet high and 750 feet long. A concrete-lined broad - crested spillway capable of discharging a maximum probable flood would be built on the...The effectiveness of the upstream levee is questionable, however. During the September 1976 flood, an estimated peak discharge of - 800 cfs broke...cover and surface characteristics affecting basin response to effective rainfall. Synthetic unit hydrographs were determined from the S-graph shown on

  3. Quantification and classification of hydro-meteorological flood controls in northeast Switzerland as a basis for robust impact modelling

    NASA Astrophysics Data System (ADS)

    Keller, Luise; Rössler, Ole; Weingartner, Rolf

    2016-04-01

    Flood events are generated and shaped by different hydro-meteorological processes. Taking these drivers into account is essential for understanding flood generation and for developing robust hydrological models. We call a hydrological model robust if it is able to reproduce different flood types with different drivers at the same quality. Such models are a prerequisite for assessing climate change impact as they minimize bias associated with a potential change in frequency of projected flood types. For the same reason, identification of the key hydro-meteorological processes is crucial to enable a suitable downscaling of meteorological parameters. To gain understanding of the main hydro-meteorological processes associated with floods in a mesoscale alpine catchment (Thur River, 1700 km2), we analyse all events exceeding a 2-year flood over the past 50 years. Resulting 47 events are temporally delineated based on an adapted constant-k approach (Blume et al., 2007) using hourly runoff data. Each flood event is then characterized based on a variety of hydro-meteorological parameters and indices descriptive of catchment distributed (pre-) event conditions based on daily meteorological data. This comprehensive data set is used to classify the events based on hydro-meteorological parameters only and to derive typical flood-generating "storylines". Changes in these storylines over the past 50 years are discussed. Furthermore, the importance of each hydro-meteorological parameter is quantified which in turn might help to assess uncertainties associated with climate change impact studies. References Blume, T., Zehe, E., and Bronstert, A.: Rainfall - runoff response, event-based runoff coefficients and hydrograph separation, Hydrological Sciences Journal, 52, 843-862, doi:10.1623/hysj.52.5.843, 2007.

  4. Flooding and Emergency Room Visits for Gastrointestinal Illness in Massachusetts: A Case-Crossover Study

    PubMed Central

    Wade, Timothy J.; Lin, Cynthia J.; Jagai, Jyotsna S.; Hilborn, Elizabeth D.

    2014-01-01

    Introduction Floods and other severe weather events are anticipated to increase as a result of global climate change. Floods can lead to outbreaks of gastroenteritis and other infectious diseases due to disruption of sewage and water infrastructure and impacts on sanitation and hygiene. Floods have also been indirectly associated with outbreaks through population displacement and crowding. Methods We conducted a case-crossover study to investigate the association between flooding and emergency room visits for gastrointestinal illness (ER-GI) in Massachusetts for the years 2003 through 2007. We obtained ER-GI visits from the State of Massachusetts and records of floods from the National Oceanic and Atmospheric Association’s Storm Events Database. ER-GI visits were considered exposed if a flood occurred in the town of residence within three hazard periods of the visit: 0–4 days; 5–9 days; and 10–14 days. A time-stratified bi-directional design was used for control selection, matching on day of the week with two weeks lead or lag time from the ER-GI visit. Fixed effect logistic regression models were used to estimate the risk of ER-GI visits following the flood. Results and Conclusions A total of 270,457 ER-GI visits and 129 floods occurred in Massachusetts over the study period. Across all counties, flooding was associated with an increased risk for ER-GI in the 0–4 day period after flooding (Odds Ratio: 1.08; 95% Confidence Interval: 1.03–1.12); but not the 5–9 days (Odds Ratio: 0.995; 95% Confidence Interval: 0.955–1.04) or the 10–14 days after (Odds Ratio: 0.966, 95% Confidence Interval: 0.927–1.01). Similar results were observed for different definitions of ER-GI. The effect differed across counties, suggesting local differences in the risk and impact of flooding. Statewide, across the study period, an estimated 7% of ER-GI visits in the 0–4 days after a flood event were attributable to flooding. PMID:25329916

  5. Minnesota River at Chaska, Minnesota, Flood Control. Final Environmental Impact Statement.

    DTIC Science & Technology

    1975-07-01

    Control Projects 29 Local Recreation and Aesthitics 29 History and Archeology 30 iii ,L . , , ’ -’ - " TABLE OF CONTENTS (CONT) page 3. ENVIRONMENTAL...39 Impacts upon Recreation and Aesthetics 39 Impacts upon Historical and Archeological Sites 40 4. UNAVOIDABLE ADVERSE IMPACTS OF THE PROPOSED ACTION...Apr 74 ..- HISTORY AND ARCHEOLOGY Carver County, established 20 February 1855, was named for Captain Jonathan Carver, an English explorer and author. At

  6. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  7. On the Storm Surge and Sea Level Rise Projections for Infrastructure Risk Analysis and Adaptation

    EPA Science Inventory

    Storm surge can cause coastal hydrology changes, flooding, water quality changes, and even inundation of low-lying terrain. Strong wave actions and disruptive winds can damage water infrastructure and other environmental assets (hazardous and solid waste management facilities, w...

  8. Evaluation of Green Infrastructure Designs Using the Automated Geospatial Watershed Assessment Tool

    EPA Science Inventory

    In arid and semi-arid regions, green infrastructure (GI) can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwat...

  9. Green Infrastructure Design Evaluation Using the Automated Geospatial Watershed Assessment Tool

    EPA Science Inventory

    In arid and semi-arid regions, green infrastructure (GI) can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwat...

  10. Evaluation of green infrastructure designs using the Automated Geospatial Watershed Assessment Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid and semi-arid regions, green infrastructure (GI) designs can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwater, addressi...

  11. Using Low Impact Development and Green Infrastructure to Get Benefits From FEMA Programs

    EPA Pesticide Factsheets

    LID and Green Infrastructure is a cost-effective, resilient approach to stormwater management. Projects that reduce flood losses may be eligible for grant funding through FEMA and may allow communities to claim points through FEMA's rating system -CRS

  12. Green Infrastructure Models and Tools

    EPA Science Inventory

    The objective of this project is to modify and refine existing models and develop new tools to support decision making for the complete green infrastructure (GI) project lifecycle, including the planning and implementation of stormwater control in urban and agricultural settings,...

  13. Urban flooding and Resilience: concepts and needs

    NASA Astrophysics Data System (ADS)

    Gourbesville, Ph.

    2012-04-01

    During the recent years, a growing interest for resilience has been expressed in the natural disaster mitigation area and especially in the flood related events. The European Union, under the Seventh Framework Programme (FP7), has initiated several research initiatives in order to explore this concept especially for the urban environments. Under urban resilience is underlined the ability of system potentially exposed to hazard to resist, respond, recover and reflect up to stage which is enough to preserve level of functioning and structure. Urban system can be resilient to lot of different hazards. Urban resilience is defined as the degree to which cities are able to tolerate some disturbance before reorganizing around a new set of structures and processes (Holling 1973, De Bruijn 2005). The United Nation's International strategy for Disaster Reductions has defined resilience as "the capacity of a system, community or society potentially exposed to hazards to adapt, by resisting or changing in order to reach and maintain an acceptable level of functioning and structure. This is determined by the degree to which the social system is capable of organizing itself to increase this capacity for learning from past disasters for better future protection and to improve risk reduction measures."(UN/ISDR 2004). According to that, system should be able to accept the hazard and be able to recover up to condition that provides acceptable operational level of city structure and population during and after hazard event. Main elements of urban system are built environment and population. Physical characteristic of built environment and social characteristic of population have to be examined in order to evaluate resilience. Therefore presenting methodology for assessing flood resilience in urban areas has to be one of the focal points for the exposed cities. Strategies under flood management planning related to resilience of urban systems are usually regarding controlling runoff

  14. Final Environmental Statement. Sebewaing River, Michigan. Operation and Maintenance, Confined Disposal Facility, and Flood Control Facilities.

    DTIC Science & Technology

    1978-04-01

    channel dimensions are eight (8) feet deep and seventy (70) feet wide in the navigation channel. Depths are referenced o I.G.L.D. of Lake Huron . 1.16 A...western shore of Lake Huron . The closest deep-draft harbor Is Saginaw River and Harbor, located 15 miles to the southwest. Bay Port Harbor, a shallow...controlled by the Lake Huron water level and are a function of water inflow from Lakes Superior and Michigan, outflow through St. Clair River, and annual

  15. Effects of fluctuating flows and a controlled flood on incubation success and early survival rates and growth of age-0 rainbow trout in a large regulated river

    USGS Publications Warehouse

    Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.

    2011-01-01

    Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.

  16. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  17. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    PubMed

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly.

  18. Strange Floods: The Upper Tail of Flood Peaks in the Conterminous US

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Baeck, M. L.

    2015-12-01

    The strangest flood in US history is arguably the 14 June 1903 flood that devastated Heppner, Oregon. The notion of strange floods is based on the assumption that there are flood agents that dominate the upper tail of flood distributions for a region (severe thunderstorms in complex terrain in the case of the Heppner flood) and are exceedingly poorly characterized by conventional flood records. The orographic thunderstorm systems in the central Appalachians that dominate envelope curves of flood peaks in the eastern US for basin areas less than 1,000 sq. km. and control portions of the global envelope curve of rainfall accumulations at time scales shorter than 6 hours) provide a well-documented example of strange floods. Despite extensive evidence of their occurrence, principally from field-based case studies, they are poorly represented in conventional USGS flood records. We develop methods for examining strange floods based on analyses of the complete record of USGS annual peak observations and on hydrometeorological analyses of the most extreme floods in the US flood record. The methods we present are grounded in extreme value theory and designed to enhance our understanding of extreme floods and improve methods for estimating extreme flood magnitudes.

  19. Urban sprawl and flooding in southern California

    USGS Publications Warehouse

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  20. Assessing grain-size correspondence between flow and deposits of controlled floods in the Colorado River, USA

    USGS Publications Warehouse

    Draut, Amy; Rubin, David M.

    2013-01-01

    Flood-deposited sediment has been used to decipher environmental parameters such as variability in watershed sediment supply, paleoflood hydrology, and channel morphology. It is not well known, however, how accurately the deposits reflect sedimentary processes within the flow, and hence what sampling intensity is needed to decipher records of recent or long-past conditions. We examine these problems using deposits from dam-regulated floods in the Colorado River corridor through Marble Canyon–Grand Canyon, Arizona, U.S.A., in which steady-peaked floods represent a simple end-member case. For these simple floods, most deposits show inverse grading that reflects coarsening suspended sediment (a result of fine-sediment-supply limitation), but there is enough eddy-scale variability that some profiles show normal grading that did not reflect grain-size evolution in the flow as a whole. To infer systemwide grain-size evolution in modern or ancient depositional systems requires sampling enough deposit profiles that the standard error of the mean of grain-size-change measurements becomes small relative to the magnitude of observed changes. For simple, steady-peaked floods, 5–10 profiles or fewer may suffice to characterize grain-size trends robustly, but many more samples may be needed from deposits with greater variability in their grain-size evolution.

  1. Flood of June 2008 in Southern Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Walker, John F.; Rose, William J.; Waschbusch, Robert J.; Kennedy, James L.

    2008-01-01

    In June 2008, heavy rain caused severe flooding across southern Wisconsin. The floods were aggravated by saturated soils that persisted from unusually wet antecedent conditions from a combination of floods in August 2007, more than 100 inches of snow in winter 2007-08, and moist conditions in spring 2008. The flooding caused immediate evacuations and road closures and prolonged, extensive damages and losses associated with agriculture, businesses, housing, public health and human needs, and infrastructure and transportation. Record gage heights and streamflows occurred at 21 U.S. Geological Survey streamgages across southern Wisconsin from June 7 to June 21. Peak-gage-height data, peak-streamflow data, and flood probabilities are tabulated for 32 USGS streamgages in southern Wisconsin. Peak-gage-height and peak-streamflow data also are tabulated for three ungaged locations. Extensive flooding along the Baraboo River, Kickapoo River, Crawfish River, and Rock River caused particularly severe damages in nine communities and their surrounding areas: Reedsburg, Rock Springs, La Farge, Gays Mills, Milford, Jefferson, Fort Atkinson, Janesville, and Beloit. Flood-peak inundation maps and water-surface profiles were generated for the nine communities in a geographic information system by combining flood high-water marks with available 1-10-meter resolution digital-elevation-model data. The high-water marks used in the maps were a combination of those surveyed during the June flood by communities, counties, and Federal agencies and hundreds of additional marks surveyed in August by the USGS. The flood maps and profiles outline the extent and depth of flooding through the communities and are being used in ongoing (as of November 2008) flood response and recovery efforts by local, county, State, and Federal agencies.

  2. Development of an Advanced Simulator to Model Mobility Control and Geomechanics during CO{sub 2} Floods

    SciTech Connect

    Delshad, Mojdeh; Wheeler, Mary; Sepehrnoori, Kamy; Pope, Gary

    2013-12-31

    The simulator is an isothermal, three-dimensional, four-phase, compositional, equation-of– state (EOS) simulator. We have named the simulator UTDOE-CO2 capable of simulating various recovery processes (i.e., primary, secondary waterflooding, and miscible and immiscible gas flooding). We include both the Peng-Robinson EOS and the Redlich-Kwong EOS models. A Gibbs stability test is also included in the model to perform a phase identification test to consistently label each phase for subsequent property calculations such as relative permeability, viscosity, density, interfacial tension, and capillary pressure. Our time step strategy is based on an IMPEC-type method (implicit pressure and explicit concentration). The gridblock pressure is solved first using the explicit dating of saturation-dependent terms. Subsequently, the material balance equations are solved explicitly for the total concentration of each component. The physical dispersion term is also included in the governing equations. The simulator includes (1) several foam model(s) for gas mobility control, (2) compositional relative permeability models with the hysteresis option, (3) corner point grid and several efficient solvers, (4) geomechanics module to compute stress field as the result of CO{sub 2} injection/production, (5) the format of commercial visualization software, S3graf from Science-soft Ltd., was implemented for user friendly visualization of the simulation results. All tasks are completed and the simulator was fully tested and delivered to the DOE office including a user’s guide and several input files and the executable for Windows Pcs. We have published several SPE papers, presented several posters, and one MS thesis is completed (V. Pudugramam, 2013) resulting from this DOE funded project.

  3. Collecting a multi-disciplinary field dataset to model the interactions between a flood control reservoir and the underlying porous aquifer

    NASA Astrophysics Data System (ADS)

    Borgatti, L.; Corsini, A.; Chiapponi, L.; D'Oria, M.; Giuffredi, F.; Lancellotta, R.; Mignosa, P.; Moretti, G.; Orlandini, S.; Pellegrini, M.; Remitti, F.; Ronchetti, F.; Tanda, M.; Zanini, A.

    2008-12-01

    During the last decades, a large number of flood control reservoirs were developed in Northern Italy, in order to mitigate flood risk in urban areas. The city of Parma, located on the large alluvial fan of the Parma River, is served by a flood control reservoir (i.e., dry dam), completed in 2004. The reservoir can store a volume of 12·106 m3 over an area of 1.2 km2 surrounded by about 4 km of artificial levees and closed downstream by a concrete dam 15 m high, equipped with 3 movable floodgates. The structure has the purpose to store the excess water in the case of high return period flood events, releasing it downstream at a controlled rate. A stilling basin is located downstream the dam in order to dissipate the kinetic energy of the discharged flow. The stilling basin is made up of 2 m thick concrete slabs, on which 3 dissipating blocks are located. The deposits below the stilling basin are surrounded by a grout wall (20 m deep) with the aim of realizing a confined "box". Groundwater levels inside the box are controlled by a 110 m long drainage trench located upstream the stilling basin, 3 m below its floor. In the perspective of a long-term management of the reservoir, after the completion of the works, a phase of investigation, control and monitoring of the efficiency of the entire system has been carried out, mainly to highlight the interactions between the reservoir and the underlying aquifer. This task was accomplished filling the reservoir at the maximum retaining level by means of capturing the tails of spring 2008 flood events. The aquifer beneath and surrounding the structure has been investigated by means of several tests, such analysis. Moreover, a groundwater monitoring system made up by 44 piezometers with dataloggers and real- time data transmission to a dedicated website has been set up. Monitoring data before, during, and after the infilling of the reservoir show that the aquifer below the structure is multilayered, with prevailing silty gravels

  4. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Somasundaran, P.

    1993-05-01

    The aim of this project is to elucidate the mechanisms of adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations and other inorganic and polymeric species will be determined using solids of relevant mineralogy. A multi-pronged approach consisting of micro & nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability win be used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. Adsorption of selected individual surfactants on oxide minerals was studied. The aim was to determine the effect of structure on surfactant adsorption at the solid-liquid as well as at the liquid-air interface. Nonionic polyethoxylated alkyl phenols and anionic meta xylene sulfonates (MXS) were the surfactants studied. Electrokinetic behavior was also determined along with adsorption in order to determine the role of electrostatic forces in determining the adsorption. In addition, the effect of varying the number of ethylene oxide groups on the adsorption of polyethoxylated alkyl phenols on silica was determined since the ethoxyl groups offer unique opportunities to control adsorption as well as wettability. Effect of pH was studied both because it is a parameter with first order effect and also because pH effects can help in developing mechanisms.

  5. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  6. Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Motsholapheko, M. R.; Kgathi, D. L.; Vanderpost, C.

    Adaptation to flooding is now widely adopted as an appropriate policy option since flood mitigation measures largely exceed the capability of most developing countries. In wetlands, such as the Okavango Delta, adaptation is more appropriate as these systems serve as natural flood control mechanisms. The Okavango Delta system is subject to annual variability in flooding with extreme floods resulting in adverse impacts on rural livelihoods. This study therefore seeks to improve the general understanding of rural household livelihood adaptation to extreme flooding in the Okavango Delta. Specific objectives are: (1) to assess household access to forms of capital necessary for enhanced capacity to adapt, (2) to assess the impacts of extreme flooding on household livelihoods, and (3) to identify and assess household livelihood responses to extreme flooding. The study uses the sustainable livelihood and the socio-ecological frameworks to analyse the livelihood patterns and resilience to extreme flooding. Results from a survey of 623 households in five villages, key informant interviews, focus group discussions and review of literature, indicate that access to natural capital was generally high, but low for financial, physical, human and social capital. Households mainly relied on farm-based livelihood activities, some non-farm activities, limited rural trade and public transfers. In 2004 and 2009, extreme flooding resulted in livelihood disruptions in the study areas. The main impacts included crop damage, household displacement, destruction of household property, livestock drowning and mud-trapping, the destruction of public infrastructure and disruption of services. The main household coping strategies were labour switching to other livelihood activities, temporary relocation to less affected areas, use of canoes for early harvesting or evacuation and government assistance, particularly for the most vulnerable households. Household adaptive strategies included

  7. Applications of flood depth from rapid post-event footprint generation

    NASA Astrophysics Data System (ADS)

    Booth, Naomi; Millinship, Ian

    2015-04-01

    Immediately following large flood events, an indication of the area flooded (i.e. the flood footprint) can be extremely useful for evaluating potential impacts on exposed property and infrastructure. Specifically, such information can help insurance companies estimate overall potential losses, deploy claims adjusters and ultimately assists the timely payment of due compensation to the public. Developing these datasets from remotely sensed products seems like an obvious choice. However, there are a number of important drawbacks which limit their utility in the context of flood risk studies. For example, external agencies have no control over the region that is surveyed, the time at which it is surveyed (which is important as the maximum extent would ideally be captured), and how freely accessible the outputs are. Moreover, the spatial resolution of these datasets can be low, and considerable uncertainties in the flood extents exist where dry surfaces give similar return signals to water. Most importantly of all, flood depths are required to estimate potential damages, but generally cannot be estimated from satellite imagery alone. In response to these problems, we have developed an alternative methodology for developing high-resolution footprints of maximum flood extent which do contain depth information. For a particular event, once reports of heavy rainfall are received, we begin monitoring real-time flow data and extracting peak values across affected areas. Next, using statistical extreme value analyses of historic flow records at the same measured locations, the return periods of the maximum event flow at each gauged location are estimated. These return periods are then interpolated along each river and matched to JBA's high-resolution hazard maps, which already exist for a series of design return periods. The extent and depth of flooding associated with the event flow is extracted from the hazard maps to create a flood footprint. Georeferenced ground, aerial

  8. Arid Green Infrastructure for Water Control and Conservation State of the Science and Research Needs for Arid/Semi-Arid Regions

    EPA Science Inventory

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure pract...

  9. Climate Change: Federal Efforts Under Way to Assess Water Infrastructure Vulnerabilities and Address Adaptation Challenges

    DTIC Science & Technology

    2013-11-01

    navigation, flood and coastal storm damage reduction, hydropower , and water supply, among other things. Established in 1902, Reclamation constructed...Adaptation infrastructure, including reservoirs, hydropower facilities, commercial inland waterways, harbors, and levee systems. In June 2011, in response...following: navigation, flood and coastal storm damage reduction, environment, hydropower , regulatory, recreation, emergency management, and water

  10. An Integrated Modeling Framework for Probable Maximum Precipitation and Flood

    NASA Astrophysics Data System (ADS)

    Gangrade, S.; Rastogi, D.; Kao, S. C.; Ashfaq, M.; Naz, B. S.; Kabela, E.; Anantharaj, V. G.; Singh, N.; Preston, B. L.; Mei, R.

    2015-12-01

    With the increasing frequency and magnitude of extreme precipitation and flood events projected in the future climate, there is a strong need to enhance our modeling capabilities to assess the potential risks on critical energy-water infrastructures such as major dams and nuclear power plants. In this study, an integrated modeling framework is developed through high performance computing to investigate the climate change effects on probable maximum precipitation (PMP) and probable maximum flood (PMF). Multiple historical storms from 1981-2012 over the Alabama-Coosa-Tallapoosa River Basin near the Atlanta metropolitan area are simulated by the Weather Research and Forecasting (WRF) model using the Climate Forecast System Reanalysis (CFSR) forcings. After further WRF model tuning, these storms are used to simulate PMP through moisture maximization at initial and lateral boundaries. A high resolution hydrological model, Distributed Hydrology-Soil-Vegetation Model, implemented at 90m resolution and calibrated by the U.S. Geological Survey streamflow observations, is then used to simulate the corresponding PMF. In addition to the control simulation that is driven by CFSR, multiple storms from the Community Climate System Model version 4 under the Representative Concentrations Pathway 8.5 emission scenario are used to simulate PMP and PMF in the projected future climate conditions. The multiple PMF scenarios developed through this integrated modeling framework may be utilized to evaluate the vulnerability of existing energy-water infrastructures with various aspects associated PMP and PMF.

  11. The Ebola threat: China's response to the West African epidemic and national development of prevention and control policies and infrastructure.

    PubMed

    Fan, Hao-Jun; Gao, Hong-Wei; Ding, Hui; Zhang, Bi-Ke; Hou, Shi-Ke

    2015-02-01

    There is growing concern in West Africa about the spread of the Ebola hemorrhagic fever virus. With the increasing global public health risk, a coordinated international response is necessary. The Chinese government is prepared to work in collaboration with West African countries to assist in the containment and control of the epidemic through the contribution of medical expertise and mobile laboratory testing teams. Nationally, China is implementing prevention programs in major cities and provinces, the distribution of Ebola test kits, and the deployment of a new national Ebola research laboratory.

  12. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web

    USGS Publications Warehouse

    Hearn,, Paul P.; Longenecker, Herbert E.; Aguinaldo, John J.; Rahav, Ami N.

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency’s (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS’s newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  13. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web.

    PubMed

    Hearn, Paul P; Longenecker, Herbert E; Aguinaldo, John J; Rahav, Ami N

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency's (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS's newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  14. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods.

    PubMed

    Søndergaard, Jens; Tamstorf, Mikkel; Elberling, Bo; Larsen, Martin M; Mylius, Maria Rask; Lund, Magnus; Abermann, Jakob; Rigét, Frank

    2015-05-01

    Riverine mercury (Hg) export dynamics from the Zackenberg River Basin (ZRB) in Northeast Greenland were studied for the period 2009-2013. Dissolved and sediment-bound Hg was measured regularly in the Zackenberg River throughout the periods with running water (June-October) and coupled to water discharge measurements. Also, a few samples of snow, soil, and permafrost were analysed for Hg. Mean concentrations of dissolved and sediment-bound Hg in the river water (±SD) were 0.39 ± 0.13 and 5.5 ± 1.4 ngL(-1), respectively, and mean concentrations of Hg in the river sediment were 0.033 ± 0.025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96%) was associated with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 gH gk m(-2)yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial lake outburst floods in the ZRB in late summer at the time of maximum soil thaw depth, the location of the glacier in the upper ZRB, and increased thawing of the permafrost in Zackenberg in recent years leading to destabilisation of river banks are considered central factors explaining the high fraction of flood-controlled Hg export in this area.

  15. Explorations Around "Graceful Failure" in Transportation Infrastructure: Lessons Learned By the Infrastructure and Climate Network (ICNet)

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Thomas, N.; Mo, W.; Kirshen, P. H.; Douglas, E. M.; Daniel, J.; Bell, E.; Friess, L.; Mallick, R.; Kartez, J.; Hayhoe, K.; Croope, S.

    2014-12-01

    Recent events have demonstrated that the United States' transportation infrastructure is highly vulnerable to extreme weather events which will likely increase in the future. In light of the 60% shortfall of the $900 billion investment needed over the next five years to maintain this aging infrastructure, hardening of all infrastructures is unlikely. Alternative strategies are needed to ensure that critical aspects of the transportation network are maintained during climate extremes. Preliminary concepts around multi-tier service expectations of bridges and roads with reference to network capacity will be presented. Drawing from recent flooding events across the U.S., specific examples for roads/pavement will be used to illustrate impacts, disruptions, and trade-offs between performance during events and subsequent damage. This talk will also address policy and cultural norms within the civil engineering practice that will likely challenge the application of graceful failure pathways during extreme events.

  16. Flood loss assessment in Can Tho City, Vietnam

    NASA Astrophysics Data System (ADS)

    Do, T. C.; Kreibich, H.

    2012-04-01

    Floods are recurring events in the Lower Mekong Basin resulting in loss of life and property, causing damage to agriculture and rural infrastructure, and disrupting social and economic activities. Flood management and mitigation has become a priority issue at the national and regional levels. Besides, it is expected that large areas of the Mekong delta, the Red River delta and the central coast will be flooded by sea-level rise due to climate change. Can Tho City is ranked under the five most flood-tide-influenced cities of Vietnam. It is the biggest city in the Mekong delta and it is located near the Hau river. Like other region of the Mekong delta, Can Tho suffers due to floods from upstream and flood tides from the sea. In the flood season large rural areas of the city are flooded, particularly during tidal days. Flood risk management policy includes preparative measures for living with floods and to minimise the damage caused by floods as well as to take advantage of floods for sustainable development. An intensive literature review, including administrative reports as well as expert interviews have been undertaken to gain more insight into flood characteristics, their consequences and risk mitigation. Therefore, flood damaging processes and trends have been reviewed for Can Tho City and the Mekong Basin in Vietnam. Additionally, suitable flood damage estimation methodologies have been collected as important input for flood risk analyses. On this basis it has been investigated which flood risk mitigation and management strategies promise to be effective in Can Tho City, Vietnam.

  17. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1993--September 30, 1994

    SciTech Connect

    Somasundaran, P.

    1995-06-01

    The aim of this project is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations, other inorganic and polymeric species is being studied. A multi-pronged approach consisting of micro and nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability is used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. During the second year of this three year contract, adsorption/desorption of single surfactants and select surfactant mixtures on alumina and silica was studied. Surfactants studied include the anionic sodium dodecyl sulfate (SDS), cationic tetradecyl trimethyl ammonium chloride (TTAC), nonionic pentadecylethoxylated nonyl phenol (NP-15) and the nonionic octaethylene glycol n-dodecyl ether (C{sub 12}EO{sub 8}) of varying hydrocarbon chain length. The microstructure of the adsorbed layer in terms of micropolarity and aggregation numbers was probed using fluorescence spectroscopy. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactant in the mixed aggregate led to shielding of the charge of the ionic surfactant which in-turn promoted aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution upon adsorption as well as correlations between monomer concentrations in mixtures and adsorption were revealed.

  18. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1992--September 30, 1993

    SciTech Connect

    Somasundaran, P.

    1994-07-01

    The aim of this research project is to investigate mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effects of surfactant structure, surfactant combinations, various inorganic and polymeric species, and solids mineralogy will be determined. A multi-pronged approach consisting of micro & nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability; is used in this study. The results obtained should help in controlling surfactant loss in chemical flooding and in developing optimum structures and conditions for efficient chemical flooding processes. During the first year of this three year contract, adsorption of single surfactants and select surfactant mixtures was studied at the solid-liquid and gas-liquid interfaces. Surfactants studied include alkyl xylene sulfonates, polyethoxylated alkyl phenols, octaethylene glycol mono n-decyl ether, and tetradecyl trimethyl ammonium chloride. Adsorption of surfactant mixtures of varying composition was also investigated. The microstructure of the adsorbed layer was characterized using fluorescence spectroscopy. Changes interfacial properties such as wettability, electrokinetics and stability of reservoir minerals were correlated with the amount of reagent adsorbed. Strong effects of the structure of the surfactant and position of functional groups were revealed.

  19. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1992--September 30 1995

    SciTech Connect

    Casteel, J.

    1996-07-01

    The aim of this research project was to investigate mechanisms governing adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effects of surfactant structure, surfactant combinations, various inorganic and polymeric species, and solids mineralogy have been determined. A multi-pronged approach consisting of micro & nano spectroscopy, electrokinetics, surface tension and wettability is used in this study. The results obtained should help in controlling surfactant loss in chemical flooding and in developing optimum structures and conditions for efficient chemical flooding processes. During the three years contract period, adsorption of single surfactants and select surfactant mixtures was studied at the solid-liquid and gas-liquid interfaces. Alkyl xylene sulfonates, polyethoxylated alkyl phenols, octaethylene glycol mono n-decyl ether, and tetradecyl trimethyl ammonium chloride were the surfactants studied. Adsorption of surfactant mixtures of varying composition was also investigated. The microstructure of the adsorbed layer was characterized using fluorescence spectroscopy. Changes in interfacial properties such as wettability, electrokinetics and stability of reservoir minerals were correlated with the amounts of reagent adsorbed. Strong effects of the structure of the surfactant and position of functional groups were revealed. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactants in mixed aggregate leads to shielding of the charge of ionic surfactants which in turn promotes aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution on adsorption as well as correlations between monomer concentration in mixtures and adsorption were revealed.

  20. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  1. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  2. Tsunami flooding

    USGS Publications Warehouse

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  3. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    NASA Astrophysics Data System (ADS)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    perception and understanding of risk in the population. • Residual risk and the levee shadow effect - why the population "felt safe." • What is the overload case and how to implement it in flood protection systems? • Decision-making for the future under uncertainty - how to design to acceptable flood protection levels if we haven't seen yet what's physically possible. 3. How to protect - practical examples Finally, we outline practical examples for reducing the loss burden and risk over time. • "Flood protection hierarchy" - from location choice under a hazard perspective to mobile flood protection. • Risk-based approach and identification of critical infrastructure. • Integrated flood risk management in theory and practical application. • Role of insurance.

  4. Green infrastructure monitoring in Camden, NJ

    EPA Science Inventory

    The Camden County Municipal Utilities Authority (CCMUA) installed green infrastructure Stormwater Control Measures (SCMs) at multiple locations around the city of Camden, NJ. The SCMs include raised downspout planter boxes, rain gardens, and cisterns. The cisterns capture water ...

  5. Can riverside seismic monitoring constrain temporal and spatial variations in bedload transport during a controlled flood of the Trinity River?

    NASA Astrophysics Data System (ADS)

    Glasgow, M. E.; Schmandt, B.; Gaeuman, D.

    2015-12-01

    To evaluate the utility of riverside seismic monitoring for constraining temporal and spatial variations in coarse bedload transport in gravel-bed rivers we collected seismic data during a dam-controlled flood of the Trinity River in northern California in May 2015. This field area was chosen because the Trinity River Restoration Project conducts extensive monitoring of water and sediment transport, and riverbed morphology to guide management of the river with the goal of improving salmon habitat. Four three component broadband seismometers were collocated with water discharge and bedload physical sampling sites along a ~30 km reach of the Trinity River downstream of the Lewiston Dam. Arrays with 10-80 cable-free vertical component geophones were also deployed at each of the four sites in order to constrain spatial variability and amplitude decay of seismic signals emanating from the river. Nominal inter-station spacing within the geophone arrays was ~30 m. The largest geophone array consisted of 83 nodes along a 700 m reach of the Trinity River with a gravel augmentation site at its upstream end. Initial analyses of the seismic data show that ground velocity power from averaged from ~7 - 90 Hz is correlated with discharge at all sites. The array at the gravel injection site shows greater high frequency (>30 Hz) power at the upstream end where gravel was injected during the release compared to ~300 m downstream, consistent with bedload transport providing a significant source of seismic energy in addition to water discharge. Declining seismic power during a ~3 day plateau at peak discharge when physical sampler data shows decreasing bedload flux provides a further indication that the seismic data are sensitive to bedload transport. We will use the array data to back-project the seismic signals in multiple frequency bands into the channel to create maps of the time-varying spatial intensity of seismic energy production. We hypothesize that the greatest seismic

  6. Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2

    NASA Astrophysics Data System (ADS)

    Deshmukh, C.; Serça, D.; Delon, C.; Tardif, R.; Demarty, M.; Jarnot, C.; Meyerfeld, Y.; Chanudet, V.; Guédant, P.; Rode, W.; Descloux, S.; Guérin, F.

    2014-08-01

    In the present study, we measured independently CH4 ebullition and diffusion in the footprint of an eddy covariance system (EC) measuring CH4 emissions in the Nam Theun 2 Reservoir, a recently impounded (2008) subtropical hydroelectric reservoir located in the Lao People's Democratic Republic (PDR), Southeast Asia. The EC fluxes were very consistent with the sum of the two terms measured independently (diffusive fluxes + ebullition = EC fluxes), indicating that the EC system picked up both diffusive fluxes and ebullition from the reservoir. We showed a diurnal bimodal pattern of CH4 emissions anti-correlated with atmospheric pressure. During daytime, a large atmospheric pressure drop triggers CH4 ebullition (up to 100 mmol m-2 d-1), whereas at night, a more moderate peak of CH4 emissions was recorded. As a consequence, fluxes during daytime were twice as high as during nighttime. Additionally, more than 4800 discrete measurements of CH4 ebullition were performed at a weekly/fortnightly frequency, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems. Methane ebullition varies significantly seasonally and depends mostly on water level change during the warm dry season, whereas no relationship was observed during the cold dry season. On average, ebullition was 8.5 ± 10.5 mmol m-2 d-1 and ranged from 0 to 201.7 mmol m-2 d-1. An artificial neural network (ANN) model could explain up to 46% of seasonal variability of ebullition by considering total static pressure (the sum of hydrostatic and atmospheric pressure), variations in the total static pressure, and bottom temperature as controlling factors. This model allowed extrapolation of CH4 ebullition on the reservoir scale and performance of gap filling over four years. Our results clearly showed a very high seasonality: 50% of the yearly CH4 ebullition occurs within four months of the warm dry season. Overall, ebullition contributed 60-80% of total emissions from the surface of the

  7. Flexible Computational Science Infrastructure

    SciTech Connect

    Bergen, Ben; Moss, Nicholas; Charest, Marc Robert Joseph

    2016-04-06

    FleCSI is a compile-time configurable framework designed to support multi-physics application development. As such, FleCSI attempts to provide a very general set of infrastructure design patterns that can be specialized and extended to suit the needs of a broad variety of solver and data requirements. Current support includes multi-dimensional mesh topology, mesh geometry, and mesh adjacency information, n-dimensional hashed-tree data structures, graph partitioning interfaces, and dependency closures. FleCSI also introduces a functional programming model with control, execution, and data abstractions that are consistent with both MPI and state-of-the-art task-based runtimes such as Legion and Charm++. The FleCSI abstraction layer provides the developer with insulation from the underlying runtime, while allowing support for multiple runtime systems, including conventional models like asynchronous MPI. The intent is to give developers a concrete set of user-friendly programming tools that can be used now, while allowing flexibility in choosing runtime implementations and optimizations that can be applied to architectures and runtimes that arise in the future. The control and execution models in FleCSI also provide formal nomenclature for describing poorly understood concepts like kernels and tasks.

  8. Modeling and Managing Risk in Billing Infrastructures

    NASA Astrophysics Data System (ADS)

    Baiardi, Fabrizio; Telmon, Claudio; Sgandurra, Daniele

    This paper discusses risk modeling and risk management in information and communications technology (ICT) systems for which the attack impact distribution is heavy tailed (e.g., power law distribution) and the average risk is unbounded. Systems with these properties include billing infrastructures used to charge customers for services they access. Attacks against billing infrastructures can be classified as peripheral attacks and backbone attacks. The goal of a peripheral attack is to tamper with user bills; a backbone attack seeks to seize control of the billing infrastructure. The probability distribution of the overall impact of an attack on a billing infrastructure also has a heavy-tailed curve. This implies that the probability of a massive impact cannot be ignored and that the average impact may be unbounded - thus, even the most expensive countermeasures would be cost effective. Consequently, the only strategy for managing risk is to increase the resilience of the infrastructure by employing redundant components.

  9. The national database of hospital-based cancer registries: a nationwide infrastructure to support evidence-based cancer care and cancer control policy in Japan.

    PubMed

    Higashi, Takahiro; Nakamura, Fumiaki; Shibata, Akiko; Emori, Yoshiko; Nishimoto, Hiroshi

    2014-01-01

    Monitoring the current status of cancer care is essential for effective cancer control and high-quality cancer care. To address the information needs of patients and physicians in Japan, hospital-based cancer registries are operated in 397 hospitals designated as cancer care hospitals by the national government. These hospitals collect information on all cancer cases encountered in each hospital according to precisely defined coding rules. The Center for Cancer Control and Information Services at the National Cancer Center supports the management of the hospital-based cancer registry by providing training for tumor registrars and by developing and maintaining the standard software and continuing communication, which includes mailing lists, a customizable web site and site visits. Data from the cancer care hospitals are submitted annually to the Center, compiled, and distributed as the National Cancer Statistics Report. The report reveals the national profiles of patient characteristics, route to discovery, stage distribution, and first-course treatments of the five major cancers in Japan. A system designed to follow up on patient survival will soon be established. Findings from the analyses will reveal characteristics of designated cancer care hospitals nationwide and will show how characteristics of patients with cancer in Japan differ from those of patients with cancer in other countries. The database will provide an infrastructure for future clinical and health services research and will support quality measurement and improvement of cancer care. Researchers and policy-makers in Japan are encouraged to take advantage of this powerful tool to enhance cancer control and their clinical practice.

  10. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  11. Understanding cratonic flood basalts

    NASA Astrophysics Data System (ADS)

    Silver, Paul G.; Behn, Mark D.; Kelley, Katherine; Schmitz, Mark; Savage, Brian

    2006-05-01

    The origin of continental flood basalts has been debated for decades. These eruptions often produce millions of cubic kilometers of basalt on timescales of only a million years. Although flood basalts are found in a variety of settings, no locale is more puzzling than cratonic areas such as southern Africa or the Siberian craton, where strong, thick lithosphere is breached by these large basaltic outpourings. Conventionally, flood basalts have been interpreted as melting events produced by one of two processes: 1) elevated temperatures associated with mantle plumes and/or 2) adiabatic-decompression melting associated with lithospheric thinning. In southern Africa, however, there are severe problems with both of these mechanisms. First, the rifting circumstances of several well-known basaltic outpourings clearly reflect lithospheric control rather than the influence of a deep-seated plume. Specifically, rift timing and magmatism are correlated with stress perturbations to the lithosphere associated with the formation of collisional rifts. Second, the substantial lithospheric thinning required for adiabatic decompression melting is inconsistent with xenolith evidence for the continued survival of thick lithosphere beneath flood basalt domains. As an alternative to these models, we propose a new two-stage model that interprets cratonic flood basalts not as melting events, but as short-duration drainage events that tap previously created sublithospheric reservoirs of molten basalt formed over a longer time scale. Reservoir creation/existence (Stage I) requires long-term (e.g. ≫ 1 Ma) supersolidus conditions in the sublithospheric mantle that could be maintained by an elevated equilibrium geotherm (appropriate for the Archean), a slow thermal perturbation (e.g. thermal blanketing or large-scale mantle upwelling), or a subduction-related increase in volatile content. The drainage event (Stage II) occurs in response to an abrupt stress change in the lithosphere, which

  12. Historic Flooding in Georgia, 2009

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2010-01-01

    Heavy rains in southern Georgia during March 27-April 3, 2009, and in northern Georgia during September 16-22, 2009, caused severe flooding and widespread damages to residential, public, and commercial structures. Of the 159 counties in Georgia, 69 were declared disaster areas because of flooding. The heavy rainfall in southern Georgia resulted in severe flooding in the Satilla-St. Marys and upper Ochlockonee Basins and caused approximately $60 million in damages to the public infrastructure. The heavy rainfall in northern Georgia resulted in severe flooding on many streams within the upper Chattahoochee, Altamaha, and Coosa-Tallapoosa Basins and caused 10 deaths, evacuation of thousands of residents, and approximately $500 million in damages. The U.S. Geological Survey computed annual exceedance probabilities of the peak flows in 2009 at 238 streamgages throughout the State. Record peak flows were recorded at 40 streamgages for the respective periods of record as a result of the heavy rainfall during the two multiday events. The peak flows at 33 streamgages exceeded the 1-percent annual exceedance probability (100-year recurrence interval), and 19 of these exceeded the 0.2-percent annual exceedance probability (500-year recurrence interval).

  13. [Attributes of forest infrastructure].

    PubMed

    Gao, Jun-kai; Jin, Ying-shan

    2007-06-01

    This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.

  14. Hydrologic versus geomorphic drivers of trends in flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Bliss Singer, Michael; Kirchner, James W.

    2016-04-01

    Flooding is a major threat to lives and infrastructure, yet trends in flood hazard are poorly understood. The capacity of river channels to convey flood flows is typically assumed to be stationary, so changes in flood frequency are thought to be driven primarily by trends in streamflow. However, changes in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. We developed new methods for separately quantifying how trends in both streamflow and channel capacity have affected flood frequency at gauging sites across the United States. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect overbank flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity and/or the frequency of high flows. Flood frequency is generally nonstationary across these 401 U.S. rivers, with increasing flood hazard at a statistically significant majority of sites. Changes in flood hazard driven by channel capacity are smaller, but more numerous, than those driven by streamflow, with a slight tendency to compensate for streamflow changes. Our results demonstrate that accurately quantifying changes in flood hazard requires accounting separately for trends in both streamflow and channel capacity, or using water levels directly. They also show that channel capacity trends may have unforeseen consequences for flood management and for estimating flood insurance costs. Slater, L. J., M. B. Singer, and J. W. Kirchner (2015), Hydrologic versus geomorphic drivers of trends in flood hazard, Geophys. Res. Lett., 42, 370-376, doi:10.1002/2014GL062482.

  15. Detailed Project Report for Section 205 Flood Control Project. Dry Run Creek, Fayette County, Oelwein, Iowa with Environmental Assessment.

    DTIC Science & Technology

    1987-06-01

    manicured residential and recreational areas. Wildlife species likely to be present in the study area include raccoons, rabbits, squirrels, shrews...mice, woodpeckers, songbirds, and some amphibians and reptiles . No unusual or critical terrestrial habitats are known to exist within the study area. C... likely the result of thunderstorm-type rainf alls occurring during spring and summer. The major historical flood appears to have been that of 28

  16. Water management controls net carbon exchange in drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta, CA

    NASA Astrophysics Data System (ADS)

    Hatala, J.; Detto, M.; Sonnentag, O.; Verfaillie, J. G.; Baldocchi, D. D.

    2011-12-01

    Draining peatlands for agricultural cultivation creates an ecosystem shift with some of the fastest rates and largest magnitudes of carbon loss attributable to land-use change, yet peatland drainage is practiced around the world due to the high economic benefit of fertile soil. The Sacramento-San Joaquin Delta in California was drained at the end of the 19th century for agriculture and human settlement, and as a result, has lost 5-8m of peat soil due to oxidation. To reverse subsidence and capture carbon, there is increasing interest in converting drained agricultural land-uses back to flooded conditions to inhibit further peat oxidation. However, this method remains relatively untested at the landscape-scale. This study analyzed the short-term effects of drained to flooded land-use conversion on the balance of carbon, water, and energy over two years at two landscapes in the Delta. We used the eddy covariance method to compare CO2, CH4, H2O, and energy fluxes under the same meteorological conditions in two different land-use types: a drained pasture grazed by cattle, and a flooded newly-converted rice paddy. By analyzing differences in the fluxes from these two land-use types we determined that water management and differences in the plant canopy both play a fundamental role in governing the seasonal pattern and the annual budgets of CO2 and CH4 fluxes at these two sites. While the pasture was a source of carbon to the atmosphere in both years, the rice paddy captured carbon through NEE, even after considering losses from CH4. Especially during the fallow winter months, flooding the soil at the rice paddy inhibited loss of CO2 through ecosystem respiration when compared with the carbon exchange from the drained pasture.

  17. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  18. Minnesota River at Chaska, Minnesota. Technical Appendixes. Limited Reevaluation Report and Final Supplement to the Final Environmental Impact Statement for Flood Control and Related Purposes.

    DTIC Science & Technology

    1982-08-01

    PROJECT With passage of the Water Resources Development Act of 1976 (Public Law 94-587), Congress authorized the Chaska flood control project. As approved...miles of levee along the MinnCota River. DEGREE OF PROTECTION Minnes.ota li e r - i he P roposld lekVe on th -innesota livr would provide protcction a...the channel uli.;n- nent has been changed. (2) I’here is a high SLt r 11 bank coo biled sith a nar row, passage be .t,’c_’,, to the north, ’ii:i 21

  19. [Biobanks European infrastructure].

    PubMed

    Kinkorová, Judita; Topolčan, Ondřej

    2016-01-01

    Biobanks are structured repositories of human tissue samples connected with specific information. They became an integral part of personalized medicine in the new millennium. At the European research area biobanks are isolated not well coordinated and connected to the network. European commission supports European infrastructure BBMRI-ERIC (Biobanks and Biomolecular Resources Research Infrastructure European Research Infrastructure Consortium), consortium of 54 members with more than 225 associated organizations, largely biobanks from over 30 countries. The aim is to support biomedical research using stored samples. Czech Republic is a member of the consortium as a national node BBMRI_CZ, consisting of five partners.

  20. Somerset County Flood Information System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in

  1. IPHE Infrastructure Workshop Proceedings

    SciTech Connect

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  2. Critical Infrastructure Modeling System

    SciTech Connect

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method of Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.

  3. Green Infrastructure Modeling Toolkit

    EPA Science Inventory

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  4. Local Flood Proofing Programs

    DTIC Science & Technology

    2005-02-01

    100-year flood. Selecting an appropriate flood protection level is discussed on page 63. Human Intervention: the need for one or more people to be...this publication, communities were asked “Why did your community select flood proofing as a damage reduction measure?” Six broad reasons were cited...Flood Proofing Programs – 10 – February 2005 External impact: Sometimes flood proofing is selected because the other flood protection measures

  5. Real Option Cost Vulnerability Analysis of Electrical Infrastructure

    NASA Astrophysics Data System (ADS)

    Prime, Thomas; Knight, Phil

    2015-04-01

    Critical infrastructure such as electricity substations are vulnerable to various geo-hazards that arise from climate change. These geo-hazards range from increased vegetation growth to increased temperatures and flood inundation. Of all the identified geo-hazards, coastal flooding has the greatest impact, but to date has had a low probability of occurring. However, in the face of climate change, coastal flooding is likely to occur more often due to extreme water levels being experienced more frequently due to sea-level rise (SLR). Knowing what impact coastal flooding will have now and in the future on critical infrastructure such as electrical substations is important for long-term management. Using a flood inundation model, present day and future flood events have been simulated, from 1 in 1 year events up to 1 in 10,000 year events. The modelling makes an integrated assessment of impact by using sea-level and surge to simulate a storm tide. The geographical area the model covers is part of the Northwest UK coastline with a range of urban and rural areas. The ensemble of flood maps generated allows the identification of critical infrastructure exposed to coastal flooding. Vulnerability has be assessed using an Estimated Annual Damage (EAD) value. Sampling SLR annual probability distributions produces a projected "pathway" for SLR up to 2100. EAD is then calculated using a relationship derived from the flood model. Repeating the sampling process allows a distribution of EAD up to 2100 to be produced. These values are discounted to present day values using an appropriate discount rate. If the cost of building and maintain defences is also removed from this a Net Present Value (NPV) of building the defences can be calculated. This distribution of NPV can be used as part of a cost modelling process involving Real Options, A real option is the right but not obligation to undertake investment decisions. In terms of investment in critical infrastructure resilience this

  6. Clarkesville Green Infrastructure Implementation Strategy

    EPA Pesticide Factsheets

    The report outlines the 2012 technical assistance for Clarkesville, GA to develop a Green Infrastructure Implementation Strategy, which provides the basic building blocks for a green infrastructure plan:

  7. Hydrologic and geomorphic drivers of changing flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Singer, M. B.; Kirchner, J. W.

    2014-12-01

    Flooding is a major hazard to lives and infrastructure, but trends in flood hazard are poorly understood. In flood risk analysis and channel design engineering, channel capacity is generally assumed to be constant, and changes in flood frequency are assumed to be driven primarily by changes in streamflow. However, trends in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity or the frequency of high flows. We found increases in flood frequency at a statistically significant majority of sites. Trends in channel capacity were smaller, but more numerous, than those in streamflow, with a slight tendency to compensate for streamflow changes. Recognizing and quantifying the joint influence of trends in channel capacity and streamflow on flood frequency is necessary to determine changes in flood hazard accurately.

  8. MFC Communications Infrastructure Study

    SciTech Connect

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  9. Building safeguards infrastructure

    SciTech Connect

    Stevens, Rebecca S; Mcclelland - Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  10. A Scalable Tools Communication Infrastructure

    SciTech Connect

    Buntinas, Darius; Bosilca, George; Graham, Richard L; Vallee, Geoffroy R; Watson, Gregory R.

    2008-01-01

    The Scalable Tools Communication Infrastructure (STCI) is an open source collaborative effort intended to provide high-performance, scalable, resilient, and portable communications and process control services for a wide variety of user and system tools. STCI is aimed specifically at tools for ultrascale computing and uses a component architecture to simplify tailoring the infrastructure to a wide range of scenarios. This paper describes STCI's design philosophy, the various components that will be used to provide an STCI implementation for a range of ultrascale platforms, and a range of tool types. These include tools supporting parallel run-time environments, such as MPI, parallel application correctness tools and performance analysis tools, as well as system monitoring and management tools.

  11. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology

  12. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    PubMed

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed

  13. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks

    PubMed Central

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-01-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3–22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically

  14. Sustainable Infrastructure in the Department of Defense

    DTIC Science & Technology

    2010-06-16

    Sustainable Infrastructure in the Department of Defense Col Bart Barnhart ODUSD(I&E)/EM June 16, 2010 Report Documentation Page Form ApprovedOMB No...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 16 JUN 2010 2. REPORT TYPE 3. DATES COVERED 00...00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Sustainable Infrastructure in the Department of Defense 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  15. A six-year study of insect emergence from temporary flooded wetlands in central Sweden, with and without Bti-based mosquito control.

    PubMed

    Persson Vinnersten, T Z; Lundström, J O; Schäfer, M L; Petersson, E; Landin, J

    2010-12-01

    In temporary wetlands in the River Dalälven floodplains, recurrent but irregular floods induce massive hatching of the flood-water mosquito Aedes sticticus, which causes enormous nuisance. Flood-water mosquito control using the biological larvicide Bacillus thuringiensis var. israelensis (Bti) was commenced in parts of the floodplains during 2002, and here we report the first six years of full-season monitoring of general insect emergence from temporary wetlands with and without treatment. Emergence traps, which were emptied weekly, were used from May to September each year. A total of 137,153 insects of 13 taxonomic orders were collected. Diptera was highly dominating and especially the sub-order Nematocera with 18 families was a very prominent taxon. Bti-treatment effects were analysed by taxonomic order, by sub-order in Diptera and Hemiptera, and by family for Nematocera and Coleoptera for the whole study period. We found no significant negative effects of Bti treatments on the production of insects by taxonomic order, with the exception of Coleoptera in the long term. However, no significant negative effects were found for the Coleoptera families, neither in the short term nor in the long term. There was no significant negative treatment effect on Nematocera production, neither when analyzed for the whole sub-order nor when analyzed by family. However, abundance of Ceratopogonidae was significantly higher in experimental than in reference wetlands. We conclude that Bti-treatment effects on insect production may be minute in comparison to other environmental factors structuring the insect fauna of the temporary wetlands studied.

  16. Surfactant loss control in chemical flooding: Spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Somasundaran, P.

    1994-02-22

    The aim of this contract is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations and other inorganic and polymeric species and solids of relevant mineralogy will also be determined. A multi-pronged approach consisting of micro & nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability win be used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. Adsorption/desorption of tetradecyl trimethyl ammonium chloride (TTAC) and sodium dodecyl sulfate (SDS)/octaethylene glycol mono n-decyl ether (C{sub 12}EO{sub 8}) surfactant mixtures at the kaolinite-water and alumina-water interfaces was studied during this quarter. The microstructure of the adsorbed layer was investigated using spectroscopic techniques. Effect of the hydrocarbon chain length of octaethylene glycol mono n-alkyl ether (C{sub n}EO{sub 8}) type nonionic surfactants on the adsorption of 1:1 mixtures of sodium dodecyl sulfate (SDS)/C{sub n}EO{sub 8} at the kaolinite/water interface was studied. The adsorption of SDS was enhanced by the presence of C{sub 10}EO{sub 8} but this effect was not as significant as those by C{sub 12--16}EO{sub 8}. Interestingly, once the hydrocarbon chain length of the nonionic surfactant exceeded that of the SDS (12) there was no further enhancement of SDS adsorption.

  17. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience.

  18. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  19. Landscape response to progressive tectonic and climatic forcing in NW Borneo: Implications for geological and geomorphic controls on flood hazard.

    PubMed

    Menier, David; Mathew, Manoj; Pubellier, Manuel; Sapin, François; Delcaillau, Bernard; Siddiqui, Numair; Ramkumar, Mu; Santosh, M

    2017-03-28

    Empirical models have simulated the consequences of uplift and orographic-precipitation on the evolution of orogens whereas the effects of these forcings on ridgelines and consequent topography of natural landscapes remain equivocal. Here we demonstrate the feedback of a terrestrial landscape in NW Borneo subject to uplift and precipitation gradient owing to orographic effect, and leading to less-predictable flooding and irreversible damages to life and property. Disequilibrium in a large catchment recording the lowest rainfall rates in Borneo, and adjacent drainage basins as determined through χ, a proxy for steady-state channel elevation, is shown to result in dynamic migration of water divide from the windward-side of the orogen towards the leeward-side to attain equilibrium. Loss of drainage area in the leeward-side reduces erosion rates with progressive shortening resulting in an unstable landscape with tectonic uplift, gravity faults and debris flows. (14)C dating of exhumed cut-and-fill terraces reveal a Mid-Pleistocene age, suggesting tectonic events in the trend of exhumation rates (>7 mm a(-1)) estimated by thermochronology, and confirmed by morphotectonic and sedimentological analyses. Our study suggests that divide migration leads to lowered erosion rates, channel narrowing, and sediment accretion in intermontane basins on the leeward-side ultimately resulting in enhanced flooding.

  20. 10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ON THE PRESSURE CULVERT, LOOKING NORTH. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  1. 11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND THE SOUTH AND EAST ELEVATIONS, LOOKING NORTHWEST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  2. Radar Based Precipitation Forecasting for Flood Warning

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2007-12-01

    Precipitation is one of the most important inputs for flood warning. The accuracy of the measured precipitation controls the effectiveness of flood warning, while the forecasted precipitation increases the lead time of flood warning, this is vital for catastrophically flood warning as it provides time for flood management, such as the emergency evacuation of the people and properties within the flood prone area, so to avoid flood damages. This paper presents an algorithm for forecasting precipitation based on Chinese next generation weather radar- CINRAD for catastrophically flood warning. This algorithm includes radar data quality control, precipitation estimation and forecasting, result correction. The radar data, received at every 5-6 minutes, is quality controlled first to delete the data noises, the pre-processed radar data then is used to estimate the precipitation, which will be employed to calibrate the radar equation parameters, then the pre-processed radar data and calibrated radar equation parameters will be input to the precipitation procedure to forecast precipitation. A software based on the above algorithm is developed that can be used to forecast precipitation on real ¡§Ctime. The radar in Guangzhou city, the biggest city in southern China is studied and the precipitation in 2005 and 2006 in Liuxihe River Basin in southern China were forecasted to validate the effectiveness, the results show this algorithm is encouraging and will be put into real-time operation in the flood warning of Liuxihe River in 2007.

  3. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  4. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees.

    PubMed

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M R; Tardif, Jacques C; Loesberg, Walter A; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of 'flood rings' that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  5. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    PubMed Central

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  6. Development of evaluation metod of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2012-12-01

    Flood is one of the most significant natural hazards in Japan. In particular, the Tokyo metropolitan area has been affected by several large flood disasters. Investigating potential flood risk in Tokyo metropolitan area is important for development of climate change adaptation strategy. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published "Statistics of flood", which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. Based on these flood data, we constructed a flood database system for Tokyo metropolitan area for the period from 1961 to 2008 by using ArcGIS software.Based on these flood data , we created flood risk curve, representing the relation ship between damage and exceedbability of flood for the period 1976-2008. Based on the flood risk cruve, we aim to evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause of regional difference in flood risk at Tokyo metropolitan area by considering effect of socio-economic change and climate change

  7. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  8. Space Agency Workshop Considers Effect of Climate Change on Infrastructure

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Cynthia; Brown, Molly

    2009-10-01

    Climate Change Impacts and Adaptation: NASA Mission and Infrastructure; Kennedy Space Center, Florida, 28-30 July 2009; With centers located throughout the country, NASA could experience a range of climate change hazards. Depending on the region, these hazards are likely to include more extreme and frequent high temperatures, more frequent and intense precipitation events, changing water availability, and sea level rise. These changing climate hazards could undermine key NASA missions by damaging operations and critical infrastructure assets. The specific effects of climate change may include shifting availability, reliability, and cost of water and energy; and changes in safety and operations related to more extreme events (e.g., floods, fire).

  9. Necessity of Flood Early Warning Systems in India

    NASA Astrophysics Data System (ADS)

    Kurian, C.; Natesan, U.; Durga Rao, K. H. V.

    2014-12-01

    India is one of the highly flood prone countries in the world. National flood commission has reported that 400,000 km² of geographical area is prone to floods, constituting to twelve percent of the country's geographical area. Despite the reoccurrences of floods, India still does not have a proper flood warning system. Probably this can be attributed to the lack of trained personnel in using advanced techniques. Frequent flood hazards results in damage to livelihood, infrastructure and public utilities. India has a potential to develop an early warning system since it is one of the few countries where satellite based inputs are regularly used for monitoring and mitigating floods. However, modeling of flood extent is difficult due to the complexity of hydraulic and hydrologic processes during flood events. It has been reported that numerical methods of simulations can be effectively used to simulate the processes correctly. Progress in computational resources, data collection and development of several numerical codes has enhanced the use of hydrodynamic modeling approaches to simulate the flood extent in the floodplains. In this study an attempt is made to simulate the flood in one of the sub basins of Godavari River in India using hydrodynamic modeling techniques. The modeling environment includes MIKE software, which simulates the water depth at every grid cell of the study area. The runoff contribution from the catchment was calculated using Nebdor Afstromnings model. With the hydrodynamic modeling approach, accuracy in discharge and water level computations are improved compared to the conventional methods. The results of the study are proming to develop effective flood management plans in the basin. Similar studies could be taken up in other flood prone areas of the country for continuous modernisation of flood forecasting techniques, early warning systems and strengthening decision support systems, which will help the policy makers in developing management

  10. Making Coastal Flood Hazard Maps to Support Decision-Making - What End Users Want

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Cheung, W. H.; Luke, A.; Gallien, T.; Aghakouchak, A.; Feldman, D.; Matthew, R.; Sanders, B. F.

    2015-12-01

    Growing awareness about accelerating Sea Level Rise (SLR) is contributing to coastal resilience initiatives around the world, with an emphasis on coastal planning, infrastructure adaptation, and emergency preparedness. Maps are the primary tool for communicating flood hazard, and their design raises two fundamental challenges: (1) representing the flood hazard in a scientifically defensible manner considering complexity associated with multiple drivers of flooding (e.g., rainfall, streamflow, storm surge, high tides, waves), urban infrastructure, and human interventions (e.g. pumping, sand bags) and (2) effectively communicating hazard information considering the specific needs of decision-makers. In this research we rely on a hydrodynamic model of coastal flooding that can be forced by multiple drivers of flooding (rainfall, high water levels, and waves) to simulate extreme flooding scenarios at street-level resolution. Model scenarios include 20%, 10%, 5%, 2% and 1% annual exceedance probability (AEP) scenarios for each possible driver of flooding and for both present and future sea levels. The resulting flood zones and related flood depths are aggregated using GIS techniques and transformed into a set of maps depicting annual exceedance probability, multi-year flood probability, 1% AEP flooding depth, uncertainty associated with model forcing data, and road network accessibility. The usability of each map is assessed through focus group discussions with local stakeholders who have distinct decision-making needs, such as homeowners, planners, and emergency response managers. Findings from this research reveal the mapped flood risk information and visualizations preferred by different decision-makers.

  11. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand

  12. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands.

    PubMed

    Beumer, Victor; van Wirdum, Geert; Beltman, Boudewijn; Griffioen, Jasper; Grootjans, Ab P; Verhoeven, Jos T A

    2008-08-25

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species.

  13. Exceptional floods in the Prut basin, Romania, in the context of heavy rains in the summer of 2010

    NASA Astrophysics Data System (ADS)

    Romanescu, Gheorghe; Constantin Stoleriu, Cristian

    2017-03-01

    The year 2010 was characterized by devastating flooding in central and eastern Europe, including Romania, the Czech Republic, Slovakia, and Bosnia-Herzegovina. This study focuses on floods that occurred during the summer of 2010 in the Prut River basin, which has a high percentage of hydrotechnical infrastructure. Strong floods occurred in eastern Romania on the Prut River, which borders the Republic of Moldova and Ukraine, and the Siret River. Atmospheric instability from 21 June to 1 July 2010 caused remarkable amounts of rain, with rates of 51.2 mm/50 min and 42.0 mm/30 min. In the middle Prut basin, there are numerous ponds that help mitigate floods as well as provide water for animals, irrigation, and so forth. The peak discharge of the Prut River during the summer of 2010 was 2310 m3 s-1 at the Rădăuţi-Prut gauging station. High discharges were also recorded on downstream tributaries, including the Baseu, Jijia, and Miletin. High discharges downstream occurred because of water from the middle basin and the backwater from the Danube (a historic discharge of 16 300 m3 s-1). The floods that occurred in the Prut basin in the summer of 2010 could not be controlled completely because the discharges far exceeded foreseen values.

  14. Assessment of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  15. Reconciling Environmental and Flood Control Goals on an Arid-Zone River: Case Study of the Limitrophe Region of the Lower Colorado River in the United States and Mexico

    NASA Astrophysics Data System (ADS)

    Glenn, Edward P.; Hucklebridge, Kate; Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Pitt, Jennifer

    2008-03-01

    Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.

  16. Reconciling environmental and flood control goals on an arid-zone river: case study of the limitrophe region of the lower colorado river in the United States and Mexico.

    PubMed

    Glenn, Edward P; Hucklebridge, Kate; Hinojosa-Huerta, Osvel; Nagler, Pamela L; Pitt, Jennifer

    2008-03-01

    Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.

  17. Kwajalein Infrastructure Prioritization Methodology

    DTIC Science & Technology

    2012-07-01

    GROUNDS-MAINTENANCE-SERVICE- CONTRACT-GUIDE-US-Army-Center>. David, Leonard. “ SpaceX Private Rocket Shifts to Island Launch.” 12 Aug. 2005. TechMedia...Network. 11 Sept. 2011. <http://www.space.com/1422- spacex -private-rocket-shifts-island-launch.html>. Kwajalein Infrastructure Prioritization

  18. An Infrastructure Roadmap.

    ERIC Educational Resources Information Center

    Furgeson, Steven P.

    2002-01-01

    Describes how a master infrastructure plan for electrical and mechanical systems can help determine annual maintenance budgets, form annual capital-improvement budgets, take a snapshot of existing conditions, and lead to better energy management. Discusses important elements in such plans. (EV)

  19. Infrastructure Survey 2009

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2010

    2010-01-01

    In 2008 the Group of Eight (Go8) released a first report on the state of its buildings and infrastructure, based on a survey undertaken in 2007. A further survey was undertaken in 2009, updating some information about the assessed quality, value and condition of buildings and use of space. It also collated data related to aspects of the estate not…

  20. An Infrastructure Museum

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    This article invites teachers to let their students' imaginations soar as they become part of a team that will design a whole new kind of living technological museum, a facility that celebrates the world of infrastructure. In this activity, a new two-story building will be built, occupying a vacant corner parcel of land, approximately 150…

  1. Global Flood risk and Nuclear risk

    NASA Astrophysics Data System (ADS)

    Aerts, Jeroen; Jongman, Brenden; Winsemius, Hessel; Ward, Philip

    2014-05-01

    The Fukushima accident raised considerable concern around the globe on the overall safety of nuclear power plants against natural hazard induced risks. It appeared that natural hazards, and in particular flooding , are a large threat for the safety of global nuclear power plants. Flooding of coastal and fluvial systems are the most significant natural hazards that modern society and is affecting several million people globally each year. The total population and the economic value of material assets located in zones prone to flooding have increased dramatically over the past decades and are expected to increase further due to: (1) an overall growth in economic assets, infrastructure, population and wealth; and (2) increases in sea-level and flood frequency due to climate change. The Fukushima accident has geared an immediate and coordinated response from IAEA and EU member states, who stated that the safety of all EU nuclear plants should be re-assessed on their vulnerability to natural hazards such as floods and earthquakes. This 'stress test' was developed in 2012 together with experts from e.g. the Western European Nuclear Regulators Association (WENRA). Guidelines for a stress test were developed according to how nuclear installations can withstand the consequences of various extreme external events and to analyze security threats due to e.g. terrorist acts. Since nuclear power-plants are often located near- or in flood zones from rivers, this research assesses whether nuclear facilities will face increased risk from flooding in the future. The research will contribute to stresstesting nuclear facilities in flood zones and describes how global flood risk may increase in the future using a global hydrological model. This information is used to assess the vulnerability of existing and planned nuclear facilities as to whether they (1) are located in flood prone areas (2) are susceptible to an increase in potential flood inundation and (3) are vulnerable to other

  2. August, 2002 - floods events, affected areas revitalisation and prevention for the future in the central Bohemian region, Czech Republic

    NASA Astrophysics Data System (ADS)

    Bina, L.; Vacha, F.; Vodova, J.

    2003-04-01

    Central Bohemian Region is located in a shape of a ring surrounding the capitol of Prague. Its total territorial area is 11.014 sq.km and population of 1 130.000 inhabitants. According to EU nomenclature of regional statistical units, the Central Bohemian Region is classified as an independent NUTS II. Bohemia's biggest rivers, Vltava and Labe form the region's backbone dividing it along a north-south line, besides that there are Sazava and Berounka, the two big headwaters of Vltava, which flow through the region and there also are some cascade man made lakes and 2 important big dams - Orlik and Slapy on the Vltava River in the area of the region. Overflowing of these rivers and their feeders including cracking of high-water dams during the floods in August 2002 caused total or partial destruction or damage of more than 200 towns and villages and total losses to the extend of 450 mil. EUR. The worst impact was on damaged or destroyed human dwellings, social infrastructure (schools, kindergartens, humanitarian facilities) and technical infrastructure (roads, waterworks, power distribution). Also businesses were considerably damaged including transport terminals in the area of river ports. Flowage of Spolana Neratovice chemical works caused critical environmental havoc. Regional crisis staff with regional Governor in the lead worked continuously during the floods and a regional integrated rescue system was subordinated to it. Due to the huge extent of the floods the crisis staff coordinated its work with central bodies of state including the Government and single "power" resorts (army, interior, transport). Immediately after floods a regional - controlled management was set up including an executive body for regional revitalisation which is connected to state coordinating resort - Ministry for Local Development, EU sources and humanitarian aid. In addition to a program of regional revitalisation additional preventive flood control programs are being developed

  3. Flooding and emergency room visits for gastrointestinal illness in Massachusetts: A case-crossover study.

    EPA Science Inventory

    Introduction: Floods and other severe weather events are anticipated to increase as a result of global climate change. Floods can lead to outbreaks of gastroenteritis and other infectious diseases due to disruption of sewage and water infrastructure and impacts on san...

  4. A Large-Scale Experiment to Determine the Effectiveness of Controlled Floods and Tamarisk Removal in Rehabilitating the Green River, Dinosaur National Monument, Colorado

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.; Cooper, D. J.; Larson, G. P.

    2002-12-01

    A large-scale field experiment is underway on the Green River in the Canyon of Lodore to evaluate the effectiveness of tamarisk (Tamarix ramosissima) removal and increased magnitude and duration of floods released from Flaming Gorge Dam (FGD) for the purpose of increasing active channel width and increasing entrainment rates on gravel bars where there are large proportions of fines. Results to date demonstrate that effectiveness varies with small scale geomorphic setting, and that channel widening in some parts of the river may be impossible without regular removal, which is unlikely. Our approach is important in channel rehabilitation planning, yet the difficulties of conducting such experiments are apparent in the first 2 yrs of the project. All tamarisk are being removed in 3, 0.8 to 1.6 km long study reaches. Three control reaches, immediately upstream or downstream from removal reaches, are also being monitored. We are making detailed measurements of scour and fill, substrate, and composition of riparian vegetation communities in removal and control reaches, and in response to high flood releases from FGD. Difficulties in implementation of the experiment include the multi-year process of tamarisk removal. Tamarisk immediately reestablishes itself on moist substrate following removal; thus, some parts of removal reaches have young tamarisk seedlings and other parts have tamarisk not yet removed. Experimental dam releases have not yet occurred due to drought in the watershed and other water delivery imperatives. We have also compared the distribution of tamarisk on the nearby Yampa River, where an unregulated flow regime exists and where tamarisk are absent or in low densities. The comparison between the distribution, density, and age characteristics of tamarisk on the 2 streams will lead to recommendations as to the sites on the Green River where eradication efforts are best directed. Despite the difficulties of experiment implementation, such large

  5. Flood Risk and Climate Change: The Contributions of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Brakenridge, R.; Slayback, D. A.; Kettner, A. J.; Cohen, S.; Syvitski, J. A.; Overeem, I.; de Groeve, T.

    2015-12-01

    Since the mid-1970s, satellite observation has gathered an exceptionally valuable but largely un-harvested record of flood inundation world-wide. Commencing in late 1999, the two MODIS sensors also obtained daily surveillance of all of the Earth's surface waters. These data are analogous to the record of earthquake seismicity provided by seismographic stations; they provide the only objective characterization of many extreme, damaging flood events. This information should be deployed to its maximum utility in defining areas of flood risk. In the developing nations, the remote sensing archive provides the immediate opportunity, without hydrological data infrastructure, to directly identify hazardous land areas. As well, satellite passive microwave radiometry, commencing with near-daily global coverage in 1998, has the ability to characterize at-a-site flood hydrographs. When combined with the satellite record of mapped inundation, this allows exceedance probabilities to be placed on observed inundation limits. The coupled data set can then be used to validate predictive flood modeling. As climate changes, flood statistics change. Yet hazard evaluation has for many decades proceeded using assumed stationarity of flood frequency distributions. New floods-of-record at any location thereby present a dilemma to policy makers and to hydrologists: immediately include the new extreme flood in the flow series, and thus increase the size of the regulatory floodplain, or use the pre-flood flow records to label the exceptional new event as, for example, "the 1000 yr flood". The remote sensing record also includes defended floodplains where levees have failed, sometimes even during relatively common floods. We can use the powerful observations provided by remote sensing to confront the old probability estimates directly: by arguing that the recent observed record of inundation from actual floods must take priority in guiding public policy.

  6. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  7. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  8. The role of fluvial geomorphic analysis and historical ecology in support of flood control channel management in the Livermore Valley, California

    NASA Astrophysics Data System (ADS)

    Beagle, J. R.; Pearce, S.; Stanford, B.; McKee, L. J.; Grossinger, R. M.

    2011-12-01

    Julie Beagle, Sarah Pearce, Bronwen Stanford, Lester McKee, Robin Grossinger Flood control, city, and county managers are under increasing pressure to include improved habitat and water quality function, in addition to normal flood control function, to operating procedures for flood channels. Obtaining permits for routine maintenance, such as sediment removal, is now more challenging unless management agencies can demonstrate high level understanding of modern channel processes in the context of historical ecosystem functions. To address this issue, San Francisco Estuary Institute has been working with local agencies throughout the Bay Area to measure and understand sediment supply, the causes and rates of sedimentation in facilities, the impacts of maintenance activities to habitat and species of interest, and to identify mitigation opportunities within the context of historical watershed functions. Ongoing research in the Alameda Creek watershed provides an example of the intersection between historical ecology and modern geomorphic analysis as a developed approach for informing local resource management decisions. Zone 7 Water Agency, in the northern area of the Alameda Creek watershed, maintains 37 miles of channels that receive and convey urban drainage from Livermore, Dublin, and Pleasanton, California; and runoff and eroded sediment from the watersheds of Arroyo Mocho, Arroyo Las Positas and tributaries to the north (~220 sq mi). In the last three decades, population has doubled, accompanied by changing land uses in Livermore Valley. As a result, the flow of sediment and water has evolved such that, in some reaches, a combination of loss of capacity from sedimentation coupled with increased peak flows has led to channels that may not pass design flows. Previous sediment budget work by SFEI showed that the majority of sediment supply to the Alameda Flood Control Channel on the San Francisco Bay margin is supplied from the northern tributaries. SFEI's wider

  9. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  10. The component model of infrastructure: a practical approach to understanding public health program infrastructure.

    PubMed

    Lavinghouze, S René; Snyder, Kimberly; Rieker, Patricia P

    2014-08-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement.

  11. Securing energy assets and infrastructure 2007

    SciTech Connect

    2006-06-15

    This report describes in detail the energy industry's challenges and solutions for protecting critical assets including oil and gas infrastructure, transmission grids, power plants, storage, pipelines, and all aspects of strategic industry assets. It includes a special section on cyber-terrorism and protecting control systems. Contents: Section I - Introduction; U.S Energy Trends; Vulnerabilities; Protection Measures. Section II - Sector-wise Vulnerabilities Assessments and Security Measures: Coal, Oil and Petroleum, Natural Gas, Electric Power, Cybersecurity and Control Systems, Key Recommendations; Section III - Critical Infrastructure Protection Efforts: Government Initiatives, Agencies, and Checklists.

  12. Nonstationary decision model for flood risk decision scaling

    NASA Astrophysics Data System (ADS)

    Spence, Caitlin M.; Brown, Casey M.

    2016-11-01

    Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."

  13. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA

    NASA Astrophysics Data System (ADS)

    Heitmuller, Franklin T.; Hudson, Paul F.; Asquith, William H.

    2015-03-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial-bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (mostly ≥ 0.45) that develop at sites with unit stream power values in excess

  14. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    USGS Publications Warehouse

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  15. Monitoring and research to describe geomorphic effects of the 2011 controlled flood on the Green River in the Canyon of Lodore, Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt; Alexander, Jason A.; Kohl, Keith

    2014-01-01

    In 2011, a large magnitude flow release from Flaming Gorge Reservoir, Wyoming and Utah, occurred in response to high snowpack in the middle Rocky Mountains. This was the third highest recorded discharge along the Green River downstream of Flaming Gorge Dam, Utah, since its initial closure in November 1962 and motivated a research effort to document effects of these flows on channel morphology and sedimentology at four long-term monitoring sites within the Canyon of Lodore in Dinosaur National Monument, Colorado and Utah. Data collected in September 2011 included raft-based bathymetric surveys, ground-based surveys of banks, channel cross sections and vegetation-plot locations, sand-bar stratigraphy, and painted rock recovery on gravel bars. As part of this surveying effort, Global Navigation Satellite System (GNSS) data were collected at benchmarks on the canyon rim and along the river corridor to establish a high-resolution survey control network. This survey control network allows for the collection of repeatable spatial and elevation data necessary for high accuracy geomorphic change detection. Nearly 10,000 ground survey points and more than 20,000 bathymetric points (at 1-meter resolution) were collected over a 5-day field campaign, allowing for the construction of reach-scale digital elevation models (DEMs). Additionally, we evaluated long-term geomorphic change at these sites using repeat topographic surveys of eight monumented cross sections at each of the four sites. Analysis of DEMs and channel cross sections show a spatially variable pattern of erosion and deposition, both within and between reaches. As much as 5 meters of scour occurred in pools downstream from flow constrictions, especially in channel segments where gravel bars were absent. By contrast, some channel cross sections were stable during the 2011 floods, and have shown almost no change in over a decade of monitoring. Partial mobility of gravel bars occurred, and although in some locations

  16. Toward disaster-resilient cities: characterizing resilience of infrastructure systems with expert judgments.

    PubMed

    Chang, Stephanie E; McDaniels, Timothy; Fox, Jana; Dhariwal, Rajan; Longstaff, Holly

    2014-03-01

    Resilient infrastructure systems are essential for cities to withstand and rapidly recover from natural and human-induced disasters, yet electric power, transportation, and other infrastructures are highly vulnerable and interdependent. New approaches for characterizing the resilience of sets of infrastructure systems are urgently needed, at community and regional scales. This article develops a practical approach for analysts to characterize a community's infrastructure vulnerability and resilience in disasters. It addresses key challenges of incomplete incentives, partial information, and few opportunities for learning. The approach is demonstrated for Metro Vancouver, Canada, in the context of earthquake and flood risk. The methodological approach is practical and focuses on potential disruptions to infrastructure services. In spirit, it resembles probability elicitation with multiple experts; however, it elicits disruption and recovery over time, rather than uncertainties regarding system function at a given point in time. It develops information on regional infrastructure risk and engages infrastructure organizations in the process. Information sharing, iteration, and learning among the participants provide the basis for more informed estimates of infrastructure system robustness and recovery that incorporate the potential for interdependent failures after an extreme event. Results demonstrate the vital importance of cross-sectoral communication to develop shared understanding of regional infrastructure disruption in disasters. For Vancouver, specific results indicate that in a hypothetical M7.3 earthquake, virtually all infrastructures would suffer severe disruption of service in the immediate aftermath, with many experiencing moderate disruption two weeks afterward. Electric power, land transportation, and telecommunications are identified as core infrastructure sectors.

  17. Infrastructure Vulnerability Assessment Model (I-VAM).

    PubMed

    Ezell, Barry Charles

    2007-06-01

    Quantifying vulnerability to critical infrastructure has not been adequately addressed in the literature. Thus, the purpose of this article is to present a model that quantifies vulnerability. Vulnerability is defined as a measure of system susceptibility to threat scenarios. This article asserts that vulnerability is a condition of the system and it can be quantified using the Infrastructure Vulnerability Assessment Model (I-VAM). The model is presented and then applied to a medium-sized clean water system. The model requires subject matter experts (SMEs) to establish value functions and weights, and to assess protection measures of the system. Simulation is used to account for uncertainty in measurement, aggregate expert assessment, and to yield a vulnerability (Omega) density function. Results demonstrate that I-VAM is useful to decisionmakers who prefer quantification to qualitative treatment of vulnerability. I-VAM can be used to quantify vulnerability to other infrastructures, supervisory control and data acquisition systems (SCADA), and distributed control systems (DCS).

  18. In Situ Nuclear Characterization Infrastructure

    SciTech Connect

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  19. Future trends in flood risk in Indonesia - A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip

    2014-05-01

    decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.

  20. Flood of September 2008 in Northwestern Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.; Arvin, Donald V.

    2010-01-01

    During September 12-15, 2008, rainfall ranging from 2 to more than 11 inches fell on northwestern Indiana. The rainfall resulted in extensive flooding on many streams within the Lake Michigan and Kankakee River Basins during September 12-18, causing two deaths, evacuation of hundreds of residents, and millions of dollars of damage to residences, businesses, and infrastructure. In all, six counties in northwestern Indiana were declared Federal disaster areas. U.S. Geological Survey (USGS) streamgages at four locations recorded new record peak streamflows as a result of the heavy rainfall. Peak-gage-height data, peak-streamflow data, annual exceedance probabilities, and recurrence intervals are tabulated in this report for 10 USGS streamgages in northwestern Indiana. Recurrence intervals of flood-peak streamflows were estimated to be greater than 100 years at six streamgages. Because flooding was particularly severe in the communities of Munster, Dyer, Hammond, Highland, Gary, Lake Station, Hobart, Schererville, Merrillville, Michiana Shores, and Portage, high-water-park data collected after the flood were tabulated for those communities. Flood peak inundation maps and water-surface profiles for selected streams were made in a geographic information system by combining high-water-mark data with the highest resolution digital elevation model data available.

  1. Challenges in building high performance geoscientific spatial data infrastructures

    NASA Astrophysics Data System (ADS)

    Dubros, Fabrice; Tellez-Arenas, Agnes; Boulahya, Faiza; Quique, Robin; Le Cozanne, Goneri; Aochi, Hideo

    2016-04-01

    One of the main challenges in Geosciences is to deal with both the huge amounts of data available nowadays and the increasing need for fast and accurate analysis. On one hand, computer aided decision support systems remain a major tool for quick assessment of natural hazards and disasters. High performance computing lies at the heart of such systems by providing the required processing capabilities for large three-dimensional time-dependent datasets. On the other hand, information from Earth observation systems at different scales is routinely collected to improve the reliability of numerical models. Therefore, various efforts have been devoted to design scalable architectures dedicated to the management of these data sets (Copernicus, EarthCube, EPOS). Indeed, standard data architectures suffer from a lack of control over data movement. This situation prevents the efficient exploitation of parallel computing architectures as the cost for data movement has become dominant. In this work, we introduce a scalable architecture that relies on high performance components. We discuss several issues such as three-dimensional data management, complex scientific workflows and the integration of high performance computing infrastructures. We illustrate the use of such architectures, mainly using off-the-shelf components, in the framework of both coastal flooding assessments and earthquake early warning systems.

  2. California Hydrogen Infrastructure Project

    SciTech Connect

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  3. Transcriptomic analysis reveals the flooding tolerant mechanism in flooding tolerant line and abscisic acid treated soybean.

    PubMed

    Yin, Xiaojian; Hiraga, Susumu; Hajika, Makita; Nishimura, Minoru; Komatsu, Setsuko

    2017-03-01

    Soybean is highly sensitive to flooding stress and exhibits markedly reduced plant growth and grain yield under flooding conditions. To explore the mechanisms underlying initial flooding tolerance in soybean, RNA sequencing-based transcriptomic analysis was performed using a flooding-tolerant line and ABA-treated soybean. A total of 31 genes included 12 genes that exhibited similar temporal patterns were commonly changed in these plant groups in response to flooding and they were mainly involved in RNA regulation and protein metabolism. The mRNA expression of matrix metalloproteinase, glucose-6-phosphate isomerase, ATPase family AAA domain-containing protein 1, and cytochrome P450 77A1 was up-regulated in wild-type soybean under flooding conditions; however, no changes were detected in the flooding-tolerant line or ABA-treated soybean. The mRNA expression of cytochrome P450 77A1 was specifically up-regulated in root tips by flooding stress, but returned to the level found in control plants following treatment with the P450 inhibitor uniconazole. The survival ratio and root fresh weight of plants were markedly improved by 3-h uniconazole treatment under flooding stress. Taken together, these results suggest that cytochrome P450 77A1 is suppressed by uniconazole treatment and that this inhibition may enhance soybean tolerance to flooding stress.

  4. The Hydroclimatology of Extreme Flooding in the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Smith, James; Baeck, Mary Lynn

    2015-04-01

    The 1927 flood in the lower Mississippi River was the most destructive flood in American history, inundating more than 68,000 square kilometers of land, resulting in approximately 500 fatalities and leaving more than 700,000 people homeless. Despite the prominence of the 1927 flood, hard details on the flood, and the storms that produced the flood, are sparse. We examine the hydrometeorology, hydroclimatolgy and hydrology of the 1927 flood in the lower Mississippi River through empirical analyses of rainfall and streamflow records and through downscaling simulations of the storms that were responsible for cata-strophic flooding. We use 20th Century Reanalysis fields as boundary conditions and initial conditions for downscaling simulations with the Weather Research and Forecasting (WRF) model. We place the hydrometeorological analyses of the 1927 storms in a hydroclimatolog-ical context through analyses of the 20th Century Reanalysis fields. Analyses are designed to assess the physical processes that control the upper tail of flooding in the lower Missis-sippi River. We compare the 1927 flood in the Lower Mississippi River to floods in 2011, 1937 and 1973 that represent the most extreme flooding in the Lower Mississippi River. Our results show that extreme flooding is tied to anomalous water vapor transport linked to strength and position of the North Atlantic Subtropical High. More generally, the results are designed to provide insights to the hydroclimatology of flooding in large rivers.

  5. Final Report, Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2003-05-31

    The Flooding Predictor is an advanced process control strategy comprising a patented pattern-recognition methodology that identifies pre-flood patterns discovered to precede flooding events in distillation columns. The grantee holds a U.S. patent on the modeling system. The technology was validated at the Separations Research Program, The University of Texas at Austin under a grant from the U. S. Department of Energy, Inventions & Innovation Program. Distillation tower flooding occurs at abnormally high vapor and/or liquid rates. The loss in tray efficiencies is attributed to unusual behavior of liquid inventories inside the column leading to conditions of flooding of the space in between trays with liquid. Depending on the severity of the flood condition, consequences range from off spec products to equipment damage and tower shutdown. This non-intrusive pattern recognition methodology, processes signal data obtained from existing column instrumentation. Once the pattern is identified empirically, it is modeled and coded into the plant's distributed control system. The control system is programmed to briefly "unload" the tower each time the pattern appears. The unloading takes the form of a momentary reduction in column severity, e.g., decrease bottom temperature, reflux or tower throughput. Unloading the tower briefly at the pre-flood state causes long-term column operation to become significantly more stable - allowing an increase in throughput and/or product purity. The technology provides a wide range of value between optimization and flooding. When a distillation column is not running at capacity, it should be run in such a way ("pushed") that optimal product purity is achieved. Additional benefits include low implementation and maintenance costs, and a high level of console operator acceptance. The previous commercial applications experienced 98% uptime over a four-year period. Further, the technology is unique in its ability to distinguish between different

  6. Cyber Threats to Nuclear Infrastructures

    SciTech Connect

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  7. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    NASA Astrophysics Data System (ADS)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  8. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    NASA Astrophysics Data System (ADS)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-01-01

    Historical records are an important source of information about extreme and rare floods with a great value to establish a reliable flood return frequency. The use of long historic records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 year flood record from the Tagus River in Aranjuez (Central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their implications on hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations on flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation index (NAO index). Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators; (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, that incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  9. Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2

    NASA Astrophysics Data System (ADS)

    Deshmukh, C.; Serça, D.; Delon, C.; Tardif, R.; Demarty, M.; Jarnot, C.; Meyerfeld, Y.; Chanudet, V.; Guédant, P.; Rode, W.; Descloux, S.; Guérin, F.

    2014-02-01

    In the present study, we measured CH4 ebullition and diffusion with funnels and floating chambers in the footprint of an eddy-covariance system measuring CH4 emissions at high frequency (30 mn) in the Nam Theun 2 Reservoir, a recently impounded (in 2008) subtropical hydroelectric reservoir located in Lao PDR, southeast Asia. The EC fluxes were very consistent with the sum of the two terms measured independently (diffusive fluxes + ebullition = EC fluxes), indicating that the EC system picked-up both diffusive fluxes and ebullition from the reservoir. The EC system permitted to evidence a diurnal bimodal pattern of CH4 emissions anti-correlated with atmospheric pressure. During daytime, a large atmospheric pressure drop triggers CH4 ebullition (up to 100 mmol m-2 d-1) whereas at night, a more moderate peak of CH4 emission was recorded. As a consequence, fluxes during daytime were twice higher than during nighttime. A total of 4811 measurements of CH4 ebullition with submerged funnels at a weekly/fortnightly frequency were performed. The data set covers a water depth ranging from 0.4 to 16 m, and all types of flooded ecosystems. This dataset allowed to determine that ebullition depends mostly on water level change among many other variables tested. On average, ebullition was 8.5 ± 10.5 mmol m-2 d-1 (10-90 percentile range: 0.03-21.5 mmol m-2 d-1) and ranged from 0-201.7 mmol m-2 d-1. An artificial neural network model could explain up to 45% of variability of ebullition using total static pressure (sum of hydrostatic and atmospheric pressure), variations in the water level and atmospheric pressure, and bottom temperature as inputs. This model allowed extrapolation of CH4 ebullition at the reservoir scale and performing gap-filling over four years. Our results clearly showed a very high seasonality: 50% of the yearly CH4 ebullition occurs within four months of the warm dry season. Overall, ebullition contributed 60-80% of total emissions from the surface of the

  10. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience.

  11. 78 FR 43906 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    .... Additional information regarding the SRP process can be found online at http://floodsrp.org/pdfs/srp_fact... Riverside Riverside County Flood Control County. and Water Conservation District, 1995 Market...

  12. ACRF Data Collection and Processing Infrastructure

    SciTech Connect

    Macduff, M; Egan, D

    2004-12-01

    We present a description of the data flow from measurement to long-term archive. We also discuss data communications infrastructure. The data handling processes presented include collection, transfer, ingest, quality control, creation of Value-Added Products (VAP), and data archiving.

  13. Seeking Equity in the National Information Infrastructure.

    ERIC Educational Resources Information Center

    Doctor, Ronald D.

    1994-01-01

    Proposals for shaping the National Information Infrastructure (NII) lack sufficient provision for supporting locally controlled information delivery systems, which could serve all the people, regardless of class or community environment. A system of federally sponsored National and Regional Institutes for Information Democracy could help meet this…

  14. Flooding and intestinal illness due to Clostridium difficile infection: a case-crossover analysis of Massachusetts data, 2003-2007

    EPA Science Inventory

    Background. Climate change has contributed to a rise in extreme weather events, including heavier rainfalls. Floods can cause water bodies to overflow, damage water treatment and drinking water infrastructure, overwhelm sewage treatment facilities, and result in discharges of un...

  15. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  16. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  17. The INSC Security Infrastructure

    DTIC Science & Technology

    2004-12-01

    Le but était de démontrer une infrastructure de réseau qui soutient la sécurité, l’interopérabilité, la maintenance, et la mobilité . La sécurité a...l’interopérabilité, la maintenance, et la mobilité . La sécurité a été fournie à la couche réseau en utilisant le protocole d’IPsec. Aucune sécurité

  18. Floods of June 2012 in northeastern Minnesota

    USGS Publications Warehouse

    Czuba, Christiana R.; Fallon, James D.; Kessler, Erich W.

    2012-01-01

    During June 19–20, 2012, heavy rainfall, as much as 10 inches locally reported, caused severe flooding across northeastern Minnesota. The floods were exacerbated by wet antecedent conditions from a relatively rainy spring, with May 2012 as one of the wettest Mays on record in Duluth. The June 19–20, 2012, rainfall event set new records in Duluth, including greatest 2-day precipitation with 7.25 inches of rain. The heavy rains fell on three major watersheds: the Mississippi Headwaters; the St. Croix, which drains to the Mississippi River; and Western Lake Superior, which includes the St. Louis River and other tributaries to Lake Superior. Widespread flash and river flooding that resulted from the heavy rainfall caused evacuations of residents, and damages to residences, businesses, and infrastructure. In all, nine counties in northeastern Minnesota were declared Federal disaster areas as a result of the flooding. Peak-of-record streamflows were recorded at 13 U.S. Geological Survey streamgages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 35 U.S. Geological Survey streamgages. Flood-peak streamflows in June 2012 had annual exceedance probabilities estimated to be less than 0.002 (0.2 percent; recurrence interval greater than 500 years) for five streamgages, and between 0.002 and 0.01 (1 percent; recurrence interval greater than 100 years) for four streamgages. High-water marks were identified and tabulated for the most severely affected communities of Barnum (Moose Horn River), Carlton (Otter Creek), Duluth Heights neighborhood of Duluth (Miller Creek), Fond du Lac neighborhood of Duluth (St. Louis River), Moose Lake (Moose Horn River and Moosehead Lake), and Thomson (Thomson Reservoir outflow near the St. Louis River). Flood-peak inundation maps and water-surface profiles were produced for these six severely affected communities. The inundation maps were constructed in a

  19. Floods of September 2010 in Southern Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Sanocki, Chris A.; Lorenz, David L.; Mitton, Gregory B.; Kruse, Gregory A.

    2011-01-01

    During September 22-24, 2010, heavy rainfall ranging from 3 inches to more than 10 inches caused severe flooding across southern Minnesota. The floods were exacerbated by wet antecedent conditions, where summer rainfall totals were as high as 20 inches, exceeding the historical average by more than 4 inches. Widespread flooding that occurred as a result of the heavy rainfall caused evacuations of hundreds of residents, and damages in excess of 64 million dollars to residences, businesses, and infrastructure. In all, 21 counties in southern Minnesota were declared Federal disaster areas. Peak-of-record streamflows were recorded at nine U.S. Geological Survey and three Minnesota Department of Natural Resources streamgages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 27 U.S. Geological Survey and 5 Minnesota Department of Natural Resources streamgages and 5 ungaged sites. Flood-peak streamflows in 2010 had annual exceedance probabilities estimated to be less than 0.2 percent (recurrence interval greater than 500 years) at 7 streamgages and less than 1 percent (recurrence interval greater than 100 years) at 5 streamgages and 4 ungaged sites. High-water marks were identified and tabulated for the most severely affected communities of Faribault along the Cannon and Straight Rivers, Owatonna along the Straight River and Maple Creek, Pine Island along the North Branch and Middle Fork Zumbro River, and Zumbro Falls along the Zumbro River. The nearby communities of Hammond, Henderson, Millville, Oronoco, Pipestone, and Rapidan also received extensive flooding and damage but were not surveyed for high-water marks. Flood-peak inundation maps and water-surface profiles for the four most severely affected communities were constructed in a geographic information system by combining high-water-mark data with the highest resolution digital elevation model data available. The flood maps and

  20. Flood proneness and coping strategies: the experiences of two villages in Bangladesh.

    PubMed

    Paul, Shitangsu Kumar; Routray, Jayant K

    2010-04-01

    This paper explores peoples' indigenous survival strategies and assesses variations in people's ability to cope with floods in two flood-prone villages in Bangladesh. It reveals that people continuously battle against flood vulnerability in accordance with their level of exposure and abilities, with varied strategies employed at different geophysical locations. The paper reports that people in an area with low flooding and with better socioeconomic circumstances are more likely to cope with impacts compared to people in areas with high and sudden flooding. Similarly, households' ability to cope varies depending on people's socioeconomic conditions, such as education, income and occupation. Although floods in Bangladesh generate socioeconomic misery and cause damage to the environment, health and infrastructure, people's indigenous coping strategies have helped them to reduce significantly their vulnerability. Such flood-mitigating strategies should be well recognised and emphasised further via proper dissemination of information through an early-warning system and subsequently external assistance.

  1. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years.

    PubMed

    Glur, Lukas; Wirth, Stefanie B; Büntgen, Ulf; Gilli, Adrian; Haug, Gerald H; Schär, Christoph; Beer, Jürg; Anselmetti, Flavio S

    2013-09-26

    Severe floods triggered by intense precipitation are among the most destructive natural hazards in Alpine environments, frequently causing large financial and societal damage. Potential enhanced flood occurrence due to global climate change would thus increase threat to settlements, infrastructure, and human lives in the affected regions. Yet, projections of intense precipitation exhibit major uncertainties and robust reconstructions of Alpine floods are limited to the instrumental and historical period. Here we present a 2500-year long flood reconstruction for the European Alps, based on dated sedimentary flood deposits from ten lakes in Switzerland. We show that periods with high flood frequency coincide with cool summer temperatures. This wet-cold synchronism suggests enhanced flood occurrence to be triggered by latitudinal shifts of Atlantic and Mediterranean storm tracks. This paleoclimatic perspective reveals natural analogues for varying climate conditions, and thus can contribute to a better understanding and improved projections of weather extremes under climate change.

  2. Severe Flooding in India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Floods devestated parts of eastern India along the Brahmaputra River in June 2000. In some tributaries of the Brahmaputra, the water reached more than 5 meters (16.5 feet) above flood stage. At least 40 residents died, and the flood waters destroyed a bridge linking the region to the rest of India. High water also threatened endangered Rhinos in Kaziranga National Park. Flooded areas are shown in red in the above image. The map was derived from Advanced Very High Resolution Radiometer (AVHRR) data taken on June 15, 2000. For more information on observing floods with satellites, see: Using Satellites to Keep our Head above Water and the Dartmouth Flood Observatory Image by the Dartmouth Flood Observatory

  3. Long-term changes in flood event patterns due to changes in hydrological distribution parameters in a rural-urban catchment, Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Kanae, Shinjiro; Oki, Taikan

    2011-07-01

    This article describes the principal control parameters of flood events and precipitation and the relationships between corresponding hydrologic and climatologic parameters. The long-term generation of runoff and associated processes is important in understanding floods and droughts under changes in climate and land use. This study presents detailed analyses of flood events in a coastal amphitheatre catchment with a total area of 445 km 2 in western Japan, followed by analyses of flood events in both urban and forest areas. Using long-term (1962 to 2002) hydrological and climatological data from the Ministry of Land, Infrastructure and Transport, Japan, the contributions of precipitation, river discharge, temperature, and relative humidity to flood events were analysed. Flood events could be divided into three types with respect to hydrologic and climatologic principal control parameters: the long-term tendency; medium-term changes as revealed by hydrographs and hyetographs of high-intensity events such as the relative precipitation, river discharge, and temperature; and large events, as shown by the flow-duration curve, with each cluster having particular characteristics. River discharge showed a decreasing tendency of flow quantity during small rainfall events of less than 100 mm/event from the 1980s to the present. An approximately 7% decrease from 44.8 to 37.3% occurred in the percentage of river water supplied by precipitation in the years after the 1980s. For the medium-term changes, no marked change occurred in the flow quantity of the peak point over time in event hydrographs. However, flow quantities before and after the peak tended to decrease by 1 to 2 m 3/s after the 1980s. Theoretical considerations with regard to the influence of hydrologic and climatologic parameters on flood discharge are discussed and examined in terms of observational data. These findings provide a sound foundation for use in hydrological catchment modelling.

  4. Preparing for Local Adaptation: Understanding Flood Risk Perceptions in Pittsburgh

    NASA Astrophysics Data System (ADS)

    Klima, K.; Wong-Parodi, G.

    2015-12-01

    The City of Pittsburgh experiences numerous floods every year. Aging and insufficient infrastructure contribute to flash floods and to over 20 billion gallons of combined sewer overflows annually, contaminating Pittsburgh's streets, basements, and waterways. Climate change is expected to further exacerbate this problem by causing more intense and more frequent extreme precipitation events in Western Pennsylvania. For a stormwater adaptation plan to be implemented effectively, the City will need informed public support. One way to achieve public understanding and support is through effective communication of the risks, benefits, and uncertainties of local flooding hazards and adaptation methods. In order to develop these communications effectively, the city and its partners will need to know what knowledge and attitudes the residents of Pittsburgh already hold about flood risks. Here we seek to (1) identify Pittsburgh residents' knowledge level, risk perception and attitudes towards flooding and storm water management, and (2) pre-test communications meant to inform and empower Pittsburghers about flood risks and adaptation strategies. We conduct a city-wide survey of 10,000 Pittsburgh renters and homeowners from four life situations: high risk, above poverty; high-risk, below poverty; low risk, above poverty; and low-risk, below poverty. Mixed media recruitment strategies (online and paper-based solicitations guided/organized by community organizations) assist in reaching all subpopulations. Preliminary results suggest participants know what stormwater runoff is, but have a weak understanding of how stormwater interacts with natural and built systems. Furthermore, although participants have a good understanding of the difference between green and gray infrastructure, this does not translate into a change in their willingness to pay for green infrastructure adaptation. This suggests additional communications about flood risks and adaptation strategies.

  5. Flash flood characterisation of the Haor area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  6. CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas

    NASA Astrophysics Data System (ADS)

    Tanguy, M.; Chokmani, K.; Bernier, M.; Poulin, J.

    2013-12-01

    When a flood affects an urban area, the managers and services responsible for public safety need precise and real time information on the localization of the flooded areas, on the submersion heights in those areas, but also on the vulnerability of people exposed to this hazard. Such information is essential for an effective crisis management. Despite a growing interest in this topic over the last 15 years, the development of flood risk assessment tools mainly focused on quantitative modeling of the monetary damages caused by floods to residential buildings or to critical infrastructures. Little attention was paid to the vulnerability of people exposed to flooding but also to the effects of the failure or destruction of critical infrastructures and residential building on people health and security during the disaster. Moreover, these models do not integrate the dynamic features of the flood (extent, submersion heights) and the evolution of human vulnerability in the same mapping tool. Thus, an accurate and precise evaluation of human risk induced by urban flooding is hardly feasible using such models. This study presents CADYRI, a dynamic mapping tool of human risk associated with flooding in urban areas, which fills the actual needs in terms of flood risk evaluation and management. This innovative tool integrates a methodology of flood hazard mapping that simulates, for a given discharge, the associated water level, and subsequently determines the extent of the flooded area and the submersion heights at each point of the flooded area, using a DEM. The dynamics of human vulnerability is then mapped at the household level, according to the characteristics of the flood hazard. Three key components of human vulnerability have been identified and are integrated to CADYRI: 1, the intrinsic vulnerability of the population, estimated by specific socio-economic indicators; 2, the vulnerability of buildings, assessed by their structural features; 3, the vulnerability of

  7. Flood risk awareness during the 2011 floods in the central United States: showcasing the importance of hydrologic data and interagency collaboration

    USGS Publications Warehouse

    Holmes, Jr., Robert R.; Schwein, Noreen O.; Shadie, Charles E.

    2012-01-01

    Floods have long had a major impact on society and the environment, evidenced by the more than 1,500 federal disaster declarations since 1952 that were associated with flooding. Calendar year 2011 was an epic year for floods in the United States, from the flooding on the Red River of the North in late spring to the Ohio, Mississippi, and Missouri River basin floods in the spring and summer to the flooding caused by Hurricane Irene along the eastern seaboard in August. As a society, we continually seek to reduce flood impacts, with these efforts loosely grouped into two categories: mitigation and risk awareness. Mitigation involves such activities as flood assessment, flood control implementation, and regulatory activities such as storm water and floodplain ordinances. Risk awareness ranges from issuance of flood forecasts and warnings to education of lay audiences about the uncertainties inherent in assessing flood probability and risk. This paper concentrates on the issue of flood risk awareness, specifically the importance of hydrologic data and good interagency communication in providing accurate and timely flood forecasts to maximize risk awareness. The 2011 floods in the central United States provide a case study of the importance of hydrologic data and the value of proper, timely, and organized communication and collaboration around the collection and dissemination of that hydrologic data in enhancing the effectiveness of flood forecasting and flood risk awareness.

  8. Assessment of vulnerability to extreme flash floods in design storms.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2011-07-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  9. Assessment of Vulnerability to Extreme Flash Floods in Design Storms

    PubMed Central

    Kim, Eung Seok; Choi, Hyun Il

    2011-01-01

    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years. PMID:21845165

  10. The future of infrastructure security :

    SciTech Connect

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concluded with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.

  11. Michigan E85 Infrastructure

    SciTech Connect

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  12. Artificial neural networks applied to flow prediction scenarios in Tomebamba River - Paute watershed, for flood and water quality control and management at City of Cuenca Ecuador

    NASA Astrophysics Data System (ADS)

    Cisneros, Felipe; Veintimilla, Jaime

    2013-04-01

    The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador

  13. Mapping technological and biophysical capacities of watersheds to regulate floods

    USGS Publications Warehouse

    Mogollon, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances

  14. Vulnerability of schools to floods in Nyando River catchment, Kenya.

    PubMed

    Ochola, Samuel O; Eitel, Bernhard; Olago, Daniel O

    2010-07-01

    This paper assesses the vulnerability of schools to floods in the Nyando River catchment (3,600 km(2)) in western Kenya and identifies measures needed to reduce this vulnerability. It surveys 130 schools in the lower reaches, where flooding is a recurrent phenomenon. Of the primary schools assessed, 40% were vulnerable, 48% were marginally vulnerable and 12% were not vulnerable. Of the secondary schools, 8% were vulnerable, 73% were marginally vulnerable and 19% were not vulnerable. Vulnerability to floods is due to a lack of funds, poor building standards, local topography, soil types and inadequate drainage. The Constituencies Development Fund (CDF), established in 2003, provides financial support to cover school construction and reconstruction costs; CDF Committees are expected to adopt school building standards. In an effort to promote safe and resilient construction and retrofitting to withstand floods, this paper presents vulnerability reduction strategies and recommendations for incorporating minimum standards in the on-going Primary School Infrastructure Programme Design.

  15. Utilities building NGV infrastructure

    SciTech Connect

    Not Available

    1994-04-01

    Gas utilities across the US are aggressively pursuing the natural gas vehicle market by putting in place the infrastructure needed to ensure the growth of the important market. The first annual P and GJ NGV Marketing Survey has revealed many utilities plant to build and continue building NGV fueling facilities. The NGV industry in the US is confronting a classic chicken-or-egg quandary. Fleet operators and individual drivers are naturally unwilling to commit to a natural gas vehicle fuel until sufficient fueling facilities are in place, yet service station operators are reluctant to add NGV refueling capacity until enough CNG vehicles are on the road to create demand. The future of the NGV market is bright, but continued research and product improvements by suppliers as well as LDCs is needed if the potential is to be fulfilled. Advances in refueling facilities must continue if the market is to develop.

  16. Energy Transmission and Infrastructure

    SciTech Connect

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure as